Registration

Compute the best transformation between two point clouds

Unstructured collections of points in N dimensions

Cases:
You know which point in P corresponds to which in Q exactly
You know correspondence, but with errors
You don’t know correspondence

Application: building image mosaics

Find interest points in image A and image B

Build correspondences:
For each a in A find best matching b in B using descriptor
For each b in B find best matching a in A using descriptor

For consistent pairs, if descriptors are sufficiently similar
declare correspondence

Notice: you should get many correspondences BUT some are
wrong

Recall...

LIDAR produces point clouds

distance d
\

>

About 800-1000 nm
wavelength (longer than red)

Wikipedia

LIDAR observations registered to map

Map

LIDAR

. . M
Yield your location P

Registering meshes to LIDAR

| have a CAD model of a car
(large triangular mesh)

Where is this car in LIDAR data”
registration problem

How is a mesh a point cloud?
sample points on the mesh
vertices

General remarks

Very like line fitting and line fitting recipes apply

The objects we are working with are now corresponding pairs
(point in A, point in B)

Outliers are usually correspondences that are wrong
there could be lots

Weighted least squares, affine tx, known csp

15.2.1 Affine Transformations

For an affine transformation, 7 (y) is My +t. Further, there is a transformation 7
so that T (y;) is close to x; for each i. Write r; for the vector from the transformed
y; to X;, SO

ri(M,t) = (xi — (Myi +t))

and

Cu(Mt) — (1/N) Z rzirri

should be small. Because it will be useful later, assume that there is a weight w;
for each pair and work with

C(M,t) = Z w;rl

where w; = 1/N if points all have the same weight. The gradient of this cost with

Solving for translation

ri(M,t) = (x; — (My; +1))
C(M, t) - Z wir?ri

where w; = 1/N if points all have the same weight. The gradient of this cost with
respect to t 1s

—2 Z w; (X3 — My; — t)
i
which vanishes at the solution, so that

E WiX; — M E Wiy

t ="

Solving for translation

Now if) . w;x; = > . wiMy; = M(D>_, w;y;), then t = 0. An easy way to
achieve t = 0 is to ensure) . w;x; =0 and) . w;y; = 0. Write

. ZZ W;X;

B i Wi

Cx

for the center of gravity of the observations (etc.) Now form
u; = X; — C, andvi:yi—cy

and if you use U and V, then the translation will be zero and must only estimate
M. Further, the estimate M of this matrix yields that the translation from the
original reference points to the original observations is ¢, — Mc,,.

Finding M (compact form)

Finding M now reduces to minimizing

Z w; (ui — MVZ')T (ui — MVZ)

as a function of M. The natural procedure — take a derivative and set to zero, and
obtain a linear system (exercises) — works fine, but it is helpful to apply some
compact and decorative notation.

Finding M (long form)

Write W = diag (w1, ..., wn]), U = [uf,...,ux] (and so on). Recall all
vectors are column vectors, so U is N x d. You should check that the objective can
be rewritten as

TrWU - VMU - VM),
exercises Now the trace is linear; YT WU is constant;
Tr(A)=Tr (AT);

and

Tr (ABC) = Tr (BCA) = Tr (CAB)

(check this by writing it out, and remember it; it’s occasionally quite useful). This

Finding M (long form)

(check this by writing it out, and remember it; it’s occasionally quite useful). This
means the cost 1s equivalent to

Tr (2" WYMT) + Tr (MY WYMT)
which will be minimized when
MVIWY =uTwy

(which you should check exercises). The exercises establish cases where VT WPT
will have full rank, and in these — the usual — cases M is easily obtained exercises
. Notice this derivation works whatever the dimension of the points.

Euclidean motion

Most interesting in 2D or 3D
The matrix is a rotation matrix
You can do this in closed form (not widely known)

Use centers of gravity, as above.

As in the previous section, subtract the centers of gravity to get the transla-
tion, and work with u; and v;. The problem is now to choose R to minimize

Z wi(ui — Rvi)T(ui — RVZ)

i

Euclidean motion

Z w;(u; — Rv;)T (u; — Rv;) TrWU - VRT)(U - VR)T)

= Tr(-2V'WUR) + K
(because R R = T)

Terms not involving R, so of no interest

Euclidean motion

Tr (—2V" WUR)

Here K is a constant that doesn’t involve R and so is of no interest. Now compute
an SVD of VI WU to obtain VWU = AXB! where A, B are orthonormal, and
S is diagonal (Section 15.10 if you're not sure). Now BYR.A is orthonormal, and
we must maximize Tr (BT RAS), meaning B'RA = T (check this if you're not
certain), and so R = BA'.

Euclidean est. well behaved under noise

0.05

green->red
true: angle=1.2, tx=0, ty=3
est: angle= 1.21, tx=0.01, ty=3.01

.- X g x‘H.'

v & sy F ' &

1.
b

v

Green triangles — target pts
lying on gray rectangle
Red dots — source

(target points transformed,
then noise added)

Purple triangles — apply
estimated transformation
to red points

Gray rectangle —
transformation applied to
true rectangle underlying
red points

Notice:

transformation is about
right, not massively
disrupted by noise

Euclidean est. well behaved under noise

0.3

green->red
true: angle=1.2, tx=0, ty=3
est: angle= 1.25, tx=0.13, ty=3.07

Green triangles — target pts
lying on gray rectangle
Red dots — source

(target points transformed,
then noise added)

Purple triangles — apply
estimated transformation
to red points

Gray rectangle —
transformation applied to
true rectangle underlying
red points

Notice:

transformation is about
right, only somewhat
disrupted by noise

Projective transformations — 2D

Recall from Section 3.2 that a projective transformation of an image is given by a
3 x 3 matrix M that has full rank. The transformation can be written

- M11Y1 + 12y + M3]
L1 msiyi + Ms32Yy2 + M33
T Mo1Y1 + Mool + Mog
2
L M31Y1 + M32y, + m33

Projective transformations — dD

Higher dimensions follow the pattern. A projective transformation in d dimensions
is given by a d+ 1 X d+ 1 matrix M that has full rank. The transformation is now

] M11Y1 + ... T MidYd + Mi(d+1) T
M(d+1)1Y1 T -« T M(d+1)dYd T+ M(d+1)(d+1)

L1

Ld

Ma1y1 + - .-+ Mad¥d + Md(d+1)
L M(d+1)1Y1 + oo T Mya+1)dYd + M(d+1)(d+1)

Projective transformations - solving

A weighted least squares solution now solves
Z ’wiriTri .
i

There isn’t a clean form for the solution, and numerical minimization is required.
You should use a second order method (Levenberg-Marquardt is favored; Chap-
ter 15.10). Experience teaches that this optimization is not well behaved without
a strong start point.

A start point

There is an easy construction for a good start point. For a pair of known points
X and y, you can cross multiply the equations for the projective transformation to
get

(m113/1 + ... +miqyad + 7711(d+1)) -
0 1 (M(ar1)1y1 + - - -+ M@y 1)ayd + may1)d+r))

(maryr + . .. + maaya + maas1)) —
ra (M@41)191 + - - - + M@r1)a¥d + M@41y(d+1))

Here the m;; are unknown, so this is a set of d homogenous linear equations in
(d+1) x (d+ 1) unknowns. In turn, if you have at least d + 1 different (x,y) pairs
that meet conditions exercises , you can solve the system up to scale. But the
scale of the solution does not affect the transformation it implements, so you have a
start point. The resulting estimate of M has a good reputation as a start point for
a full optimization. Notice this construction does not take weights into account. If
the weights come from IRLS, then you need this construction only at the start. For
every other iteration, the previous iteration will supply an acceptable start point
as well as weights.

Outliers

green->red
true: angle=1.2, tx=0, ty=3
est: angle= 1.12, tx=-0.10, ty=2.95

v VV—V—V vvvvvv;"
¥
N v
i []
L
x V
WV VYW VYV ox
L °
x
® e

Green triangles — target pts
lying on gray rectangle

Red dots — source
(target points transformed,
then noise added)

Red x — outliers on source

Gray rectangle —
transformation applied to
true rectangle underlying
red points

Notice:

transformation is disrupted
by outliers

IRLS

Start with initial transformation
get weights, scale from transformation

lterate:
estimate transformation using weights, scale

estimate scale using transformation
estimate weights using scale, transformation

We *know™ that one stationary point is the true minimum
No other guarantees I'm aware of, but quite well behaved

IRLS applies

The IRLS recipe can be applied with very little modification to registration. Choose
a robust cost function from Section 13.2.1 or elsewhere. Recall this cost applies to
the residual. Write # for the parameters of the transformation 7y, and the residual
1S now

r(%i i, 0) = /(0 = Tolya))T (i — Talya).

The square root ensures that minimizing the least squares criterion is equivalent to

(1/2) " (r(xi, v1, 0))°.

7

For any given 6, the weights are now

Outliers

IRLS, 5 outliers

green->red ‘e
true: angle=1.2, tx=0, ty=3 We
est: angle= 1.20, tx=-0.00, ty=3.00 o
P P
vV YW vV vV v vVVYy v{ *
: ;
: '
[
x Y
w v vV wvw . vy o5
1 °
¢
®
XKoo x

Green triangles — target pts
lying on gray rectangle

Red dots — source
(target points transformed,
then noise added)

Red x — outliers on source

Gray rectangle —
transformation applied to
true rectangle underlying
red points

Notice:

transformation is NOT
disrupted by outliers

IRLS breaks down when there are too many outliers

IRLS, 30 outliers

green->red
true: angle=1.2, tx=0, ty=3

est: angle= 1.10, tx=-0.04, ty=2.82 .
=]
X g0 X
v AR X Wk v
' b
o
{ g
v w \ A S A va
x X
X,

o

B

X x

Green triangles — target pts
lying on gray rectangle
Red dots — source

(target points transformed,
then noise added)

Red x — outliers on source

Gray rectangle —
transformation applied to
true rectangle underlying
red points

Notice:
transformation IS
disrupted by outliers

RANSAC to the rescue

green->red °

true: angle=1.2, tx=0, ty=3 ®e,
est: angle= 1.20, tx=0.00, ty=3.00
x
x
x
4 v v vV VW VY v vwe

<<
x

vwey w V W%V w ®
p x
ox
b ¢ xx =
»
x
® ® e %

Green triangles — target pts
lying on gray rectangle
Red dots — source

(target points transformed,
then noise added)

Red x — outliers on source

Gray rectangle —
transformation applied to
true rectangle underlying
red points

Notice:
transformation IS
disrupted by outliers

RANSAC

Affine transformation: d+1 correspondences in d dim
Projective transformation: d+2 correspondences in d dim
Euclidean:

use 2 for plane (2D)

use 3 for 3D
BUT some such are obvious outliers

Key Issue: there can be a lot of outliers

What if you don’t know correspondences?

RANSAC isn’t usually enough

Registration produces very large quantities of outliers

Image A has N points
Image B has M points

|dea:
use every pair, and accept you have outliers -- this is unwise!

Problem:
M N pairs
but only at most min(M, N) are good

A very important reason to care about interest points and descriptors

lterated closest points or ICP

|dea:
If the transformation is nearly the identity,
then nearest point is likely correspondence

Strategy:
Start with good transformation
lterate:
Estimate correspondences assuming tx is right
Re-estimate tx

ICP

Formally, start with a transformation estimate 77, a set of mj"’ = TW (y;)
(the running points) and then repeat three steps:

e Estimate correspondences using the transformation estimate. Then, for

each x;, we find the closest m(®) (say mgn)); then x; corresponds to mg?i)).

e Estimate a transformation 7(™+1 using the corresponding pairs.

e Update the running points by mapping m§") to T("+1)(m(-n)

.) and

Can co

nverge quite fast

ICP, round: 0

ICP, round: 15

ICP, round: 30

ICP, round: 50

L

S

Red — target
Green — source

Purple — running
points

Green at 0 ->
Purple at 0 —
initial
transformation

\ |CP doesn'’t always converge

ICP, round: 0

ICP, round: 15

=/

ICP, round: 30

ICP, round: 50

Red — target
Green — source

Purple — running
points

Green at 0 ->
Purple at 0 —
initial
transformation

ICP Issues

You have to do an awful lot of nearest neighbors
particularly if the point cloud is big
subsample the point cloud
approximate nearest neighbors

There are still robustness issues

|deas:
drop correspondences for large distances
use IRLS at each round

Resampling

If the two point clouds are big, resample
Choose some number N of points that is acceptable
Draw N points uniformly and at random from point clouds
Do this with replacement, because its easier

Approximate nearest neighbors

ISSUE:
do you build a new tree for every iteration?

Strategies:
Space is almost always 2D or 3D, so you can grid it
It is easy to test what grid bin a point falls in (truncate, round)
Build a big enough grid and use that

ICP Issues

You have to do an awful lot of nearest neighbors
particularly if the point cloud is big
subsample the point cloud
approximate nearest neighbors

There are still robustness issues

|deas:
drop correspondences for large distances
use IRLS at each round

Uneven sampling creates ICP problems

ICP, uneven sampling KP, uneven sampling

KP, uneven sampling

|CP, uneven sampling ICP, uneven sampling

Stratifying a sample

Cut the space into even bins
for example, a grid

Read points into bins

Resample by:
lterate:
Choose a bin uniformly and at random
Choose a point from that bin uniformly and at random

Issue for LIDAR

b

Y,

v de Ml A S YRR S, I by Bl st Ut
. N)

A

N RN Lk SRR AN

.

*

+
RO YL IR D e

- J - * - * - * et *
Rach SR S R AL S K alan i 2L R TS A LR B
!)

¢
X+

RPN ., PPV 0 L
NI LR e R T W ,:."':“.' Pt

Y

s
3

'-.x;.- s e e
I RN RN .
. .i:p.k‘.ﬁ?‘i%#ﬁ:: "'-": L
o . e

Map

Vehicle observations

Stratified resample of
observations

Biasing by normal can help

Resample the point cloud so that there are about the same
number of points with each normal

How?
cut the unit sphere into bins,
read points into bins
resample by:
sample bin uniformly and at random
sample points in bin uniformly and at random

Biasing by normal can help

(b)

(d)

