
Registration

Compute the best transformation between two point clouds

Cases:
 You know which point in P corresponds to which in Q exactly
 You know correspondence, but with errors
 You don’t know correspondence

Unstructured collections of points in N dimensions



Application: building image mosaics

Find interest points in image A and image B

Build correspondences:
 For each a in A find best matching b in B using descriptor
 For each b in B find best matching a in A using descriptor
 For consistent pairs, if descriptors are sufficiently similar
  declare correspondence

Notice: you should get many correspondences BUT some are 
wrong



Recall…



LIDAR produces point clouds



LIDAR observations registered to map



Yield your location



Registering meshes to LIDAR

I have a CAD model of a car
 (large triangular mesh)

Where is this car in LIDAR data?
 registration problem

How is a mesh a point cloud?
 sample points on the mesh
 vertices



General remarks

Very like line fitting and line fitting recipes apply

The objects we are working with are now corresponding pairs
 (point in A, point in B)

Outliers are usually correspondences that are wrong
 there could be lots



Weighted least squares, affine tx, known csp



Solving for translation



Solving for translation



Finding M  (compact form)



Finding M (long form)



Finding M (long form)



Euclidean motion
Most interesting in 2D or 3D
The matrix is a rotation matrix
You can do this in closed form (not widely known)

Use centers of gravity, as above.



Euclidean motion

Terms not involving R, so of no interest



Euclidean motion



Euclidean est. well behaved under noise
Green triangles – target pts 

lying on gray rectangle
Red dots – source
 (target points transformed, 

then noise added)
Purple triangles – apply 

estimated transformation 
to red points

Gray rectangle – 
transformation applied to 
true rectangle underlying 
red points

Notice:  
 transformation is about 

right, not massively 
disrupted by noise



Euclidean est. well behaved under noise
Green triangles – target pts 

lying on gray rectangle
Red dots – source
 (target points transformed, 

then noise added)
Purple triangles – apply 

estimated transformation 
to red points

Gray rectangle – 
transformation applied to 
true rectangle underlying 
red points

Notice:  
 transformation is about 

right, only somewhat 
disrupted by noise



Projective transformations – 2D



Projective transformations – dD



Projective transformations - solving



A start point



Outliers
Green triangles – target pts 

lying on gray rectangle
Red dots – source
 (target points transformed, 

then noise added)
Red x – outliers on source
Gray rectangle – 

transformation applied to 
true rectangle underlying 
red points

Notice:  
 transformation is disrupted 

by outliers



IRLS

Start with initial transformation 
 get weights, scale from transformation

Iterate:
 estimate transformation using weights, scale
 estimate scale using transformation
 estimate weights using scale, transformation

We *know* that one stationary point is the true minimum
 No other guarantees I’m aware of, but quite well behaved



IRLS applies



Outliers
Green triangles – target pts 

lying on gray rectangle
Red dots – source
 (target points transformed, 

then noise added)
Red x – outliers on source
Gray rectangle – 

transformation applied to 
true rectangle underlying 
red points

Notice:  
 transformation is NOT 

disrupted by outliers



IRLS breaks down when there are too many outliers
Green triangles – target pts 

lying on gray rectangle
Red dots – source
 (target points transformed, 

then noise added)
Red x – outliers on source
Gray rectangle – 

transformation applied to 
true rectangle underlying 
red points

Notice:  
 transformation IS
 disrupted by outliers



RANSAC to the rescue
Green triangles – target pts 

lying on gray rectangle
Red dots – source
 (target points transformed, 

then noise added)
Red x – outliers on source
Gray rectangle – 

transformation applied to 
true rectangle underlying 
red points

Notice:  
 transformation IS
 disrupted by outliers



RANSAC

Affine transformation:  d+1 correspondences in d dim
Projective transformation: d+2 correspondences in d dim
Euclidean: 
 use 2 for plane (2D)
 use 3 for 3D
BUT some such are obvious outliers

Key Issue: there can be a lot of outliers



What if you don’t know correspondences?

RANSAC isn’t usually enough



Registration produces very large quantities of outliers

Image A has N points
Image B has M points

Idea:  
 use every pair, and accept you have outliers

Problem:
 M N pairs
 but only at most min(M, N) are good

--  this is unwise!

A very important reason to care about interest points and descriptors



Iterated closest points or ICP

Idea:
 If the transformation is nearly the identity, 
  then nearest point is likely correspondence

Strategy:
 Start with good transformation 
 Iterate:
  Estimate correspondences assuming tx is right
  Re-estimate tx



ICP



Can converge quite fast
Red – target
Green – source
Purple – running 

points

Green at 0 -> 
Purple at 0 – 
initial 
transformation



ICP doesn’t always converge
Red – target
Green – source
Purple – running 

points

Green at 0 -> 
Purple at 0 – 
initial 
transformation



ICP Issues

You have to do an awful lot of nearest neighbors
 particularly if the point cloud is big
 subsample the point cloud
 approximate nearest neighbors

There are still robustness issues
Ideas:
 drop correspondences for large distances
 use IRLS at each round



Resampling

If the two point clouds are big, resample
 Choose some number N of points that is acceptable
 Draw N points uniformly and at random from point clouds
  Do this with replacement, because its easier



Approximate nearest neighbors

ISSUE:
 do you build a new tree for every iteration?

Strategies:
 Space is almost always 2D or 3D, so you can grid it
 It is easy to test what grid bin a point falls in (truncate, round)
 Build a big enough grid and use that



ICP Issues

You have to do an awful lot of nearest neighbors
 particularly if the point cloud is big
 subsample the point cloud
 approximate nearest neighbors

There are still robustness issues
Ideas:
 drop correspondences for large distances
 use IRLS at each round



Uneven sampling creates ICP problems
Red – target
Green – source
Purple – running 

points

Green at 0 -> 
Purple at 0 – 
initial 
transformation



Stratifying a sample 
Cut the space into even bins
 for example, a grid

Read points into bins

Resample by:
 Iterate:
  Choose a bin uniformly and at random
  Choose a point from that bin uniformly and at random



Issue for LIDAR

Map Vehicle observations Stratified resample of 
observations



Biasing by normal can help
Resample the point cloud so that there are about the same 

number of points with each normal

 How?
  cut the unit sphere into bins, 
  read points into bins
  resample by:
   sample bin uniformly and at random
   sample points in bin uniformly and at random
   



Biasing by normal can help


