Image representations

|dea:
Filter banks + RelLU yield scores for many different patterns

|dea:
You can compose this, so patterns of patterns of ...

|dea:
if the filters are well chosen, you could use the representation to:
denoise images
find edges
find interest points
classify images...

Learned Image Representations

|dea:

Filtering an image and applying a ReLU produces a simple
pattern detector

It is also, roughly, invertible
Reconstruct filter responses from RelLU outputs
Reconstruct image from responses (conv. Theorem)

Notice:
Last step of reconstruction is filtering

Now apply many different pattern detectors

You have an overcomplete representation
redundant information

one local image patch is scored against many different
patterns

downside:
representation is larger
upside:

you can recover image despite some errors in
representation

Reconstruction for many different filters+RelLUs

Eg least squares: find the image that produces the
representation closest to the one observed

Now imagine input image is noisy:
The least squares reconstruction might not be
(with some care and some luck)

|dea:
Build device that can accept noisy image, produce clean

Denoising autoencoder

Learned Image Representations

|dea:
It might be possible to produce an image representation from

a lot of filters

AND reconstruct the image from the representation using a lot
more filters

Recall convolution

M

pattern detector

Recall Convolution + RelLU

Recall Multi-channel Convolution

Recall padding

Padding N
strip

MXN
image

M-2uXN-2v
valid region

2u+1 X 2v+1
kernel

Stride

How far across/down to go to the next pixel?
Stride 1: what we're used to

Stride 2: place the kernel on every second pixel

Convolutional Layers

Kemel block 2

Feature
map 2

\

»

AN
W

Kemel block 1

\

Convolutional Layers

Kemel block 2
y X
Feature
map 2
\)
X x
\\ N,
Feature N, Ofuftputt number
1 OT Teatures
o Input number
Kemel block 1

of features

Convolutional Layers

Output size will be determined by:
input size,
kernel size,
padding,
stride,

Kemel block 1

RelLU operates on data block

Trivially — just ReLU at each location

A very simple encoder
RelLU

1

X X T X

>

— (@\]
Image —p |~ —> :n > s —> Patterns of patterns of

“) N patterns

<t AN a

O — -

) NS l g .

ayers
\ 4 \ 4 Y

T

Input number of features, output number of features, kernel size, padding, stride

As data blocks

Number of features x Xdim x Ydim

+
x4Sx4T 256xSxT
64x4Sx4T 128x25x2T
Image
. >Data blocks
A f I A
- . :
Image —p |~ —> | —> | —>
it oL b
3 f_: l o
- - x’
g’ z ol
v + v Layers

Receptive fields

Support for a value in the feature map

A A T A
v—: ;ji\ (\]:
Image —p | — —> o —> e —
on O
g s >
i S g Layers
v v ¥

Receptive
Fields

Decoding

Want:
map rep’n (patterns of patterns of patterns...) to image

Have:
If rep’n is filter outputs, convolution is enough
Rep’n is spatially smaller than image

|dea:
Filter+RelLU+upsample on occasion might do it

A decoder

3x4Sx4T

Image
\J

|

Image <«—

64x4Sx4T

3, 64x3x3, sl, pl

1

256xSxT

128x2Sx2T

ReLU Upsample by 2

64, 128x3x3, s, pl

Data blocks
Y
a
]
<) <
O
w
(@\]
o
(@]
a f Layers

Patterns of patterns
patterns

Input number of features, output number of features, kernel size, padding, stride

Big idea

With the right choice of filters in encoder and decoder
a decoder could reconstruct an image from an encoders rep’n

The rep’n is overcomplete, and “sees” the image at many scales
so the pair should be able to denoise

But what is the right choice of filters?

Learning the filters

Procedure:
find many training pairs (noisy image, clean image)
adjust filters so that
Decode(Encode(noisy image)) is close to clean image
on average, over pairs
hope that this generalizes to new images

Result:
Denoising autoencoder

Find many training pairs

No noise — system might "cheat”
Produce a representation that isn’t useful

What noise should you use?
Options:
Gaussian (but a fairly simple filter will deal with this)
Poisson (median filter)
knock out blocks of pixels (more challenging, and helpful)
etc.

Adjusting the filters: notation

Write £(-;1) for an encoder which accepts an image (in the - slot), produces an
encoding, and has parameters ¢ (the filter banks). Write D(-; ¢) for a decoder that
accepts an encoding (- slot again), produces an image, and has parameters ¢ (the
filter banks). Stack the v and ¢ into one vector . Write S for a set of NV training
images. The z’th image 1s Z;.

Adjusting the filters: loss

The autoencoder produces some image O(Z,0) = D(E(Z;1); @) when given
Z. Construct a cost function C(O(Z,#),Z;) that compares the output of the auto-
encoder to Z. This cost function is typically a weighted combination of the L2 norm
and the L1 norm (Section 9.2.2).

Now write

Zc (Z:,6),T;)

7,68
for the loss — an average over a set § of images of the cost per image. The problem
is to find a @ that produce an acceptably small value of the loss. In an ideal world,
S would be all possible images, but this isn’t practical. Instead, train on some
large set of images (the training set). If this set is large enough and representative
enough, expect that the autoencoder will also have low loss on other images, a
property called generalization.

Adjusting the filters: optimization problem, but weird

Ls(0) = %ZC(O(L,@),L‘)
€S

Issues:
The cost function is very hard to evaluate (N is big)
There are lots of parameters (millions-billions)
SO no newton’s method
You don’t actually want an optimum
you want a set of filters that works well on other images

Stochastic gradient descent

£5(0) = 5 3 C(O(T:,0), T)
i€S

Loss is a population mean

you can estimate this quite well with a sample mean
draw a small batch, average over that

Stochastic gradient descent

In the case of the loss function, choose a sample size B — usually called a batch size
— draw B, a set of B images Z; drawn uniformly and at random, and form

VoﬁB(H) = % Z ng(Ij; 9)

jEB
and use this as an estimate of
VoLs
to take a descent step. Write
VoLl

for this estimate. Choose a stepsize n, for the n’th step, and the descent method
becomes

Onsi1 = Op — 77nv9£.

This is stochastic gradient descent or SGD. Calling 7, a stepsize is dubious (the
gradient isn’t a unit vector); an alternative is to call it the learning rate (which
isn’t much better because it isn’t a rate).

Stochastic gradient descent

Onst = Op, — 1 VoL.

How big a step?

Line search
you can’'t — N is too big

Fixed length
too big (doesn'’t settle down)
too small (no progress)

Learning rate schedule
start biggish, take steps, make smaller
how big is biggish? try

: :) 1
Evaluatlng the gradlent VoLl = EZVGC(()((;),ZJ.).

jEB

Image Output

DEZ;v);9) = Brs
where
Br+1 = Lk(Bg;6k)
By, = Lp_1(Br—1;0r-1)

Recursion from chain rule (Backpropagation)

u, = VolC! o

- - Derivatives of layer outputs
V@kc = U ij;gk with respect to parameters
T T C

u; = Uj ij:,Bk — Derivatives of layer outputs

T with respect to inputs
vok—lc — U ij—l;Ok—l
_ T
ll'r _ llT‘—lek—r+l;Bk—r+l

ka_rC = llerk_r;ek—r

Vo,C = up_1JL,.0,

Losses — the L2 loss

Loss functions typically evaluate residuals — the difference between what the system
provides and ground truth. The SSD loss compares a reconstructed training image
R to the ground truth G by

Cr2(R,G) = ZAW

where A;; = R;; — G;; is the residual. This is the square of the L2 norm of A, and
is sometimes (rather disreputably) referred to as an L2 loss. This might seem a

L2 loss creates blur

>

Intensity

Position
Input Output

Sharp edge in the wrong place (red) is expensive
Compared to blurry edge in about the right place (blue)

L1 loss

the gradient to have zeros, assuming the optimization process can cope. Using an
L1 term, written

CLle Z|Azg|

will tend to encourage the residual to have zeros in it, and will tend to discourage
blurring (Figure ?7).
|dea:
penalize absolute value of residual
We saw the L1 norm in denoising

Square of a small number is very small; absolute value of small
number isn’t

Tends to discourage blurring

L2 Output L1 Outpu

General ideas: Losses and Gradients

Notice that L1 loss, L2 loss DON'T:
Force values to be non-negative
Force values to be less than 1

(VE RY B AD) ldea: Here is an example of a bad loss. The indicator function is a function that

tests its argument against a condition, then reports 1 if the condition is true and
zero otherwise. For example,

1 ifz<0
0 otherwise

[lz<o)(z) = {

is 1 when x < 0 and 0 otherwise. Note some redundancy here; the condition usually
means it is obvious what the argument is, so it is quite usual to write I}, .o rather
than I, <o (x). The following (BAD) choice of loss could be intended to force an
output to be non-negative:

Chad(Z) = Z Iz, <0
ij

General ideas: Losses and Gradients

Bad, because it supplies no gradient
Pixel is +ve: loss and gradient are zero

Pixel is —ve: loss is 1, gradient is zero — no information about
how to change filters

CF L1 loss:
Pixel value too large: gradient pushes it down
Pixel value too small: gradient pushes it up
Pixel value just right: non-differentiability doesn’t matter
never happens
choose -1<= gradient <=1: everything works fine

General ideas: Cheating

Stochastic gradient descent is a very effective search
Astonishing, but true
It might find a solution you don’t expect and don’t want

Example:

Here is an example in the simple case of an autoencoder with two encoder
layers and two decoder layers. For concreteness, the first layer in this example has
3x3 filters with stride 1. Make one filter that simply reports the image value at the
center location (the other filters don’t matter). The pixel value is non-negative,
and so passes through the ReLLU without alteration. The next layer has 3x3 filters
and stride 2; this means that mild ingenuity with multiple filters is required to
pick out the pixel values to pass on (exercises). Very little further ingenuity is
required to ensure the decoder layer produces the original image. Experience shows
that searching for parameters using stochastic gradient descent is extraordinarily
powerful, and is perfectly capable of finding a set of parameters that cheats like
this. This is cheating because the search has minimized the loss function, but
the representation isn’t actually of any use. Worse, adding layers, filters, and so
on might simply increase the scope for cheating while making it more difficult to
understand the detailed structure of any particular cheating strategy.

General ideas: Cheating

Cheating example above won’t denoise

It is important to train representation to denoise images

(Noisy, clean) pairs will produce something useful

(clean, clean) pairs won't!

General ideas: Generalization

We have no particular interest in denoising training images
We want to denoise new images

Options:
Data augmentation: make training dataset look bigger
Regularization: make it hard to choose filters that are
specialized

General ideas: Data Augmentation

Applies to many learned systems

For now:
A left/right flipped image is still an image
An up/down flipped image is still an image
An image crop is still an image
Etc

When forming a batch, randomly
crop, flip, etc. images

General ideas: Regularization

Prefer filters with small coefficients to filters with large coeffs.

A filter with large coeffs that works well on training data might
produce an unexpected large response on new data

Discourage filters with large coeffs by penalizing loss
(cost of error on batch) + scale*(penalty for large coeffs)

Known as weight decay
API will do this for you if you ask

General ideas: Regularization

How to choose scale?

Train for many different choices

Evaluate each on held out data to choose
Now re-train using the best value
Evaluate the result on new dataset

