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Obtain dataset

Build features

Mess around with classifiers, probability, etc

Produce representation
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Build features

Mess around with classifiers, probability, etc

Produce representation

Computer vision




Big questions

What signal representation should we use for activity
recognition?
e Compare

e Appearance (do not segment bits and pieces explicitly)
¢ Kinematic (segment bits and pieces explicitly)

Computer vision

Does a discriminative framework make any sense?  For activity
e Compare

e Walk; run; etc

® (rather vague)
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Appearance features

e [ .ess nasty segmentation
® (body from background, perhaps not even that)

® Spatio-temporal volumes
e (e.g. Davis+Bobick 97; Blank et al 05)

e Motion trends/flow fields
e (e.g. BobickDavis 96; Davis 01; Efros et al 03; Laptev+Perez 07;

Laptev et al 08)

® Spatio-temporal interest points
e (e.g.Niebles et al 06; 08; Scovanner et al 07)

e Various mixtures of these




An Appearance feature

cument frame

|-7 -2 +2 +7)

»
»~
5 frames 5 frames 5 frames I

; 1080 dim 1080 dim 1080 dim

- ‘.\‘ W 6
smoothed Fy . — | &

¥
Y O : .. so| & O
| - :
.. §
(S8

motion context

Fy

L%

smoothed Fx

local motion

Fx

‘silhouette;

[silhouette]

216 dimensions 286 dimensions

silhouette

Tran and Sorokin 08, after Duygulu and Ikizler 07




Datasets
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Discriminative results

Protocols
Dataset |Algorithm |Chance Discriminative task
L1SO L1AAO L1AO L1VO| UNa | FE-1 FE-2 FE-4 FE-8

NB(k=300) | 10.00 § 9140 9350 9570 : N/A N/A NA NA
1NN 10.00 § 95.70 9570 96.77 ! 53.00 73.00 89.00 96.00
1NN-M 10. ’ 100.00 100.00 : 7231 81.77 92.97 100.00
1NN-R : 8495 8495 : 17.96 42.04 6892 8495
89.66 89.66 : N/A_ NA NA NA

' N/A N/A NA NA

58.70 76.20 90.10 95.00

88.80 94.84 9563 98.86

2740 37.90 51.00 65.00

N/A__ NA NA NA

NB(k=600) | 7.69
IXMAS |1NN 7.69
INN-R 7.14

NB(k=300) | 10.00 | 100.00 N/A N/A  97.50
1NN 10.00 §100.00 N/A N/A 97.00
1NN-R 9.09 1100.00 N/A N/A  88.00

Works well, depending on task; not rejecting improves things
metric learning improves things

Tran + Sorokin 08




Youtube video
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features: fy1. fo, f3. ...

— Last farme
Key-frame

block-histogram
features:

Laptev Perez 2007
see also Laptev et al 08




Kinematic features

Find body parts
¢ with geometric/appearance model (deformable template)
e cardboard people

® (egJu et al 96; Sidenbladh et al 2000)

pictorial structures

® (eg Felzenszwalb Huttenlocher 05)

kinematic tracks

® (eg Ramanan et al 05)

repeated model-based segmentation

® (eg Ferrari et al 08)



Annotating observations by synthesis
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Criteria

e Base accuracy?

e appearance wins hands down on current datasets
® Aspect

® appearance can be fixed

e Do they solve the right problem?

e advantage: kinematic




IXMAS and Aspect
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The Effects of Aspect
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Farhadi Kamali 08
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Farhadi Kamali 08




test views
c?é\ o’bé\q/ o’béb c?&b‘ &6\6
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Junejo et al 08, different feature construction, same dataset




The problem we have been solving

e Rack up a bunch of activity categories, and discriminate

¢ how many categories are enough?
® can one movement have two categories?
e what are the categories?
e the verb argument (probably) fails
e if there are few movement, many goal verbs
® introspection suggests too few words

, Kiss, Hugperson, SitDown, SitUp, StandUp

Goal achieved by body movement Body movement




Components of the problem we should be
trying to map

e Activity composes freely into complex structures

e Most human activities cause changes of state, meet goals
® similar movements will meet different goals
e different movements can meet the same goal

e We should probably be trying to “recognize” things
e whose names we do not know
¢ fluid, changing categories, affected by
® nearby objects
® observer, observation context
e for which we have seen no examples




Composition and Activity

e Composition is an important source of complexity
e (flexibility for planning, control)
* We can join motions up in time to make new motions
* The process is now quite well understood
* Good quality can be obtained
e Useful in animation
* We can join up parts of motion across the body
* Butit doesn’t always work (and we don’t know why, really)




Arikan+Forsyth 02




Ikemoto+Forsyth 04
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Hard to tell good from bad
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Ikemoto Arikan Forsyth 07 cf Ren et al 05 for HMM’’s




“Recognizing” composites

e Rank sequences by P(FSAldata, model)

* e.g. P(leg-walk-arm-walk-then-leg-walk-arm-reachl data, model)
* DP variant will do this easily
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Ikizler Forsyth 07,08




Building a composite model

e Build a set of basic labels
e guess them: walk, run, stand, reach, crouch, etc.

e Activity model:

* Product of finite state automata for arms, legs built from MoCap
* Arms, legs each have local short timescale activity models for labels

* Link these models into a large model, using animation-legal transitions

Ikizler Forsyth 07,08




Composition

jump
{

activity
models

Ikizler Forsyth 07,08




Emission

* Transduction
e Track the body, as above
* Lift “snippets” of each quarter
* vector quantized
* Impose root consistency

* Emission
* emit cluster center from state according to table
* table learned by EM, known dynamical model




Ikizler Forsyth 07,08

Context

Context
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Ikizler Forsyth 07,08




Our Method

walk-carry
run—carry
stand-reach I
stand-wave |- l I
crouch—run I I
walk-stand
stand—pickup I
run—pickup |- I I
1

walk—jump
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Ikizler Forsyth 07,08




How do you describe something whose
name 1S unknown?

o Attributes
* Properties shared by many object categories
e Material (like)
e glass, wood, furry, red, etc.
Part (like)
e has wheel, has head, has tail, etc.
Shape (like)
* is 2D Boxy, is cylindrical, etc

* What do we need to say about activity?
* should we name activity, or reason about goals, intentions?
* what about the objects nearby?

Farhadi et al 09;
cf Blaschke ?09;
Ferrari Zisserman 07;




General architecture

I_Feature extraction Feature
Selection

[
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IAttribute Predictions <:| Attribute

Classifiers
|Category Modelsl
I Bird I | Has Beak, Has Eye, Has foot, Has Featherl
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How 1s an object different from typical?

® Pragmatics suggests this 1s how adjectives are chosen
® [f we are sure it’s a cat, and we know that
® an attribute is different from normal
® the detector is usually reliable
® we should report the missing/extra attribute




Missing attributes

Aeroplane Motorbike
No “jetengine” No “side mirror”

Bicycle Sheep Train Sofa Bird
No “wheel” No “wool” No “window”  No “wood” No “tail”




Extra attributes




Conclusions

e Absent taxonomy/composition 1S a major nuisance
* if it were not for this question, appearance methods would win hands down

* What do we need to say about activity?
* should we name activity, or reason about goals, intentions?
* what about the objects nearby?

* Object recognition isanxa fool’sparadise has to deal with similar issues
e unknown names, etc.




