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Human surface color

It has been known since at least 1867 that human reports of surface color are
much more like reports of albedo than of reflected light [45]; rough algorithms
for achieving this date to at least 1874 [416]. A review of early theories for human
vision appears in [11]; of more recent ideas in [11]. Humans can recover rich
material properties from images [1, 81, 68]. Illusions are common [2].

Color constancy

Recovering surface color in the presence of unknown colored light is sometimes

known as color constancy. Early algorithms include [35]; reviews in [3]; more
recent are [5, 4, 94, , 38, 9, 26, 95]

Evaluation

Direct evaluation methods include: WHDR [12]; scores on the images of [43]

(but there are very few images in unrealistic illumination [0]); and scores on
SINTEL frames (from [23]), as in [25] (but this rendered data is quite unlike
real images as in [58], section 2).

Multiimage data Emerging papers

The WHDR evaluation framework was put in place by [12], who constructed
a dataset (Intrinsic Images in the Wild or ITW) consisting of human judgements
which compare the absolute lightness at pairs of points in real images. Each pair is
labelled with one of three cases (first lighter; second lighter; indistinguishable) and
a weight, which captures the certainty of labellers. One evaluates by computing
a weighted comparison of algorithm predictions with human predictions; the
comparison is known as the weighted human disagreement ratio (WHDR).
Predictions were originally by testing ratios of estimated albedo against a
standard threshold [12]. Other authors test against a threshold chosen using
validation data (eg. rescaling of Retinex in [70]), or test differences in estimated
log-albedo (eg [70]). The choice of predictor is significant. Differences in log-
albedo are scale invariant, but this predictor may perform poorly over the full
range of albedos. Two quite similar dark albedos will have the same difference
in logs as two quite different light albedos. Differences in albedo are not scale
invariant, and this means that the scale on which the algorithm reports albedo
and the test thresholds are fungible. Some authors fix threshold, and learn scale;
others fix scale and choose threshold using validation data.



Methods

Early methods do not see any form of training data, but more recently both CGI
data and manual annotations of relative lightness (labels) have become available.
We organize methods into four classes based on what kind of data is used and
how it is used. Methods that use data could use: ground truth data for real
images (but it is hard to produce data by experiment, and so only very small
quantities of real albedo and shading data are available, e.g. [13, 91]); ground
truth data for CGI images (but CGI images present problems, below); simulated
data from abstract spatial models (our approach); or statistical summaries of
ground truth data. We lump together methods that see ground data for real
images and those that see CGI, and order by the likely informativeness of the
data. This gives four categories:

o No-ground-truth methods (N-methods) use no labels, albedo or shading
for any image;

 Stats-only methods (S-methods) see statistical summaries of CGI albedos
and shading, but no other data;

o Paradigm methods (P-methods) use synthetic training data produced by
abstract spatial models, but no other data; and

¢ Ground-truth methods (G-methods) use CGI albedos, CGI shadings, real
albedos, real shadings, or human lightness labels.

There is a standard WHDR test-train split (20% test and 80% train) intro-
duced by [70]. The choice of scale and threshold significantly affects reported
WHDR (see table 1 of [70]). Table 1 shows reported WHDR’s for a large selec-
tion of methods, using the best rescaled value known as appropriate. Generally,
the more data a method is shown, the better the WHDR; but relatively few
G-methods and no S- or N-methods are better than our method.

No-ground-truth methods: (N-methods) In 1959, Edwin Land described
procedures that estimated albedo at an image location by accumulating com-
parisons [55, 56]. Land modelled images as shaded Mondrians — albedos were
modelled as piecewise constant patches of color and shading as a smooth field —
and concluded that albedo displays large (but no small) image gradients, and that
shading has small (but no large) gradients. This Retinex assumption results in a
class of methods (Retinex-like methods) that: compute image gradients; recover
albedo gradients from the image gradients (typically, by testing gradient magni-
tude); then recovering the albedo from the albedo gradients (typically, by a form
of integration). The Retinex assumption or variants underly numerous algorithms
for recovering albedo, which typically differ by how the albedo gradients are
identified and by how albedo is recovered from putative gradients (which are not
directly integrable) [67, 48, 47, 18, 22, 53, 31, 97, 60, 59, , 90, 20, 34, 21, 19].
The strategy is naturally generalized by (a) writing cost functions or priors that
capture the properties of albedo and shading then (b) using an optimization
procedure to find albedo and shading that are most consistent with the image



and also most like the models [24, 39, 82, 83]; user intervention helps [59, 19]; as
does using more than one shading component [85]. Coupling to shape models
appears to significantly improve shading and reflectance estimation [7].

N-methods can be trained from data, by showing the method indirect supervi-
sory information. Aligned views of the same real scene under distinct illuminants
offer strong cues to intrinsic image decomposition, exploited in [96, 63, 54].
Alternatively, one can use aligned CGI renderings of the same scene [58] (an
N-method because the method does not see albedo, just multiple images). [66]
show how to exploit these cues to learn a method that, at inference time, can be
applied to a single view. [103] show that it is enough to partially align images of
real scenes (by matching sections of frames).

Stats-only methods: (S-methods) see only statistical models of albedo
(resp. shading), much like the original Retinex assumption. [65] use albedo and
shading CGI renderings to build autoencoders. These are used to impose albedo
(resp. shading) structure on the inferred components of the input image; the
components must also compose to make the image. This method obtains the
current SOTA WHDR for any method that doesn’t see any ground truth (an
extremely strong 18.69%, Table 1).

Paradigm methods: (P-methods, this paper) see samples from abstract
statistical models of albedo and shading during training. The key difference
between N-methods and P-methods is that P-methods see samples from models
(rather than, say, energy functions; priors; etc.). This means that the models
can be of complicated form, and inference can be relegated to a network.

Ground-truth methods: (G-methods) see albedo or shading of training
images, or labels. With even a few ground truth images are available, local
regression strategies have been successful [91]. The recent literature strongly
emphasizes directly supervised convolutional neural network (CNN) based models.
One option is to [69] regress lightness differences against image features using
IIW data. [107] smooth pairwise lightness comparisons (learned using WHDR
data) to albedo and shading fields using a fully connected CRF. Recent methods
emphasize direct supervision using CGI rendering of scene models [25, 69, (1]
However, models trained exclusively on rendered scenes do not do well on real
images (eg [58]; section 2). This is likely because rendered images are insufficiently
“like” real images in some important ways. Competitive modern methods are
trained using a training portion of the ITW dataset, then evaluated on a the test
portion. [33] obtain the best current WHDR of 14.45% in this way, but their
method produces strange colors in albedo images, making its applicability in
computational photography questionable and qualitative comparison unhelpful.
[17] use a similar approach, but different network architectures, to obtain a
mean WHDR of 17.18% with strong qualitative results; we use this method for
qualitative comparison. There is good evidence that relatively little supervision
is required, and that self-supervision can be successful. [49] apply a learned
renderer to decompositions of unlabelled data to obtain a residual loss that
improves performance. [27] show that a form of bootstrapping (augment training
data with the results of previous models) is effective in improving performance.

Flattening: WHDR scores can be improved by postprocessing, because most



Table 1: Summary comparison to recent high performing supervised (above) and
unsupervised (below) methods, all evaluated on the standard IIW test set; sources
indicated. We distinguish between training with IIW and threshold selection
using IIW. WHDR values computed for Retiner use the most favorable scaling,
using the rescaling experiments of [70]. For our method, we report the held-out
threshold value of WHDR. We report two figures for [15], because we found two
distinct figures in the literature. Key: *: method uses IIW training data to set
scale or threshold ONLY. +: [65] build models of albedo and shading from CGI,
but do not use them for direct supervision. a: [103] use patches of registered
images from MegaDepth.

Class Method Source | IIW labels | CGI labels | Flattening | Test WHDR
*Zhao et al. "12 [101] [70] N N N 26.4
*Shen and Yeo ’11 [33] [70] N N N 26.1
Yu and Smith "19[103] ibid N N N 21.4 (a)
z Retinex (rescaled; color/gray) [70] N N N 19.5%/18.69*
*Bell et al 14 [12] [70] N N Y 18.6
Liu et al '20[65] ibid N Y+ N 18.69
Bi et al 15 [17] ibid N N Y 18.1
Bi et al 15 [17] [17] N N Y 17.69
2 Liu ef al 20[07)] ibid N Y+ N 18.69
A~ Our best N N N 16.86*
Shi et al. "17[20] [17] N Y N 54.44
Zhou et al ’15[100] [17] Y N Y 19.95
*Narihira et al[70] ibid N N N 18.1
&) Bi et al '18 [17] ibid N Y Y 17.18
Zhou et al ’15[107] ibid Y N Y 15.7
Li and Snavely *18[62] ibid Y Y Y 14.8
Fan et al ’18[33] ibid Y N Y 14.45




methods produce albedo fields with very slow gradients, rather than piecewise

constant albedos. [16] demonstrate the value of “flattening” albedo (see also
[71]); [L7] employ a fast bilateral filter [8] to obtain significant improvements in
WHDR.

0.1 Invariance and Equivariance

A function ¢ : x € X — y € Y is equivariant under the action of a group G if
there are actions of G on X and Y such that ¢(gox) = go ¢(x). An alternative
statement of the equivariance property will be convenient. Equivariance means
that we can choose a convenient coordinate system in which to evaluate ®(f) at
p. We have that, for any g € G,

(g7 o®og)(f)(p)

does not depend on g. In turn, this supplies a formal construction of an
equivariant operation Weq out of any operation W: we could simply average over
G, to have

¥oq() = | [ e oa))ig) /| / ).

assuming that the integrals can be constructed, etc. Unfortunately, for most
group actions of interest there are very few equivariant mappings that we can
evaluate in practice, so there is no reason to construct the integral. If the
mapping is per pixel — for example, ® : I(x,y) — I*(z,y) — it is equivariant, but
such mappings are seldom of interest. For other mappings, evaluating ®(f) at the
point u, v requires knowing f in some window S, , that depends on u,v and is
larger than a single pixel. Because we know the image only within some viewport
on the image plane, we cannot evaluate the mapping for any w,v such that
any part of S, , lies outside the viewport. Avoiding this problem (for example,
by modelling the image as a function on the torus or working with complete
spherical images) leads to a rich theory rooted in harmonic analysis [30, 40].
Padding the image is not a solution, because padding means that the process
used to evaluate ®(f) for u,v close to the boundary is different from that for
u, v near the center. Further, the problem can be avoided for some finite group
actions [29], and there is good evidence that well-known feature representations
are approximately equivariant [57].

There is good evidence that imposing equivariance properties improves models.
Imposing permutation equivariance results in better performing learned set-to-
set mappings [11]. Functions of point clouds can be equivariant, and [78]
show performance improvements from an E(n) equivariant construction of a
graph neural network on point clouds. An E(3) equivariant construction for
neural interatomic potentials appears in [10]. A general theory for graph neural
networks is in [73]. Ignoring equivariance considerations in image-to-image
mapping because the theory of group actions doesn’t apply is unwise. For many
very interesting image-to-image mappings, the estimate at a pixel should not



depend on where the pixel is in the image. For example, if ® maps images to
albedos, then the albedo depends on the physical object being viewed, so that if
— say — we move the viewport to the left, the albedo should move to the right
but not otherwise change. [37] show that a simpler version of our averaging
construction produces significant improvements in albedo estimates.

Averaging

We wish to model an image-to-image mapping that we expect naturally has an
equivariance property under some group G which acts on the image plane (for
example, a map from image to albedo, or from dark image to bright image, should
be equivariant under at least rotation, translation and scale). The workhorse of
image-to-image mapping is the U-net [77], an image mapper that is flexible as
to the size of the input image. U-nets are defined on sampled images. A U-net
will not accept an image sampled on a grid with too few samples, because the
subsampling processes in the encoder will produce a data block that is empty.

Without loss of generality, we choose some D and always apply our U-net
toa D x D grid (a tile). We model an image as a function on the unit square
U =10,1] x [0,1] and a U-net as an object that will map any image tile, sampled
on a D x D grid, to another function defined on a D x D grid. Assume we
have trained a U-net to implement this mapping in the usual way; write ¢
to represent this U-net. There is no prospect that the U-net will actually
be equivariant, because training procedures do not impose equivariance; the
architecture does not guarantee it; and interesting mappings that are formally
equivariant are not available anyhow. Fig. 77 illustrates an example where
overlapping crops given to the UNet model result in different estimations in the
overlapping region.

However, a relaxed version of the procedure to obtain an equivariant mapping
from any mapping is extremely interesting. Write S for the sampling operator
that maps a function on U to sampled version of that function on a D x D
and R for a reconstruction operator that maps a D x D sampled grid to a
continuous function on U. Write R, = {g € G|g~'(U) € U&g(p) € U} — for the
set of group operations that takes some window p > W in U to U. We consider

/ [ / N w(g)dg]

Here w(g) is a weighting function; for the moment, assume this is one everywhere.
Notice this does not result in an equivariant mapping because we cannot average
over all group operations — the ones that lead to windows outside U are omitted.
Furthermore, this averaging process is not meaningful if the mapping we are
trying to model is not equivariant, because then averaging over G or parts of it
is not helpful. The averaging process has important and interesting properties.
The estimate of the mapped value at location p is an ensemble estimate obtained
by averaging over many different estimators

Dug(F)P) = [(97 0 R0y 0 g)(f], )] (P)

Cueq(f)(P) = [(/GR w(g)(g™ o Ro®y 0 g)(f|g1(w))(p)) dg




(which estimates the value of the mapped f at point p). The ensemble estimate
may have reduced variance. The estimators are different, because the U-net sees
a different image window for each ¢ in the average. However, training practices
mean the estimators should have zero mean (where the random element is the
choice of window).

The U-net will be trained with a large number of distinct image crops, and the
loss will require that each predicted value be close to the true value. Assuming
that the training data is extremely large, the U-net will have seen many distinct
windows surrounding a particular pixel, and will be trained to predict the same
value for each. The random element of the estimate at a particular pixel is the
choice of window containing that pixel that is presented to the U-net. We can
expect that training will result in a U-net that has zero mean error.

Zero mean error at each pixel is not the same as error that has no spatial
structure. We expect that the error at different locations in the output of the
U-net is correlated over some range of scales, because many pairs of output units
have overlapping receptive fields. This means the error could take the form of a
moderately sized, spatially slow, but structured, error field (Fig. ?7).

An ensemble estimate can control this class of error if we can force down
the variance at each location. This occurs if the error produced by each of the
estimators @, ,(f)(p) in the average is “sufficiently independent” and if we do
not average in estimators with large variance. As section 7?7 demonstrates, this
can be achieved in practice. If we have some reliable method of identifying
estimators with large variance, the weighting function can be used to down
weight them. As section 7?7 demonstrates, this can be achieved in practice.

A network should not change prediction if the input image is shifted or
scaled. In other words, an ideal method will report the same estimation for
the same location in a scene, however that location is viewed. We know of no
crisp theoretical framework to impose this criterion. The theory of group actions
does not exactly apply to transformations of the input image such as shifting,
cropping, scaling or even rotating because almost all transformations of this
form involve information being gained or lost at the boundary of the image [?].

GAN reading

You have to read [42]. There is some discussion of the effects of features, etc
in []. Sauer et al argue that using a projected set of features results in a match
in the projected space [79]. Little is known about what happens when there isn’t

a saddle point. Exponential model averaging is known to be a very effective way
to control cycling in GANs [102].

Image manipulation: StyleGAN [51, 52, 50] is currently de facto state-
of-the-art for editing generated images, likely because its mapping of initial
noise vectors to style codes which control entire feature layers produces latent
spaces that are heavily disentangled and so easy to manipulate. Recent editing
methods include [93, 98, 84, , 28, 76], with a survey in [99]. The architecture
can be adapted to incorporate spatial priors for authoring novel and edited
images [64, 92, 32].



Reshading and relighting

Relighting discussion in slides is from [13, 36] Insertion rendering from [14];
an improvement, not yet on arxiv, is entitled “Image-based Object Insertion
using Persistent and Transient Decomposition” (by Anand Bhattad, Brian Chen,
Stephan R. Richter, David A. Forsyth) and should appear there shortly. There
is a background on diffuse interreflections and their mathematics in [30].

Image Relighting: Shih et al. show that matching to time-lapse video
together with an example-based color transfer scheme can relight outdoor
scenes [37]. For scenes, there are workshop tracks (eg. [?, ?]), challenges [?, ?]
and datasets [?, ?]. Existing image relighting work learns image mappings — pure
image mappings in [?], depth guided in [?], using wavelets in [?] shadow priors
in [?]. In all these cases, methods are learned with paired data of the same scene
under different illuminations, available in the VIDIT dataset [?] and the MIE
dataset [?]. VIDIT data is CGI, and emphasizes point light sources with strong
shadows, which are uncommon in indoor scenes. Pairing is necessary to ensure
that these methods preserves scene characteristics [?, ?]. Date augmentation
with relighting improve two patch matching tasks [?]. Methods can learn to
create outdoor shadows [?] and soft attached shadows for objects that have been
inserted into indoor scenes [?, ?].

Image Relighting using StyleGAN: [92] uses StyleGAN to relight faces
but require three-dimensional morphable face model. In contrast, StyLitGAN
does not require any 3D model of the scene. [100] uses semantic label attributes
“indoor lighting” and “natural lighting” to train a binary classifier to find direc-
tions in latent space that represent them, but cannot produce diverse relighting
and requires a search in decoder layers to apply relight edits without changing
layout of the scene.

Face Relighting Methods mostly use carefully collected supervisory data
from light-stages [38, 105, 72, 80, 75]. ShadeGAN [74] and Volux-GAN [39] uses
a volumetric rendering approach to learn the underlying 3D structure of the
face and the illumination encoding. Volux-GAN also requires image decompo-
sition obtained from [75] that is trained using a carefully curated light-stage data.
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