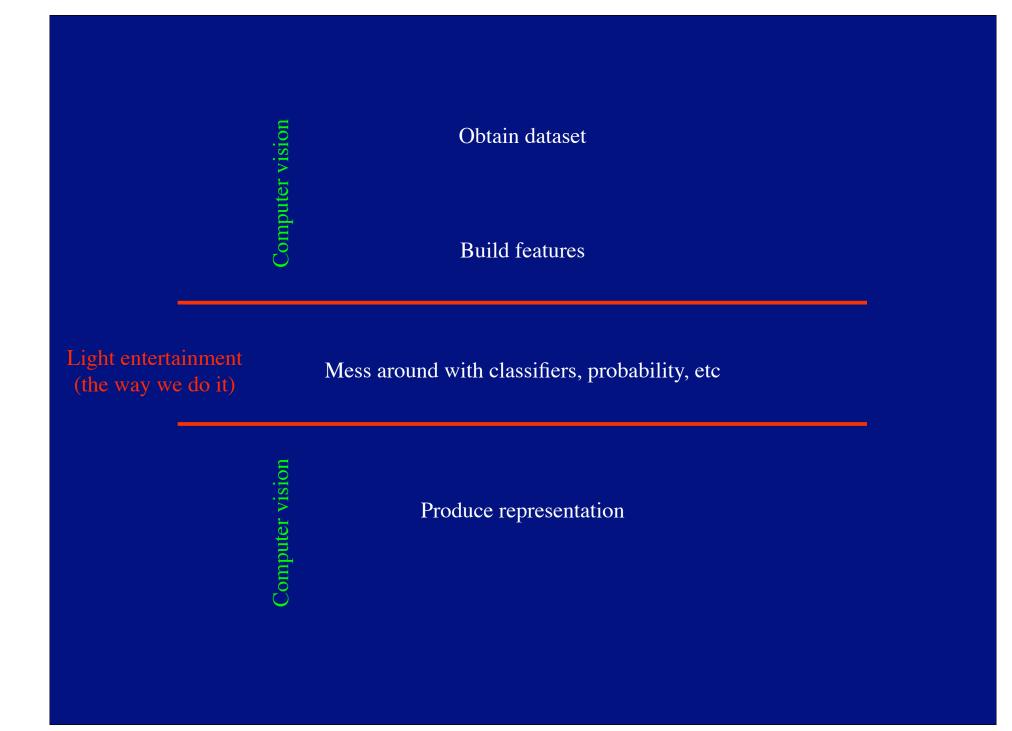
Activity, Appearance, Aspect and Attributes


D.A. Forsyth, UIUC with

Okan Arikan (UT Austin), Nazli Ikizler (Boston U), Leslie Ikemoto (animate-me), Derek Hoiem (UIUC), Ali Farhadi (UIUC), Ian Endres (UIUC), Ryan White (Euclid media) Obtain dataset

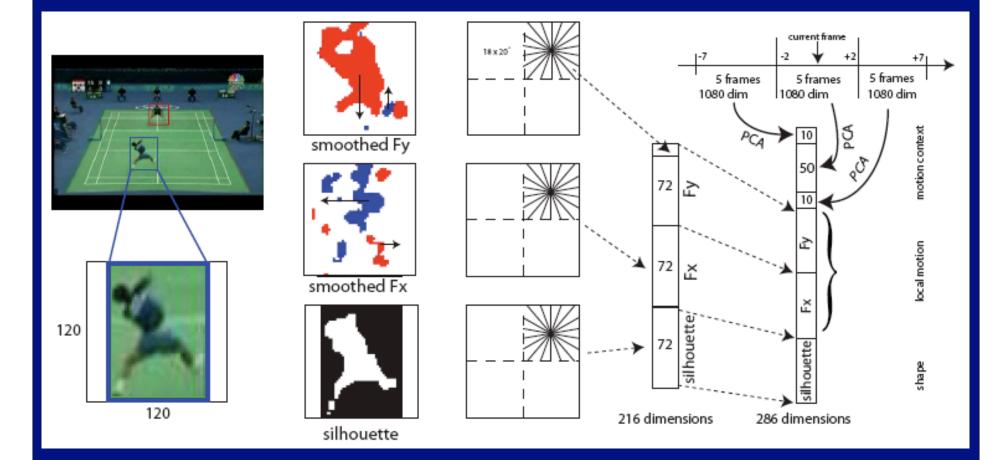
Build features

Mess around with classifiers, probability, etc

Produce representation

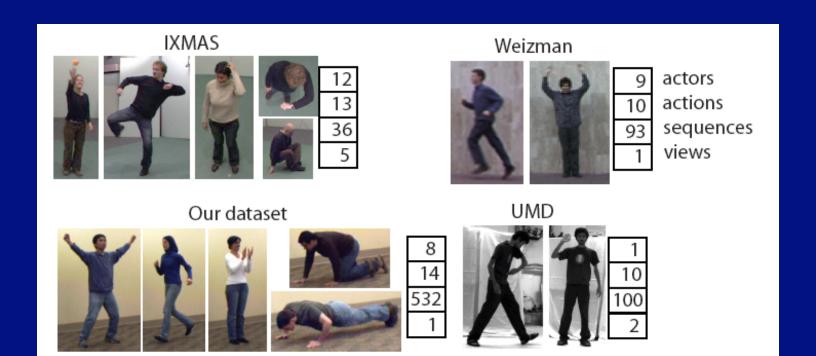
Big questions

- What signal representation should we use for activity recognition?
 - Compare
 - Appearance (do not segment bits and pieces explicitly)
 - Kinematic (segment bits and pieces explicitly)


- Does a discriminative framework make any sense? For activity
 - Compare
 - Walk; run; etc
 - (rather vague)

Appearance features

• Less nasty segmentation

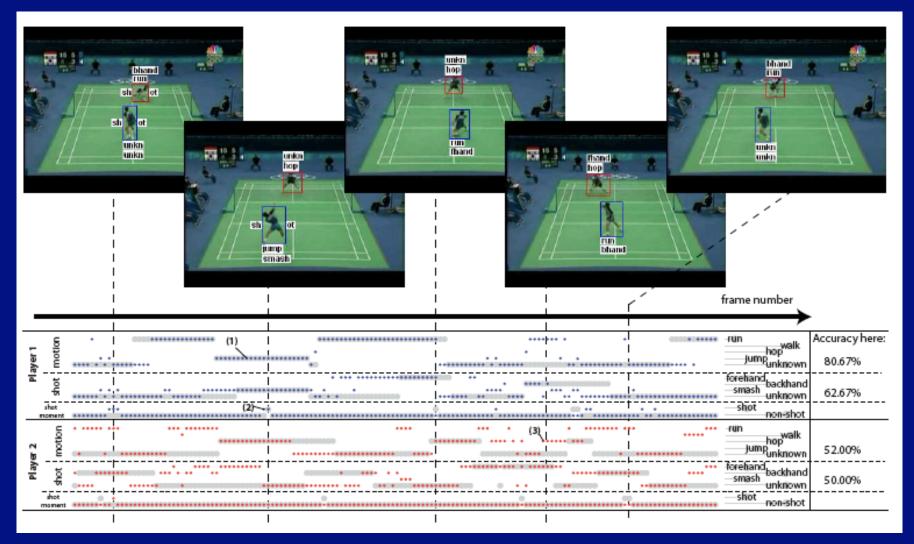

- (body from background, perhaps not even that)
 - Spatio-temporal volumes
 - (e.g. Davis+Bobick 97; Blank et al 05)
 - Motion trends/flow fields
 - (e.g. BobickDavis 96; Davis 01; Efros et al 03; Laptev+Perez 07; Laptev et al 08)
 - Spatio-temporal interest points
 - (e.g.Niebles et al 06; 08; Scovanner et al 07)
 - Various mixtures of these

An Appearance feature

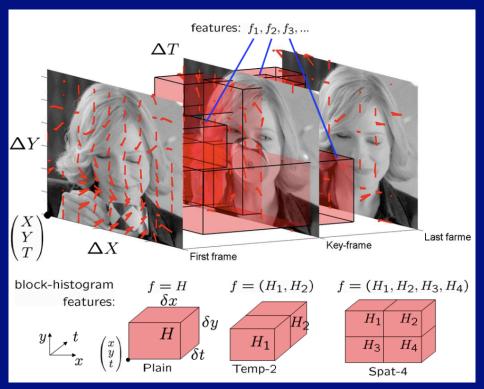
Tran and Sorokin 08, after Duygulu and Ikizler 07

Datasets

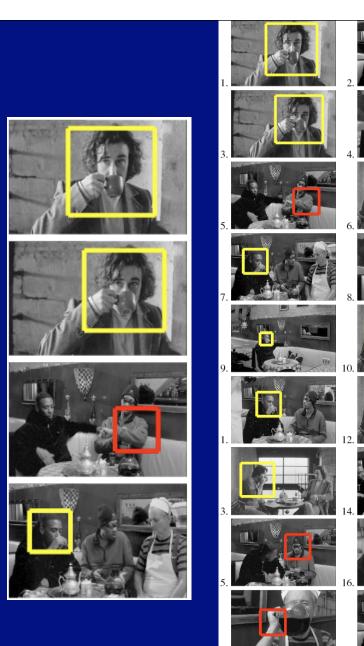
Tran + Sorokin 08


Discriminative results

	Algorithm	Chance	Protocols									
Dataset			D)iscrimina	Reject	ct Few examples			s			
			L1SO	L1AAO	L1AO	L1VO	UNa	FE-1	FE-2	FE-4	FE-8	
	NB(k=300)	10.00	91.40	93.50	95.70	N/A	0.00	N/A	N/A	N/A	N/A	
	1NN	10.00	95.70	95.70	96.77	N/A	0.00	53.00	73.00	89.00	96.00	
Weizman	1NN-M	10.00	100.00	100.00	100.00	N/A	0.00	72.31	81.77	92.97	100.00	
	1NN-R	9.09	83.87	84.95	84.95	N/A	84.95	17.96	42.04	68.92	84.95	
	1NN-MR	9.09	89.66	89.66	89.66	N/A	90.78	N/A	N/A	N/A	N/A	
	NB(k=600)	7.14	98.70	98.70	98.70	N/A	0.00	N/A	N/A	N/A	N/A	
	1NN	7.14	98.87	97.74	98.12	N/A	0.00	58.70	76.20	90.10	95.00	
Our	1NN-M	7.14	99.06	97.74	98.31	N/A	0.00	88.80	94.84	95.63	98.86	
	1NN-R	6.67	95.86	81.40	82.10	N/A	81.20	27.40	37.90	51.00	65.00	
	1NN-MR	6.67	98.68	91.73	91.92	N/A	91.11	N/A	N/A	N/A	N/A	
	NB(k=600)	7.69	80.00	78.00	79.90	N/A	0.00		N 1	/ ^		
IXMAS	1NN	7.69	81.00	75.80	80.22	N/A	0.00		N	/A		
	1NN-R	7.14	65.41	57.44	57.82	N/A	57.48					
	NB(k=300)	10.00	100.00	N/A	N/A	97.50	0.00		N I	/ ^		
UMD	1NN	10.00	100.00	N/A	N/A	97.00	0.00		N	/A		
	1NN-R	9.09	100.00	N/A	N/A	88.00	88.00					

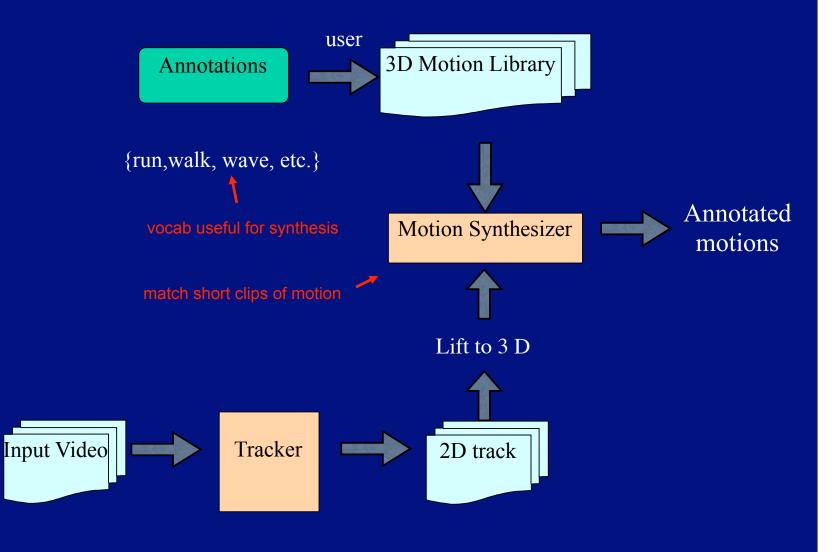

Works well, depending on task; not rejecting improves things metric learning improves things

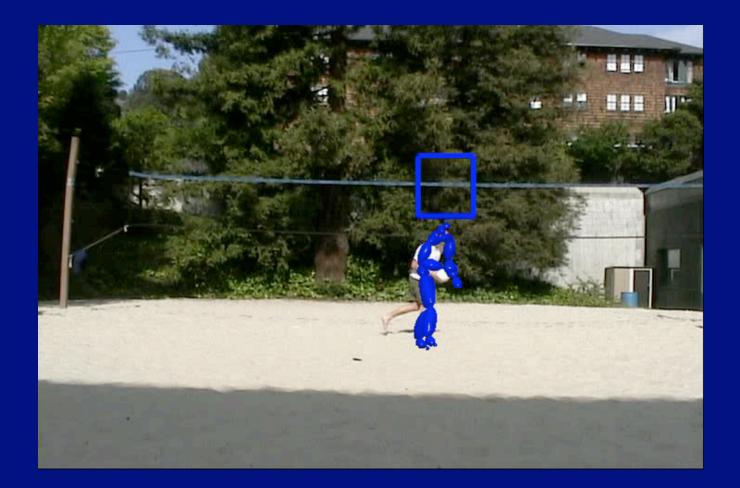
Tran + Sorokin 08


Youtube video



Tran + Sorokin 08





Kinematic features

- Find body parts
 - with geometric/appearance model (deformable template)
 - cardboard people
 - (eg Ju et al 96; Sidenbladh et al 2000)
 - pictorial structures
 - (eg Felzenszwalb Huttenlocher 05)
 - kinematic tracks
 - (eg Ramanan et al 05)
 - repeated model-based segmentation
 - (eg Ferrari et al 08)

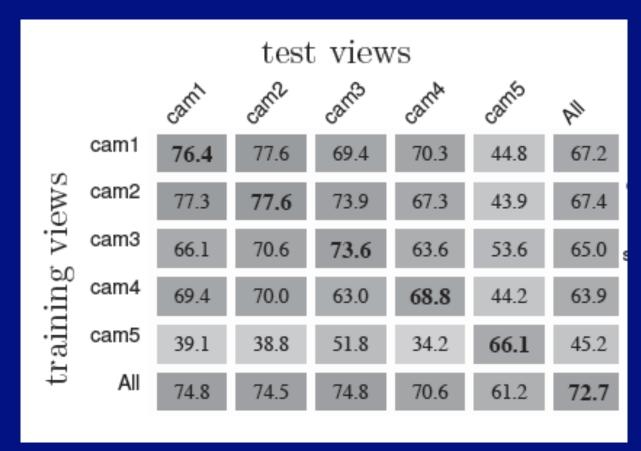
Annotating observations by synthesis

Ramanan+Forsyth 03

Criteria

- Base accuracy?
 - appearance wins hands down on current datasets
- Aspect
 - appearance can be fixed
- Do they solve the right problem?
 - advantage: kinematic

IXMAS and Aspect


The Effects of Aspect

	Camera 0		Camera 1		Camera 2		Camera 3		Camera 4	
FO	76		76		68		73		51	
	WT		WT		WT		WT		WT	
Camera 0	NA		35		16		8		10	
Camera 1	38		NA		15		8		11	
Camera 2	16		16		NA		6		11	
Camera 3	8		8		8		NA		8	
Camera 4	12		11		15		9		NA	

Farhadi Kamali 08

Results

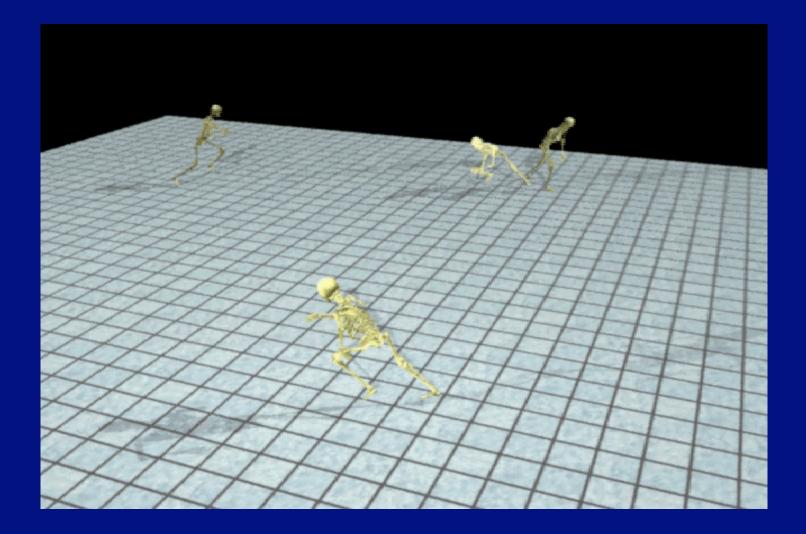
	Camera 0		Camera 1		Camera 2			Camera 3			Camera 4				
	QV	SS	CV	QV	SS	CV	QV	SS	CV	QV	SS	CV	QV	SS	CV
Camera 0	76	76	84	72	78	79	61	69	79	62	70	68	30	45	76
Camera 1	69	77	72	76	78	85	64	74	74	68	67	70	41	44	66
Camera 2	62	66	71	67	71	82	68	74	87	67	64	76	43	54	72
Camera 3	63	69	75	72	70	75	68	63	79	73	68	87	44	44	76
Camera 4	51	39	80	55	39	73	51	52	73	53	34	79	51	66	80
Farhadi Kamali 08															

Junejo et al 08, different feature construction, same dataset

The problem we have been solving

• Rack up a bunch of activity categories, and discriminate

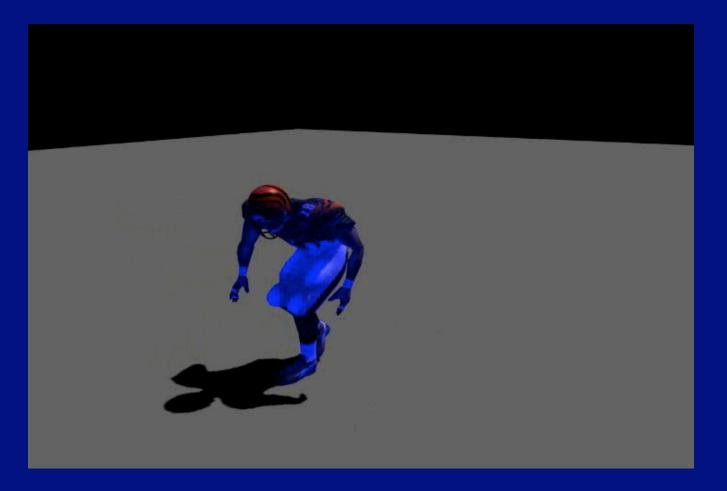
- how many categories are enough?
- can one movement have two categories?
- what are the categories?
 - the verb argument (probably) fails
 - if there are few movement, many goal verbs
 - introspection suggests too few words


AnswerPhone, GetOutCar, Handshake, Kiss, Hugperson, SitDown, SitUp, StandUpGoal achieved by body movementBody movement

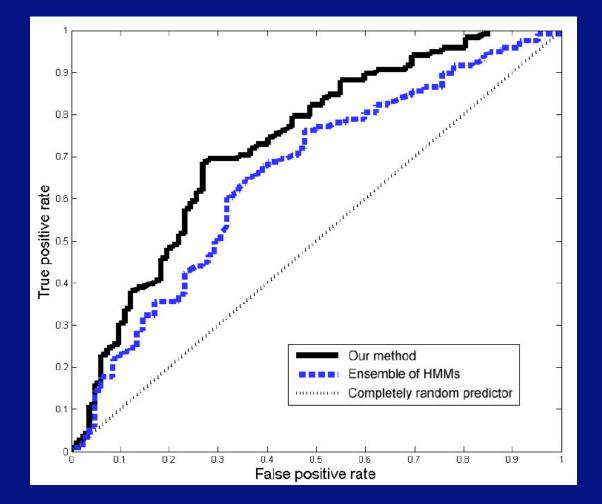
Components of the problem we should be trying to map

- Activity composes freely into complex structures
- Most human activities cause changes of state, meet goals
 - similar movements will meet different goals
 - different movements can meet the same goal
- We should probably be trying to "recognize" things
 - whose names we do not know
 - fluid, changing categories, affected by
 - nearby objects
 - observer, observation context
 - for which we have seen no examples

Composition and Activity


- Composition is an important source of complexity
 - (flexibility for planning, control)
- We can join motions up in time to make new motions
 - The process is now quite well understood
 - Good quality can be obtained
 - Useful in animation
- We can join up parts of motion across the body
 - But it doesn't always work (and we don't know why, really)

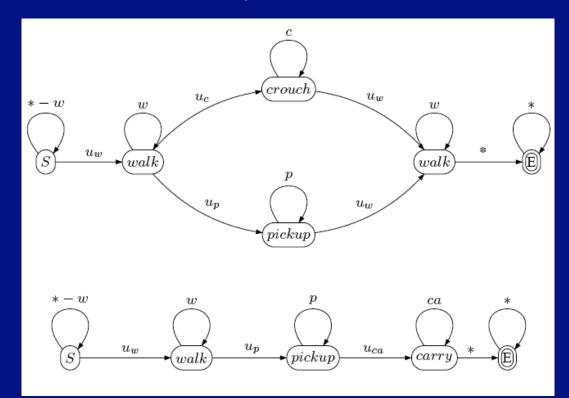
Arikan+Forsyth 02



Ikemoto+Forsyth 04

Ikemoto+Forsyth 04

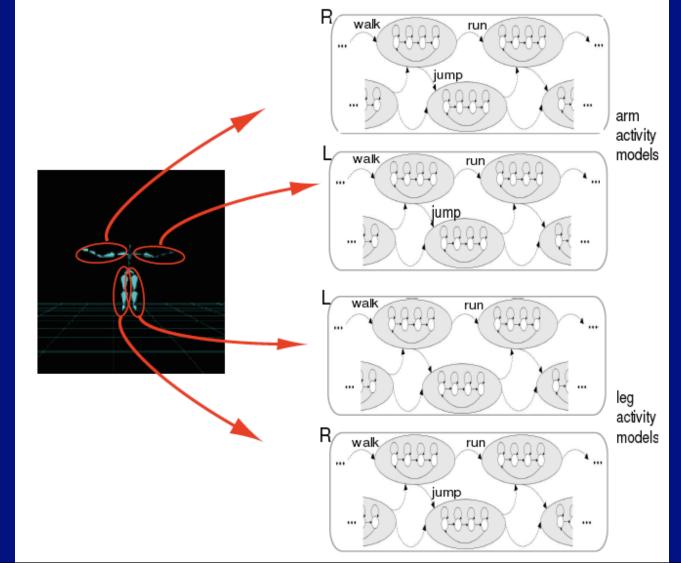
Hard to tell good from bad



Ikemoto Arikan Forsyth 07

cf Ren et al 05 for HMM's

"Recognizing" composites


- Rank sequences by P(FSAldata, model)
 - e.g. P(leg-walk-arm-walk-then-leg-walk-arm-reachl data, model)
 - DP variant will do this easily

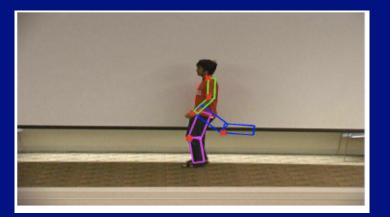
Building a composite model

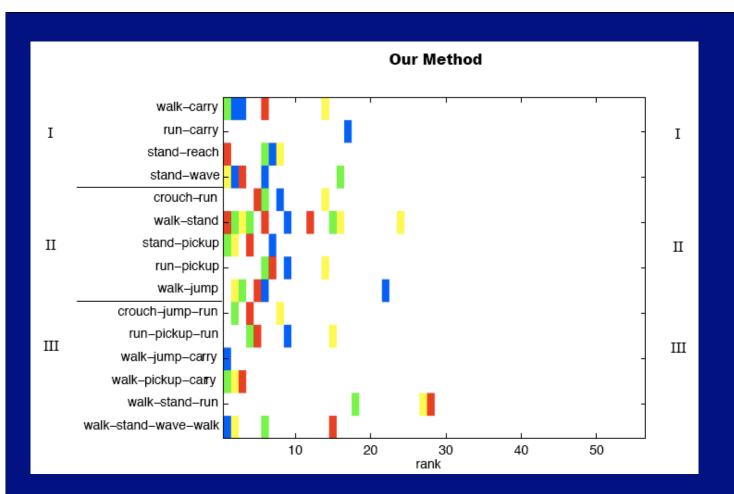
- Build a set of basic labels
 - guess them: walk, run, stand, reach, crouch, etc.
- Activity model:
 - Product of finite state automata for arms, legs built from MoCap
 - Arms, legs each have local short timescale activity models for labels
 - Link these models into a large model, using animation-legal transitions

Composition

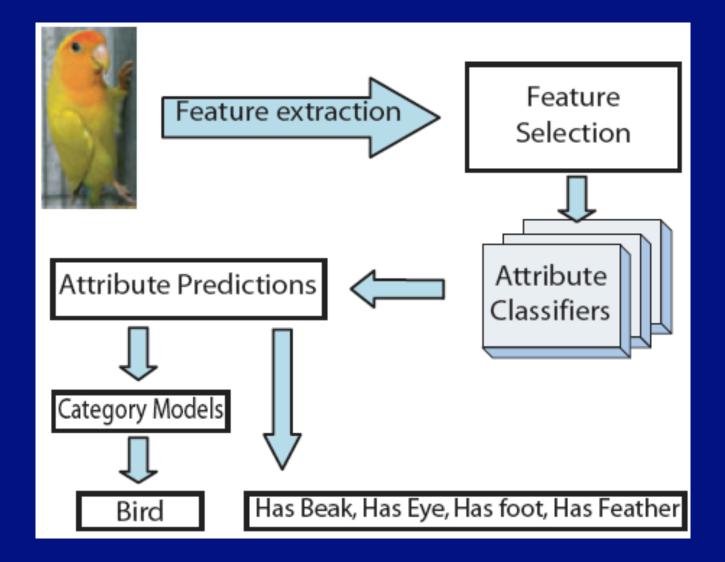
Emission

• Transduction


- Track the body, as above
- Lift "snippets" of each quarter
 - vector quantized
- impose root consistency
- Emission
 - emit cluster center from state according to table
 - table learned by EM, known dynamical model



Context	# videos	Context	# videos
crouch-run	2	run-backwards-wave	2
jump-jack	2	run-jump-reach	5
run-carry	2	run-pickup-run	5
run-jump	2	walk-jump-carry	2
run-wave	2	walk-jump-walk	2
stand-pickup	5	walk-pickup-walk	2
stand-reach	5	walk-stand-wave-walk	5
stand-wave	2	crouch-jump-run	3
walk-carry	2	walk-crouch-walk	3
walk-run	3	walk-pickup-carry	3
run-stand-run	3	walk-jump-reach-walk	3
run-backwards	2	walk-stand-run	3
walk-stand-walk	3		


How do you describe something whose name is unknown?

• Attributes

- Properties shared by many object categories
- Material (like)
 - glass, wood, furry, red, etc.
- Part (like)
 - has wheel, has head, has tail, etc.
- Shape (like)
 - is 2D Boxy, is cylindrical, etc
- What do we need to say about activity?
 - should we name activity, or reason about goals, intentions?
 - what about the objects nearby?

Farhadi et al 09; cf Blaschke ?09; Ferrari Zisserman 07;

General architecture

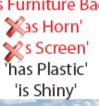
'is 3D Boxy' 'is Vert Cylinder' 'has Window' 🎇 'has Screen' 'has Row Wind' has Headlight'

'has Plastic' **XhasSaddle**' 'is Shiny'

'has Head 'has Head 'has Hair' 'has Torso' 'has Face' 'has Arm' 'has Leg' 'has Skin' 🎇 'has Wood'

'has Head' 'has Ear' 'has Snout' 'has Nose' 'has Mouth'

'has Ear'


'has Snout'

'has Mouth'

'has Leg'

'has Head' ї has Furniture Back' 🞇 as Horn' 'is Shiny'

' is 3D Boxy' 'has Wheel' 'has Window 'is Round' ' 'has Torso'

'has Tail' 'has Snout' 'has Leg' X 'has Text' X 'has Plastic'

'has Head' 'has Ear' 'has Snout' 'has Leg' 'has Cloth'

'is Horizontal Cylinder' X 'has Beak' 🔇 'has Wing' X 'has Side mirror' 'has Metal'

'has Head' 'has Snout' 'has Horn' 'has Torso' X 'has Arm'

How is an object different from typical?

• Pragmatics suggests this is how adjectives are chosen

- If we are sure it's a cat, and we know that
 - an attribute is different from normal
 - the detector is usually reliable
- we should report the missing/extra attribute

Missing attributes

Extra attributes

Conclusions

- Absent taxonomy/composition is a major nuisance
 - if it were not for this question, appearance methods would win hands down
- What do we need to say about activity?
 - should we name activity, or reason about goals, intentions?
 - what about the objects nearby?
- Object recognition is inva fool/sparadise has to deal with similar issues
 - unknown names, etc.