Looking at People

D.A. Forsyth, UIUC (was U.C. Berkeley; was U.Iowa) Leslie Ikemoto, James O'Brien, Ryan White, Anthony Lobay all of UC Berkeley Okan Arikan of UT Austin Deva Ramanan of TTI/UC Irvine Ali Farhadi of UIUC Nazli Ikizler of Bilkent U Alex Sorokin, UIUC Du Tran, UIUC Duan Tran, UIUC, Wei Yan, Texas A+M

Thanks to: Electronic Arts, Sony SCEA, ONR MURI, NSF, DHS

Why is human motion important?

• Surveillance

- prosecution; intelligence gathering; crime prevention
- HCI; architecture;
- Synthesis
 - games; movies;
- Biomechanics
 - spot diseases; learn new facts
- People are interesting
 - movies; news

Themes

- Activity recognition has important special properties
 - No taxonomy the structure of categories is hard, not well understood
 - Activity composes in complex ways
- Current signal representations are unsatisfactory
 - track and lift, work in 3D
 - good for aspect, composition
 - accuracy in localizing limbs is very difficult
 - spatio-temporal volumes
 - aspect is tough but manageable
 - composition across time easy, across the body mysterious.
 - attribute reasoning may be useful.

Composition and Activity

- Composition is an important source of complexity
 - (flexibility for planning, control)
- We can join motions up in time to make new motions
 - The process is now quite well understood
 - Good quality can be obtained
 - Useful in animation
- We can join up parts of motion across the body
 - But it doesn't always work (and we don't know why, really)

Motion synthesis

• Problem

• Produce a human motion that meets some constraints and looks good

• Methods

- By animator
- By combining observations
 - old tradition of move trees; also (Kovar et al 02, Lee et al 02, Arikan +Forsyth 02, Arikan et al 03,Gleicher et al 03)
- By physical models, biomechanical models, statistical models (see review)
- Why do we care?
 - Exposes important practical properties of human motion.

Cut and Paste works well over time

- Motion graph: by analogy with
 - text synthesis, texture synthesis, video textures
- Take measured frames of motion as nodes
 - from motion capture, given us by our friends
- Edge from frame to any that could succeed it
 - decide by dynamical similarity criterion
 - see also (Kovar et al 02; Lee et al 02)
- A path is a motion
- Search with constraints
 - like root position+orientation, etc.
 - In various ways
 - Local (Kovar et al 02)
 - Lee et al 02; Ikemoto, Arikan+Forsyth 05
 - Arikan+Forsyth 02; Arikan et al 03

Arikan+Forsyth 02

Transplantation

• Motions clearly have a compositional character

- Why not cut limbs off some motions and attach to others?
 - we get some bad motions
- build a classifier to tell good from bad
 - avoid foot slide by leaving lower body alone

Ikemoto+Forsyth 04

Ikemoto+Forsyth 04

What are people doing?

- Core problem
 - It is not known what needs to be known
 - or, what should we measure?

What is the right signal representation?

- Spatio-temporal features
 - Laptev Perez 07
- 3D Kinematic track
 - with some work, a 3D representation of arms, legs, torso, etc.
- Appearance
 - Spatio-temporal features localized to the body

Point tracks reveal curious phenomena in public spaces

Yan+Forsyth, 04

Tracking

• Hard, but

- you can do it
- great advantages for aspect, composition
- Major problems with accuracy, seem likely to be ongoing
 - but ferrari zisserman, etc.

Why is kinematic tracking hard?

- It's hard to detect people
 - until recently, human trackers were manually started
- People move fast, and can move unpredictably
 - dynamics gives limited constraint on future configuration
 - appearance changes over time (shading, aspect, etc)
- Some body parts are small and tend to have poor contrast
 - particularly difficult to track
 - lower arms (small, fast, look like other things);
 - upper arms (poor contrast)

variation in pose & aspect

self-occlusion & clutter

variation in appearance

Build and detect models

Lifting

- Infer 3D configuration from image configuration
- Useful for
 - view independent activity recognition
 - user interfaces
 - video motion capture

Taylor, 00

Ambiguity

- Troubled question
 - lifts are ambiguous (Orthography; Sminchicescu+Triggs 03; etc)
 - but ambiguities
 - can be ignored
 - Taylor 00; Barron+Kakadiaris 00
 - can be dodged
 - Ramanan+Forsyth 03; Howe et al 00
- Summary+musings in Forsyth etal 06

Sminchisescu+Triggs, 03

Naming activities

• With what? (no canonical vocabulary)

- Choose actions with names
 - (e.g. gymnastics Bobick+Davis 01, ballet Efros et al 03)
- Match motion to motion, avoid the issue (e.g. Efros 03)
- Vocabulary of tags (eg Ramanan+Forsyth 03)

• Never enough data

- "Noise" in transduction
 - aspect, appearance
 - tracking, lifting, silhouettes
 - intraclass variation in activity
- Complex taxonomy
 - composition

Fiercely hard to learn models from video

Generative dynamical models

- dynamical parameters hard to learn
 - too many parameters
 - or insufficiently expressive

• Discriminative models

- not enough training data
 - of the right aspect, clothing, etc.

Label motion capture data

• Data

- released to the research community by Electronic Arts, 2002
- Or one could use Georgia Tech data, etc.

• Desirable features of a labelling

- Composability
 - run and wave;
- Comprehensive but not canonical vocabulary
 - because we don't know a canonical vocabulary
- Speed and efficiency
 - because we don't know a canonical vocab.

Annotation

• Can do this with one classifier per vocabulary item

- use an SVM applied to joint angles
- form of on-line learning with human in the loop
- works startlingly well (in practice 13 bits)

Arikan+Forsyth+O'Brien 03

Annotating observations by synthesis

Ramanan Forsyth 04

Composition, authoring and transfer

- Activity composes across time and across the body
 - and we may have no examples of a particular activity
 - but we should like to query
 - generative model learned on annotated motion capture data
 - string together short timescale models
 - across time
 - across the body
 - Author longer timescale models
 - by kinematic consistency
 - by query

Generative model

- Many states
 - but few parameters to learn
- Annotation vocabulary
 - original 13 annotations
 - Less: 3 direction labels, 1 ambiguous term
 - each limb can have at most one annotation

Emission

• Transduction

- Track the body, as above
- Lift "snippets" of each quarter
 - vector quantized
- impose root consistency
- Emission
 - emit cluster center from state according to table
 - table learned by EM, known dynamical model

Query for motions with no examples

- Primary attraction
 - "natural" query language
- Rank sequences by
 - e.g. P(leg-walk-arm-walk-then-leg-walk-arm-reachl data, model)

Context	# videos	Context	# videos
crouch-run	2	run-backwards-wave	2
jump-jack	2	run-jump-reach	5
run-carry	2	run-pickup-run	5
run-jump	2	walk-jump-carry	2
run-wave	2	walk-jump-walk	2
stand-pickup	5	walk-pickup-walk	2
stand-reach	5	walk-stand-wave-walk	5
stand-wave	2	crouch-jump-run	3
walk-carry	2	walk-crouch-walk	3
walk-run	3	walk-pickup-carry	3
run-stand-run	3	walk-jump-reach-walk	3
run-backwards	2	walk-stand-run	3
walk-stand-walk	3		
11 1 0 11		1 1	

Ikizler Forsyth 07,08

The effect of aspect

Jog; Jump; Jumpjack; Reach; Wave

Ikizler Forsyth 07, 08

Appearance and activity

- Location can be a powerful guide to activity
 - Intille et al 95, 97
- Configuration, motion are distinctive
 - Polana Nelson 93; Niyogi Adelson 94; Bobick+Davis 97; Efros et al 03; Blank et al 05
 - spatiotemporal volumes are good (Blank et al 05)

An Appearance feature

Tran and Sorokin 08, after Duygulu and Ikizler 07

Datasets

actors actions sequences views

UMD

8 14

Discriminative results

			Protocols											
Dataset	Algorithm	Chance	D)iscrimina	tive tasł	Reject		Few examples FE-1 FE-2 FE-4 FE-8 N/A N/A N/A N/A 53.00 73.00 89.00 96.00 72.31 81.77 92.97 100.00 17.96 42.04 68.92 84.95 N/A N/A N/A N/A						
			L1SO	L1AAO	L1AO	L1VO	UNa	FE-1	FE-2	FE-4	FE-8			
	NB(k=300)	10.00	91.40	93.50	95.70	N/A	0.00	N/A	N/A	N/A	N/A			
	1NN	10.00	95.70	95.70	96.77	N/A	0.00	53.00	73.00	89.00	96.00			
Weizman	1NN-M	10.00	100.00	100.00	100.00	N/A	0.00	72.31	81.77	92.97	100.00			
	1NN-R	9.09	83.87	84.95	84.95	N/A	84.95	17.96	42.04	68.92	84.95			
	1NN-MR	9.09	89.66	89.66	89.66	N/A	90.78	N/A	N/A	N/A	N/A			
Our	NB(k=600)	7.14	98.70	98.70	98.70	N/A	0.00	N/A	N/A	N/A	N/A			
	1NN	7.14	98.87	97.74	98.12	N/A	0.00	58.70	76.20	90.10	95.00			
	1NN-M	7.14	99.06	97.74	98.31	N/A	0.00	88.80	94.84	95.63	98.86			
	1NN-R	6.67	95.86	81.40	82.10	N/A	81.20	27.40	37.90	51.00	65.00			
	1NN-MR	6.67	98.68	91.73	91.92	N/A	91.11	N/A	N/A	N/A	N/A			
	NB(k=600)	7.69	80.00	78.00	79.90	N/A	0.00		N 1	/ ^				
IXMAS	1NN	7.69	81.00	75.80	80.22	N/A	0.00		N/A					
	1NN-R	7.14	65.41	57.44	57.82	N/A	57.48			, , ,				
UMD	NB(k=300)	10.00	100.00	N/A	N/A	97.50	0.00			/ ^				
	1NN	10.00	100.00	N/A	N/A	97.00	0.00							
	1NN-R	9.09	100.00	N/A	N/A	88.00	88.00							

Works well, depending on task; not rejecting improves things metric learning improves things

Tran + Sorokin 08

Youtube video

Tran + Sorokin 08

IXMAS and Aspect

The Effects of Aspect

	Camera 0		Camera 1		Can	iera 2	Can	iera 3	Camera 4		
FO	76		76		(68		73	51		
	WT		WT		WT		WT		WT		
Camera 0	NA		35		16		8		10		
Camera 1	38		NA		15		8		11		
Camera 2	16		16		NA		6		11		
Camera 3	8		8		8		NA		8		
Camera 4	12		11		15		9		NA		

Farhadi Kamali 08

Learning to recognize from the wrong view

• Idea:

- Build features that are robust to aspect changes
- AND
 - encode aspect explicitly in discriminative procedures

Farhadi Kamali 08

Comparative Features

• Comparisons seem to behave well under change of aspect

[Images from COIL-100 Dataset]

Best splits & comparative features

 $\mathbf{0}$

Comparative features

Learning to recognize from the wrong view

• Idea:

- tag training examples with an aspect variable
- this is unknown, but we have an estimate
- estimate classifier, correct aspect variable, at the same time
- Recognition:
 - use non-parametric estimate of aspect var

Results

	Camera 0		Camera 1			Camera 2			Camera 3			Camera 4			
	QV	SS	CV	QV	SS	CV	QV	SS	CV	QV	SS	CV	QV	SS	CV
Camera 0	76	76	84	72	78	79	61	69	79	62	70	68	30	45	76
Camera 1	69	77	72	76	78	85	64	74	74	68	67	70	41	44	66
Camera 2	62	66	71	67	71	82	68	74	87	67	64	76	43	54	72
Camera 3	63	69	75	72	70	75	68	63	79	73	68	87	44	44	76
Camera 4	51	39	80	55	39	73	51	52	73	53	34	79	51	66	80
Farhadi Kamali 08															

But what about composition?

Conclusions

- Absent taxonomy/composition is a major nuisance
 - if it were not for this question, appearance methods would win hands down
- What do we need to say about activity?
 - should we name activity, or reason about goals, intentions?
 - what about the objects nearby?
- Object recognition is in a fool's paradise
 - unknown names, etc.

Bonus question

Thanks

UIUC Vision & Graphics groups UC Berkeley Vision & Graphics Groups Oxford Visual Geometry Group, particularly Andrew Zisserman Dept. Homeland Security ONR MURI NSF Electronic Arts Sony Computer Entertainment

Composition

- Very little is known
- Idea
 - Activity recognition is more like clustering than like recognition
- Features
 - describe activities by comparison to other activities
 - rather than with absolute discriminative repn

American Sign Language (ASL)

- Generative models popular in the literature
 - Using HMM's
 - [Grobel, Assan 97], [Bauer, Hienz 00], [Vogler, Metaxas 98,99,03],
 [Gao, et. al. 00], [Bowden et. al. 04], [Kadous 96], [Matsuo 97],
 [Zieren, Kraiss 04], [Starner+Pentland 95] etc long literature
- Few discriminative models
 - Discriminative word spotter for small vocabulary
 - [Farhadi, Forsyth 06]

Easy to get dubious data

Generated by SigningAvatar

Comparisons are good features

• Evidence

- By adroit use of comparisons in sign language domain, we can
 - Build a set of comparative features
 - Learn to recognize a new word from one, dictionary example

Avatar Human

- Learn on avatar
- Test on human signer
- Target words: 40 words
- Shared words: 50 words
 - Vocabulary size: 90 words
 - 40->90 classification problem
- 99.1% error rate using SVM

Results

90-Class Classification results on words that have never been seen in this rendering

Class confusion matrix for transfer from frontal avatar to frontal human signer. 64.17% of classification attempts are successful. (error rate of 35.83%) Classified words have never been seen in frontal human signer. Controls:

Without comparative features 98.2% error rate (c.f. our error rate of 35.8%) PCA instead of random projections 64.3% error rate (c.f. our error rate of 35.8%)