
Image representations
Idea:
 Filter banks + ReLU yield scores for many different patterns

Idea:
 You can compose this, so patterns of patterns of …

Idea:
 if the filters are well chosen, you could use the representation to:
  denoise images
  find edges
  find interest points
  classify images…
  



Learned Image Representations

Idea:
 Filtering an image and applying a ReLU produces a simple 

pattern detector
 It is also, roughly, invertible
  Reconstruct filter responses from ReLU outputs
  Reconstruct image from responses (conv. Theorem)

Notice: 
 Last step of reconstruction is filtering



Now apply many different pattern detectors
You have an overcomplete representation
 redundant information
  one local image patch is scored against many different 

patterns

  downside:
   representation is larger
  upside:
   you can recover image despite some errors in 

  representation



Reconstruction for many different filters+ReLUs
Eg  least squares:   find the image that produces the 

representation closest to the one observed

Now imagine input image is noisy:
 The least squares reconstruction might not be
 (with some care and some luck)

Idea:
 Build device that can accept noisy image, produce clean
 Denoising autoencoder



Learned Image Representations

Idea:
 It might be possible to produce an image representation from 

a lot of filters

 AND reconstruct the image from the representation using a lot 
more filters



Recall convolution



Recall Convolution + ReLU = pattern detector



Recall Multi-channel Convolution 



Recall padding



Stride

How far across/down to go to the next pixel?

Stride  1:  what we’re used to

Stride 2: place the kernel on every second pixel



Convolutional Layers



Convolutional Layers

Input number 
of features

Output number 
of features



Convolutional Layers

Output size will be determined by:
 input size,
 kernel size,
 padding,
 stride,



ReLU operates on data block

Trivially – just ReLU at each location



A very simple encoder

Input number of features, output number of features, kernel size, padding, stride

ReLU

Patterns of patterns of
patterns



As data blocks
Number of features x Xdim x Ydim



Receptive fields
Support for a value in the feature map



Decoding

Want:
 map rep’n (patterns of patterns of patterns…) to image

Have:
 If rep’n is filter outputs, convolution is enough
 Rep’n is spatially smaller than image 

Idea:
 Filter+ReLU+upsample on occasion might do it



A decoder

Input number of features, output number of features, kernel size, padding, stride

ReLU

Patterns of patterns of
patterns

Upsample by 2



Big idea

With the right choice of filters in encoder and decoder
 a decoder could reconstruct an image from an encoders rep’n

The rep’n is overcomplete, and “sees” the image at many scales
 so the pair should be able to denoise

But what is the right choice of filters?



Learning the filters

Procedure:
 find many training pairs (noisy image, clean image)
 adjust filters so that 
  Decode(Encode(noisy image)) is close to clean image
 on average, over pairs
 hope that this generalizes to new images

Result:
 Denoising autoencoder



Find many training pairs

No noise – system might ”cheat”
 Produce a representation that isn’t useful

What noise should you use?
 Options:
  Gaussian (but a fairly simple filter will deal with this)
  Poisson (median filter)
  knock out blocks of pixels (more challenging, and helpful)
  etc.



Adjusting the filters: notation



Adjusting the filters: loss



Adjusting the filters: optimization problem, but weird

Issues:
 The cost function is very hard to evaluate (N is big)
 There are lots of parameters (millions-billions) 
  so no newton’s method
 You don’t actually want an optimum
  you want a set of filters that works well on other images



Stochastic gradient descent

Loss is a population mean
 you can estimate this quite well with a sample mean
  draw a small batch, average over that 



Stochastic gradient descent



Stochastic gradient descent

How big a step?
 Line search
  you can’t – N is too big
 Fixed length
  too big (doesn’t settle down) 
  too small (no progress)
 Learning rate schedule
  start biggish, take steps, make smaller
  how big is biggish? try 
 



Evaluating the gradient



Recursion from chain rule (Backpropagation)

Derivatives of layer outputs 
with respect to parameters

Derivatives of layer outputs 
with respect to inputs



Losses – the L2 loss



L2 loss creates blur

Sharp edge in the wrong place (red) is expensive
Compared to blurry edge in about the right place (blue)





L1 loss

Idea: 
 penalize absolute value of residual
We saw the L1 norm in denoising
Square of a small number is very small; absolute value of small 

number isn’t
Tends to discourage blurring



L1 loss



General ideas:  Losses and Gradients
Notice that L1 loss, L2 loss DON’T:
 Force values to be non-negative
 Force values to be less than 1

(VERY BAD) Idea:



General ideas:  Losses and Gradients
Bad, because it supplies no gradient
 Pixel is +ve:  loss and gradient are zero
 Pixel is –ve:  loss is 1, gradient is zero – no information about 

how to change filters
CF L1 loss:
 Pixel value too large:  gradient pushes it down
 Pixel value too small:  gradient pushes it up
 Pixel value just right:   non-differentiability doesn’t matter
  never happens
  choose -1<= gradient <=1:  everything works fine



General ideas: Cheating
Stochastic gradient descent is a very effective search
 Astonishing, but true
 It might find a solution you don’t expect and don’t want

Example:



General ideas: Cheating
Cheating example above won’t denoise

It is important to train representation to denoise images

(Noisy, clean) pairs will produce something useful

(clean, clean) pairs won’t!



General ideas: Generalization
We have no particular interest in denoising training images
We want to denoise new images

Options:
 Data augmentation: make training dataset look bigger
 Regularization: make it hard to choose filters that are 

specialized
  



General ideas: Data Augmentation
Applies to many learned systems

For now:
 A left/right flipped image is still an image
 An up/down flipped image is still an image
 An image crop is still an image
 Etc

When forming a batch, randomly
 crop, flip, etc. images  



General ideas:  Regularization
Prefer filters with small coefficients to filters with large coeffs.

A filter with large coeffs that works well on training data might 
produce an unexpected large response on new data

Discourage filters with large coeffs by penalizing loss

 (cost of error on batch) + scale*(penalty for large coeffs)

Known as weight decay
 API will do this for you if you ask



General ideas:  Regularization
How to choose scale?

Train for many different choices
Evaluate each on held out data to choose
Now re-train using the best value 
Evaluate the result on new dataset


