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Why is human motion important?

• Surveillance
• prosecution; intelligence gathering; crime prevention
• HCI; architecture;

• Synthesis
• games; movies;

• Biomechanics
• spot diseases; learn new facts

• People are interesting
• movies; news



Themes

• Activity recognition has important special properties
• No taxonomy - the structure of categories is hard, not well understood
• Activity composes in complex ways

• Current signal representations are unsatisfactory
• track and lift, work in 3D

• good for aspect, composition
• accuracy in localizing limbs is very difficult

• spatio-temporal volumes
• aspect is tough but manageable
• composition across time easy, across the body mysterious.
• attribute reasoning may be useful.



Composition and Activity

• Composition is an important source of complexity
• (flexibility for planning, control)

• We can join motions up in time to make new motions
• The process is now quite well understood
• Good quality can be obtained
• Useful in animation

• We can join up parts of motion across the body
• But it doesn’t always work (and we don’t know why, really)



Motion synthesis

• Problem
• Produce a human motion that meets some constraints and looks good

• Methods
• By animator
• By combining observations

• old tradition of move trees; also (Kovar et al 02, Lee et al 02, Arikan
+Forsyth 02, Arikan et al 03,Gleicher et al 03)

• By physical models, biomechanical models, statistical models (see review)

• Why do we care?
• Exposes important practical properties of human motion.



Cut and Paste works well over time

• Motion graph: by analogy with 
• text synthesis, texture synthesis, video textures

• Take measured frames of motion as nodes
• from motion capture, given us by our friends

• Edge from frame to any that could succeed it
• decide by dynamical similarity criterion
• see also (Kovar et al 02; Lee et al 02)

• A path is a motion
• Search with constraints

• like root position+orientation, etc.
• In various ways

• Local (Kovar et al 02)
• Lee et al 02; Ikemoto, Arikan+Forsyth 05
• Arikan+Forsyth 02; Arikan et al 03

Motion Graph:
Nodes =  Frames

Edges =  Transition

A path = A motion



Arikan+Forsyth 02



Transplantation

• Motions clearly have a compositional character
• Why not cut limbs off some motions and attach to others?

• we get some bad motions
• build a classifier to tell good from bad

• avoid foot slide by leaving lower body alone

Ikemoto+Forsyth 04
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What are people doing?

• Core problem
• It is not known what needs to be known

• or, what should we measure?



What is the right signal representation?

• Spatio-temporal features
• Laptev Perez 07

• 3D Kinematic track
• with some work, a 3D representation of arms, legs, torso, etc.

• Appearance
• Spatio-temporal features localized to the body



Laptev Perez 2007
see also Laptev et al 08



Point tracks reveal curious 
phenomena in public spaces

Yan+Forsyth, 04



Tracking

• Hard, but
• you can do it
• great advantages for aspect, composition

• Major problems with accuracy, seem likely to be ongoing
• but ferrari zisserman, etc.



Why is kinematic tracking hard?

• It’s hard to detect people 
• until recently, human trackers were manually started

• People move fast, and can move unpredictably
• dynamics gives limited constraint on future configuration
• appearance changes over time (shading, aspect, etc)

• Some body parts are small and tend to have poor contrast
• particularly difficult to track 

• lower arms (small, fast, look like other things); 
• upper arms (poor contrast)

variation in appearancevariation in pose & aspect self-occlusion & clutter



Build and detect models
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Lifting

• Infer 3D configuration from image configuration
• Useful for

• view independent activity recognition
• user interfaces
• video motion capture

Taylor, 00



Ambiguity

• Troubled question
• lifts are ambiguous (Orthography; Sminchicescu+Triggs 03; etc)
• but ambiguities 

• can be ignored
• Taylor 00; Barron+Kakadiaris 00

• can be dodged
• Ramanan+Forsyth 03; Howe et al 00

• Summary+musings in Forsyth etal 06

Sminchisescu+Triggs, 03



Naming activities

• With what?  (no canonical vocabulary)
• Choose actions with names

•  (e.g. gymnastics Bobick+Davis 01,  ballet Efros et al 03)
• Match motion to motion, avoid the issue (e.g. Efros 03)
• Vocabulary of tags  (eg Ramanan+Forsyth 03)

• Never enough data
• “Noise” in transduction

• aspect, appearance 
• tracking, lifting, silhouettes
• intraclass variation in activity

• Complex taxonomy
• composition



Fiercely hard to learn models from video

• Generative dynamical models
• dynamical parameters hard to learn

• too many parameters
• or insufficiently expressive

• Discriminative models
• not enough training data 

• of the right aspect, clothing, etc.



Label motion capture data

• Data 
• released to the research community by Electronic Arts, 2002
• Or one could use Georgia Tech data, etc.

• Desirable features of a labelling
• Composability

• run and wave; 
• Comprehensive but not canonical vocabulary

• because we don’t know a canonical vocabulary
• Speed and efficiency

• because we don’t know a canonical vocab.



Annotation

• Can do this with one classifier per vocabulary item
• use an SVM applied to joint angles
• form of on-line learning with human in the loop
• works startlingly well (in practice 13 bits)

Run classifier

Jump classifier

Stand classifier

Carry classifier

Walk classifier P

P

O
O

O

Arikan+Forsyth+O’Brien 03
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Annotating observations by synthesis

Annotated
motions

TrackerInput Video

3D Motion LibraryAnnotations

Motion Synthesizer

2D track

user

{run,walk, wave, etc.}

Lift to 3 D

vocab useful for synthesis

match short clips of motion



Ramanan Forsyth 04



Composition, authoring and transfer

• Activity composes across time and across the body
• and we may have no examples of a particular activity
• but we should like to query

• generative model learned on annotated motion capture data
• string together short timescale models 

• across time
• across the body

• Author longer timescale models
• by kinematic consistency
• by query



Generative model

• Many states
• but few parameters to learn

• Annotation vocabulary
• original 13 annotations

• Less: 3 direction labels, 1 ambiguous term
• each limb can have at most one annotation



Emission

• Transduction
• Track the body, as above
• Lift “snippets” of each quarter

• vector quantized
• impose root consistency

• Emission
• emit cluster center from state according to table
• table learned by EM, known dynamical model



Query for motions with no examples

• Primary attraction
• “natural” query language

• Rank sequences by
• e.g. P(leg-walk-arm-walk-then-leg-walk-arm-reach| data, model)



Ikizler Forsyth 07,08



Our method SVM on image appearance
+ Generative model

SVM on lifted data + Generative model

Ikizler Forsyth 07,08



The effect of aspect

Jog;  Jump;  Jumpjack; Reach;  Wave Ikizler Forsyth 07, 08





Appearance and activity

• Location can be a powerful guide to activity
• Intille et al 95, 97

• Configuration, motion are distinctive
• Polana Nelson 93; Niyogi Adelson 94; Bobick+Davis 97; Efros et al 03; 

Blank et al 05
• spatiotemporal volumes are good (Blank et al 05)



Tran and Sorokin 08, after Duygulu and Ikizler 07

An Appearance feature



Datasets



Discriminative results

Works well, depending on task;  not rejecting improves things
metric learning improves things

Tran + Sorokin 08



Youtube video

Tran + Sorokin 08



IXMAS and Aspect



The Effects of Aspect

Farhadi Kamali 08



Learning to recognize from the wrong 
view

• Idea:
• Build features that are robust to aspect changes
• AND

• encode aspect explicitly in discriminative procedures

Farhadi Kamali 08



Comparative Features

• Comparisons seem to behave well under change of aspect

[Images from COIL-100 Dataset]



Best splits  & comparative features

Known objects

Unknown

 objects

0 0 1

1 1 0

0 1 1

1 0 0

Comparative features

[Images from COIL-100 Dataset]



Learning to recognize from the wrong 
view

• Idea:
• tag training examples with an aspect variable
• this is unknown, but we have an estimate
• estimate classifier, correct aspect variable, at the same time
• Recognition:

• use non-parametric estimate of aspect var

Farhadi Kamali 08



Results

Farhadi Kamali 08



But what about composition?



Conclusions

• Absent taxonomy/composition is a major nuisance
• if it were not for this question, appearance methods would win hands down

• What do we need to say about activity?
• should we name activity, or reason about goals, intentions?
• what about the objects nearby?

• Object recognition is in a fool’s paradise
• unknown names, etc.



Bonus question
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Composition

• Very little is known

• Idea
• Activity recognition is more like clustering than like recognition

• Features
• describe activities by comparison to other activities

• rather than with absolute discriminative repn



American Sign Language (ASL)

• Generative models popular in the literature
• Using HMM’s 

• [Grobel, Assan 97], [Bauer, Hienz 00], [Vogler, Metaxas 98,99,03], 
[Gao, et. al. 00], [Bowden et. al. 04], [Kadous 96], [Matsuo 97], 
[Zieren, Kraiss 04], [Starner+Pentland 95] etc - long literature

• Few discriminative models
• Discriminative word spotter for small vocabulary

• [Farhadi, Forsyth 06]



Easy to get dubious data

Dictionary

Generated by SigningAvatar



Comparisons are good features

• Evidence
• By adroit use of comparisons in sign language domain, we can

• Build a set of comparative features

• Learn to recognize a new word from one, dictionary example



Avatar    Human

• Learn on avatar
• Test on  human signer
• Target words: 40 words
• Shared words: 50 words

• Vocabulary size: 90 words
• 40->90 classification problem

• 99.1% error rate using SVM

CVPR 07



Results

Class confusion matrix for transfer from frontal avatar to frontal human signer.
64.17% of classification attempts are successful.  ( error rate of  35.83% )

Classified words have never been seen in frontal  human signer.
Controls:

 Without comparative features 98.2% error rate (c.f. our error rate of 35.8%)
 PCA instead of random projections 64.3% error rate (c.f. our error rate of 35.8%)

90-Class Classification results on words that  have never been seen in this rendering 


