Last block:

Build an encoder and a decoder to:

Accept noisy image, produce clean version
By:

Constructing loss

Applying various tricks for good behavior

Adam/SGD/something to get minimal loss on training data

|dea:
exploit this machinery to classify image; running eg is real vs denoised

Classification

Take a feature representation and apply a label
eg credit card transaction (valid/fraud)

By some procedure
usually, constructed out of training data
crucial point:
classifier should work well on future data

Hugely useful, very broad idea

Model example: is image denoiser output, or is it original?

Evaluating classification

Accuracy:
fraction of classification attempts that result in right label

Error rate:
fraction of classification attempts that result in wrong label

Bayes error:
error rate that the very best possible classifier makes
usually, very hard to know

Evaluating classification

One class is boring:

Binary classifiers:
Two classes (yes/no; real/denoise; valid/fraud) etc.
Error rate never greater than 50%

False positive rate = fraction of negative examples labelled positive
(Type | error rate)

False positive rate = fraction of negative examples labelled positive
(Type Il error rate)

Error rates interact!

Evaluating classification

Always:

evaluate on data not used to train
(otherwise evaluation is biased optimistic)

compare to baselines
(reasonable alternatives)

report TP rate and FP rate

Train error, test error, overfitting

The training error of a classifier is the error rate on examples used to train
the classifier. In contrast, the test error is error on examples not used to train
the classifier. Classifiers that have small training error might not have small test
error, because the classification procedure is chosen to do well on the training
data. This effect is sometimes called owverfitting. Other names include selection
bias, because the training data has been selected and so isn’t exactly like the test
data, and generalizing badly, because the classifier must generalize from the training
data to the test data. The effect occurs because the classifier has been chosen to
perform well on the training dataset. An efficient training procedure is quite likely
to find special properties of the training dataset that aren’t representative of the
test dataset, because the training dataset is not the same as the test dataset. The
training dataset is typically a sample of all the data one might like to have classified,
and so 1s quite likely a lot smaller than the test dataset. Because it is a sample,
1t may have quirks that don’t appear in the test dataset. One consequence of
overfitting 1s that classifiers should always be evaluated on data that was not used
in training.

Estimating error rate

Now assume that you want to estimate the error rate of the classifier on test
data. You cannot estimate the error rate of the classifier using data that was used
to train the classifier, because the classifier has been trained to do well on that
data, which will mean our error rate estimate will be too low. An alternative is
to separate out some training data to form a wvalidation set (confusingly, this is
sometimes called a test set), then train the classifier on the rest of the data, and
evaluate on the validation set. The error estimate on the validation set is the value
of a random variable, because the validation set is a sample of all possible data
you might classify. But this error estimate is unbiased, meaning that the expected
value of the error estimate is the true value of the error.

However, separating out some training data presents the difficulty that the
classifier will not be the best possible, because we left out some training data when
we trained it. This issue can become a significant nuisance when we are trying
to tell which of a set of classifiers to use — did the classifier perform poorly on
validation data because it is not suited to the problem representation or because it
was trained on too little data?

Cross validation

You can resolve this problem with cross-validation, which involves repeatedly:
splitting data into training and validation sets uniformly and at random, training a
classifier on the training set, evaluating it on the validation set, and then averaging
the error over all splits. Each different split is usually called a fold. This procedure
yields an estimate of the likely future performance of a classifier, at the expense of
substantial computation. A common form of this algorithm uses a single data item
to form a validation set. This is known as leave-one-out cross-validation.

A linear classifier

Assume you have a feature vector x that describes an image well. You must map
this feature vector to a label which identifies the class of the image. In the current
case, the label is either “real” or “denoised”, but much richer alternatives will
be important (Chapter ??7). A straightforward choice is a linear classifier, which
maps X to u(x;a,b) = (alx + b), then uses the sign of that value to classify.
Equivalently, a linear classifier constructs a hyperplane in the feature space. Data
items that map to one side of the hyperplane are real and data items that map
to the other side are denoiser outputs. The parameters a and b are chosen to
get the best performance (many more details below). You might object that this
mapping is too simple to achieve what is wanted. But the the feature vector is a
high dimensional representation of the image, so there is a good chance of finding
a linear classifier that separates the two. It will turn out that the feature vector
is the product of a learned encoder, meaning you can adjust the encoder to get the
feature vector that works best with a linear classifier.

The decision boundary

0]

Filled examples
this side

Decision boundary
a'x +b=0

maps x to u(x;a,b) = (alx + b),

Choosing a, b

Use the model

P(denoi
u(x: a,b) = log [(en01se|x)]

P(real|x)

This means a data item with positive u is likely to be from the denoiser, and more
likely to be from the denoiser if |u| is larger. A data item with a negative w is likely
to be real, and more likely so if |u | is larger. In particular

e 1

[+ eu and P(real|x) = [Fen

P(denoise|x) =

Call this distribution the predictive distribution for the 7’th example, and write
P(-;u;). Now write S for the set of examples, where each example has the form

Choosing a, b - I

Call this distribution the predictive distribution for the 7'th example, and write
P(-;u;). Now write S for the set of examples, where each example has the form
(Xia yz)a and
1 if 2’th example is real
Yi = { —1 otherwise

Then the log-likelihood of the dataset under this model is

= fu (52 ot o)

€S

Choose a, b to maximize log-likelihood
equivalently minimize negative log-likelihood

Logistic regression

Logistic regression

0]

Filled examples
this side

A

Decision boundary
a'x +b=0

—— hinge

— fogistic

=100 =7.5 =50 =25 00 25 50 7.5 10.0
D CB A

Cross entropy between distributions

The cross-entropy between a discrete distribution p and another discrete distribu-
tion on the same space q 1s

H.(p,q) = —E[p] [log q] Z Pu l0g gy

If they're the same, entropy of that dist

If different, bigger

Cross entropy loss

where the sum is over all elements with non-zero terms in p and q. Now interpret
the label for the ¢’th data item as a model probability distribution, by writing
pi(real) = (1 + y;)/2 and p;(denoise) = 1 — p,(real) = (1 — y;)/2. One of these is
1 and the other 0 for each data item, and there is a different distribution for each
data item. Write m; for the i’th such example distribution and P(-;u;) for the
distribution predicted by the classifier for the i’th item. Notice that the logistic
loss is constructed out of cross-entropy terms, so

(11— |
Ly, = Z ui(2y>—log(1+e“’)]
ies t

= ¥ (1 —2y> [u; — log (1 +)] + (14;3;) [—log(l—l—eui)]]

€S

= Z [pi(real) log P(real|u;) + p;(denoise) log P(denoise|u;)]
i€S
— — " H(m, P(u))
i€S
= L.

This means that you can interpret the log-likelihood as a comparison between the
predicted distribution and the model distribution for each data item.

Logistic loss

Write s; = y;u; = y;(a’x +b). The logistic loss function is given by

1
~ log?2

'Clogistic(s) log (1+e77)]

Then, by recalling that log (1 + ef) = f + log (1 + e_f), you can show that the
log-likelihood for logistic regression is

Lir = (10g2)) Liggigtic(5i)

€S

(though the log 2 factor is often ignored).

Hinge loss

Write S; — Y;U; — yi(aTx -+ b)

to zero (and so the example gets closer to the hyperplane on the right side), the
logistic loss grows. If s; is a lot smaller than zero (and so the example is far from
the hyperplane and on the wrong side), the loss grows close to linearly in s; There
are other loss functions that have this behavior. The hinge loss function

Ehinge(s) = max (1 — s,0)

has this behavior as well. Recall s; = y;(a’x; + b). The hinge loss for a dataset is

Z Ehinge(si)'

Hinge loss vs logistic regression

0]

Filled examples
this side

A

loss

Decision boundary
a'x +b=0

—— hinge

— fogistic

=100 =7.5 =50 =25 00 25 50 7.5 10.0
D CB A

But what should x_i be?

|dea:
get it from an encoder
what encoder?

|dea:
train encoder to produce x_i so that classification is best

Issue:
get from encoder output to vector without too much drama

Deeper autoencoder

(FXMxN) block
< not Fx1 vector

x2
[
&
Upsampling (bilinear) Stack in feature dimension T

Convolution (input, output, kernel, stride, padding)

Pooling

For the result to be a vector, it must be f x 1 x 1. This could be achieved with
stride alone, but an alternative is a pooling layer — a layer that reduces the spatial
extent of the data block by forming summaries of local windows. Windows may
overlap (depending on the API), but often don’t. Quite usual is halve the spatial
dimension of the image by pooling over non-overlapping 2 x 2 windows, so mapping
from f x 2a x 2b to f x a x b. In average pooling, the summary is the mean of the
elements in the window in each feature layer, and in maz-pooling, the summary is
the maximum of the elements in the window in each feature layer. These pooling
layers have no learnable parameters (unlike, say, a convolutional layer with stride
2). Pooling layers differ by how they react to unusual (outlying) responses from
feature detectors. Average pooling will tend to suppress them, whereas max-pooling
will tend to emphasize them; there is some evidence that emphasizing them, and
so max-pooling, is better on the whole for some classification purposes.

The layers, stride, padding and pooling are arranged so that the ¢ x d x d
image results in a g X s X s block. It is straightforward to turn this intoa g x 1 x 1
block by average pooling over the two spatial dimensions.

Fully connected layers

You could regard the g x 1 x 1 block as a vector (in some APIs, you need to reshape,
but this is housekeeping) and simply pass it to a linear classifier. Alternatively, you
could transform this vector with a fully connected layer, which maps a vector u to
a vector Cu + d, where the parameters C and d are learned, and C does not need
to be square.

Notice that applying a linear classifier a’x + b to the output of a fully con-
nected layer is not particularly interesting, because the result is aZ Cu + a’d + b,
which 1s just a different linear classifier. Similarly, applying a fully connected layer
to another fully connected layer directly is not interesting. Instead, each fully
connected layer is followed by a ReLU.

It is usual to take the g x 1 x 1 block, turn it into a vector if your API
wants that, then pass it through a fully connected layer and then a ReLU layer at
least once and possibly multiple times before applying a linear classifier. Experience
teaches that it is helpful to pass high dimensional features to a linear classifier. This
creates a minor tension, because big fully connected layers have a lot of parameters
in them and can create issues with both inference and learning speed.

Very simple classifier

I) aTx +b e

m d3eIoAY U

%

01T ¥9 ‘95T

)

0 ‘1T 95T 8Tl

)

0°C v 8TI ¥9

%

0°CYvv9 T¢

%

0°Cv T 91

1

0°CY 91 ¢

1
0°1 v Tl
)

>

Linear classifier

<

Encoder

Training the very simple classifier

Choose one of the logistic or hinge losses, and write C for your chosen loss.
Then the loss of applying the classifier to all training examples is

Y C(F(Z:,0),v:)
ietrain

and stochastic gradient descent can be applied to choose # as in Section 16.2.1.

Training the very simple classifier

Example case:

- is image just an image, or the output of a denoiser?

Figure 20.2 shows the architecture of a very simple classifier I used to classify real
vs. denoised. I trained this classifier using a cross-entropy loss; the optimizer
was Adam (Section 17.3.6); and I used batches of 128 images. I used 100, 000
images from the ImageNet training set (Section ??), which I mapped to gray level
images at 128 x 128 resolution. I obtained denoised images by applying the noise
of Section 21.1.3 to training images, then denoising them with the autoencoder
from that section (the one that uses skip connections). I used 20, 000 images from
that set as test examples, and constructed denoised test examples as in training
examples. This classifier is about as simple as it could be, and still quite easily
tells test denoise images from test real images. The behavior of the classifier is
summarised in Figure 20.3. Various modifications should lead to an improved
classifier (exercises). There is a very good chance of telling accurately whether
an 1mage has been through the autoencoder described in the text or not using a
simple classifier — the error rate averaged over the whole validation set is 0.06 (so
about one in 20 images will be misclassified).

Training the very simple classifier

loss

loss

0.8

0.6

0.4

validation error

0.2

% 0.5M iM 1.5M 2M

Number of examples

0.8

0.6

0.4

0.2

validation error

0.5M 1M 1.5M

Number of examples

2M

