
Last block:
Build an encoder and a decoder to:

 Accept noisy image, produce clean version

By:

 Constructing loss
 Applying various tricks for good behavior
 Adam/SGD/something to get minimal loss on training data

Idea:
 exploit this machinery to classify image; running eg is real vs denoised

Classification
Take a feature representation and apply a label
 eg credit card transaction (valid/fraud)

By some procedure
 usually, constructed out of training data
 crucial point:
 classifier should work well on future data

Hugely useful, very broad idea

Model example: is image denoiser output, or is it original?

Evaluating classification

Accuracy:
 fraction of classification attempts that result in right label

Error rate:
 fraction of classification attempts that result in wrong label

Bayes error:
 error rate that the very best possible classifier makes
 usually, very hard to know

Evaluating classification
One class is boring:
Binary classifiers:
 Two classes (yes/no; real/denoise; valid/fraud) etc.
 Error rate never greater than 50%

 False positive rate = fraction of negative examples labelled positive
(Type I error rate)

 False positive rate = fraction of negative examples labelled positive
(Type II error rate)

 Error rates interact!

Evaluating classification
Always:

 evaluate on data not used to train
 (otherwise evaluation is biased optimistic)

 compare to baselines
 (reasonable alternatives)

 report TP rate and FP rate

Train error, test error, overfitting

Estimating error rate

Cross validation

A linear classifier

The decision boundary

Choosing a, b

Choosing a, b - II

Choose a, b to maximize log-likelihood
 equivalently minimize negative log-likelihood

Logistic regression

Logistic regression

Cross entropy between distributions

If they’re the same, entropy of that dist

If different, bigger

Cross entropy loss

Logistic loss

Hinge loss

Hinge loss vs logistic regression

But what should x_i be?
Idea:
 get it from an encoder
 what encoder?

Idea:
 train encoder to produce x_i so that classification is best

Issue:
 get from encoder output to vector without too much drama

Deeper autoencoder

(FxMxN) block
not Fx1 vector

Pooling

Fully connected layers

Very simple classifier

Training the very simple classifier

Training the very simple classifier
Example case:

 - is image just an image, or the output of a denoiser?

Training the very simple classifier

Number of examples Number of examples

