Image processing basics

Andy Warhol, Marilyn Diptych, 1962 (source)

Many slides adapted from
Alyosha Efros, Derek Hoiem

https://www.flickr.com/photos/rocor/47080722114/https:/www.flickr.com/photos/rocor/47080722114/
https://inst.eecs.berkeley.edu/~cs194-26/fa21/
https://inst.eecs.berkeley.edu/~cs194-26/fa21/
https://inst.eecs.berkeley.edu/~cs194-26/fa21/
https://inst.eecs.berkeley.edu/~cs194-26/fa21/

Image processing basics: Outline

* |mages as sampled functions
Sampling and reconstruction, aliasing
Image resampling, interpolation
Image transformations

Model of imaging

Sensor Light source 9
X /

FIGURE 2.1: A high-level model of vmaging. Light leaves light sources and reflects

Lens

from surfaces. Fventually, some light arrives at a camera and enters a lens system.
Some of that light arrives at a photosensor inside the camera.

Sensor Light source

7 0{7

Spectral energy density Pixel values

FIGURE 2.2: Because each pixel in the sensor averages over a small range of direc-
tions and positions, the process mapping the input spectral energy distribution to
pixel values can be thought of as sampling. On the left, is a representation of the
enerqy distribution as a continuous function of position. The value reported at each
pixel is the value of this function at the location of the pixel (right).

Images as sampled functions

Image storage —e

TURNING LIGHT INTO
ADIGITALFILE ..~

digital converter

How your digital camera converts Anelogue
captured light into image pixels electronics

Image sensor

Mosaic filter

Lens

cco photon to electron CMOS

/ conversion \ s

- P ~ QEEEE
= Wik charge J;EN SIS

\’ to voltage (] [[R

, conversion o

- ' [(3 [[35 [

!] B

. o‘ o e e

www.digitalcameraworld.com

Digital color image

Multiple sensors

Why more green?

\

400 500 600 700
Wavelength (nm)

0.8

0.6

0.4

Relative Sensitivity

0.2

Human Luminance Sensitivity Function

Mosaiced
Sensor

Bayer pattern

Cameras aren't linear in input energy

This is deliberate, = 10
and usually a property ;3;
of camera electronics. =
Different cameras are § -
different a
Helps imitate film S - f:giif’i';]if’zxéﬁiﬁfﬁl
0.0 0.2 0.4 0.6 0.8 1.0

Increases dynamic range PAt, normalized

Images in Python

im = cv2.imread(filename) # read image
im = cv2.cvtColor (im, cv2.COLOR BGR2RGB) # order channels as RGB
im = im / 255 # values range from 0 to 1

RGB image im is a H x W x 3 matrix (numpy.ndarray)

im[0, 0, 0] is the top-left pixel value in R-channel

im[y, x, c] isthe value y+1 pixels down, x+1 pixels to right in the ct" channel
im[H-1, w-1, 2] is the bottom-right pixel in B-channel

column >
w 092 | 093 | 094 | 097 | 062 | 0.37 | 0.85 | 0.97 | 0.93 | 0.92 | 0.99 R
0.95 | 0.89 | 0.82 | 0.89 | 0.56 | 0.31 | 0.75 | 0.92 | 0.81 | 0.95 | 0.91
0.89 | 0.72 | 0.51 | 0.55 | 0.51 | 042 | 057 | 041 | 0.49 | 0.91 | 0.92 f=oe==Too= G
0.96 | 095 | 0.88 | 0.94 | 0.56 | 0.46 | 0.91 | 0.87 | 0.90 | 0.97 | 0.95
0.95 | 0.91
0.71 | 0.81 | 0.81 | 0.87 | 0.57 | 0.37 | 0.80 | 0.88 | 0.89 | 0.79 | 0.85 J— "5, B
0.49 | 062 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 | 0.33 0'97 0'95 0.92 | 0.99
0.86 | 0.84 | 0.74 | 058 | 0.51 | 0.39 | 0.73 | 0.92 | 0.91 | 0.49 | 0.74 0'79 0'85 095 | 091
0.96 | 067 | 0.54 | 0.85 | 0.48 | 0.37 | 0.88 | 0.90 | 0.94 | 0.82 | 0.93 0'45 0'33 091 | 0.92
0.69 | 0.49 | 056 | 0.66 | 0.43 | 042 | 077 | 0.73 | 0.71 | 0.90 | 0.99 0'49 0'74 0.97 | 0.95 HOW are the th ree
079 | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97 0'82 0'93 0.79 | 0.85
4 001] 0941089] 049] 041]078] 078] 077 | 080 [099] 003 | "o oo |45 | 0.33 color channels
; = . . - - ; = el 0. 99 f 0o Tooa
079 | 073 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97 i
0.82 | 0.93 acqui red?
0.91 | 094 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93
: - - : - e p——— e 0.90 | 0.99
079 | 073 | 0.90 | 0.67 | 033 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97
0.91 | 094 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93

Image transformations

Upsampling

Upsampling

Example:
go from 4x4 to 8x8

Forward warping: bad, do not do this
scan source, place pixels in target

Issue: holes in target
e @) 0] <)

O O O ®)

O OO O O 00 o
O 00O O O 00 O
O OO O O 00O ©o
O 00O O O 00 O
O OO O O 00O o
O 00O O O 00 O
O OO O O 00 o
O OO O O 00 O

Upsampling

Example:
go from 4x4 to 8x8

Inverse warping:
scan target, for each pixel determine source value
usually, you must know the value at non-grid points

O OO O 0O OO o
O OO0 O 0O OO0 ©
O OO0 O 0 OO0 ©o
O OO0 O 0O OO0 O
O OO O 0O OO0 o
O OO0 O 0O OO0 O
O OO O 0O OO0 o
O OO O 0O OO0 O

Interpolation

evaluate that function at the (likely non-integer) points. This procedure is known
as interpolation and the function — the interpolate — (a) must have the same value
as the original image at the original integer grid points (b) can be evaluated at any
point rather than just the integer grid points. Write Z(x,y) for an interpolate of
an image 7.

Interpolation

Nearest neighbors:

The simplest interpolate 1s nearest neighbors — take the value at the integer
point closest to location whose value you want. Break ties by rounding up, so you
would use the value at 2, 2 if you wanted the value at 1.5,1.5. As Figure 2.4 shows,
this strategy has problems — the upsampled image looks blocky.

4x4 8x8 Nearest neighbor

Interpolation

Writing nearest neighbors in a different way can be informative. For nearest
neighbors, define

brun ([1 for-1/2<u<1/2and -1/2<u<1/2
nn (U, v) = 0 otherwise

which has the convenient property that b,,(0,0) = 1, but b,,, = 0 for every other
set of integer coordinates. The fitted function is

I(x,y) = Zijnn(I — 1,y —J).
i,J

and it is a simple exercise to show that it has the properties required for an inter-
polate. This fitted function looks like a collection of boxes, and is not continuous

(Figure 2.4).

FIGURE 2.4: On the left, a function interpolating a 2 X 2 image using nearest neigh-
bors. The dashed lines pass through grid points, and the dotted lines are halfway
between grid points. The function is zero away from the four boxes shown. Image

values are shown as filled circles. On the right, a bilinear interpolate of the same
data.

Interpolation

Bilinear Interpolation

Most widely used is bilinear interpolation. For this, construct a function

[(1 —u)(1 =) for0<u<land 0<wv <1

u(l —v) for -1 <u<0and 0 <v <1

byi(u,v) = ¢ ww for -1 <u<Oand —1<v<0
(1 —u)v for0<u<land -1<v<0

L 0 otherwise

which is continuous, and again has the convenient property that by;(0,0) = 1, but
bnn = 0 for every other grid point (and looks a bit like a hat). The interpolate is

1,7

and 1t 1s a simple exercise to show that it has the properties required for an inter-
polate. Notice that this interpolate is continuous (Figure 2.4) and has a variety of
interesting properties (exercises).

Bilinear interpolation more generally

B

http://en.wikipedia.org/wiki/Bilinear interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

FIGURE 2.4: On the left, a function interpolating a 2 X 2 image using nearest neigh-
bors. The dashed lines pass through grid points, and the dotted lines are halfway
between grid points. The function is zero away from the four boxes shown. Image

values are shown as filled circles. On the right, a bilinear interpolate of the same
data.

Other kinds of interpolation

* ®
1D nearest- Linear
neighbour
2D nearest- o
neighbour Bilinear

Bicubic

Source: Wikipedia

https://en.wikipedia.org/wiki/Bicubic_interpolation

4x4 8x8 Nearest neighbor

Bilinear

Bicubic

Application: Demosaicing

Image transformations

Downsampling

Careless downsampling creates problems

Aliasing “in the wild”

Disintegrating textures

Moire patterns, false color

Source

Firefox File "Edit View History Bookm:

" e @ Focus Camera | Digital Camers X +

C O E) https://www

Government & Education v

Source

https://www.focuscamera.com/wavelength/what-is-the-moire-effect-in-photography-how-to-avoid-it/
https://www.japanistry.com/moire-false-colour-anti-aliasing-filters/
https://matthews.sites.wfu.edu/misc/DigPhotog/alias/

Visualizing the problems

Averaging before sampling can help

Function and samples Reconstructions
A ________________
No averaging T
: P ——— > e e
A
Averaging — T """"""
= '_—_) F——

Weighting the average can help

R Unweighted A Weighted

Window _\Vindow

Weighting the average can help, Il

Image Averaged, Weighted average,
subsampled x2 subsampled x2

n Weights

Gaussian smoothing, |

A traditional weighting scheme is given by a one parameter family of functions,
derived from the normal distribution and widely called gaussians. The parameter
o is sometimes called the scale and more usually called the sigma of the weights.
In a 2k — 1 x 2k — 1 window, the weights will be:

o — ((i—k)2+(j—k)2)

2074

C

where C' is chosen so the weights sum to one. Figure 2.10 shows a 5 X 5 window
of these weights, and the considerable improvement in subsampling that can result
from using a set of weights. For downsampling by a factor between one and two,
o =1 or o = 1.5 are fair choices.

Wij =

Gaussian smoothing, Il

Now imagine the downsampling requires a value that isn’t on the source grid.
This value could be interpolated, but it isn’t clear what to do about the smoothing.
A straightforward trick applies. Take the source image S, and form a new image N
from that source. The 7, j'th pixel in A is now the average of a (2k +1) x (2k + 1)
window of pixels in S, centered on 7, j. There are some problems when ¢ or j are

too big or too small and so the window leaves the source image. Deal with these by
padding the source image with k rows of zeros at the top and bottom and £ columns
of zeros on either side. Now downsample the smoothed image N, interpolating as

required.

Subsampling without pre-filtering

- - - : o

g — = -

v

- "4“
_a e

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Source: S. Seitz (via D. Hoiem)

Subsampling with pre-filtering

1/4 1/8
* Image is smoothed with a Gaussian filter before subsampling

Source: S. Seitz (via D. Hoiem)

Gaussian pyramids

Downsample x 4

smooth with big Gaussian, downsample x 4 (NO!)
OR

smooth, downsample x 2, smooth, downsample x 2

IDEA:

Pyramid: collection of smoothed and downsampled versions
of an image

\
Gaussian pyramid g @@ F f r

/// \,

Gaussian pyramid

Notice that fine scale (hi res) version contains detail (mouse
eye) and coarse scale (low res) shows large stuff (leaves)

Notice redundancy
coarse scale leaf predicts fine scale leaf.

Laplacian pyramid

Gy, = 1

Notation for Gaussian pyramid ->
Gr = Dy(Gr_1)

Gy = Ds(Gn_1).
|dea:

reduce redundancy; instead of storing G_k, store
G_k-Upsample(G_{k+1})

Ly = G1-U(Ds(Gy))
L, = Gir—U(D,(Gy))
Notice you can recover image Ly = Gu.

From either pyramid (Ex)

Comparing

Very simple processing with Laplacian pyramid

Rl = ’lU(].)Ll -+ R2
R, = w(k)Lk + Rk+1 -
Ry = Ly =0GNn.

Reconstruction - all w =1

Processing

If all the weights are 1, then R; = Z (exercises). You can emphasize or de-
emphasize some effects in the image by upweighting or downweighting the relevant
scale by choosing w(k). Using strongly different weights for different scales doesn’t
usually end well. For the example of Figure 2.13, I used weights obtained by: (a)
choosing some largest scale k; (in this case, k, = 3); (b) choosing a weight a then
(c) forming

w(k) = (1 + [a%x_ko]) .

Figure 2.13 shows how various choices of a either sharpen or smooth the image.

Original Enhance (0.4

—

) Suppress (-0.4)

S
AN ,',

FIGURE 2.13: Images can be reconstructed from Laplacian pyramids, and weight-
g components can emphasize or smooth edges. The Laplacian pyramid of Fig-
ure 2.12, reconstructed into an image using the method of Section 2.3.5, with a = 0
(left; original image); o = 0.4 (center; emphasizes edges); and o = —0.4 (right;
smoothes edges).

