Fitting

Fitting

« We've learned how to detect edges,
corners, blobs. Now what?

« We would like to form a higher-level,
more compact representation of the
features in the image by grouping
multiple features according to a
simple model

Fitting

« Choose a parametric model to represent a set of features

simple model: lines simple model: circles

complicated model: car

Source: K. Grauman

Fitting: Challenges

* Noise in the measured feature locations
« Extraneous data: clutter (outliers), multiple lines
 Missing data: occlusions

Fitting: Overview

» Least squares line fitting
* Robust fitting
« RANSAC

Least squares line fitting: First attempt

« Data: (x;,y)), ..., (x,, v,,)

| . y=mx+b
Line equation: y, = mx; + b /
Find (m, b) to minimize [()

E = S, (y; — mx; — b)?

Equivalent to finding least-squares solution to:

Sy
Lc.n 1](b)_ Yn
X B Y

Solution is given by X"XB = XTY

Is this a good solution?

» Slope-intercept parametrization fails for vertical lines
« Solution is not equivariant w.r.t. rotation

Total least squares

ax + by =d

» Line parametrization: ax + by = d [.
* (a,b) is the unit normal to the line
(i.e., a> + b* = 1))

* d is the distance between the line and (X5, ¥)
the origin
* Perpendicular distance between point (x;, y;) and line
ax + by = d (assuming a? + b? = 1):
lax, + by, — d|

« Objective function:

n
E =2(axi + by, — d)?
i=1

Total least squares

ax + by =d

- “
E :Z(axi + by, — d)? /
i=1 , '

« Solve for d first' Coyd

-2y "2 (ax; + by, —d) =0

ad
d——anx +- Zz 1Y = ax + by

Total least squares

ax + by =d

n “
8 :z(“’% + by, — d)* /
=1 i *

» Solve for d first: d = ax + by (i, 1)
« Plugging back in:

E = Z(a(xi — %)+ by, —¥))*
i=1

Total least squares

ax + by =d

. “
E :Z(axi + by, — d)? /
i=1 , '

« Solve for d first: d = ax + by Guy) |

* Plugging back in:
a
_ (b)
Xn—X Yn—)Y

U N

« We want to find N that minimizes ||UN||* subject to ||N||? = 1

Solution is given by the eigenvector of U'U associated with the
smallest eigenvalue

X1—X Y1—Y

F =) (al =)+ b(y,— 7)) =
=1

Total least squares

PRI :[G- D2 S — D0 - 7)
Yie1 (i =) i —) e (i = ¥)?

second moment matrix

Xn—X Yn—)

N = (a,b)

d N PG =Xy —y)

©
o

o]

F&P (2nd ed.) sec. 22.1

Application: Computing surface normals

Assume at every pixel you have distance to the 3D point (depth)
write: d(i, j)

You would like to know the surface normal at each point.

Strategy:

fit a plane to the a group of points in 3D
use the normal of that plane

Fitting d plane in 3D (Very much like fitting a line in 2D)

* Plane parametrization: ax + by +cz = d

* (a,b,c) is the unit normal to the plane
(i.e., a’> + b*+ c?> = 1)
« d is the distance between the line and
the origin
« Perpendicular distance between point (x;, y;, z;) and plane
ax + by + cz = d (assuming a’ + b? + c? = 1):
lax; + by, + cz; — d]

« Objective function:

n
E = z(axi + by, + cz; — d)?

=1

Total least squares

n
E = Z(axi + by, + cz; — d)?
i=1

« Solveford first: d = ax + by + cz

e efc

« Solution is given by the eigenvector of U'U associated with the
smallest eigenvalue

e Butnow U is 3x3

Points close to line -> TLS behaves well

1.0+ 1.0+
(o
0.8 1 0.8 =
(o)

0.61 0.6
0.4 1 0.4+
0.2 0.2+ °
0.04 0.0+

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 12.4: Total least squares behaves well when all points lie fairly close to the
line. Left: A line fitted with total least squares to a set of points that actually lie
on the line. Right: The points have been perturbed by adding a small random term
to both x and y coordinate, but the fitted line (red) is not that different from the

original (green).

Large errors — TLS behaves badly

8
1.0 1 L 2
6 9
0.8 1
44
®
0.6 1 21
®
04
0.4+
-2
0.2+
~ | s
0.0 4 —6 9
0.0 0.2 0.4 0.6 0.8 1.0 0?0 0.2 0.4 0.6 0.8 1.0

FIGURE 12.5: Total least squares can misbehave when some points are significantly
perturbed. Here the points are those of Figure 12.4, but one point has had its y
coordinate replaced with a constant (new point in red, joined to its original position
with a line). Left: The constant is 1, and the line produced by total least squares has
shifted significantly. Right: The constant is 4, and now the fitted line is completely
wrong. In each case, the original line is in green (and passes close to the points),
and the new line is red.

Least squares: Robustness to noise

« Least squares fit to the red points:

Least squares: Robustness to noise

« Least squares fit with an outlier:

-10F

-12F

-14 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

Problem: squared error heavily penalizes outliers

Robust estimators

* General approach: find model parameters 6 that minimize
2 ps(r(x;;0))
i

r(x; 6): residual of x; w.r.t. model parameters 6
eg for line, 6 = (a,b,d)
residual r(x;60) = (ax; + by, — d)

Py robust function with scale parameter o

Notice that ps(u) =un2
would give the original least squares loss

Robust estimators

8 - Quadratic
- Huber
7 = Geman-McClure
— PseudoHuber
6 — \Walsch-Leclerc
5 -
E)
S 41
£
3 -
2 -
1 -
0 -

The Huber loss

The Huber loss uses Scale

v

2
p(u;a):{UQ) lu| <o

olul =%

which is the same as u?/2 for —o < u < o, switches to |u| for larger (or smaller)
o, and has continuous derivative at the switch. The Huber loss is convex (meaning
that there will be a unique minimum for our models) and differentiable, but is not
smooth. The choice of the parameter o (which is known as scale) has an effect on
the estimate. You should interpret this parameter as the distance that a point can

Choosing the scale: Just right

a4z A0 8 6 4 2 0 2 4 B

The effect of the outlier is minimized

Choosing the scale: Too small

&L
4k
oL
W *
2L
4L
6L
sl
10k
12k
R TR T e T a— 5 4 2 0 2 4 :

The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too large

-10k

-12-

-14 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -6 4 -2 0 2 4 6

Behaves much the same as least squares

Finding the line

Now the line is chosen by minimizing

(1/2) Z p(r(x,0);0)

with respect to # = (a1, as, c), subject to a$ + a3 = 1. The minimum occurs when

Vo (Z P("'(Xi~9)10)> = Z [%] Vor(xi,0)
N
0

Finding the line - Il

Here A is a Lagrange multiplier and the derivative 3% is evaluated at r(x;,0), so it
is a function of #. Now notice that

) ity = S 2 N i 0190 6
Z[a] VOI(XZ',) = Z- m -I(Xi,)V@I(Xi,)

() 1

- %5 - 2
- Z _(,,.(xi?e))_ Vo [(1/2)’(){29)]

1

Now [r(x;, 0)]2 is the squared error. At the true minimum 6, writing

ap
w; = ou A
</,-(xz-, 9))

(where the derivatives are evaluated at that 9), then

2(11
Z w; Vo [r(x;, 9)]2 =A| 2as
i 0

Robust estimators — influence functions

—— Quadratic

- Huber
391 —— Geman-McClure

—— PseudoHuber
21 —— Walsch-Leclerc
1-

d rho(u)/du
o

ldea — iteratively reweighted least squares

Start with initial line
get weights, scale from line

lterate:
estimate line using weights, scale

estimate scale using line
estimate weights using scale, line

We *know™ that one stationary point is the true minimum
No other guarantees I'm aware of, but quite well behaved

Starting iteratively reweighted least squares

lterate:
Initial line:
Draw two points at random from dataset

Pass line through them
Fit line with IRLS

Use the best you encounter

IRLS

FIGURE 12.7: Robust losses can control the influence of outliers. Blue points lie
on a line, and have been perturbed by noise; red points are outliers. The red line
shows a starting line, obtained by drawing a small random sample from the dataset,
then fitting a line; the gray lines show iterates of IRLS applied to a Huber loss
(later iterates are more opaque; scales are estimated as in the text). The procedure
converges from a range of start points, some quite far from the “true” line. Notice
how each start point results in the same line.

IRLS isn’t perfect...

Few outliers Many outliers

FIGURE 12.8: Robust losses can fail, particularly when distant points still have some
werght or if there are many outliers. Left: a bad start point leads to a bad line;
center left: on the same data set, quite a good start point still converges to a bad
line. Here there are few outliers, but they are far from the data and they contribute
a significant weight to the loss. When there are many outliers, this effect worsens.
Because each outlier still contributes a signficant weight to the loss, even a good
start fails (center right). A poor start (right) also fails, and produces the same
line as the good start — in fact, most starts end up close to this line. Again, blue
points lie on a line, and have been perturbed by noise; red points are outliers; the

Fitting: Overview

« Least squares line fitting
* Robust fitting
« RANSAC

Voting schemes

* Robust fitting can deal with a few outliers — what if we have
very many”?
« Basic idea: let each point vote for all the models that are
compatible with it
« Hopefully the outliers will not vote consistently for any single model
 The model that receives the most votes is the best fit to the image

o,
[X]

RANSAC

 Random sample consensus: very general framework for
model fitting in the presence of outliers

« Qutline:
« Randomly choose a small initial subset of points
* Fit a model to that subset

« Find all inlier points that are “close” to the model and reject the rest as
outliers

* Do this many times and choose the model with the most inliers

M. Fischler and R. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf

RANSAC for line fitting example

RANSAC for line fitting example

Least-squares fit

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

Ny . 2. Hypothesize a
e,) model
/N . 3. Compute error
4, N\ .
’ function

Source: R. Raguram

RANSAC for line fitting example

\ . o 1. Randomly select
minimal subset
. . of points
te . 2. Hypothesize a
.) model
. o - R 3. Compute error
. b . function
) . L . . 4. Select points
.. \ consistent with
e . \ model
e * o
1)

Source: R. Raguram

RANSAC for line fitting example

. o 1. Randomly select
. . minimal subset
of points
. 2. Hypothesize a
L. o model
N e - S . ", 3. Compute error
. function
o . 4. Select points
. consistent with
. . model
. \ . 5. Repeat
P N\ o hypothesize-and-
\ . verify loop

Source: R. Raguram

RANSAC for line fitting example

Source: R. Raguram

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

. Select points

consistent with
model

Repeat
hypothesize-and-
verify loop

RANSAC for line fitting example

Source: R. Raguram

Uncontaminated sample

Randomly select
minimal subset
of points
Hypothesize a
model

. Compute error

function

. Select points

consistent with
model

Repeat
hypothesize-and-
verify loop

RANSAC for line fitting example

Source: R. Raguram

Randomly select
minimal subset
of points
Hypothesize a
model

Compute error
function

. Select points

consistent with
model

Repeat
hypothesize-and-
verify loop

RANSAC loop

Repeat N times:
* Draw s points uniformly at random
* Fit model to these s points

* Find inliers to the model among the remaining points
(points whose distance or residual w.r.t. model is less than t)

« If there are d or more inliers, accept the model and refit using
all inliers

RANSAC: Choosing the parameters

* Initial number of points s
« Typically minimum number needed to fit the model

* Distance threshold t for inliers

* Need suitable assumptions, e.g., given zero-mean Gaussian noise with
std. dev. g, t = 1.960 will give ~95% probability of capturing all inliers

« Consensus set size d
« Should match expected inlier ratio

Adapted from M. Pollefeys

RANSAC: Choosing the parameters

» Choosing the number of iterations (initial samples) N:

* Choose N so that, with probability p (e.g. 99%), at least one initial
sample is free from outliers

« Assuming an outlier ratio of e:
1-A-e))=1-p
N =log(1—p) /log(1 - (1 —e)%)

proportion of outliers e 1200
s 5% 10% 20% 25% 30% 40% 50% ol
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35 o
4 3 5 9 13 17 34 72 600 / —
5 4 6 12 17 26 57 146 ol /]
6 4 7 16 24 37 97 293 B /
7 4 8 20 33 54 163 588 J
8 5 9 26 44 78 272 1177 % 02 04 o0s o8 1

Source: M. Pollefeys

RANSAC pros and cons

* Pros

« Simple and general
« Applicable to many different problems

« Often works well in practice

 Cons
» Lots of parameters to set
 Number of iterations grows exponentially as outlier ratio increases
« Can’t always get a good initialization
of the model based on the minimum
number of samples

Incremental RANSAC

To fit many lines to a dataset:

lterate:
Fit a line with RANSAC
using IRLS (crucial!)
Remove inliers from dataset

Q: when to stop?

A: when you have the right number of lines
when too little data is left
when the last line has few inliers

Depends on
application!

IRLS matters...

Second
Fourth Third
First
‘.Tr—'— e U O—yg—g—

First

Fourth Third

. Second

Least squares on inliers

—_— g

IRLS squares on inliers

L [] L a hd o0 o U . 4 v
Second
Fourth Third
First
'—iﬁ; s S— v—o K

Fourth

. . §econd

. A vV

Least squares on inliers

FIGURE 12.9: Incremental RANSAC can successfully fit multiple lines to a noisy
dataset. Points lie on the outline of a square, and have been perturbed by noise.
I applied the strategy of Section 12.3.1 using a RANSAC line fitter. Colors show
inliers and line for each round (in the order blue, green, purple, yellow). On
the left, the final fit to the inlying points is by total least squares. Because some
inliers can be quite far from the line at the corners, the lines tend not to run close
to the data points. On the right, the final fit uses 10 iterations of IRLS, with the

IRLS squares on inliers

Huber loss. The lines are now very close to the data points.

