
Forming and using patch dictionaries

Idea:
 other patches in an image are good for denoising
 why not use other patches in other images?

Issues:
 how to find the right patch in a very large number of patches?
 redundancy
 many patches are like one another, and so just make work

Desirable outcome

Procedure to
 accept a patch
 produce a patch/some patches that are similar

Built out of very large number of patches

Clustering

Clustering

Dendrograms

K-means clustering

Minimize the objective function, but how?

Approximate minimization

Fixes – efficient starting

Choosing K

Strategies:

 Cost function for various values of K [DOESN’T WORK!!!]

 Purity, etc. [Hardly ever relevant]

 Choose some K’s, try application with different K’s,
 choose the best

Fixes – Scattered Points and Junk Clusters

Fixes – Empty Clusters

So some clusters might be empty and mean fails

Cure:
 for any empty cluster, randomly select a data point to serve as

its center

Why K-means is useful

Take input patch

Find its cluster center

Use patches in the cluster or the cluster center itself to denoise
the image

Hierarchical K means

But what if there are too many data points?
 too many clusters, finding cluster center is hard

IDEA:
 Cluster data using K means
 Each cluster is now a dataset
 Cluster each dataset using K means

Hierarchical K means

But what if there are too many data points?
 too many clusters, finding cluster center is hard

IDEA:
 Cluster data using K means
 Each cluster is now a dataset
 Cluster each dataset using K means

Notice this is a simple tree; you could make it deeper.

Nearest neighbors

Idea:

 Find the patch that is closest to query patch, denoise (etc)
with that

Issue:

 How to do this fast? (v. hard)

Approximate nearest neighbors and k-means
Idea:

 “Walk” input patch down hierarchical k-means tree

 Find closest patch from patches in the leaf cluster

 Use that instead of nearest neighbor

Approximate nearest neighbors and k-means

Approximate nearest neighbors and k-means
Idea:

 “Walk” input patch down hierarchical k-means tree

 Find closest patch from patches in the leaf cluster

 Use that instead of nearest neighbor

Fact: not nearest neighbor; with high probability nearly as close
Fact: hard to find a closer neighbor by walking tree

Approximate nearest neighbors and k-means

Denoising with a patch dictionary

Procedure:
 Divide noisy image into patches, which could overlap
 Match each patch using a dictionary (ANN using HKM)
 Reconstruct
 if the patches don’t overlap, easy
 if they do, average

Options when matching

Walk tree, find patch in leaf that is closest to query patch

Walk tree, use mean of all patches in leaf
 - this should be better than you might think
 cause all the patches should be quite similar

Denoising with a patch dictionary - overlapping

Denoising with a patch dictionary, no overlap

Dictionary size has a significant effect

Dictionary 1 – 1e7 patches, 200, 000 images, 2000 leaves

Dictionary 2 – 5 e 7 patches, 1e6 images

Vector quantization
Recall:

 Walk tree, use mean of all patches in leaf
 - this should be better than you might think
 cause all the patches should be quite similar

Notice that you have built a mapping. You could replace the
mean with the number of the leaf to get: patch-> leaf

This has a range of uses – compression, etc.

Building features with vector quantization

Image might have variable size

Histogram has fixed size

Idea: vector quantization and voting
Problem:
 you want to classify an image

Strategy:
 learning:
 get many labelled images
 cut into patches
 build tree
 for each leaf, record the most common label

 classifying:
 cut image into patches
 pass patch down tree
 vote for label

Now old-fashioned, but moderately
effective and very good in its time

