
Fitting

Fitting
• We’ve learned how to detect edges,

corners, blobs. Now what?
• We would like to form a higher-level,

more compact representation of the
features in the image by grouping
multiple features according to a
simple model

Source: K. Grauman

Fitting
• Choose a parametric model to represent a set of features

simple model: lines simple model: circles

complicated model: car

Fitting: Challenges

• Noise in the measured feature locations
• Extraneous data: clutter (outliers), multiple lines
• Missing data: occlusions

Case study: Line detection

Fitting: Overview
• Least squares line fitting
• Robust fitting
• RANSAC

Least squares line fitting: First attempt
• Data: (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)
• Line equation: 𝑦𝑖	 = 	𝑚𝑥! 	+ 	𝑏
• Find (𝑚, 𝑏) to minimize

 𝐸 = ∑!"#$ 𝑦! −𝑚𝑥! − 𝑏 %

• Equivalent to finding least-squares solution to:
𝑥# 1
⋮ ⋮
𝑥$ 1

𝑚
𝑏 =

𝑦#
⋮
𝑦$

• Solution is given by 𝑋&𝑋𝐵 = 𝑋&𝑌

𝑋 𝐵 𝑌

(𝑥! , 𝑦𝑖)

𝑦 = 𝑚𝑥 + 𝑏

Is this a good solution?
• Slope-intercept parametrization fails for vertical lines
• Solution is not equivariant w.r.t. rotation

• Line parametrization: 𝑎𝑥 + 𝑏𝑦 = 𝑑
• (𝑎, 𝑏) is the unit normal to the line

(i.e., 𝑎2 + 𝑏2 = 1)
• 𝑑 is the distance between the line and

the origin
• Perpendicular distance between point (𝑥!, 𝑦𝑖) and line
𝑎𝑥 + 𝑏𝑦 = 𝑑	(assuming 𝑎2+ 𝑏2 = 1):

|𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑|
• Objective function:

𝐸 =7
!"#

	$

𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑 %

Total least squares

(𝑥! , 𝑦𝑖)

𝑎𝑥 + 𝑏𝑦 = 𝑑

• Solve for 𝑑 first:
()
(* = −2∑!"#	$ 𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑 = 0

𝑑 = +
$
∑!"#	$ 𝑥𝑖 +

,
$
∑!"#	$ 𝑦𝑖 = 𝑎𝑥̅ + 𝑏;𝑦

Total least squares

(𝑥! , 𝑦𝑖)

𝐸 =7
!"#

	$

𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑 %
𝑎𝑥 + 𝑏𝑦 = 𝑑

• Solve for 𝑑 first: 𝑑 = 𝑎𝑥̅ + 𝑏;𝑦
• Plugging back in:

𝐸 =7
!"#

	$

𝑎(𝑥! − 𝑥̅) + 	𝑏(𝑦𝑖 − ;𝑦) % =
𝑥# − 𝑥̅ 𝑦# − ;𝑦
⋮ ⋮

𝑥$ − 𝑥̅ 𝑦$ − ;𝑦

𝑎
𝑏

%

Total least squares

(𝑥! , 𝑦𝑖)

𝐸 =7
!"#

	$

𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑 %
𝑎𝑥 + 𝑏𝑦 = 𝑑

• Solve for 𝑑 first: 𝑑 = 𝑎𝑥̅ + 𝑏;𝑦
• Plugging back in:

𝐸 =7
!"#

	$

𝑎(𝑥! − 𝑥̅) + 	𝑏(𝑦𝑖 − ;𝑦) % =
𝑥# − 𝑥̅ 𝑦# − ;𝑦
⋮ ⋮

𝑥$ − 𝑥̅ 𝑦$ − ;𝑦

𝑎
𝑏

%

• We want to find 𝑁 that minimizes 𝑈𝑁 % subject to 𝑁 % = 	1
• Solution is given by the eigenvector of 𝑈𝑇𝑈 associated with the

smallest eigenvalue

Total least squares

(𝑥! , 𝑦𝑖)

𝐸 =7
!"#

	$

𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑 %

𝑈 𝑁

𝑎𝑥 + 𝑏𝑦 = 𝑑

Total least squares

𝑁 = (𝑎, 𝑏)

second moment matrix

F&P (2nd ed.) sec. 22.1

𝑈"𝑈 =
∑!#$
% (𝑥! − 𝑥̅)& ∑!#$

% (𝑥! − 𝑥̅)(𝑦! − 1𝑦)
∑!#$
% (𝑥! − 𝑥̅)(𝑦! − 1𝑦) ∑!#$

% (𝑦! − 1𝑦)&
𝑈 =

𝑥$ − 𝑥̅ 𝑦$ − 1𝑦
⋮ ⋮

𝑥% − 𝑥̅ 𝑦% − 1𝑦

(𝑥! − 𝑥̅, 𝑦! − ;𝑦)

Application: Computing surface normals

Assume at every pixel you have distance to the 3D point (depth)

 write: d(i, j)

You would like to know the surface normal at each point.

Strategy:
 fit a plane to the a group of points in 3D
 use the normal of that plane

Fitting a plane in 3D (Very much like fitting a line in 2D)

• Plane parametrization: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑
• (𝑎, 𝑏, 𝑐) is the unit normal to the plane

(i.e., 𝑎2 + 𝑏2 + 𝑐2 = 1)
• 𝑑 is the distance between the line and

the origin
• Perpendicular distance between point 𝑥!, 𝑦!, 𝑧𝑖 and plane
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑	(assuming	𝑎2+ 𝑏2+ 𝑐2 = 1):

|𝑎𝑥𝑖	 + 	𝑏𝑦𝑖 + 𝑐𝑧! − 	𝑑|
• Objective function:

𝐸 =7
!"#

	$

𝑎𝑥𝑖	 + 	𝑏𝑦𝑖 + 𝑐𝑧! − 𝑑 %

• Solve for 𝑑 first: 𝑑 = 𝑎𝑥̅ + 𝑏;𝑦 + 𝑐 ̅𝑧
• etc

• Solution is given by the eigenvector of 𝑈𝑇𝑈 associated with the
smallest eigenvalue

• But now U is 3x3

Total least squares

𝐸 =7
!"#

	$

𝑎𝑥𝑖	 + 	𝑏𝑦𝑖 + 𝑐𝑧! − 	𝑑 %

Points close to line -> TLS behaves well

Large errors – TLS behaves badly

Least squares: Robustness to noise
• Least squares fit to the red points:

Least squares: Robustness to noise
• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators
• General approach: find model parameters 𝜃 that minimize

7
!

𝜌- 𝑟(𝑥!; 𝜃)

 𝑟 𝑥𝑖; 𝜃 : residual of 𝑥! w.r.t. model parameters 𝜃
 eg for line, 𝜃 = (𝑎, 𝑏, 𝑑)
 residual 𝑟 𝑥𝑖; 𝜃 = 𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑
 𝜌': robust function with scale parameter 𝜎

Notice that 𝜌' 𝑢 = 𝑢^2
 would give the original least squares loss

Robust estimators

The Huber loss

Scale

Choosing the scale: Just right

The effect of the outlier is minimized

The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too small

Choosing the scale: Too large

Behaves much the same as least squares

Finding the line

Finding the line - II

Robust estimators – influence functions

Idea – iteratively reweighted least squares

Start with initial line
 get weights, scale from line

Iterate:
 estimate line using weights, scale
 estimate scale using line
 estimate weights using scale, line

We *know* that one stationary point is the true minimum
 No other guarantees I’m aware of, but quite well behaved

Starting iteratively reweighted least squares

Iterate:
 Initial line:
 Draw two points at random from dataset
 Pass line through them
 Fit line with IRLS

Use the best you encounter

IRLS

IRLS isn’t perfect…

Fitting: Overview
• Least squares line fitting
• Robust fitting
• RANSAC

Voting schemes
• Robust fitting can deal with a few outliers – what if we have

very many?
• Basic idea: let each point vote for all the models that are

compatible with it
• Hopefully the outliers will not vote consistently for any single model
• The model that receives the most votes is the best fit to the image

RANSAC
• Random sample consensus: very general framework for

model fitting in the presence of outliers
• Outline:

• Randomly choose a small initial subset of points
• Fit a model to that subset
• Find all inlier points that are “close” to the model and reject the rest as

outliers
• Do this many times and choose the model with the most inliers

M. Fischler and R. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf

RANSAC for line fitting example

Source: R. Raguram

RANSAC for line fitting example

Least-squares fit

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

RANSAC loop
Repeat 𝑁 times:
• Draw 𝑠 points uniformly at random
• Fit model to these 𝑠 points
• Find inliers to the model among the remaining points

(points whose distance or residual w.r.t. model is less than 𝑡)
• If there are 𝑑 or more inliers, accept the model and refit using

all inliers

RANSAC: Choosing the parameters
• Initial number of points 𝑠

• Typically minimum number needed to fit the model
• Distance threshold 𝑡 for inliers

• Need suitable assumptions, e.g., given zero-mean Gaussian noise with
std. dev. 𝜎, 𝑡 = 1.96𝜎 will give ~95% probability of capturing all inliers

• Consensus set size 𝑑
• Should match expected inlier ratio

Adapted from M. Pollefeys

RANSAC: Choosing the parameters
• Choosing the number of iterations (initial samples) 𝑁:

• Choose 𝑁 so that, with probability 𝑝 (e.g. 99%), at least one initial
sample is free from outliers

• Assuming an outlier ratio of 𝑒:
1 − 1 − 𝑒 () = 1 − 𝑝

𝑁 = log 1 − 𝑝 /log(1 − 1 − 𝑒 ()

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Source: M. Pollefeys

RANSAC pros and cons
• Pros

• Simple and general
• Applicable to many different problems
• Often works well in practice

• Cons
• Lots of parameters to set
• Number of iterations grows exponentially as outlier ratio increases
• Can’t always get a good initialization

of the model based on the minimum
number of samples

Incremental RANSAC
To fit many lines to a dataset:

 Iterate:
 Fit a line with RANSAC
 using IRLS (crucial!)
 Remove inliers from dataset

Q: when to stop?
A: when you have the right number of lines
 when too little data is left
 when the last line has few inliers

Depends on
application!

IRLS matters…

