
Voting and its applications

Recall:

 Idea:  vector quantization and voting

There are a variety of uses for voting



Voting for lines

• Data: (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)

• Line equation: 𝑦	 = 	𝑚	 𝑥	 + 	𝑏

Parameters of line



Hough transform
• Possibly the earliest voting scheme – but still useful!

• Discretize parameter space into bins
• For each feature point in the image, put a vote in every bin in the 

parameter space that could have generated this point
• Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959 

Image space Hough parameter space

https://inspirehep.net/files/53d80b0393096ba4afe34f5b65152090


Hough transform
• What does a line in the image space correspond to?

• A point in the parameter space

Image space Parameter space
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Hough transform
• What does a point in the image space correspond to?

• A line in the parameter space: all (𝑚, 𝑏) that satisfy −𝑏 = 𝑥!𝑚 − 𝑦!

Image space Parameter space
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Hough transform
• What about two points in the image space?

• A point in the parameter space, corresponding to the unique line 
that passes through both points 

Image space Parameter space
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Hough transform
• What about many points in the image space?

• Plot all the lines in the parameter space and try to find a spot where 
a large number of them intersect
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• In practice, we don’t want to use the (𝑚, 𝑏) space!
• Unbounded parameter domains
• Vertical lines require infinite 𝑚

• Alternative: polar representation
• Each image point (𝑥, 𝑦) yields a sinusoid in the (𝜃, 𝜌) parameter space 

Parameter space representation

𝑥	cos	𝜃 + 𝑦 sin 𝜃 = 𝜌



Algorithm outline
• Initialize accumulator 𝐻 to all zeros
• For each feature point 𝑥, 𝑦

• For 𝜃	 = 	0	to 180
 𝜌	 = 	𝑥	cos 𝜃	 + 	𝑦	sin 𝜃
 𝐻(𝜃, 𝜌) 	+= 	1

• Find the value(s) of (𝜃, 𝜌)	where 𝐻(𝜃, 𝜌)	
is a local maximum (perform NMS on the 
accumulator array)
• The detected line in the image is given by 

 𝜌	 = 	𝑥	cos 𝜃	 + 	𝑦	sin 𝜃

𝜃

𝜌



features votes

Basic illustration

Hough transform demo

https://www.youtube.com/watch?v=ebfi7qOFLuo


Square Circle 

Other shapes



Several lines



A more complicated image

Source

http://ostatic.com/files/images/ss_hough.jpg


features votes

Effect of noise



features votes

Effect of noise

Peak gets fuzzy and hard to locate



Effect of outliers

Uniform noise can lead to spurious peaks in the array
features votes



Dealing with noise
• How to choose a good grid discretization?

• Too coarse: large votes obtained when too many different lines 
correspond to a single bucket

• Too fine: miss lines because some points that are not exactly 
collinear cast votes for different buckets

• Increment neighboring bins (smoothing in accumulator array)
• Try to get rid of irrelevant features 

• E.g., take only edge points with significant gradient magnitude



Hough transform: Pros and cons
• Pros

• Can deal with non-locality and occlusion
• Can detect multiple instances of a model
• Some robustness to noise: noise points unlikely to contribute 

consistently to any single bin
• Leads to a surprisingly general strategy for shape localization 

(more on this next)
• Cons

• Complexity increases exponentially with the number of model 
parameters – in practice, not used beyond three or four dimensions

• Non-target shapes can produce spurious peaks in parameter space
• It’s hard to pick a good grid size



Instance level classification (and detection)



Example:  Find the book
Get pictures of book covers, and attach book name

Now find the book cover in some other image



Can’t do this with SSD; patches might work
Notice changes in color caused by changes in lighting



Can’t do this with SSD; patches might work
Notice changes in appearance caused by rotation



Simplest patch algorithm (not much good)
Make a tree of cover image patches (with labels)

For test image, pass patches down tree, vote

Vote how?:
  most common book in leaf
  one vote for each book in leaf
  vote for ANN patches label
Issues:   
  every patch votes, so there must be junk votes (easily fixed)
  tree doesn’t know you’re using it for labelling, may not be efficient
  rotation (perhaps insert patches at many rotations?)  



Using interest points
Make a tree of cover image interest points (with labels)
 You can do this cause interest point descriptors are vectors of fixed 

length.  They’re nearby when interest points are similar.
For test image, pass interest points down tree, vote

Vote how?:
  most common book in leaf
  one vote for each book in leaf
  vote for ANN interest point label
Issues:   
  every patch votes, so there must be junk votes (easily fixed)
  tree doesn’t know you’re using it for labelling, may not be efficient
 rotation (perhaps insert patches at many rotations?)  



Every patch votes – generalized Hough transform
Each interest point has a coordinate system, 
 so it “knows” where the center of the book is



Every patch votes – generalized Hough transform
Allow an interest point to vote for a book only if another one agrees with 

center



Every patch votes – generalized Hough transform
Allow an interest point to vote for a book only if another one agrees with 

center

How?
 build an accumulator array for book centers, 
 accumulate votes
 scan it to check for “big” votes – do they agree on book label?



Every patch votes – generalized Hough transform
Interest points know other stuff – the outline of the book



We now have…

A primitive classifier
 What book is in this image?

A primitive detector
 What books are in this image, and where are they?

There are more accurate technologies, 
 tend to be slower, require more compute

This one is extremely fast and very efficient, particularly with an improved 
tree



The tree
Current construction:
 Hierarchical k-means
  This breaks up each node into leaves whose elements are close 

to one another.  

  But this isn’t what we want

 Decision tree:
  Break each node into leaves where leaves are “informative” about 

label
  eg in binary tree, labels on the left are all different from labels on the 

right



Decision trees
For us:
 tree is now binary
 split is test a single dimension against a threshold

As tree
As cells in 2D



Idea: randomized search for informative splits
Informative split:
 We know more about the likely label if we know which side we’re on



Harder case



Harder case



Harder case



The entropy of a labelled pool of data
Q: how much information do I need to supply to know the label 

of a randomly selected example?
A:  Entropy
  could be as small as 0 (all labels the same)
  



What does a split do?



Scoring a split



Scoring a split



Building a tree



Building a tree - II



Forests

Use this tree the same way you’d use the HKM tree
 pass interest points down, pick up votes at leaves

It isn’t spectacular, and it can’t be the best tree
 random components in construction

Idea:
 build multiple trees and vote over them, too – a decision forest

Variants:
 subsample training dataset and train each tree on a different sample 

(bagging)



Why bother?

Quite accurate classifiers that are fantastically fast at run-time

Can use very little compute

Used in consumer devices 
 eg Kinect body configuration detection (now gone)


