Voting and its applications

Recall:

ldea: vector quantization and voting

There are a variety of uses for voting

Voting for lines

« Data: (x;,y)), ..., (x,, ,,)

* Lineequation:y = mx + b

Parameters of line

Hough transform

* Possibly the earliest voting scheme — but still useful!

» Discretize parameter space into bins

* For each feature point in the image, put a vote in every bin in the
parameter space that could have generated this point

 Find bins that have the most votes

| -

Image space Hough parameter space

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

https://inspirehep.net/files/53d80b0393096ba4afe34f5b65152090

Hough transform

 What does a line in the image space correspond to?
A pointin the parameter space

Image space Parameter space

Hough transform

 What does a point in the image space correspond to?
* Aline in the parameter space: all (m, b) that satisfy —b = x,m — y,

Image space Parameter space

Hough transform

« What about two points in the image space?

« A point in the parameter space, corresponding to the unique line
that passes through both points

(%1, Y1)

—b =xm—y,

(%0, Vo) X

Image space Parameter space

Hough transform

« What about many points in the image space”?

* Plot all the lines in the parameter space and try to find a spot where
a large number of them intersect

Image space Parameter space

Parameter space representation

* In practice, we don’t want to use the (m, b) space!

* Unbounded parameter domains
* Vertical lines require infinite m

 Alternative: polar representation
« Each image point (x, y) yields a sinusoid in the (8, p) parameter space

y’

xcosf +ysinf =p

Algorithm outline

 [|nitialize accumulator H to all zeros

H: accumulator array (votes)

* For each feature point (x, y)
For6 = 0to 180
p = xcosf + ysinb P
HO,p) +=1
* Find the value(s) of (8, p) where H(6, p) 0

IS a local maximum (perform NMS on the
accumulator array)

* The detected line in the image is given by
p = xcosf + ysinf

Basic illustration

features votes

Hough transform demo

https://www.youtube.com/watch?v=ebfi7qOFLuo

Other shapes

Square Circle

Several lines

A more complicated image

Source

http://ostatic.com/files/images/ss_hough.jpg

Effect of noise

features

Effect of noise

Peak gets fuzzy and hard to locate

features

votes

Effect of outliers

features

Uniform noise can lead to spurious peaks in the array

votes

Dealing with noise

« How to choose a good grid discretization?

 Too coarse: large votes obtained when too many different lines
correspond to a single bucket

* Too fine: miss lines because some points that are not exactly
collinear cast votes for different buckets

 Increment neighboring bins (smoothing in accumulator array)

* Try to get rid of irrelevant features
« E.g., take only edge points with significant gradient magnitude

Hough transform: Pros and cons

* Pros
« Can deal with non-locality and occlusion
« Can detect multiple instances of a model

« Some robustness to noise: noise points unlikely to contribute
consistently to any single bin

« Leads to a surprisingly general strategy for shape localization
(more on this next)
« Cons

« Complexity increases exponentially with the number of model
parameters — in practice, not used beyond three or four dimensions

* Non-target shapes can produce spurious peaks in parameter space
* It's hard to pick a good grid size

Instance level classification (and detection)

Instance level classification 1s the problem of determining whether a particular
object is present in an image. If it is there (wherever it appears) the image is
labelled with that object. Instance classification is rather different than category
level categorization, where one must determine whether any instance of a particular
category 1s present. So, for example, if you have to tell whether your two-year old
tabby cat 1s In a picture, you are doing instance level classification. If you have to
tell whether there is a cat in the 1mage, you are doing category level categorization.

Example: Find the book

Get pictures of book covers, and attach book name

Can't do this with SSD; patches might work

Notice changes in color caused by changes in lighting

=
—

AQUARIUM FISH REPRODUCTION

Scientific Studies of Guppies and Other Fish

= Q)
N

Diana Walstad Diana Walstad

Can't do this with SSD; patches might work

Notice changes in appearance caused by rotation

Diana Walstad

Simplest patch algorithm (not much good)

Make a tree of cover image patches (with labels)
For test image, pass patches down tree, vote

Vote how?:
most common book in leaf
one vote for each book in leaf
vote for ANN patches label
Issues:
every patch votes, so there must be junk votes (easily fixed)
tree doesn’t know you're using it for labelling, may not be efficient
rotation (perhaps insert patches at many rotations?)

Using interest points

Make a tree of cover image interest points (with labels)

You can do this cause interest point descriptors are vectors of fixed
length. They’re nearby when interest points are similar.

For test image, pass interest points down tree, vote

Vote how?:
most common book in leaf
one vote for each book in leaf
vote for ANN interest point label
Issues:
every patch votes, so there must be junk votes (easily fixed)
tree doesn’t know you're using it for labelling, may not be efficient

on(perhaps.i I ons?2

Every patch votes — generalized Hough transform

Each interest point has a coordinate system,
so it “knows” where the center of the book is

Diana Walstad

Every patch votes — generalized Hough transform

Allow an interest point to vote for a book only if another one agrees with
center N . ‘

Every patch votes — generalized Hough transform

Allow an interest point to vote for a book only if another one agrees with
center

How?
build an accumulator array for book centers,
accumulate votes
scan it to check for “big” votes — do they agree on book label?

Every patch votes — generalized Hough transform

Interest points know other stuff — the outline of the book

UARIUM FISH REPRODUCTION

Diana Walstad

Bounding box 1n interest point coordinate system

We now have...

A primitive classifier
What book is in this image?

A primitive detector
What books are in this image, and where are they?

There are more accurate technologies,
tend to be slower, require more compute

This one is extremely fast and very efficient, particularly with an improved
tree

The tree

Current construction:
Hierarchical k-means

This breaks up each node into leaves whose elements are close
to one another.

But this isn’t what we want

Decision tree:

Break each node into leaves where leaves are “informative” about
label

eg in binary tree, labels on the left are all different from labels on the
right

Decision trees

For us:
tree is now binary
split is test a single dimension against a threshold

J |
1 - .
y>.32 I : 5 ,
1 2 I
x>-0.58 x>1.06
Or , | 3
2
| 2 1 3 3 3
2 3 3
3
2 3 .
) As cells in 2D
As tree _5

-5 0 5

ldea: randomized search for informative splits

Informative split:
We know more about the likely label if we know which side we’re on

Informative split Less imnformative split

Harder case

Informative split

FIGURE 11.9: Two possible splits of a pool of training data. Positive data is repre-
sented with an ‘x’, negative data with a ‘o’. Notice that if you split this pool with
the informatiwve line, all the points on the left are ‘z’s, and two-thirds of the points
on the right are ‘o’s. This means that knowing which side of the split a point lies
would give you a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are ‘x’s and about half on the right are ‘z’s
— knowing which side of the split a point lies is much less useful in deciding what

the label 1s.

Less informative split

Harder case

Informative split

Figure 7?7 shows a more subtle case to illustrate this. The splits in this figure
are obtained by testing the horizontal feature against a threshold. In one case,
the left and the right pools contain about the same fraction of positive (‘x’) and
negative (‘o’) examples. In the other, the left pool is all positive, and the right pool
1s mostly negative. This is the better choice of threshold. If you were to label any
item on the left side positive and any item on the right side negative, the error rate
would be fairly small. If you count, the best error rate for the informative split is
20% on the training data, and for the uninformative split it is 40% on the training

data.

Less informative split

AN

(=] =]
| © (=] o | =]
[} =}
o ©° o ©
o © ° o °)
° | °
I © [} (=} °
= ° © » © °
° ° ° © °
v I . o © ®oo® | » °
® o ©) IS o ©° o
» » » » w <
» (=] » =]
® o® | » <) I »]
> » > »
*® ° w °
> »
» » » » » »
» »
» w I » » » | »
w » » »
» " » »
» » > » w >
w »
» » I] » |
» »
> I = |
Informative split Less informative split

All this suggests a procedure to score how good the split is. In the unin-
formative case, knowing that a data item is on the left (or the right) does not
tell you much more about the data than you already knew. This is because
p(1|left pool, uninformative) = 2/3 ~ 3/5 = p(1|parent pool) and p(1|right pool, uninformative) =
1/2 ~ 3/5 = p(1|parent pool). For the informative pool, knowing a data item is on
the left classifies it completely, and knowing that it is on the right allows us to clas-
sify it an error rate of 1/3. The informative split means that your uncertainty about
what class the data item belongs to is significantly reduced if you know whether
it goes left or right. To choose a good threshold, you need to keep track of how
informative the split is.

The entropy of a labelled pool of data

Q: how much information do | need to supply to know the label
of a randomly selected example?

A: Entropy
could be as small as 0 (all labels the same)

Write P for the set of all data at the node. Write P; for the left pool, and P, for
the right pool. The entropy of a pool C scores how many bits would be required to
represent the class of an item in that pool, on average. Write n(z;C) for the number
of items of class 7 in the pool, and N(C) for the number of items in the pool. Then
the entropy H(C) of the pool C is

n(n(i;C)
_Z log2 N(C

What does a split do?

It is straightforward that H(P) bits are required to classify an item in the parent
pool P. For an item in the left pool, H(P;) bits are needed; for an item in the right
pool, H(P,) bits are needed. If the parent pool is split, you will encounter items
in the left pool with probability

N(Pr)

N(P)

and 1tems in the right pool with probability

This means that, on average, you must supply

N(P)
N(P)

N(Pr)
N(P)

H(P;) +

H(P,)

bits to classify data items if the parent pool is split. A good split is one that results

Scoring a split

classify once you have split than before the split. You can see the difference

N(Py)
N(P)

N(P,)
N(P)

H(Pp) +

(P, Pr;P) = H(P) — (H(%))

as the information gain caused by the split. This is the average number of bits that
you don’t have to supply if you know which side of the split an example lies. Better
splits have larger information gain. All this yields a relatively straightforward
blueprint for an algorithm, which I have put in a box. It’s a blueprint, because
there are a variety of ways in which 1t can be revised and changed.

Scoring a split

Informative split

Less informative split

Building a tree

Procedure: 11.1 Building a decision tree: overall

We have a dataset containing N pairs (x;,¥;). FEach x; is a d-
dimensional feature vector, and each y; is a label. Call this dataset
a pool. Now recursively apply the following procedure:

e If the pool is too small, or if all items in the pool have the same
label, or if the depth of the recursion has reached a limit, stop.

e Otherwise, search the features for a good split that divides the
pool into two, then apply this procedure to each child.

We search for a good split by the following procedure:

e Choose a subset of the feature components at random. Typically,
one uses a subset whose size is about the square root of the feature
dimension.

e For each component of this subset, search for a good split using
the procedure of box 11.2.

Building a tree -

Procedure: 11.2 Splitting an ordinal feature

We search for a good split on a given ordinal feature by the following
procedure:

e Select a set of possible values for the threshold.

e For each value split the dataset (every data item with a value of
the component below the threshold goes left, others go right), and
compue the information gain for the split.

Keep the threshold that has the largest information gain.

A good set of possible values for the threshold will contain values that
separate the data “reasonably”. If the pool of data is small, you can
project the data onto the feature component (i.e. look at the values of
that component alone), then choose the N — 1 distinct values that lie
between two data points. If it is big, you can randomly select a subset
of the data, then project that subset on the feature component and
choose from the values between data points.

Forests

Use this tree the same way you'd use the HKM tree
pass interest points down, pick up votes at leaves

It isn’t spectacular, and it can’t be the best tree
random components in construction

|dea:
build multiple trees and vote over them, too — a decision forest

Variants:
subsample training dataset and train each tree on a different sample

(bagging)

Why bother?

Quite accurate classifiers that are fantastically fast at run-time
Can use very little compute

Used in consumer devices
eg Kinect body configuration detection (now gone)

