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Obtain dataset

Build features

Mess around with classifiers, probability,

Produce representation




Obtain dataset

Computer vision

Build features

Mess around with classifiers, probability,
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Big questions

® What signal representation should we use ?

Computer vision

® What should we say about visual data?
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What should recognition do?

® Report objects present

® Make useful reports about objects
e which likely involve categories

e (ategories
e allow generalization
e future behavior; non-visual properties of objects
are opportunistic, rather than fixed
® one person’s intra class variation is another’s class boundary
likely don’t form an inclusion hierarchy
visual categorization vs. other categorization




Good properties of recognition

Bias robust
® biases, sparsity in training data don’t affect test behaviour (much)
Unfamiliarity
e Make useful statements about objects whose name isn’t yet known
Manage deviant objects
e Say how a detected object is different from the usual
Learn by X
e Single picture
e Reading
e Description (0 pictures; zero shot learning)
Accuracy
® be good at recognizing known objects
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® What should we say about visual data?

Computer vision

Taxonomy




Recognition - desirable properties

® biases in training data don’t affect test behaviour (much)

Unfamiliarity
e Make useful statements about objects whose name isn’t yet known

Manage deviant objects
e Say how a detected object is different from the usual

Learn by X

e Single picture
e Reading
e Description (0 pictures; zero shot learning)
Accuracy
® be good at recognizing known objects




If you know your problem well

you can collect an unbiased dataset




® Frequencies in the data may misrepresent the application

e Because the labels are often wrong

e Because of what gets labelled
e P(labelled|X) is not uniform
® cg obscure but important objects in complex clutter
® cg pedestrians in crowds

e Because of what gets collected
e cg. pictures from the web are selected - not like a camera on head
e cg. “Profession” labelling for faces in news pictures




Labels that are wrong

Fact of life

Can fix when there are many instances

® consistency (Zhao et al 08)
e smoothing (Berg, 06; Li, 06; Wang 08; Collins 08)

Might be able to fix with hierarchy+generalization
e we should never mix up “cat”’s and “truck™’s



Selection for labelling

e P(labelled|X) is not uniform | .
e or P(X|labelled) is not the same as P(X|not labelled) X_jare not like X 1

® There are models

e problem sometimes called dataset shift, see (Quinonero-Candela 09)
e can be addressed with, say, large unlabelled datasets
e build smoothed estimate of p(labelled|X), reweight

® [mportant effect

e can make high capacity classifiers generalize better than low capacity
® (maybe) be very cautious about linear SVM’s




Curation bias

® (ollected data 1s not a fair sample of X
e labelled AND unlabelled data

® [mages on the web are “curated”
Loeff et al, 06

® [conography seems to be a big effect here
e visual “modes” of representation
e sce Bergt+Berg 09
e we might not see them all
e cf Google image search with Flickr
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Many things are rare
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Sparsity and within class variation

Variation within classes has some meaningful structure
® big cars vs small cars; big dogs vs small dogs
® blue cars vs yellow cars; blue dogs vs yellow dogs

Cannot be treated as pure variance with few examples

Perverse to treat as pure variance




Induction

® Fundamental principle of machine learning

e if the world is like the dataset, then future performance will be like training
® Chernoff bounds, VC dimension, etc., etc.

e But what if the world can’t be like the dataset?




Object recognition

® The world can’t be like the training data because

® many things are rare in plausible datasets
e within class variation can’t be properly represented for each class

e Strategies

Ensure training data fairly represents the future
train by comparison to similar objects

Try only to learn things that are fairly represented
represent in terms of pooled properties







Bias suggests




Attributes

Properties shared by many object categories
e with explicit, exposed semantics

Material (like)

e glass, wood, furry, red, etc. cf Ferrari Zisserman 07

Part (like)

e has wheel, has head, has tail, etc.
Shape (like)

e is 2D Boxy, is cylindrical, etc

Latent Variables - Semantics 1s explicit, exposed




Architectural consequence




Recognition - desirable properties

® Bias robust
® biases in training data don’t affect test behaviour (much)

Make useful statements about objects whose name isn’t yet known
Say how a detected object is different from the usual

Single picture
Reading
e Description (0 pictures; zero shot learning)
® Accuracy
® be good at recognizing known objects




Attribute phenomena

Some are easily predicted from pictures
® cg “red”, “wooden”

Some are properly inherited from category
® cg “mammal”

They are heavily correlated
® casy binary variable argument

Some are “stuff’-like
® cg “red”, “wooden”

Others “thing”-like

Y eg “Wheel,” “leg,’

Within class variation
e Different instances of the same category could have different attributes




Direct Attribute Prediction

Known classes Unknown classes

Attribute layer

Image features

Lampert ea 09; Farhadi ea 09




Direct Attribute Prediction

® Training
e [ampert ea
® objects labelled, attributes inherited from
object labels
e Farhadi ea
e attributes labelled in images

® Architecture
e [ampert ea
e undirected object attribute links
® deterministic links
e Farhadi ea
e directed attribute -> object links

Lampert ea 09; Farhadi ea 09




Direct Attribute Prediction

® Attractions
e Pooling allows improved generalization of attributes
e |earning by X (few examples; description)
® sensible statements about the unfamiliar
e accuracy (evidence complex, but supportive)
® [nherited vs observed training
® inherited: easier labelling
e observed: cleaner semantics
® Disadvantage
e only for directly visual attributes

Lampert ea 09; Farhadi ea 09
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Object categories in test set are not same categories as in training set




How is an object different from typical?

® Pragmatics suggests this is how adjectives are chosen
e [f we are sure it’s a cat, and we know that
e an attribute is different from normal
e the detector is usually reliable
e we should report the missing/extra attribute




Missing attributes
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Extra attributes

People
“Furn.back”

Aeroplane
Ilbeakll

Farhadi ea 09




Indirect Direct Attribute Prediction

Unknown classes

Attribute layer

Known classes

Image features

Lampert ea 09




Indirect Attribute Prediction

® Training
® |earn predictors for known classes, usual procedure
® y-a, a-z links from object semantics
e all instances of a class have the same attribute vector

® Test

® inference

® Property:
e attributes from class predictions
® 5o non-visual prediction should be OK
e attribute predictions are “like” natural attribute vectors
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Attribute vectors as bit vectors

® N binary attributes => 2N attribute vectors
® N should be large

® 5o attributes must be heavily correlated
® how to model?

e indirect attribute prediction

e latent variable models




Thing attributes

® Parts

e in the old fashioned sense,
as having semantics
o “leg”, “wheel”, etc.

® [mproved
representation of N
localized objects e ‘
2l adiiht
® Detection T pouer SN
~

k ‘e 1
3 ;:L/'" \
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Visual attributes

Detector Responses

Sp: spatial part (gridded location)
Blc: basic level category
Sc: superordinate category

[Latent Root

Farhadi ea 10

Other attributes

P: predicate
F: functional attribute
Asp: aspect




Roots improve prediction

Domain Method Average Has Part Basic-Cat Super-Cat Function Pose
! F UnF F UnF F UnF| F UnF F UnF F UnF
A R0OCModel [[0.757 0.646 [[ 0.798 0.747 [ 0.755 NA | 0761 0.591 | 0.807 0.602 [ 0.665 0.649
nmal paseline || 0.701  0.591 || 0.770 0.648 | 0.721 NA | 0.710 0.618 | 0.732 0.567 | 0.571 0.532
Vehicle R0OUModel [ 0854 0.700 [[0.929 0752 [ 0.885 NA [ 0891 0778 [0922 0.691 [ 0.643 0.578
Baseline || 0.781 0.652 || 0.870 0.723 | 0.841 NA | 0.849 0.717 | 0.801 0.637 | 0.544 0.533

AUC for root/baseline for various types of attribute
baseline: inherit from blc prediction
F: familiar test
UnF: unfamiliar test




animal
blc: eagle

W animal

function: can bite
function: can fly oy
function: is predator ' . .

function: is carnivorous ; N R
) g e i part: eye
! iy e part: foot
ipenguini - part: head
- . part: leg
part: mouth
part: tail
part: wing

‘ function: can bite
function: can fly

part: eye
part: foot
part: head
part: leg
part: mouth
part: wing

i S T : Pose:
Pose: extended_wing$ =5 S = s ] '
Pose: objects_front -;%-‘:; $ . 2 objects_front
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vehicle
blc: airplane

function: move on air
function: blowing engine
function: public
transportation
function: for cargo

part: row_of windows
e Part: veh_wing
@ part: wheel

" Pose: objects_bottom

Farhadi ea 10




vehicle

function: move on
road

function: rotating
engine

function: by steering
wheel

part: license_plate
part: wheel

Pose:
objects_right_side

Farhadi ea 10




Localizing unfamiliar categories

® Detect by:

e Part detectors (eg leg - over several example categories)
e BLC detectors (eg animal - ditto)
e vote on location

® Train on familiar animals/vehicles, test on unfamiliar
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Accuracy

® Papers described are promising, but...

e Standard task: Face Verification
® is face A the same person as face B?

e Significant improvements using an attribute representation




“Attribute and Simile Classifiers for Face Verification,” ICCV 2009. (N. Kumar, A. Berg, P.
Belhumeur, S. K. Nayar)
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Our Attribute Classifiers (83.62%)
Our Simile Classifiers (84.14%)
Our Attribute + Simile Hybrid (85.29%)

Hybrid descriptor-based, funneled [34] (78.47%)
Merl+Nowak, funneled [18] (76.18%)
Nowak, funneled [25] (73.93%)

03 04 05 06 07 08 09
False Positive Rate

“Attribute and Simile Classifiers for Face Verification,” ICCV 2009. (N. Kumar, A. Berg, P.
Belhumeur, S. K. Nayar)




Datasets - 1

a-Pascal

e mark up Pascal VOC 2008 with 64 attributes (using Amazon Turk)
e all of it!

a-Yahoo
e 12 additional classes, from Yahoo, with attributes (Amazon Turk)

e chosen to “mask” Pascal classes
e Wolf (dog); Centaur (people, horses); goat (sheep); etc.

Approx 1M annotations! ($600)

Accuracy

e Turk inter-annotator agreement 84.1%
e UIUC inter-annotator agreement 84.3%
e Turk UIUC agreement 81.4%

Farhadi ea 09




Datasets - 11

® Animals with attributes
30475 images
animals in 50 classes, min 92 per class
classes have attributes from Osherson, 91
85 attributes in total
attribute markup inherited from class

Lampert ea 09




ross Category

Datasets - 111

bject """ cognition Dataset

motorcycie
whEs
whEs

heaglig™:

engine

seat
exNaust pipe
exNaust pipe
tall light
license piate

2780 Images — from ImageNet
3192 Objects — 28 Categories
26695 Parts — 71 types

30046 Attributes — 34 types
1052 Material Images — 10 types

Endres et al 10; Farhadi ea 10

http://vision.cs.uiuc.edu/CORE




Future Directions

Richer semantics of attributes
Spatial support and spatial models
Materials

Similarity

Discriminative attributes
Attribute correlation

Learning from X



Richer semantics

1t has one
it should have one, but I can’t see it
it doesn’t have one

® Distinguish between:
([
([
{
e the one it has belongs to something else

Aeroplane
No “jet engine”




Spatial support and spatial models

e simple modifiers can be learned w/o spatial markup
e c.g. “pink” Yanai + Barnard, 05.

® complex texture modifiers can, too
® c.g. “spots”, FerraritZisserman, 07

® joint modifier/noun data make learning easier
e c¢.g. blue hat, Wang+Forsyth, 09

ﬂa’i’k‘




Materials

® Material not inherited from object in humans
e Sharan ea 09

® Material classification hard

e [iuea 10; nice dataset
e Hayman ea 04; nice dataset

Recogmtlon rate (‘7() Recognition rate (%)
e PR [ e | S

sandpaper sandpaper
aluminium foil 35 2.38 aluminium foil
styrofoam 34.72 38.2 styrofoam
sponge 50.62 54.32 sponge
corduroy 46. 59.2 corduroy

linen 30.4 25.92 linen

cotton . 20. cotton

brown bread 5. brown bread
orange peel . . orange peel
cracker B 3. cracker B

[AVERAGE | 2050 | 2383 | [[AVERAGE | 8417 | 7417 |

(a) Training only on CUReT (b) Training on both CUReT and KTH-TIPS




Similarity

Learn from “A 1s like B”, “C 1s not like D”

Useful representation
e Kumar 09

Some improvements in classification with few examples
e Wang ea 09

Links to attributes/learning from text give improvements
® Rohrbach ea 10




Discriminative attributes

Haven’t written down all attributes
e Naive bayes does objects from attributes at 74% given ground truth

Select random splits of objects that are well predicted
® obtain by random search

® assign objects to +, -, X randomly

® learn a classifier

® keep those that are accurately predicted on held out set

Use these as attributes, too

Q: Do they have semantics?
e “cows and horses have it, cars and buses don’t”




Attribute correlation

e Through latent objects is probably not right

e some attributes are correlated through objects
e others through their semantics (eg furry, hairy, fuzzy, soft)

® Error correction (?)
e natural result of massive correlations and competent modelling

® Fundamental coding limits (?)
® can we error correct arbitrarily with visual features?




Learning from X

Descriptions from text can produce OK visual models
e Farhadi ea 09; Lampert ea 09

Pragmatics 1s a major obstacle
® (dead silence on this issue)




The big question

e How to insert object semantics into object recognition?
without being silly
what is useful knowledge?
where does it come from?
what is worth saying about objects?
what objects are worth saying things about?
how should categories be created and destroyed to meet pragmatic needs?




