168 Decoding

the tourism initiative addresses this for the first time ' 6.3.

T P Com

the tourism initiative trans

die touristische initiative saiitl
tm:=0.19,Im:-0.4, tm=1.16,m=2.93 | = | tm:=1.21,Im:—4.67 cient
d:0, all:-0.65 [d:0, all:—4.09 d:0, all:-5.88 3 Letu

a spe
the first time
com;
das erste mal F
tm:—0.56,Im:-2.81
d:-0.74. all:-4.11

e Tra
its t
e Lax

Figure 6.7 Translating the easy part first: The hypothesis that translates (out of
order) the first time has a better score (—4.11) than the correct hypothesis that

starts with the hard words the tourism initiative at the beginning of the sentence. aER
Both translated three words, and the worse-scoring (—5.88) but correct 3 £00
hypothesis may be pruned out. Scores are scaled log-probabilities from an i con
English-German model trained on Europarl data (tm: translation model, Im: : bigr
language model, d: reordering model). 1 S Rec

tion
parts of the sentence may be easier to translate than others, and hypothe- o
ses that translate the easy parts first are unfairly preferred to ones that i e$
do not.

: - covert
For example, the translation of unusual nouns and names is usually ‘ W
more expensive than the translation of common function words. While :
translation model costs are similar, the language model prefers common
words over unusual ones. See Figure 6.7 for an example of this problem.
When translating the English sentence the tourism initiative addresses
this for the first time, the hard words are at the beginning, and the easy
words towards the end. A hypothesis that skips ahead and translates only a
the easy part first has a better probability score than one that takes on ‘ , Fi
the hard part directly, even taking reordering costs into account. In the by the
example, translating first the first time yields a better score (—4.11) than '
translating first the tourism initiative (—5.88). Pruning based on these
scores puts the latter hypothesis at an unfair disadvantage. After all, the

first hypothesis still has to tackle the hard part of the sentence.
We would like to base pruning decisions not only on the probability
future cost score of the hypothesis, but also on some measure of future cost, i.c.,
the expected cost of translating the rest of the sentence. Keep in mind
that it is computationally too expensive to compute the expected cost
exactly, because this would involve finding the best completion of the
hypothesis, which is precisely the search problem we are trying to solve.
Hence, we need to estimate the future cost. This is also called
outside cost outside cost or rest cost estimation. Adding a future cost estimate to
restcost the partial probability score leads to a much better basis for pruning

want 1
use thy
lation
compl
(of co

senter
For in

decisions.

it of
hat
once.

hthe-
 that

ually
Vhile
1mon
lem.
esses
easy
ilates
2s on
n the
(than
these
I, the
|
rility
) i.e.,
mind
tcost
f the

‘Ellfe.
ed
te to
ning

6.3 Future Cost Estimation

6.3.2 Estimating Future Cost for Translation Options

Computing a future cost estimate means estimating how hard it is to
translate the untranslated part of the input sentence. How can we effi-
ciently estimate the expected translation cost for part of a sentence?
Let us start simply and consider the estimation of the cost of applying
a specific translation option. Recall that there are three major model
components, and each affects the model score:

o Translation model: For a given translation option, we can quickly look up
its translation cost from the phrase translation table.
Language model: We cannot compute the actual language model cost of
applying a translation option when we do not know the preceding words. A
good estimate in most cases, however, is the language model cost without
context: the unigram probability of the first word of the output phrase, the
bigram probability of the second word, and so on.
Reordering model: We know very little about the reordering of the transla-
tion option, so we ignore this for the future cost estimation.

Once we have future cost estimates for all translation options, we
can estimate the cheapest cost for translating any span of input words
covered by the phrase translation table.

Why the cheapest? When translating the rest of the sentence, we
want to find the best path to completion. Of course, we would like to
use the cheapest translation option, unless a combination of other trans-
lation options gives an even better score. So, we do not expect to have a
completion more expensive than the one given by the cheapest options
(of course, there is no guarantee, because the language model cost is
only an estimate and the real cost may turn out differently).

Figure 6.8 illustrates the future costs computed for all spans covered
by the translation table in our example sentence. For some parts of the
sentence, we can find only one-word matches in the translation table.
For instance, the English rourism initiative does not occur in the training

lhe tourism |n|t|at|ve addresses thls for the first time
(40][25]f 22]
(—13) 24)

Figure 6.8 Future cost
estimates of input phrases
covered by the translation
table: For each covered span,
the cost of the cheapest
translation option is displayed.
Future cost estimates take
translation model and
language model probabilities
into account.

Decoding

data, so we do not have a phrase translation for it. Not surprisingly, we
have a translation for the English for the first time in the translation
table, since it is a commonly occurring phrase.

The values of the future cost estimates for the translation options
confirm our intuition that the translation of common function words
is cheaper than the translation of unusual nouns — translating tourism is
twice as expensive (—2.0) as translating either for or the (—1.0). Using a
phrase translation, e.g., for for the first time (—2.3), is generally cheaper
than using one-word phrases (—1.0, —1.0, —1.9, and —1.6 add up to
—35.5). The costs reported here are weighted log-probabilities from an
English-German translation model trained on the Europarl corpus.

6.3.3 Estimating Future Cost for Any Input Span

We need future cost estimates not only for spans of input words that
are covered by phrase translations in the translation table, but also for
longer spans. We will compute these using the future cost estimates for
the covered spans. There are complex interactions between translation
options in actual search (e.g., language model effects and reordering),
but we will ignore them for the purpose of future cost estimation.

We can very efficiently compute the future cost using a dynamic
programming algorithm that is sketched out in Figure 6.9. The cheap-
est cost estimate for a span is either the cheapest cost for a translation
option or the cheapest sum of costs for a pair of spans that cover it
completely.

Figure 6.10 gives cost estimates for all spans in our example sen-
tence. The first four words in the sentence are much harder to translate
(the tourism initiative addresses, estimate: —6.9) than the last four
words (for the first time, estimate: —2.3).

l: for length =1 .. n do
2 for start = 1...n+l-length do
3 end = start+length
4:) cost (start,end) = infinity
5% 7 cost (start,end) = translation option cost estimate if exists
6 for i=start..end-1 do
7 if cost(start, i} + cost(i+l,end) < cost(start,end) then
8: update cost(start,end)
9:. end if
103 end for
11: end for
12: end for

Figure 6.9 Pseudo-code to estimate future costs for spans of any length.

Figur«
score ¢
gives &
that ta
score (
estima
two ca
againsi

6.3.4

‘We nc
- transl:

6.3 Future Cost Estimation

ingly, we first future cost estimate for n words (from first)
T . word 1238456 7] 8 9
ranslation : the |-1.0| 30| 45| 6.9]-7.7| 8.7] 9.0| -10.0] -10.0

] tourism |[-2.0|-35|-59|-6.7|-7.7| -8.0| -9.0| 9.0
n options] initiative | -1.5| 3.9| 4.7| 5.7| 60| 69| 7.0
1 addresses | 2.4 -3.1| -4.1| 45| -5.4| -5.5
; . this | -1.4]| 24| -2.7| —3.7] =37
tourism 18 : for -1.0] -1.3]-2.3] 2.3
|) Usinga the -1.0|-22(-23
ly cheaper first -19] 24

time -1.6
add up to i
s from an : Figure 6.10 Future cost estimates indicate the difficulty of translating parts of
the input sentence the tourism initiative addresses this for the first time. Numbers
are scaled log-scores from an English-German translation model trained on the
Europarl corpus. Some words are easier to translate than others, especially
common functions words such as for (—1.0) and the (—1.0), as opposed to
infrequent verbs or nouns such as addresses (—2.4) or tourism (—2.0). The
four-word phrase for the first time (—2.3) is much easier to translate than the
three-word phrase tourism initiative addresses (—5.9).

on words

Tpus.

words that
ut also for

timates for
translation
cordering), m‘ﬁ;ﬁg@:ﬁ: the first time for this ... time

5 e das erste mal far diese zeit
\t1on. paiatve tm:-0.56,Im:-2.81 tm:-0.82,Im:-2.98
tm:-1.21,Im:-4.67

a dynafnjc 40, all:-5.88 d:-0.74. all:-4.11 d:~1.06. all:—4.86
The cheap-
translation

Figure 6.11 Combining probability score and future cost: While the probability
: 1 score alone may be misleading, adding an estimate of the expected future cost
1at cover it : - gives a more realistic basis for pruning out bad hypotheses. Here, the hypothesis

3 that tackles the hard part of the sentence the tourism initiative has the worse
ample sen- 4 score (—5.88 against —4.11, —4.86), which is offset by a cheaper future cost
estimate (—5.5 against —8.7, —9.1), resulting in an overall better score than the
two competing hypotheses that cover simpler parts of the sentence (—10.38
against —12.81, —13.96).

to translate
e last four

6.3.4 Using Future Cost in the Search

We now have in our hands the tool we need to discount hypotheses that
translate the easy part of the sentence first. By adding up the partial
score and the future cost estimate, we have a much better measure of
the quality of a hypothesis. Basing pruning decisions on this measure
will lead to lower search error than using just the probability score.
Recall our example, shown again in Figure 6.11, where the hypoth-
esis that skipped the start of the sentence and translated the easy the first
time had a better score (—4.11) than the hypothesis that tackled head-on
the tourism initiative (—5.88). Adding in the future cost estimates lev-

els the playing field and puts the better hypothesis ahead (—10.38 vs.
—12.81).

Decoding

It may happen that skipping words leads to several contiguous spans ' 6.4..
in the input sentence that have not been covered yet. In this case, we The |
simply add up the cost estimates for each span. Since we are ignoring T
interaction between translation options in the future cost estimation, we ey
can also ignore interaction between uncovered spans that are separated —
by translated words. i

Note that we have ignored reordering costs in the future cost esti- Bt
mates so far. However, we may want to take these into account. If a e
hypothesis creates coverage gaps, this means that some reordering cost a—
will have to be added further down in the path. Computing the minimum et
distance of the required jumps gives a good measure of the cheapest i

. i . ; ypot
expected reordering cost. Adding this to the future cost estimate may
reduce search errors.

Admi
The fi
- : an adi
6.4 Other Decoding Algorithms e
We presented in detail a beam-search stack decoder for phrase-based use th
models, which is the most commonly used decoding algorithm. The - dono
same type of decoder may be used for word-based models. We now 4 s
review several other decoding algorithms that have been proposed in I picce
the literature, to conclude this chapter. ~ tionc
-consic

6.4.1 Beam Search Based on Coverage Stacks

Organizing hypotheses in stacks based on the number of translated for-
eign input words introduced the additional complexity of future cost
estimation. However, if we were to have a stack for each span of foreign
input words covered, we could do away with that.

If we only compare hypotheses that translate the same span of for-
eign words, their future cost estimates, as we defined them, are the same,
so we can ignore them. Note that it is still possible to make search errors:
while one hypothesis may look better than the alternatives at a given
point in the search, it may end with an English word that leads to worse
language model scores in the next step, and will not be part of the best
path.

coverage stacks The problem with such coverage stacks is that there is an expo-
nential number of them, which makes this approach computationally

infeasible. However, recall our argument in Section 6.2.7 for the use of
reordering limits. A reordering limit will reduce the number of possible
foreign word coverage vectors to a number that is linear with sentence
length (albeit still exponential with the reordering limit). So, coverage
stack decoding with reordering limits is practical.

ontiguous spans
[n this case, we
we are ignoring
t estimation, we
at are separated

future cost esti-
to account. If a
- reordering cost
ng the minimum
of the cheapest
st estimate may

or phrase-based
algorithm. The
10dels. We now
een proposed in

>

of translated for-
y of future cost
1 span of foreign

me span of for-
m, are the same,
e search errors:
fives at a given
i leads to worse
part of the best

e is an expo-
smputationally
7 for the use of
ber of possible

with sentence
. So, coverage

6.4.2 A* Search

The beam search we have presented here is very similar to A* search,
which is described in many artificial intelligence textbooks. A* search
allows pruning of the search space that is risk free, in other words,
prevents search error.

A* search puts constraints on the heuristic that is used to estimate
future cost. A* search uses an admissible heuristic, which requires that
the estimated cost is never an overestimate. Note how this can be used
to safely prune out hypotheses: if the partial score plus estimated future
cost for a hypothesis is worse than the score for the cheapest completed
hypothesis path, we can safely remove it from the search.

Admissible heuristic for machine translation decoding

- The future cost heuristic that we described in detail in Section 6.3 is not

an admissible heuristic: it may over- or underestimate actual translation
costs. How can we adapt this heuristic? We ignore reordering costs and
use the actual phrase translation cost from the translation table, so we
do not run the risk of overestimating these components of cost.
However, the language model cost is a rough estimate, ignoring the
preceding context, so it may over- or underestimate the actual transla-
tion cost. We can get optimistic language model estimates instead by
considering the most advantageous history. For instance, for the proba-
bility of the first word in a phrase, we need to find the highest probability
given any history.

Search algorithm
For A* search to be efficient, we need to quickly establish an early
candidate for the cheapest actual completed cost. Hence, we follow a
depth-first approach, illustrated in Figure 6.12.

We first expand a hypothesis path all the way to completion. To
accomplish this, we perform all possible hypothesis expansions of a
hypothesis and then proceed with the one that has the cheapest cost esti-
mate, e.g., partial score and the heuristic future cost estimate. Then, we
can explore alternative hypothesis expansions and discard hypotheses
whose cost estimate is worse than the score for the cheapest completed
hypothesis.

Depth-first search implies that we prefer the expansion of hypothe-
ses that are closest to completion. Only when we have expanded all
hypotheses that can be completed in one step, do we back off to
hypotheses that can be completed in two steps, and so on. Contrast
this with the breadth-first search in the stack decoding algorithm that
we described earlier: here, we reach completed hypotheses only after

6.4 Other Decoding Algorithms

A* search

admissible heuristic

Depth-first search

breadth-first search

agenda-driven search

greedy hill climbing

Decoding

(3) alternative path leading to
hypothesis beyond threshold

cheapest score

@ depth-first
expansion to completed path

(@) recombination

probability + heuristic estimate

number of words covered

Figure 6.12 A* search: (1) First, one hypothesis path is expanded to
completion, establishing the cheapest actual score. (2) Hypotheses may also be
recombined as in stack decoding. (3) If an alternative expansion leads to a cost
estimate better than the cheapest score threshold, it is pruned. Not pictured:
New cheaper hypothesis tightens the cheapest score threshold. Note that
hypothesis expansion never worsens the overall cost estimate, since actual costs
are never better than estimated costs.

covering the whole breadth of the extensions that cover one foreign
word, then two foreign words, and so on.

A third search strategy, called agenda-driven search, is to always
expand the cheapest hypothesis. We organize hypotheses that have
not been expanded yet on a prioritized list, i.e., the agenda. By fol-
lowing this agenda, we expect to find more quickly better completed
hypotheses that can improve the cheapest actual cost. Once no hypoth-
esis with a better cost estimate than the cheapest score exists, we are
done.

While A* search is very efficient in cutting down the search space,
there is no guarantee that it finishes in polynomial time (recall that
machine translation decoding is NP-complete). Another problem with
A* search is that it requires an admissible heuristic, meaning a future
cost estimate that is never an underestimate. This may lead to less
realistic cost estimates.

6.4.3 Greedy Hill-Climbing Decoding

A completely different approach to decoding is greedy hill climbing.
First, we generate a rough initial translation, and then we apply a num-
ber of changes to improve it. We do this iteratively, until no improving
step can be found.

The initial translation may be as simple as the lexical translation of
every word, without reordering, with the best translation for each word.
‘We may consider language model probabilities when picking the word
translations, or perform monotone decoding using the full translation
table.

expansion.

The step

e change the
e combine the
e split up the
e move parts
® swap parts

the sentenc

All poss
improvemen
always apply
improvemen
be able to ap
then more th

The adv:
full translatis
of model co
the English
any time, we
output or are
of decoding

The mati
much smalle
stuck in loc:
to reach a |
element of
ciently cons
search.

6.4.4 Fini

Finally, a ¢
the use of fi
translation

: state trans

sions. Tran

apest score

.........

-first
mpleted path

i
is covered

to

may also be

ds to a cost

t pictured:

te that

> actual costs

one foreign

is to always
s that have
ida. By fol-
r completed
> no hypoth-
ists, we are

earch space,
(recall that
coblem with
ing a future
lead to less

il climbing.
pply a num-
b improving

anslation of
reach word.
ng the word
| translation

6.4 Other Decoding Algorithms 175

The steps to improve a translation may include the following:

e change the translation of a word or phrase;

e combine the translation of two words into a phrase;

e split up the translation of a phrase into two smaller phrase translations;
o move parts of the English output into a different position;
e swap parts of the English output with the English output at a different part of

the sentence.

All possible steps are considered, and only those that lead to an
improvement are applied. There are a number of variants. We may
always apply a step, if it leads to an improvement, or search for the best
improvement at any point. We may also want to look two steps ahead to
be able to apply two steps that first decrease translation probability, but
then more than make up for it.

The advantage of this decoding approach is that we always have a
full translation of the sentence in front of us. This enables the addition
of model components that score global properties. For instance, does
the English output contain a verb? Also, it is an anytime method: at
any time, we can stop the translation process if we are satisfied with the
output or are bound by time constraints (e.g., a maximum of 5 seconds
of decoding time per sentence).

The main disadvantage of this decoding method is its limitation to a
much smaller search space than the beam-search approach. We may get
stuck in local optima, where a sequence of two or more steps is needed
to reach a better translation. In contrast, the dynamic programming
element of recombining hypotheses allows the beam search to effi-
ciently consider many more possible translations than the hill-climbing
search.

global properties

anytime method

6.4.4 Finite State Transducer Decoding

Finally, a popular choice in building machine translation decoders is
the use of finite state machine toolkits. The search graph of the machine
translation decoding process is in essence a huge probabilistic finite
state transducer. Transitions between states are hypothesis expan-
sions. Transition probability is the added model costs incurred by that
expansion.

Using finite state machine toolkits has great appeal. We do not need
to implement a decoding algorithm. We only need to construct the finite
state transducer for the translation of one sentence. This implies defin-
ing the state space and the transitions between states using the phrase
translation table.

On the other hand, we are not able to integrate heuristics for future
cost estimation, but have to rely on the general-purpose search of

finite state transducer

176 Decoding

the finite state toolkit. As a consequence, researchers typically restrict ‘ We re
reordering fairly severely, because otherwise the number of states in the : based on «
search graphs becomes unmanageably big. ; I limits are
A purpose-built decoder for machine translation is usually more search is
efficient. However, if the goal is to quickly try many different models, estimate i
finite state transducers provide faster turnaround. : A* se
] translatiol
ple of bre
Another s
6.5 Summary , are most |
Greel
sively imj
This chapter described decoding algorithms that use statistical machine - anytime |
translation models and find the best possible translation for a given input g time cons
sentence. Due to the exponential complexity of the search space, we best possi
employ heuristic search methods.) Finall
Heuristic search is not guaranteed to find the best translation 3 translation
and hence may lead to search errors. Contrast this type of error to | toolkits.
model errors which are the result of the model giving a bad trans-
lation the highest probability. While it is possible to have fortuitous
search errors, which occur when the search finds a translation that is 6.5.2 Fu
lower scoring (according to the model) but better (according to human . Stack de«
assessment), we cannot rely on these. ~ roots in w
We described the translation process of building a translation from gramming
an input and used it as motivation for the search algorithm. Of course, for monot
in statistical machine translation we have to deal with many translation ~ makes de
options given an input sentence. Search is formulated as a succession ~ lation of :
of hypotheses (in essence partial translations), starting with an empty ~ sentences
hypothesis (nothing is translated), and using hypothesis expansion to ‘ or restrict
build new ones. - mann and
The search space can be reduced by hypothesis recombination, 1 types of s
but this is not sufficient. We hence proposed a stack decoding heuris- A [2006] sp
tic, in which hypotheses are organized in hypothesis stacks, based on - [2007a] s
the number of foreign words translated. The size of the stacks is reduced '1, of expanc
by pruning. We distinguished between histogram pruning, which lim- - collapsing
its the number of hypotheses per stack, and threshold pruning, which - Khudanpt
discards hypotheses that are worse than the best hypothesis in a stack - Reor
by at least a certain factor. The search space is typically also reduced by 3
imposing reordering limits.
For a fair comparison of hypotheses that have covered different
parts of the input sentence, we have to take into account an estimate
of the future cost of translating the rest of the input sentence. This
estimate is also called rest cost or outside cost.

6.5.1 Core Concepts

6.5 Summary

ypically restrict ' We reviewed a number of alternative search heuristics. Beam search
r of states in the based on coverage stacks is a viable alternative when strict reordering

limits are employed, and it does away with future cost estimation. A*
s usually more search is guaranteed to find the best translation when the future cost
ifferent models, ; estimate is an admissible heuristic.

A* search is usually performed as depth-first search (complete a
translation as soon as possible), while the stack decoding is an exam-
ple of breadth-first search (expand all hypotheses at the same pace).
Another search strategy uses an agenda to expand the hypotheses that
are most promising at any given time.

Greedy hill climbing starts with an initial translation, and recur-

i sively improves it by changing it in steps. This search method exhibits
wistical machine | anytime behavior, meaning it can be interrupted at any time (e.g., by a
for a given input _' time constraint) and have ready a complete translation (maybe not the
earch space, we _ best possible).

' i Finally, finite state transducers have been used for machine
best translation translation decoding, which takes advantage of existing finite state
type of error to toolkits.
ing a bad trans- !
have fortuitous .
s o thaths 6.5.2 Further Readmg
ording to human l Stack decoding — The stack decoding algorithm presented here has its

roots in work by Tillmann et al. [1997]. who describe a dynamic pro-

| translation from j gramming algorithm, similar to techniques for hidden Markov models,
ithm. Of course, ~ for monotone decoding of word-based models. Allowing for reordering
nany translation ‘ makes decoding more complex. Efficient A* search makes the trans-
| as a succession ‘ lation of short sentences possible [Och et al., 2001]. However, longer

g with an empty sentences require pruning [Wang and Waibel, 1997; Niefien ez al., 1998
sis expansion to or restrictions on reordering [Tillmann and Ney, 2000] or both [Till-

: mann and Ney, 2003]. Ortiz-Martinez et al. [2006] compare different
recombination, : types of stack decoding with varying numbers of stacks. Delaney et al.
lecoding heuris- [2006] speed up stack decoding with A* pruning. Moore and Quirk
tacks, based on [2007a] stress the importance of threshold pruning and the avoidance

ttacks is reduced 1 of expanding doomed hypotheses. Some efficiency may be gained by
iing, which lim- collapsing contexts that are invariant to the language model [Li and
pruning, which] Khudanpur, 2008].

hesis in a stack 1 Reordering constraints — Matusov ef al. [2005] constrain reorder-
alsoreduced by ing when the input word sequence was consistently translated mono-
tonically in the training data. Zens and Ney [2003], Zens et al. [2004]

wered different , and Kanthak er al. [2005] compare different reordering constraints and
ant an estimate ~ their effect on translation performance, including the formal grammar
sentence. This ITG constraint, which may be further restricted by insisting on a match
to source-side syntax [Yamamoto ef al., 2008]. Similarly, reordering

Decoding

may be restricted to maintain syntactic cohesion [Cherry, 2008]. Ge
et al. [2008] integrate other linguistically inspired reordering models
into a phrase-based decoder. Dreyer et al. [2007] compare reordering
constraints in terms of oracle BLEU, i.e., the maximum possible BLEU

score.
Decoding for word-based models — Several decoding methods for
word-based models are compared by Germann et al. [2001], who intro-

duce a greedy search [Germann, 2003] and integer programming search
method. Search errors of the greedy decoder may be reduced by a better
initialization, for instance using an example-based machine translation
system for seeding the search [Paul et al., 2004]. A decoding algo-
rithm based on alternately optimizing alignment (given translation) and
translation (given alignment) is proposed by Udupa et al. [2004].

Decoding with finite state toolkits — Instead of devising a dedi-
cated decoding algorithm for statistical machine translation, finite state
tools may be used, both for word-based [Bangalore and Riccardi, 2000,
2001; Tsukada and Nagata, 2004; Casacuberta and Vidal, 2004], align-
ment template [Kumar and Byrne, 2003], and phrase-based models. The
use of finite state toolkits also allows for the training of word-based and
phrase-based models. The implementation by Deng and Byrne [2005]
is available as the MTTK toolkit [Deng and Byrne, 2006]. Similarly,
the IBM models may be implemented using graphical model tool-
kits [Filali and Bilmes, 2007]. Pérez et al. [2007] compare finite state
implementations of word-based and phrase-based models.

Decoding complexity — Knight [1999a] showed that the decod-
ing problem is NP-complete. Udupa and Maji [2006] provide further
complexity analysis for training and decoding with IBM models.

6.5.3 Exercises

1. (%) Given the following input and phrase translation options:

das | ist | das | Haus | von | Nikolaus

the | is | the | house | of Nicholas
that that from
that’s house Nicholas’

decode the input by hand with the stack decoding that we described
in Figure 6.6 on page 165. For simplification, assume no reorder-
ing. Draw the search graph constructed during decoding assuming
recombination when using

(a) atrigram language model;
(b) a bigram language model;
(c) aunigram language model.

2. (0 G
das

the
that
this

how 1
(@) w
(b) w

. () 1
Figur
mode
Quest
(a) wi
(b) w
. (X)) |
mode!

. (xkk)
sifiers
open-|
entroy
(a) an
se

(b) re
pr

tre

6. (Goaxk) |

L' Available
2 Available

6.5 Summary

'y, 2008]. Ge 2. (%) Given the input and phrase translation options:

lering models | das | ist | das | Haus
wre reordering

ossible BLEU

the | is the | house
that | s that | home

this | are | this | building

g methods for
)1], who intro- how many possible translations for the input sentence exist

mming search (a) without reordering;

' (b) with reordering?

. (»x) Implement a stack decoder, as sketched out in pseudo-code in
ecoding algo- Figure 6.6 on page 165. For simplification, you may ignore language
anslation) and _ model scoring. Test the decoder on the example phrase tables from
[2004]. - . Questions 1 and 2, after adding arbitrary translation probabilities,
wvising a dedi- 1 (a) without recombination;

foh! finite; state : ‘ (b) with recombination under a trigram language model.

Riccardi, 2000, ' . (#%) Install Moses' and follow the step-by-step guide to train a
1. 2004], align- model using the Europarl corpus.?

b riodels VThe . (%) Recent research supports the use of maximum entropy clas-
b basedrand 7 sifiers to include more context in translation decisions. Using the
I Byrne [2005] ’ open-source Moses system as a starting point, implement maximum
06]. Similarly,] ‘ entropy classifiers that predict

(a) an output phrase given an input phrase and other words in the
sentence as features;

(b) reordering distance based on word movement, and syntactic
properties over the input part-of-speech tags and input syntactic
tree.

6. (#%+) Implement A* search in Moses.

ced by a better
ine translation

al model tool-
pare finite state
ls.
‘hat the decod-
provide further
"models.

I Available at http://www.statmt.org/moses/
2 Available at ht tp://www.statmt.org/eurcoparl/

ptions:

we described
e no reorder-
ling assuming

