A gentle introduction to Fourier analysis

Many slides borrowed from S. Seitz, A. Efros, D. Hoiem, B. Freeman, A. Zisserman

Mystery 1

 Why does filtering with a Gaussian give a nice smooth image, but filtering with a box filter gives artifacts?

Mystery 2

Why can downsampling sometimes lead to aliasing?

256x256 128x128 64x64 32x32 16x16

Salvador Dali

"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Fourier analysis

 To understand such phenomena, we need a representation of images that allows us to tease apart slow and fast changes

Outline

- Fourier series
- 1D Fourier transform
 - Definition and properties
 - Discrete Fourier transform
- 2D Fourier transform
 - Definition
 - Examples and properties
- Convolution theorem
- Understanding the sampling theorem

Fourier series

 Any(**) periodic function on [0, 1] can be expressed as a weighted sum of sinusoids of different frequencies (1807)

Example: series for a square wave

$$\sum_{k=1,3,5,\dots}^{\infty} \frac{1}{k} \sin(kt)$$

**=bunch of important details here

Periodic means f(0)=f(1)

Jean-Baptiste Joseph Fourier (1768-1830)

Image: Wikipedia

Fourier series

Generally, we have for a (reasonable) periodic f(t)

$$f(t) \sim A_0 + \sum_{i=1}^{\infty} [A_i \cos(i2\pi t) + B_i \sin(i2\pi t)]$$

And we need to figure out the weights for a given f(t).

Fourier series: useful facts

$$\int_{0}^{1} \cos(i2\pi t) \, dt = \int_{0}^{1} \sin(i2\pi t) \, dt = 0 \text{ for } i \text{ integer, } i > 0$$

$$\int_{0}^{1} \cos(i2\pi t) \sin(j2\pi t) \, dt = 0 \text{ for } i, j \text{ integer, } i \neq j, i > 0, j > 0$$

$$\int_{0}^{1} \cos(i2\pi t) \cos(j2\pi t) \, dt = 0 \text{ for } i, j \text{ integer, } i \neq j, i > 0, j > 0$$
Fact 2
$$\int_{0}^{1} \sin(i2\pi t) \sin(j2\pi t) \, dt = 0 \text{ for } i, j \text{ integer, } i \neq j, i > 0, j > 0$$

$$\int_0^1 \sin^2(i2\pi t) dt = 1/2 \text{ for } i \text{ integer}$$

$$\int_0^1 \cos^2(i2\pi t) dt = 1/2 \text{ for } i \text{ integer}$$
Fact 3

Fourier series: using facts

If:

$$f(t) \sim A_0 + \sum_{i=1}^{\infty} [A_i \cos(i2\pi t) + B_i \sin(i2\pi t)]$$

$$\int_0^1 f(t)dt = A_0$$

(fact 1 makes all the cosine/sine terms go away!)

$$\int_0^1 f(t)\sin(i2\pi t)dt = \frac{A_i}{2}$$
$$\int_0^1 f(t)\cos(i2\pi t)dt = \frac{B_i}{2}$$

(fact 2 makes all the other terms go away!

And fact 3 sets the scale)

Fourier series: issues

- A's and B's are inelegant -> complex exponentials
- Did NOT show that the series converges to the function
 - Read Korner's wonderful book Fourier Analysis
 - We're OK for anything we care about
- In principle, we can go forward
 - Function -> A's, B's
- Or backward
 - A's, B's -> Function
- Is this right? (mostly yes, but details...)

Complex exponentials

This i is the square root of -1!!!

$$e^{i2k\pi t} = \cos(2k\pi t) + i\sin(2k\pi t)$$

$$f(t) \sim \sum_{k=0}^{\infty} c_k e^{i2k\pi t}$$

Advantage:

if the function is complex, can represent cleanly don't need to remember which is A, which B

Complex exponentials: compact facts

This minus sign matters!

Fourier series with complex exponentials: using fact

If:

$$f(t) \sim \sum_{k=0}^{\infty} c_k e^{i2k\pi t}$$

$$c_k = \int_0^1 f(t)e^{-i2k\pi t}dt$$

Using the fact! (this is analogous to an orthonormal basis in linear algebra)

Fourier series with complex exponentials: issues

- But this is just for a periodic function on [0, 1]
 - Easy to extend to other intervals
 - Easy to extend to the circle
- But what about functions on [-infinity, infinity]?
 - These could wiggle often in numerous places
 - IDEA: use "more" basis elements
- The Fourier transform