
Registration

Compute the best transformation between two point clouds

Cases:
 You know which point in P corresponds to which in Q exactly
 You know correspondence, but with errors
 You don’t know correspondence

Unstructured collections of points in N dimensions

Application: building image mosaics

Find interest points in image A and image B

Build correspondences:
 For each a in A find best matching b in B using descriptor
 For each b in B find best matching a in A using descriptor
 For consistent pairs, if descriptors are sufficiently similar
 declare correspondence

Notice: you should get many correspondences BUT some are
wrong

Recall…

LIDAR produces point clouds

LIDAR observations registered to map

Yield your location

Registering meshes to LIDAR

I have a CAD model of a car
 (large triangular mesh)

Where is this car in LIDAR data?
 registration problem

How is a mesh a point cloud?
 sample points on the mesh
 vertices

General remarks

Very like line fitting and line fitting recipes apply

The objects we are working with are now corresponding pairs
 (point in A, point in B)

Outliers are usually correspondences that are wrong
 there could be lots

Weighted least squares, affine tx, known csp

Solving for translation

Solving for translation

Finding M (compact form)

Finding M (long form)

Finding M (long form)

Euclidean motion
Most interesting in 2D or 3D
The matrix is a rotation matrix
You can do this in closed form (not widely known)

Use centers of gravity, as above.

Euclidean motion

Terms not involving R, so of no interest

Euclidean motion

Euclidean est. well behaved under noise
Green triangles – target pts

lying on gray rectangle
Red dots – source
 (target points transformed,

then noise added)
Purple triangles – apply

estimated transformation
to red points

Gray rectangle –
transformation applied to
true rectangle underlying
red points

Notice:
 transformation is about

right, not massively
disrupted by noise

Euclidean est. well behaved under noise
Green triangles – target pts

lying on gray rectangle
Red dots – source
 (target points transformed,

then noise added)
Purple triangles – apply

estimated transformation
to red points

Gray rectangle –
transformation applied to
true rectangle underlying
red points

Notice:
 transformation is about

right, only somewhat
disrupted by noise

Projective transformations – 2D

Projective transformations – dD

Projective transformations - solving

A start point

Outliers
Green triangles – target pts

lying on gray rectangle
Red dots – source
 (target points transformed,

then noise added)
Red x – outliers on source
Gray rectangle –

transformation applied to
true rectangle underlying
red points

Notice:
 transformation is disrupted

by outliers

IRLS

Start with initial transformation
 get weights, scale from transformation

Iterate:
 estimate transformation using weights, scale
 estimate scale using transformation
 estimate weights using scale, transformation

We *know* that one stationary point is the true minimum
 No other guarantees I’m aware of, but quite well behaved

IRLS applies

Outliers
Green triangles – target pts

lying on gray rectangle
Red dots – source
 (target points transformed,

then noise added)
Red x – outliers on source
Gray rectangle –

transformation applied to
true rectangle underlying
red points

Notice:
 transformation is NOT

disrupted by outliers

IRLS breaks down when there are too many outliers
Green triangles – target pts

lying on gray rectangle
Red dots – source
 (target points transformed,

then noise added)
Red x – outliers on source
Gray rectangle –

transformation applied to
true rectangle underlying
red points

Notice:
 transformation IS
 disrupted by outliers

RANSAC to the rescue
Green triangles – target pts

lying on gray rectangle
Red dots – source
 (target points transformed,

then noise added)
Red x – outliers on source
Gray rectangle –

transformation applied to
true rectangle underlying
red points

Notice:
 transformation IS
 disrupted by outliers

RANSAC

Affine transformation: d+1 correspondences in d dim
Projective transformation: d+2 correspondences in d dim
Euclidean:
 use 2 for plane (2D)
 use 3 for 3D
BUT some such are obvious outliers

Key Issue: there can be a lot of outliers

What if you don’t know correspondences?

RANSAC isn’t usually enough

Registration produces very large quantities of outliers

Image A has N points
Image B has M points

Idea:
 use every pair, and accept you have outliers

Problem:
 M N pairs
 but only at most min(M, N) are good

-- this is unwise!

A very important reason to care about interest points and descriptors

Iterated closest points or ICP

Idea:
 If the transformation is nearly the identity,
 then nearest point is likely correspondence

Strategy:
 Start with good transformation
 Iterate:
 Estimate correspondences assuming tx is right
 Re-estimate tx

ICP

Can converge quite fast
Red – target
Green – source
Purple – running

points

Green at 0 ->
Purple at 0 –
initial
transformation

ICP doesn’t always converge
Red – target
Green – source
Purple – running

points

Green at 0 ->
Purple at 0 –
initial
transformation

ICP Issues

You have to do an awful lot of nearest neighbors
 particularly if the point cloud is big
 subsample the point cloud
 approximate nearest neighbors

There are still robustness issues
Ideas:
 drop correspondences for large distances
 use IRLS at each round

Resampling

If the two point clouds are big, resample
 Choose some number N of points that is acceptable
 Draw N points uniformly and at random from point clouds
 Do this with replacement, because its easier

Approximate nearest neighbors

ISSUE:
 do you build a new tree for every iteration?

Strategies:
 Space is almost always 2D or 3D, so you can grid it
 It is easy to test what grid bin a point falls in (truncate, round)
 Build a big enough grid and use that

ICP Issues

You have to do an awful lot of nearest neighbors
 particularly if the point cloud is big
 subsample the point cloud
 approximate nearest neighbors

There are still robustness issues
Ideas:
 drop correspondences for large distances
 use IRLS at each round

Uneven sampling creates ICP problems
Red – target
Green – source
Purple – running

points

Green at 0 ->
Purple at 0 –
initial
transformation

Stratifying a sample
Cut the space into even bins
 for example, a grid

Read points into bins

Resample by:
 Iterate:
 Choose a bin uniformly and at random
 Choose a point from that bin uniformly and at random

Issue for LIDAR

Map Vehicle observations Stratified resample of
observations

Biasing by normal can help
Resample the point cloud so that there are about the same

number of points with each normal

 How?
 cut the unit sphere into bins,
 read points into bins
 resample by:
 sample bin uniformly and at random
 sample points in bin uniformly and at random

Biasing by normal can help

