A gentle introduction to Fourier analysis
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Many slides borrowed from S. Seitz, A. Efros, D. Hoiem, B. Freeman, A. Zisserman


https://victorianweb.org/art/illustration/tenniel/lookingglass/2.3.html

Formal models of sampling

Passing from a continuous function—Ilike the irradiance at the back of a camera
system—to a collection of values on a discrete grid —like the pixel values reported
by a camera—is referred to as sampling. For sampling in one dimension, the most
important case involves sampling on a uniform discrete grid. Assume that the
samples are defined at integer points, yielding a process that takes some function
and returns a vector of values:

sample, p(f(z)) = .

Here the ith component of f is f(x;), and f is an infinite vector to avoid having to
write indices, etc. (Figure 43.2).

Sampling in 2D is very like sampling in 1D. Although sampling can occur on
nonregular grids (the best example being the human retina), the most important
case has samples on a uniform grid of integer coordinates. This gives

SampleZD(F(:Ea y)) - fa

where the 7, jth element of the array F is F(z;,y;) = F(%,7). The grid is infinite
in each dimension to avoid having to write ranges, etc. (Figure 43.4). Notice that



Problem: no FT

For these sampled functions, any integral will be zero
This isn't good (eg no Fourier Transform)

Q: sensible model of a sampled function that has an FT?



A model of Sampling

We want to model sampling in a way that allows us to take
Fourier Transforms.

Challenges:

Should be able to compute a meaningful integral of the
sampled data

In particular, we would like

/w sample; (f(t))g(t)dt

(where W is some interval) to be as similar as possible to

/ £(®)g(t)dt.
W



A trick — the delta function

Define the delta function in 1D by

5(:(;):{ 0 z %0

uncomfortable x =0

/ f(2)8(x)dz = £(0)

This isn’t a function in any familiar sense, but it is useful and
crops up in all sorts of places



Desirable property

Understanding aliasing will require a continuous model of a sampled signal. Write
C(Z) for the operation that maps a sampled image 7 to this continuous model. This

model should respect convolution and sampling in a sensible way. Choose some
continuous convolution kernel g(x,y) A desirable property of this model is that if
you convolve C(Z) with g(x,y), then sample the result, you get what you would
have gotten if you convolve 7 with sample,,(g). To write this out, it is helpful to
distinguish discrete convolution (I will write *4) and continuous convolution (I will
write *.). The property is:

sample,,(C(Z) *c g) = T *q sample,p (9).



Bed of nails functions

Now C(Z cannot just be a function that takes the value of the signal at integer
points and 1is zero everywhere else, because this model has a zero integral so the
left hand side will be zero. Instead, use

CZ)(x,y) = Zzijd(w — 1,y —J)
1,J

and find
C(I) e g = Zl'wg(l — Ty — y])
i,J

so that the u, v’th component of

sample,(C(Z) *¢ g) is ZL-jg(;z:u — Ty Yo — Yj)
i,J

and the property holds.



Sampling in 2D

Sample
P 2D

FIGURE 7.4: Sampling in 2D takes a function and returns an array; again, we allow
the array to be infinite dimensional and to have negative as well as positive indices.



The FT of a sampled signal

Now convolving a function with a shifted d-function merely shifts the function
(see exercises). This means that the Fourier transform of the sampled signal is the
sum of a collection of shifted versions of the Fourier transforms of the signal, that
1S,

f(sample2D(f(J’y))) — ‘F f(‘l’.: y) Z Z 5(1" o Zy _ J)
1——00 J=—00
= F(fley) x+F | { Y Y e —iy—j)
1=——00 J=—00
= Z Fu—i,v—7j),

where we have written the Fourier transform of f(x,y) as F(u,v).



The FT of a sampled signal
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Consequences

Nyquist limits aren’t really viable
Apply the convolution theorem
A box in FT magnitude space is a filter with infinite support
(and you can’t make one of those)

You're forced to choose a filter that is low pass, but isn’t perfect
the choice has consequences

Gaussian is such a filter
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Mystery 2 SOLVED

« Why can downsampling sometimes lead to aliasing?
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The downsampling mangles the Fourier Transform magnitude
spectrum UNLESS



Aside: Analyzing interpolation methods

» Perfect reconstruction of the subsampled signal requires
convolution with a sinc filter in the spatial domain, which is

bad because sinc has infinite support

* Instead, simpler reconstruction (interpolation) methods are
typically used




Aside: Analyzing different interpolation methods

« Linear reconstruction can be done by convolving the sampled
signal with a triangle filter:
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« However, the Fourier transform of the triangle filter is the
sinc? function, so multiplying the signal’s spectrum by it
introduces high-frequency artifacts
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https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html

Bilinear interpolation closeup

Image source


https://cs184.eecs.berkeley.edu/sp19/lecture/5-50/texture-mapping

Why else should you care about Fourier analysis?
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Figure 7: Frequency analysis on each dataset. We show the average spectra of each high-pass filtered image, for both the real and fake
images, similar to Zhang et al. [50]. We observe periodic patterns (dots or lines) in most of the synthetic images, while BigGAN and
ProGAN contains relatively few such artifacts.

S.-Y. Wang et al. CNN-generated images are surprisingly easy to spot... for now. CVPR 2020



https://arxiv.org/pdf/1912.11035.pdf
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Why else should you care about Fourier analysis?

Checkerboard and repetition artifacts in GAN-generated images

i

Radford, et al., 2015 [1] Salimans et al., 2016 [ Donahue, et al., 2016 [ Dumoulin, et al., 2016 [

https://distill.pub/2016/deconv-checkerboard/
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