CHAPTER 9

Image Segmentation with Clustering

Segmentation methods break images into groups of pixels, to obtain a more
compact representation of what is interesting in the image. There is no correct
segmentation of an image. Instead, the segmentation you want depends on what
you are going to do with it. A region is a collection of pixels that belong together.

Image segmentation is usually an intermediate step in some other process.
For example, you could cut out an object in an image, to replace it with something
else or to put it into some other image. As another example, you could decompose
an image into coherent chunks (superpizels if they are moderately sized; regions or
segments if they are big) as part of compressing the image.

9.1 BACKGROUND SUBTRACTION AND SHOT BOUNDARY DETECTION

Two applications are often not recognized as examples of segmentation, because
the methods are straightforward. Nonetheless, they are useful. In background
subtraction , you aim to separate an object (foreground) from a largely irrelevant
background. There are two regions here — foreground and background. The simplest
case occurs when you see multiple frames, with a possibly moving object on a stable
background. Typically, the foreground is passed on for further analysis and the
background is ignored. In shot boundary detection, you break a video into shots
— much shorter subsequences of frames that show largely the same objects (so
the shot is the region here). It is helpful to represent a video as a collection of
shots, where each shot is represented with a key frame. A key frame is a typical or
representative frame. If the shot is coherent, this could even be chosen at random.
A representation like this can be used to search for videos or to summarize videos
to support browsing.

9.1.1 Background Subtraction

Background subtraction works as follows. Obtain an estimate of what the back-
ground looks like; optionally, obtain an estimate of what the foreground looks like.
Now use this estimate to classify a pixel by determining whether it is more like
the background or the foreground. Finally, keep the foreground pixels. There are
a large number of variants of this recipe. Important sources of variation include:
how to obtain the estimates of appearance; how to use these to classify pixels; and
whether to use spatial models when classifying. Spatial models capture, for exam-
ple, the tendency of a background pixel to have background neighbors. Such models
can improve the foreground at the cost of increased complexity of classification.
One way to model the background is simply to take a picture. This approach
works rather poorly because the background typically changes slowly over time. For
example, the road may get more shiny as it rains and less when the weather dries up;
people may move books and furniture around in the room, and so on. An alternative
that usually works quite well is to estimate the value of background pixels using a

145

146 Chapter 9 Image Segmentation with Clustering

moving average. In this approach, you estimate the value of a particular background
pixel as a weighted average of the previous values. Typically, pixels in the distant
past should be weighted at zero, and the weights increase smoothly. Ideally, the
moving average should track the changes in the background, meaning that if the
weather changes quickly (or the book mover is frenetic) relatively few pixels should
have nonzero weights, and if changes are slow the number of past pixels with nonzero
weights should increase. The approach can be quite successful, but needs to be used
on quite coarse scale images as Figures 9.2 and 77 illustrate.

FIGURE 9.1: The figure shows every fifth frame from a sequence of 120 frames of a
child playing on a patterned sofa. The frames are used at an 80 x 60 resolution, for
reasons discussed in Figure ?7?7. Notice that the child moves from one side of the
frame to the other during the sequence.

FIGURE 9.2: Background subtraction results for the sequence of Figure 9.1 using 80
x 60 frames. I compare two methods of computing the background: (a) The average
of all 120 frames — notice that the child spent more time on one side of the sofa
than the other, leading to the faint blur in the average there. (b) Pizels whose
difference from the average exceeds a small threshold. (c) Those whose difference
from the average exceeds a somewhat larger threshold. Notice that, in each case,
there are some excess pizels and some missing pizels.

Section 9.2 Image Segmentation as Clustering 147

9.1.2 Shot Boundary Detection

A shot boundary detection algorithm must find frames in the video that are signifi-
cantly different from the previous frame. Our test of significance must take account
of the fact that, within a given shot, both objects and the background can move
around in the field of view. Typically, this test takes the form of a distance; if the
distance is larger than a threshold, a shot boundary is declared.

There are a variety of standard techniques for computing a distance. Frame
differencing algorithms take pixel-by-pixel differences between each two frames in
a sequence and sum the squares of the differences. Histogram-based algorithms
compute color histograms for each frame and compute a distance between the his-
tograms. Block comparison algorithms compare frames by cutting them into a
grid of boxes and comparing the boxes. Edge differencing algorithms compute
edge maps for each frame, and then compare these edge maps.

9.2 IMAGE SEGMENTATION AS CLUSTERING

There is a master recipe for image segmentation. This relies on clustering. a
procedure that takes individual data items — for example, pixels, image patches —
and produces blobs or clusters consisting of many similar data items.

Procedure: 9.1 Image Segmentation: Master recipe

Compute a feature vector at each pixel of the image, then cluster the
feature vectors. Each segment consists of the pixels whose feature vec-
tors are in the same cluster.

Clustering algorithms rely on estimates of how similar two pixels are. You
obtain these from distances between feature vectors describing the pixels. The key
topics for this chapter are how to cluster and how to compute distances. I will use
quite simple feature vectors in examples, but much of modern image segmentation
rests on sophisticated feature vector constructions.

9.2.1 Clustering Generalities

Generally, to cluster data items, you must determine (a) how many clusters there
are; and (b) which data items belong to which cluster. There are two natural
clustering algorithms. In agglomerative clustering, you start with each data
item being a cluster, and then merge clusters recursively to yield a good clustering.
In divisive clustering, you start with the entire data set being a cluster, and then
split clusters recursively to yield a good clustering. Mostly, divisive clustering isn’t
much used in vision applications.

Either algorithm needs to know when to stop. This can be difficult if there
is no model for the process that generated the clusters. One strategy, popular in
interactive data visualization and sometimes useful in other circumstances, is to
recognize the recipes generate a hierarchy of clusters. You could simply gener-
ate the whole hierachy, then navigate it in some application appropriate way. For

148 Chapter 9 Image Segmentation with Clustering

1 cluster

distance

2 clusters

| L |J:/l 6 clusters

FIGURE 9.3: Left, a data set; right, a dendrogram obtained by agglomerative clus-
tering using single-link clustering. If one selects a particular value of distance, then
a horizontal line at that distance splits the dendrogram into clusters. This repre-
sentation makes it possible to guess how many clusters there are and to get some
insight into how good the clusters are.

visualization, this hierarchy can be displayed in the form of a dendrogram—a rep-
resentation of the structure of the hierarchy of clusters that displays inter-cluster
distances—and an appropriate choice of clusters is made from the dendrogram.
Dendrograms are difficult to intepret when there are many data items, but can be
a helpful guide in simple cases (Figure 9.3).

Another important thing to notice about clustering from the example of fig-
ure 77 is that there is no right answer. There are a variety of different clusterings
of the same data. For example, depending on what scales in that figure mean, it
might be right to zoom out and regard all of the data as a single cluster, or to zoom
in and regard each data point as a cluster. Each of these representations may be
useful. This is a general feature of clustering as a problem. It is hardly ever helpful
to talk about whether a clustering is right, but it is often important to focus on
how useful it is.

9.2.2 Elementary Distances

For the moment, work with elementary feature vectors. These are: color, color and
position, and color, position and texture. For color features, it’s a good idea to
use a color representation where distances reflect perceived change of color well, so
Lab values or Luv values are a sensible choice. Notice that regions of pixels with
similar colors may not be connected. For color and position features, stack the z,
y position of the pixel together with the color. For color, position and texture
features, stack a texture descriptor together with position and color. This texture
descriptor could come from many sources. A traditional option is to choose a set of
small pattern detectors like filters (Chapter 22.3). The texture descriptor is then

Section 9.2 Image Segmentation as Clustering 149

an average of each filter’s response in some local patch.

Agglomerative clustering needs a good inter-cluster distance to fuse nearby
clusters. There are three recipes for inter cluster distances. The distance between
the closest elements tends to yield extended clusters and is known to statisticians
as single-link clustering). The maximum distance between an element of the first
cluster and one of the second tends to yield rounded clusters and is known to
statisticians as complete-link clustering. The average of distances between elements
in the cluster also tends to yield rounded clusters and is known to statisticians as
group average clustering.

9.2.3 The Mahalanobis Distance

The clustering methods I have described all depend on some measure of distance.
Even the affinity measure of Section 22.3 depends on a distance. But distances
between feature vectors can be misleading, because different components might be
scaled differently. As a simple example, imagine clustering using a pixel feature
vector consisting of R, G and B (on a scale from 0-1) and two position coordinates
on a scale from 1-512. The distances you work with will be entirely dominated by
the position coordinates; your results would change very significantly if the position
coordinates were scaled from 0-1.

If you are working with a small feature vector whose components are easily
understood, you may be able to control this problem with elementary means. But
it is relatively straightforward to construct very large vectors of features whose
meaning is quite obscure (some details in Chapters 22.3 and 22.3). Computing
sensible distances between these features requires care.

Start with a dataset of N d-dimensional vectors; write {x} for the dataset
and x; for the i’th item. Write the covariance matrix for this dataset Covmat ({x}).

Definition: 9.1 The Mahalanobis Distance

The Mahalanobis distance between two vectors x; and x; is

(x; — xj)T Covmat ({x}) ™" (x; — x;)

To understand this distance, diagonalize the covariance matrix to get
UT Covmat ({x})U = A.

Because U is a rotation, it has no effect on distances. If you transform the co-
ordinates to obtain r; = Ux;, the covariance for the r; is A exercises . This
is diagonal, so the directions are independent. In the Mahalanobis distance, each
direction is scaled by its variance exercises . This makes sense — if the “blob” of
data is spread out more in one direction, large differences in that direction should
not count much when you compute the distance. But in directions where the data
does not spread out, even small distances are important.

150 Chapter 9 Image Segmentation with Clustering

9.2.4 Reducing Dimension

Just using the Mahalanobis distance is often not a good idea. Typically, you would
estimate the covariance from a sample of vectors (for example, descriptors associ-
ated with a random subset of pixels from a random subset of images), then use it for
all vectors. If the vectors are high dimensional, there is a strong chance that many
directions have very small variance. However, there may be minor fluctuations in
these directions in the data you cluster (as opposed to the data you use to estimate
the covariance matrix) and these minor fluctuations will produce huge distances.
exercises It turns out that, for high dimensional data, this is the usual behavior
— you should expect problems from this effect.

The effect is a manifestation of an important rule of thumb. High dimensional
datasets are almost always “lying” about their dimension. Experience shows that
the items in most high dimensional data sets can be represented successfully (for
some purposes!) as the mean plus a weighted sum of a small set of basis vectors.
You can think of the dataset as lying on a low dimensional space inside the original
space. It’s an experimental fact that this model of a dataset is usually accurate for
real high-dimensional data, and it is often an extremely convenient model. Further-
more, representing a dataset like this very often suppresses noise — if the original
measurements in your vectors are noisy, the low dimensional representation may be
closer to the true data than the measurements are.

You can compute a lower dimensional representation, and obtain a Maha-
lanobis distance using that. Start with a dataset of N d-dimensional vectors {x}.
Diagonalize Covmat ({x}) = Covmat ({x}) to get

UT Covmat ({x})UU = A.

Do this by finding the eigenvalues and eigenvectors of Covmat ({x}). exercises

Ensure when you do this that the terms on the diagonal of the diagonal matrix A

are sorted largest to smallest. This is just a matter of checking whether your API

does it naturally, or you have to sort the diagonal of A and the columns of U.
Now consider the dataset {r}, constructed using the rule

r, = Z/{Txi.

The covariance of this dataset is diagonal. The values on the diagonal are interest-
ing. It is quite usual for high dimensional datasets to have a small number of large
values on the diagonal, and a lot of small values. This means that the blob of data
is really a low dimensional blob in a high dimensional space. For example, think
about a line segment (a 1D blob) in 3D. Now assume that Covmat ({r}) has many
small and few large diagonal entries. In this case, the blob of data represented by
{r} admits an accurate low dimensional representation. Choose s for the dimension
of the low dimensional representation (the exercises sketch out a procedure to do
this exercises). Form the s x d matrix P, consisting of the first s rows of U7
Then the dataset {1}, constructed using the rule

li = PSXi

consists of s dimensional vectors, and their covariance (a) is diagonal and (b) has
large values on the diagonal (by choie of s). Now use the Mahalanobis distance for
this representation.

Section 9.3 The K-Means Algorithm 151

FIGURE 9.4: K-means on image color yields very scattered segments. Segmentations
of the image on the right obtained with k-means applied to RGB color values using
top k£ = 10 and bottom k = 30. FEach row shows five segments selected at ran-
dom and colored with the mean color in the segment, then the image obtained by
“flattening” the segments next to the true image.

Procedure: 9.2 Computing Mahalanobis Distance with Dimension Re-
duction

At training time: Obtain a large, representative sample of the data
items you will work with; write {x} for the dataset of N d-dimensional
vectors and x; for the ¢’th item. Write the covariance matrix for this
dataset Covmat ({x}). Diagonalize this covariance to obtain

UT Covmat ({x}))UU = A.

Ensure that the values along the diagonal are sorted. Choose s < d for
the new dimension of the data. Form the s X d matrix Ps consisting of
the first s rows of U”. Form A, consisting of the s x s upper left block
of A. Finally, form D = PTA;1P,.

At run time: The dimension reduced Mahalanobis distance between
two vectors u and v is

(u—v)'Du-v)

9.3 THE K-MEANS ALGORITHM

Write x; for a set of IV data items, which have been coerced to be vectors. Assume
you know that there are k£ clusters. Write c; for the center of the jth cluster. Write
0;,; for a discrete variable that records which cluster a data item belongs to, so

5= 1 if x; belongs to cluster j
Y10 otherwise

152 Chapter 9 Image Segmentation with Clustering

Every data item belongs to exactly one cluster, so j 0;,; = 1. Every cluster must
contain at least one point, so), d; ; > 0 for every j. The sum of squared distances
from data points to cluster centers is then

(I)(é, C) = Z(Si’j [(Xl — Cj)T(Xi — Cj)} .

Notice how the §; ; are acting as “switches”. For the ¢’th data point, there is only
one non-zero §; ; which selects the distance from that data point to the appropriate
cluster center.

You could cluster the data by choosing the § and ¢ that minimizes ®(4, c).
This would yield the set of k clusters and their cluster centers such that the sum
of distances from points to their cluster centers is minimized. There is no known
algorithm that can minimize ¢ exactly in reasonable time. The d; ; are the problem:
it turns out to be hard to choose the best allocation of points to clusters.

Notice that if the c’s are known, getting the §’s is easy — for the i’th data point,
set the d; ; corresponding to the closest c¢; to one and the others to zero. Similarly,
if the 0; ; are known, it is easy to compute the best center for each cluster — just
average the points in the cluster. These observations yield a remarkably effective
approximate algorithm. Iterate:

e Assume the cluster centers are known and allocate each point to the closest
cluster center.

e Replace each center with the mean of the points allocated to that cluster; if
there are no points in the cluster, restart the cluster by choosing some point
uniformly and at random from the dataset and making that the cluster center.

Choose a start point by randomly choosing cluster centers (there are better options,
below), and then iterate these stages alternately. This process eventually converges
(exercises). It is not guaranteed to converge to the global minimum of the
objective function, however. This algorithm is usually referred to as k-means

Procedure: 9.3 K-means clustering

Initialize by choosing k£ and k initial cluster centers c;.
Iterate until convergence:

o Allocate each data item x; to the closest cluster center.

e Replace each center with the mean of the points allocated to that
cluster; if there are no points in the cluster, choose some point
uniformly and at random from the dataset and make that the
cluster center.

Test convergence by a combination of tests. Always stop when the
number of iterations exceeds a threshold. You could stop if the cluster
centers have moved by less than a threshold between iterations. Finally,
if the allocation of data items to cluster centers has not changed between
iterations, the method must have converged.

Section 9.3 The K-Means Algorithm 153

FIGURE 9.5: K-means on image color and position yields more compact segments,
depending on the scaling of the xy distance relative to the color distance. Segmenta-
tions of the image on the right obtained with k-means applied to RGB color values
using top k = 10; center and bottomk = 30. Fach row shows five segments
selected at random and colored with the mean color in the segment, then the image
obtained by “flattening” the segments next to the true image. The top and center
rows have xy distance scale so that the height of the image is 1; the bottom row
scales xy distance so the height is 10, forcing clusters to be much more compact.

9.3.1 Initializing K-means

One natural strategy for initializing k-means is to choose k data items at random,
then use each as an initial cluster center. This approach is widely used, but has some
difficulties. The quality of the clustering can depend quite a lot on initialization,
and an unlucky choice of initial points might result in a poor clustering. One (again
quite widely adopted) strategy for managing this is to initialize several times, and
choose the clustering that performs best in your application. Another strategy,
which has quite good theoretical properties and a good reputation, is known as
k-means++.

154 Chapter 9 Image Segmentation with Clustering

Procedure: 9.4 K-means++ for initializing k-means

Choose a point x uniformly and at random from the dataset to be the
first cluster center. Then compute the squared distance between that
point and each other point; write d?(x) for the distance from the i’th
point to the first center. Now choose the other k£ — 1 cluster centers as
IID draws from the probability distribution

d; (x)

9.3.2 How to choose K

Usually, you don’t know how many clusters there should be, and need to choose
this by experiment. The obvious strategy — cluster for a variety of different values
of k, then look at the value of the cost function for each — does not work. If there
are more centers, each data point can find a center that is closer to it, so the value
should go down as k goes up. The best k is then the number of data points, which
is not helpful.

In some special cases, you might know a label associated with each data point.
In such cases, one can evaluate the clustering by looking at the number of different
labels in a cluster (sometimes called the purity), and the number of clusters. A
good solution will have few clusters, all of which have high purity. Mostly, you
won’t have a label to check purity.

The alternative strategy, which might seem crude to you, is extremely impor-
tant in practice. Usually, one clusters data to use the clusters in an application (one
of the most important, vector quantization, is described in Section ??). There are
usually natural ways to evaluate this application. For example, vector quantization
is often used as an early step in texture recognition or in image matching; here one
can evaluate the error rate of the recognizer, or the accuracy of the image matcher.
One then chooses the k that gets the best evaluation score on validation data. In
this view, the issue is not how good the clustering is; it’s how well the system that
uses the clustering works.

9.3.3 Scattered Points and Junk Clusters

If you experiment with k-means, you will notice one irritating habit of the algorithm.
It almost always produces either some rather spread out clusters, or some single
element clusters. Most clusters are usually rather tight and blobby clusters, but
there is usually one or more bad cluster. This is fairly easily explained. Because
every data point must belong to some cluster, data points that are far from all
others (a) belong to some cluster and (b) very likely “drag” the cluster center into
a poor location.

There are ways to deal with this. If k is very big, the problem is often not
significant, because then you simply have many single element clusters that you
can ignore. It isn’t always a good idea to have too large a k, because then some

Section 9.3 The K-Means Algorithm 155

FIGURE 9.6: Hierachical k-means builds a tree of cells in space. On the left, a set of
data points (black) in 2D, with three cluster centers in red. This clustering divides
the plane into three cells corresponding to the cluster centers. The cells contain the
points that are closest to their cluster center. On the right, the points in the top
right cell are clustered again into three clusters (centers in green), so that cell is
subdivided into three cells. Below each 2D set of points is the relevant abstract tree.

larger clusters might break up. An alternative is to have a junk cluster. Any point
that is too far from the closest true cluster center is assigned to the junk cluster,
and the center of the junk cluster is not estimated. Notice that points should not
be assigned to the junk cluster permanently; they should be able to move in and
out of the junk cluster as the cluster centers move.

Remember this: K-means finds a set of cluster centers and an allo-
cation of data items to cluster centers that minimizes the sum of distances
between data items and their cluster center. The algorithm chooses centers
and then allocates items to the cluster with the closest center, and then
updates the centers; this is repeated until the (guaranteed) convergence to a
local minimum.

9.3.4 Efficient Clustering and Hierarchical K-Means

One important difficulty occurs in applications. You might need to have an enor-
mous dataset (billions of items is a real possibility), and so a very large k. In this
case, k-means clustering becomes difficult because identifying which cluster center

156 Chapter 9 Image Segmentation with Clustering

(o]

o

Graph ‘Weighted graph Cut Common graph for images

FIGURE 9.7: Graphs are quite visual concepts. On the left, a graph (vertices are
circles, and edges line segments; note this graph isn’t connected). Center left, a
weighted graph; center right, a cut (red vertices are in A and green vertices are
in B; and right, the most usual graph used for images, shown for a small image.

is closest to a particular data point scales linearly with k (and you have to do this
for every data point at every iteration).

Manage this problem by building a hierarchy of k-means clusters. Randomly
subsample the data (typically quite aggressively), then cluster the sample with a
small value of k. Each data item is then allocated to the closest cluster center, and
the data in each cluster is clustered again with k-means. You now have something
that looks like a two-level tree of clusters. The leaves of this tree contain subsets
of the data. All intermediate nodes contain a set of cluster centers, and there
is a child associated with each cluster center. Of course, applying this process
recursively will produce a more interesting tree of clusters (exercises). You can
stop the recursion by not clustering when there are few data points in a leaf.

You should think of this tree as dividing the space of data items into cells. It
is straightforward to draw the tree. The root consists of a set of cluster centers,
each of which is associated with a child node. Datapoints belong to the child node
associated with the closest cluster center, meaning that the root divides the space
into cells (formally, Voronoi cells). This applies recursively to the children, which
each divide their cell into subcells, and so on (Figure 9.6)

Remember this: Build a tree using k-means by clustering a sample
of the data, then allocating new data to the cluster with the closest center,
and recurring. Stop when there is too little data in a cluster.

9.4 CLUSTERING WITH GRAPH THEORETIC METHODS

A graph is given by a set of vertices V and a set of edges (pairs of vertices, £). The
graph is a weighted graph if each edge has an associated weight. A cut partitions
the graph into two sets of vertices (say V4 C V and Vg C V) and two sets of edges
(€4 C € and Ep C &) such that VANVp =0, V4UVp =V, £4 contains only pairs
of V4 vertices and £p contains only pairs of Vg vertices. These ideas are quite
visual (Figure 9.7).

Section 9.4 Clustering with Graph Theoretic Methods 157

Clustering is about relations — which data items are close, and which are far
— and you can use a graph to specify which relations should matter to a clustering
algorithm by making each data item a vertex and each relation that matters an
edge. You then apply weights to those relations, and cut the graph (often, but not
always, repeatedly) to obtain subgraphs which are clusters.

9.4.1 GrabCut: Separating Foreground from Background with a Graph

An important application for graphs is interactive segmentation, where you are
given an image; a user does something to hint at what the foreground might be;
and you must cut the foreground object from the background. The segmentation
boundary should run exactly along the boundary of the object. The hints might
take the form of a box around the foreground object or some scribbles on the image
(Figure 9.8).

For the moment, assume that the hints have been good enough that you have
a model of what foreground and background pixels look like. Write f for the fea-
ture vector describing a pixel. Express your appearance model for foreground and
background as a conditional probability model giving the probability of a particu-
lar feature vector conditioned on the pixel coming from foreground or background;
write P(f|foreground), etc. The next section sketches some ways to get these mod-
els.

Each pixel is now a vertex in a graph, and I will construct an optimization
problem that makes it possible to cut this graph into two components, one for
foreground and one for background. Reindex the pixels so that they have one
index, and construct an appropriate set of edges. By far the most common choice
is to connect each pixels to its four neighbors only (ie up, down, left and right).
Associate z; with the i’th node, where z; is one when the node is foreground and
zero when it is background. Now construct an optimization problem for z; out of
the graph by associating a cost with each node and a cost with each edge. The
solution of that optimization problem is a segmentation.

Assume the graph has no edges. Then the optimization problem would be to
choose the z that minimize:

Z (zi [~ log P(f;|foreground)] + (1 — z;) [— log P(f;|background)]) .

9

Notice how z; switches between costs for foreground and background. This problem
isn’t particularly interesting as an optimization problem (choose each z; indepen-
dently that minimizes the cost). The solution provides a bad segmentation, for an
interesting reason: each pixel is labelled entirely independently of its neighbor, so
you should expect a number of isolated foreground pixels in areas of mostly back-
ground, and vice versa (Figure 9.2 shows this effect). This optimization problem
associates costs with vertices only, and could be written

Z (z:Vii+ (1 —2)Vio).

US%

where the costs V;. are known (and are derived from the probability model as
above).

158 Chapter 9 Image Segmentation with Clustering

A more interesting case occurs when the graph has edges. Assume there is an
edge from ¢ to j. There are four possible sets of label: z; = z; = 1, 2; = 2z; = 0,
z; = landz; = 0 and z; = landz; = 0. Each could have a cost associated with it.
The cost associated with this edge alone can be written:

zizjBij i + (1 — 2)zjEij o1 + 2i(1 — 2;) Eijao + (1 = 2:) (1 — 2;) Eij 00

where F;j; 11 is the cost for having z; = z; = 1 across the edge. You must now
minimize

zizjEij i1+
(1 —z)2Eijo1+
Via+ (1 —z)Vio) + 1
iezv (z:Vin + (1 = 2)Vip) (1';65 zi(1 = zj) Eija0+
! (1= 2)(1 = 2j) Eij 00

by choice of z;. Intuition may (should, if you've taken an algorithms class) tell
you that this is a nasty optimization problem. This is true in general case, but
not in the special case associated with images. For images, you expect that pixels
look like their neighbors. Further, objects tend to be “blobby”, so if you choose
the graph to connect each pixel to its four neighbors only (ie up, down, left and
right), most z will look like their neighbors as well. In turn, you should choose
Eijin = Eijo0 = 0 (it’s cheap to agree with your neighbors) and Ejjo1 > 0,
Eij10 > 0 (it’s expensive to disagree with your neighbors). For this case, it is
known how to solve the optimization problem efficiently ([]) and good fast codes
are available (for example, OpenCV has one).

Write f; for the feature representing the i’th pixel. GrabCut chooses

Eijo1 = Eiji0 = Vefﬁ[(fﬁfj)T(f“fj)].
Here 8 = (1/2)(1/m), m is an average of (f; — fj)T (f; — £;) over a sample of distinct
image pixels, and ~ is a parameter. Notice that once you have a solution, you can
re-estimate the foreground and background models. Just use the foreground or
background pixels identified by the algorithm. These models may change from the
models used to obtain the solution, so it is worthwhile iterating the two steps a few
times.

A large value of v makes it very expensive for two pixels with an edge between
them to have different z values. If you make the common choice of graph, then
pixels are forced to agree with their neighbors in the absence of strong evidence
they should disagree. This should remove isolated foreground or background labels.
A large value of v favors a shorter boundary between foreground and background,
so too large a value of v can result in an oversimplified boundary. As you reduce
the value of =y, the boundary will become more complicated, but isolated pixels may
appear.

9.4.2 Building Models of Foreground and Background for GrabCut

Assume you have a collection of feature vectors from mostly foreground pixels (call
the #’th such f;) and another of background pixels (the ¢’th is b;). You must build
models of the conditional probabilities P(f|foreground) and P(f|background) from

Section 9.4 Clustering with Graph Theoretic Methods 159

First Final
segmentation Strokes segmentation

FIGURE 9.8: An example of an interactive segmentation of a foreground object with
GrabCut. The user selects a window in the image which is mostly foreground; the
method then builds a model of foreground using the pizels in this window and a model
of background pixels using the rest of the image. These models lead to the initial
segmentation, which is missing a small blob of object pizels (on the “wing” of the
petal at the bottom left) and has a large streak of extra pizels. The user then applies
strokes to the image to identify known foreground and known background pizels,
resulting in new foreground and background models and an improved segmentation.

these examples. The simplest option is a Gaussian (details in exercises, exer-
cises). An alternative is to use histograms, but you must be careful about zero
counts (details in exercises, exercises). The most popular option is a mixture
of Gaussians, which requires more careful estimation (some details in exercises).

Using some background pixels to build the foreground model (and vice versa)
should not lead to major problems. Doing this will cause the probability model to
be somewhat smoothed. For example, if the foreground is red and the background
is green, there will be slightly more probability that the foreground generates a
green pixel than there should be. But there will be much more probability that the
background generates this green pixel, so the segmentation should be fine. This is
quite an important point, because it means the user can provide quite rough hints
to the model and still get a good segmentation. Usually, the first models are built
from a box on the image containing “likely foreground” pixels (those outside the box
are “likely background”). If this isn’t sufficient to get a good segmentation, the user
can apply strokes to the image — make marks on the image identifying pixels that
are “certainly foreground” or “certainly background” (Figure 22.3). GrabCut is
available in a number of API’s (exercises).

160

Chapter 9 Image Segmentation with Clustering

FIGURE 9.9: The choice of scale for the affinity affects the affinity matriz. The top
row shows a dataset, which consists of four groups of 10 points drawn from a ro-
tationally symmetric normal distribution with four different means. The standard
deviation in each direction for these points is 0.2. In the second row, affinity ma-
trices computed for this dataset using different values of o4. On the left, o4 = 0.1,
in the center o4 = 0.2, and on the right, o4 = 1. For the finest scale, the affinity
between all points is rather small; for the next scale, there are four clear blocks in
affinity matriz; and for the coarsest scale, the number of blocks is less obvious.

the

Remember this: GrabCut implements interactive segmentation of a
foreground object. The user marks rough estimates of foreground and back-
ground pizels, resulting in a probability model of foreground and background
appearance; this is used to segment the image by solving an optimization
problem that allocates pizels to foreground or background. The optimization
problem balances similarity to foreground or background with the tendency
of pizels to have the same class as their neighbors.

9.4.3 Affinities

An alternative application of graphs to clustering is this: Take each data item of the
collection to be clustered and associate it with a vertex on a graph. Now construct

Section 9.4 Clustering with Graph Theoretic Methods 161

0.45

0.4F * * 4

0.25F i

0.2 —

01k *

*
0 5 10 15 20 25 30 35 40

FIGURE 9.10: The eigenvector corresponding to the largest eigenvalue of the affinity
matriz for the dataset of Figure 9.9 using o4 = 0.2. Notice that most values are
small, but some — corresponding to the elements of the main cluster — are large.
The sign of the association is not significant, because a scaled eigenvector is still an
etgenvector.

an edge from every element to every other, and associate with this edge a weight
representing the extent to which the elements are similar. Each weight is an affinity
— if the two vertices are similar, it is large, and if they are different, it is small.
Now cut edges in the graph to form a good set of connected components — ideally,
the within-component edges are large compared with the across-component edges.
Each component is a cluster.

It is straightforward to construct affinities out of distances. If d(x;,x;) is the
distance between two feature vectors, then

d(x;,%X; 22
e (_ e))

is an affinity (big when similar, small when different). Here o is a scale used to
adjust the affinity. Now represent the affinities between each pair of points in a
matrix A, and recover clusters by analysis of that matrix.

9.4.4 Extracting Clusters with Eigenvectors

A good cluster is one where elements that are strongly associated with the cluster
also have large values connecting one another in the affinity matrix. Write w for
the vector of weights linking elements to the cluster. Now the function

w! Aw

162 Chapter 9 Image Segmentation with Clustering

FIGURE 9.11: Normalized cuts on image color alone yields very scattered segments.
I used the OpenCYV implementation, which requires to be told how many segments
it must find, and has deep relations to k-means. Segmentations of the image on the
right obtained with normalized cuts applied to RGB color values using top k = 10
and bottom k = 30. Fach row shows five segments selected at random and colored
with the mean color in the segment, then the image obtained by “flattening” the
segments next to the true image.

is a sum of terms of the form

{association of element 7 with the cluster}
x {affinity between ¢ and j}

x {association of element j with the cluster} .

You can obtain a cluster by choosing a set of association weights that maximize this
objective function. The objective function is useless on its own because scaling w
by A scales the total association by A\2. However, you can normalise the weights by
requiring that w’'w = 1, so it is natural to maximize w” Aw subject to w’w = 1.
This is an eigenvalue problem (exercises) and you must solve

Aw = \w.

For problems where reasonable clusters are apparent, these cluster weights should
be large for some elements, which belong to the cluster, and nearly zero for others,
which do not (Figure 9.10). In fact, you can get the weights for other clusters from
other eigenvectors of A as well.

In typical vision problems, there are strong association weights between rela-
tively few pairs of elements. You can reasonably expect to be dealing with clusters
that are quite tight and distinct. A natural procedure is to take the first eigenvector,
use that to decide what belongs in the first cluster (large values in the eigenvector),
then take the second eigenvector to decide what belongs in the second cluster (large
values in the eigenvector for things that aren’t in the first) and so on.

Section 9.4 Clustering with Graph Theoretic Methods 163

FIGURE 9.12: Normalized cuts on image color and position yields more compact
segments, depending on the scaling of the xy distance relative to the color distance.
I used the OpenCV implementation, which requires to be told how many segments
it must find, and has deep relations to k-means. Segmentations of the image on the
right obtained with normalized cuts applied to RGB color values using top k = 10;
center and bottomk = 30. Fach row shows five segments selected at random and
colored with the mean color in the segment, then the image obtained by “flattening”
the segments next to the true image. The top and center rows have xy distance scale
so that the height of the image is 1; the bottom row scales xy distance so the height
s 10, forcing clusters to be much more compact.

9.45 Normalized Cuts

An alternative approach is to cut the graph into two connected components such
that the cost of the cut is a small fraction of the total affinity within each group.
Formalize this as decomposing a weighted graph V into two components A and B
and scoring the decomposition with

cut(A, B) cut(A, B)
assoc(A,V) = assoc(B,V)

(where cut(A, B) is the sum of weights of all edges in V' that have one end in A and
the other in B, and assoc(A, V) is the sum of weights of all edges that have one end
in A). This score is small if the cut separates two components that have few edges
of low weight between them and many internal edges of high weight. One seeks
the cut with the minimum value of this criterion, called a normalized cut. Actually
finding this cut is algorithmically tricky. Reasonable approximation procedures are
known, but are out of scope. The criterion is successful in practice (Figure 9.11
and 9.12). At least one efficient implementation is available for download (https:
//ncut-pytorch.readthedocs.io/en/latest/).

164 Chapter 9 Image Segmentation with Clustering

There are very deep relationships between normalized cuts and k-means,
which should be suggested by comparing Figure 7?7 with Figure 9.11 or Figure 7?7
with Figure 9.12. Current practice uses an approximation to normalized cuts to
establish a representation to which k-means is then applied. The best behavior
occurs with feature constructions I describe in later chapters.

9.5 EVALUATING SEGMENTATION

Evaluating clustering in general is hard because there is usually no known right
answer. But image segmentation is special, because you can compare with human
segmentations. Humans are fairly — but not completely — consistent in the way they
segment images. The Berkeley Segmentation Dataset (500 image version at https:
//github.com/BIDS/BSDS500) contains a set of images that have been manually
segmented. Each image has been segmented by multiple annotators, who are not
required to agree, so that the dataset contains some information about the difference
in opinion between human annotators.

Segment boundaries can be taken as edges. These are evaluated by testing
whether human edge points are the same as predicted edge points. The F-measure
measures this property. Write TP (true positive) for the number of points where the
method predicts an edge and so do humans; FP (false positive) for the number of
points where the method predicts an edge and humans do not; TN (true negative)
for the number of points where neither method nor human predict an edge; and
FN (false negative) for the points where the method does not predict an edge but
humans do.

Definition: 9.2 Recall

Recall is the fraction of predicted edge points that are also marked by
humans as edge points. The recall of a system is given by

TP
R=Tprrp

Definition: 9.3 Precision

Precision is the fraction of actual edge points (those marked by humans)
that the method finds. The precision of a system is given by

TP
P_TP+FN'

You cannot properly evaluate a predictor using only one of these numbers. For
example, you can get excellent recall by building an extremely cautious predictor
that has no false positives, and very few true positives (though the precision will be
low). Similarly, an enthusiastic predictor might label almost everything as positive,

Section 9.5 Evaluating Segmentation 165

and so get a very good precision (but low recall). One can summarize these two
numbers with an F1 measure, which is the harmonic mean of recall and precision.

Definition: 9.4 The F-measure

A system with precision P and recall R has F-measure

2
1
L+

F =

o=

With some effort, you can show that

2 2TP

F= = :
++45 2TP+FP+FN

Notice that to get a large value of this number, both R and P must be large.

In practice, evaluation requires care, and it is important to have a consistent
protocol, because humans are not consistent with one another. This means that
a very good predicted edge point may be very close to, but not on top of, any
human prediction. Such a point should be counted as a true positive. There is a
standard protocol in place, with code available at https://www2.eecs.berkeley.
edu/Research/Projects/CS/vision/grouping/resources.html.

166 Chapter 9 Image Segmentation with Clustering

9.6 YOU SHOULD

9.6.1

9.6.2

9.6.3

remember these facts:

The K-means algorithm 155
The Hierachical K-means algorithm 156
The GrabCut Algorithm 160

remember these procedures:

Image Segmentation: Master recipe 147

Computing Mahalanobis Distance with Dimension Reduction 151

K-means clustering oo 153

K-means++ for initializing k-means 154
be able to:

e Cluster data items using k-means.

e Rescale feature representations as required using a Mahalanobis distance and
dimension reduction.

e Cluster pixels using k-means using color, position and filter outputs as features
to obtain simple segmentations.

e Use grabcut as implemented by your chosen API.

EXERCISES

QUICK CHECKS
9.1.

9.2.
9.3.
9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

Section 9.6 You should 167

Single link clustering tends to yield extended clusters; why?

Complete link clustering tends to yield rounded clusters; why?

Assume the covariance of some features is diagonal. When you compute a dis-
tance function, why does it make sense to scale each direction by the standard
deviation?

Recall Covmat ({x}) must be a symmetric matrix. Show you can diagonalize
this matrix by finding its eigenvalues and eigenvectors.

Confirm that the cost function for k-means does not go up at each iteration,
as long as no cluster required restarting.

Section 9.3.2 has “If there are more centers, each data point can find a center
that is closer to it, so the value should go down as k goes up.” Does this always
happen? could the value go up?

Section 9.3.2 has “The best k is then the number of data points, which is not
helpful.” Explain.

You cluster 1e6 data points with hierarchical k-means, using random subsam-
pling and k& = 100; roughly how many leaves to you expect? How deep do you
expect the tree to be?

How would you model foreground pixels with a Gaussian for GrabCut? How
good do you expect this model to be?

Assume you model foreground pixels with a histogram for GrabCut. What
problems would zero counts create?

LONGER PROBLEMS

9.11.

9.12.

You wish to maximise w? Aw as a function of w.

(a) Why is this problem meaningless without a constraint on w?

(b) Choose the constraint wlw = 1. Write A for the associated Lagrange
multiplier. Show that solving this problem is equivalent to solving Aw =
Aw. What do you do about the constraint?

(c) Choose the constraint wlw = 1. How many local maxima that satisfy
the constraint are there? Do they present problems in practice?

(d) Choose the constraint wlw = 1. How many local maxima that satisfy
the constraint are there? Do they present problems in practice?

(e) Choose the constraint 17w = 1. Show that if A is positive definite, you
can obtain a solution by solving Ax = 1. What could go wrong with your
procedure if A was not positive definite? Can you link this problem to
image segmentation?

Given a dataset of N d-dimensional vectors; write {x} for the dataset and x;

for the i’th item. Compute the matrix of eigenvectors that solves

Covmat ({x})UY = UA

for A diagonal.

(a) Show that 4T = T (the identity matrix).

(b) Transform the coordinates to obtain r; = Ux;. Show the covariance for
the r; is A.

(c¢) Show that the variance of the k’th component of r is A;;.

(d) When you compute a distance function, why does it make sense to scale
each direction by the standard deviation?

168 Chapter 9 Image Segmentation with Clustering

PROGRAMMING EXERCISES

9.13. Given a dataset of N d-dimensional vectors; write {x} for the dataset and x;
for the i’th item. Compute the matrix of eigenvectors that solves

Covmat ({x})UY = UA

for A diagonal.
(a) Form the s x d matrix Ps consisting of the first s rows of 7. Show the
dataset {1}, constructed using the rule

11‘ = 'Ps X5

consists of s dimensional vectors. Show their covariance (a) is diagonal
and (b) has large values on the diagonal.

(b) Form the s x d matrix Ps consisting of the first s rows of . Show the
dataset {1}, constructed using the rule

hi = 735T77sxi

consists of d dimensional vectors. Show their covariance (a) is diagonal;
(b) has s large values on the diagonal and (c) has d — s zero values on the
diagonal.

(¢) Show that

NZh*XIL] h*X,— Z Auu

u=s+1

Describe a method to choose s based on this observation.

9.14. Use a GrabCut implementation to investigate the effect of v on the segmenta-
tion. I found this hard to do with OpenCV’s implementation, but you might
use the implementation at https://github.com/luiscarlosgph/grabcut.

9.15. Obtain a k-means implementation (I used the one in scikit-learn) and at least
20 images. Represent these images as RGB and as LAB.

(a) Does the choice of color representation affect segmentation significantly?

(b) Now attach z and y coordinate to the representation of each pixel. In-
vestigate the effect of scaling these coordinates with respect to the color
coordinates using a uniform scale. Can you find a scaling and choice of k
that gives reasonable segments?

(¢) Can you obtain improved segmentations by using a two level hierarchical
k-means? For the first clustering, cluster on color alone; then cluster the
contents of each child on color and position.

(d) Obtain the Berkeley Segmentation Dataset, and use it to choose a seg-
mentation procedure from the examples in this exercise. Use the evalua-
tion protocol with code available at https://www2.eecs.berkeley.edu/
Research/Projects/CS/vision/grouping/resources.html. How does your
choice compare to current best performers?

9.16. Obtain a normalized cuts implementation (I used the one at https://ncut-pytorch.
readthedocs.io/en/latest/; I had to deal with minor drama installing it, but
found it excellent) and at least 20 images. Represent these images as RGB
and as LAB.

(a) Does the choice of color representation affect segmentation significantly?

Section 9.6 You should 169

(b) Now attach z and y coordinate to the representation of each pixel. In-
vestigate the effect of scaling these coordinates with respect to the color
coordinates using a uniform scale. Can you find a scaling and choice of k&
that gives reasonable segments?

(c) Obtain the Berkeley Segmentation Dataset, and use it to choose a seg-
mentation procedure from the examples in this exercise. Use the evalua-
tion protocol with code available at https://www2.eecs.berkeley.edu/
Research/Projects/CS/vision/grouping/resources.html. How does your
choice compare to current best performers?

