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Why is visual object recognition useful?

• If you want to act, you must draw distinctions
• For robotics

• recognition can predict the future
• is the ground soggy?
• is that person doing something dangerous?
• does it matter if I run that over?
• which end is dangerous?

• For information systems
• recognition can unlock value in pictures

• for search, clustering, ordering, inference, ...

• General engineering
• recognition can tell what people are doing

• If you have vision, you have some recognition system



Example:  Humans

• Surveillance
• prosecution; intelligence gathering; crime prevention
• HCI; architecture;
• Synthesis
• games; movies;
• Safety applications
• pedestrian detection
• People are interesting
• movies; news



Computational Behavioural Science

• Observe people
• Using vision, physiological markers 
‒  Interacting, behaving naturally

• In the wild
• drive feedback for therapy
• Eg reward speech

• Applications
• Model:   screen for ASD

• Other: 
• Anywhere large scale observations help
• Support in home care
• Support care for demented patients
• Support stroke recovery
• Support design of efficient buildings

• 10M$, 5yr NSF award under Expeditions program	

• GaTech, UIUC(DAF, Karahalios), MIT, CMU, Pittsburgh, USC, Boston U

Cameras

Microphone

Physiological sensors



Words near pictures are informative

Marc by Marc Jacobs
Adorable peep-toe pumps, great for any 
occasion. Available in an array of uppers. 

Metallic fabric trim and bow detail. Metallic 
leather lined footbed. Lined printed design.

Leather sole. 3 3/4” heel.

Zappos.com

soft and glassy patent calfskin trimmed with 
natural vachetta cowhide, open top satchel 
for daytime and weekends, interior double 
slide pockets and zip pocket, seersucker 

stripe cotton twill lining, kate spade leather 
license plate logo, imported

2.8” drop length
14”h x 14.2”w x 6.9”d

Katespade.com

It’s the perfect party dress. With distinctly 
feminine details such as a wide sash bow 

around an empire waist and a deep scoopneck, 
this linen dress will keep you comfortable and 
feeling elegant all evening long. Measures 38” 

from center back, hits at the knee.
    * Scoopneck, full skirt.

    * Hidden side zip, fully lined.
    * 100% Linen. Dry clean.

bananarepublic.com

E-commerce transactions in 2004, 2005, 2006 of $145 billion, $168 
billion, and $198 billion (Forrester Research).



Conclusion

• Recognition is subtle
• strong basic methods based on classifiers
• many meanings, useful in different contexts

• Important recognition technologies coming 
• attributes
• phrases
• geometry
• sentences

• Crucial open questions
• dataset bias
• links to utility



Detection with a classifier



Obtain dataset

Build features

Mess around with classifiers, probability, etc

Produce representation



Big questions

• What signal representation should we use ?

• What should we say about visual data?
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PLUMBING MODELS

What aspects of the world
should we represent and how?

Classifiers, probability
(Light entertainment)

Obtain dataset

Build features

Mess around 
with classifiers, 
probability, etc

Produce representation



Features

• Principles
• illumination invariant (robust) ->  gradient orientation features
• windows always slightly misaligned -> local histograms

• HOG, SIFT features (Lowe, 04; Dalal+Triggs 05)



Classification works well



Movies and captions:  Laptev et al 08



P. Felzenszwalb, D. McAllester, D. Ramanan. “A Discriminatively Trained, Multiscale, Deformable Part 
Model” CVPR 2008.



A belief space about recognition

• Categories are fixed and known
• Each instance belongs to one category of k

• Object recognition=k-way classification

• research agenda: 
• more features, better classifiers:
• perhaps category hierarchies for statistical leverage (tying)

Obvious nonsense
Obvious nonsense

Platonism?



Are these monkeys?



What have we inherited from this view?

• Deep pool of information about feature constructions
• Tremendous skill and experience in building classifiers
• Much practice at empiricism
• which is valuable, and hard to do right

• Subtleties
• What about the unfamiliar?
• What kinds of things should we recognize?
• What environmental knowledge helps?
• What should we say about pictures?
• How does utility affect the output?
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• Recognition is subtle
• strong basic methods based on classifiers
• many meanings, useful in different contexts

• Important recognition technologies coming 
• attributes
• phrases
• geometry
• sentences

• Crucial open questions
• dataset bias
• links to utility



Subtleties: What about the unfamiliar?



Subtleties: What about the unfamiliar?



General architecture

Farhadi et al 09; cf Lampert et al 09



Farhadi et al 09; cf Lampert et al 09

Attribute predictions for unknown objects



General architecture

Farhadi et al 09; cf Lampert et al 09



Known objects could be unfamiliar

• By being different from the typical

• Pragmatics suggests this is how adjectives are chosen
• If we are sure it’s a cat, and we know that

• an attribute is different from normal
• the detector is usually reliable

• we should report the missing/extra attribute



Missing attributes



Extra attributes



Some regions “want” to be objects

Endres Hoiem 10
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• Recognition is subtle
• strong basic methods based on classifiers
• many meanings, useful in different contexts

• Important recognition technologies coming 
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• geometry
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• links to utility



Subtleties: Clumps of meaning

Online Submission ID: 0316

Figure 4: Key word based matte searching. The top two rows are the top 8 ranked mattes returned for search with key words ”running dog”;

the bottom two rows are the top 8 ranked mattes returned for search with the key word ”girl”. Note that the ranking is based on mattes’

quality instead of semantic closeness to the search words, e.g., the 7th result from search for ”girl”.

on Caltech256 and VOC2010 data sets.243

Figure 3 shows the precision-recall curve on each data set. Note244

that the performance of the classifier varies from different data set,245

mainly due to the varying level of matting difficulty in different246

data sets. For moderately well-behaved data set, e.g., flickr, we get247

39% recall at 81% precision. The positive labeling rate for flickr248

data set is about 24%. By setting the classifier’s threshold at 39%249

recall, we expect to get about 35 positive responses with 28 true250

positives. These number indicates that our automatic matting sys-251

tem are very promising in building large pool of fragments from252

web-scale image collections. For example, by applying the system253

to a 7663-image flickr data set, we obtain 2477 positive fragments.254

5 Applications255

Having a system that can fully automatically produce high accuracy256

makes photo editing practical. With a web-scale repository of ac-257

curately segmented image fragments image composition is as sim-258

ple as putting these pieces together. One issue is how to organize259

these fragments so that an artist can easily find what she needs. In260

this chapter we first explain a natural approach to a keyword search261

method and then show interesting results on image composition.262

5.1 Keyword Based Matte Searching263

We provide a large-scale matte dictionary using our fully automatic264

matting method on internet images. At this scale, we need to or-265

ganize the fragments in a way that makes the search easy. One266

natural approach is to tag fragments with keywords and then search267

our matte dictionary by the keywords. The images we use either268

come with a category label (PASCAL or Caltech256 images), or269

have multiple tags associated with them. We use these tags to index270

our fragments. For each tag, we sort the matching fragments based271

on our classification accuracy explained in section ??. For example272

Figure ?? shows examples of the top fragments corresponding to a273

the keyword “girl”. Since our images may have tagged with multi-274

ple tags we can query with complex keyword like “running dogs” or275

“happy kid”. The ability to search for fragments that correspond to276

complex queries significantly reduces the amount of time an artist277

spend to make a novel image. An artist can search as she thinks278

about the image in her mind. Our system allows users to search for279

scenes, objects, actions and adjective. For example, if an artist is280

thinking about putting a “black dog running” in a “park” she can281

search for the “park scene” first and select the fragments of interest282

among several proposals and then search for “black dog” or “dog283

running” or even “black dog running” and select among several pro-284

posals.285

To provide a sense of the coverage of our system we show the286

number of fragments we have in our dictionary for several cate-287

gories. (Figure 6). This is a subset of our vocabularies to show the288

coverage of our dictionary and a sample for the number of avail-289

able fragments in out system. Since our method is fully automatic290

it is straightforward to scale up our system to anyones desirable291

size. The Bottom histogram in Figure 6 shows the top 25 categories292

based on the average per class scores.

Figure 6: Category coverage histogram: the number of positive

mattes returned for the categories on our flickr data set. 604 cate-

gories (key words from user annotated descriptions) are generated

from the data set. Upper: the coverage histogram for all categories.

Bottom: the coverage histogram for the top 25 categories. X axis

are the categories, Y axis are the number of positive responses.

293

5.2 Image Composition294

Once a user selects the fragments from our proposals, putting frag-295

ments together is straight forward. Since our matting algorithm pro-296

duces high accuracy fragments, image composition involves using297

4

“Sledder” 
Is this one thing?  

Should we cut her off her sled?



Scenes

• Likely stages for 
• Particular types of object
• Particular types of activity Xiao et al 10



Scenes
Torralba et al ’93



Correlated words

• Idea
• some features are not helpful
• a low dimensional subspace is good at predicting most things (Ando

+Zhang, )
• We can find this space by penalizing rank in the matrix of linear classifiers

Word data (observed) Image representation (observed)

Learn this

D ≈ GFX



Loeff Farhadi 08; see also Quattoni Darrell 07



It was there and we predicted it

It was there and we didn’t

It wasn’t and we did

Loeff Farhadi 08; see also Quattoni Darrell 07



Scenes > Visual phrases > Objects

Farhadi + Sadeghi 11

• Composites
• easier to recognize than their components
• because appearance is simpler



Decoding

Figure 2. We use visual phrase and object models to make independent predictions. We then combine the predictions by a decoding

algorithm that takes all detection responses and decides on the final outcome. Note that a) Visual phrase recognition works better than

recognizing the participating objects. For example, the horse detector does not produce reliable predictions about horses in this picture

while the “person riding horse” detector finds one instance; b) Our decoding then successfully adds two examples of horses and removes

two wrong predictions of people by looking at other detections in the vicinity.

riding horse” detector works much better than “person” and

“horse” detectors while using less training data (see Fig-

ure 4 for experimental data). Figure 1 shows examples of

the cases where best object detectors miss objects while the

visual phrase detectors correctly localize visual phrases.

One reasonable concern is that the number of phrases

grows exponentially in the number of objects, and there

may not be enough training data for each visual phrase. Our

experience of visual phrases mirrors the experience of ma-

chine translation community with linguistic phrases. The

number of useful visual phrases (phrases) is significantly

smaller than the number of all possible combinations of ob-

jects (words). There are many visual phrases that could oc-

cur during tasks but we tend to encounter very few of those.

Further, many visual phrases show substantially reduced vi-

sual complexity compared to independent objects and so

one doesn’t need to have a large number of training exam-

ples to accurately learn visual phrases. For example, our

“person riding horse” detector, learned with default settings

on only 50 positive examples, significantly outperforms the

heavily fine tuned state of the art models for “horse” and

“person” learned on thousands of examples (see Figure 4

and Table 1 for more details).

We believe that the current choice of categories as ba-

sic atoms of recognition is arbitrary. We argue that these

basic atoms should be chosen by performance criteria. Op-

portunism is the key to this principle. Instead of learning

some basic level detectors and using them no matter how

good they are, we learn detectors at different levels and use

reliable ones and then decode to obtain a final interpretation

(Figure 2). Decoding uses all detection responses to de-

cide which detections are worth reporting as the final result.

Decoding is an inevitable part of multiple object detection.

The decoder may need to boost some detections and sup-

press others based on local context.

There is an analogy to machine translation problems

where the alignment has to be established between phrases

and areas of images. One might think of our system as hav-

ing a phrase table with entities like “person”, “horse”, and

“person riding horse”. The ultimate goal is to look at all

phrases and find the longest phrase that matches. This pro-

cedure is often called decoding in machine translation. Our

decoder has to take into account that some of the detectors

should overlap and when they overlap it has to decide which

of the overlapping detectors are worth reporting.

In this paper we show the benefits of opportunistically

selecting basic atoms of recognition and the significant gain

in directly detecting visual phrases. Our contributions are:

1) Introducing visual phrases as categories for recognition;

2) Introducing a novel dataset for phrasal recognition; 3)

Showing that considering visual phrases provides a signifi-

cant gain over state of the art object detectors coupled with

the state of the art methods of modeling interactions; 4) In-

troducing a decoding algorithm that takes into account spe-

cific properties of interacting objects in multiple levels of

abstraction; 5) Producing state of the art performance re-

sults in multi-class object recognition.

2. Related Works

Object Recognition: Due to limited space we only men-

tion the most relevant works in object recognition. De-

formable templates [3, 4] and part based models [1, 10, 5]

are of the most successful methods in object recognition.

In this paper we use the state of the art detectors in [9] us-

ing deformable part models. This work considers multiple

roots to model the appearance changes due to viewpoint or

inherent intra-class variations.

Object Interactions: All methods that model interac-

tions between objects neglect the change in the appearance

of objects due to interactions with other objects. We differ

from all by taking this effect into account. Gupta et. al.

[11] model these interactions by modeling the prepositions

and adjectives that relate nouns. Yao and Li [16] model the

1746

Farhadi Sadeghi 11



Decoding helps

bicycle bottle car chair dog horse person sofa

detectors of [8] 0.434 0.429 0.329 0.213 0.316 0.438 0.295 0.204

[2] without phrases 0.431 0.425 0.191 0.225 0.297 0.475 0.204 0.167

[2] with phrases 0.449 0.435 0.228 0.217 0.316 0.462 0.286 0.204

Our decoding without phrases 0.437 0.434 0.330 0.216 0.329 0.440 0.297 0.218

Our decoding with phrases 0.457 0.435 0.344 0.227 0.335 0.485 0.302 0.260
Table 2. Phrasal recognition helps object detection. This table compares the performance of our decoding with that of [2] with and without

visual phrases using per class AP’s. Adding visual phrases helps detection of objects. This table also shows that our decoding outperforms

the state of the art object detectors of [8] and state of the art multiclass recognition method of [2].

Figure 6. Rows 1 and 2 depicts our results before and after decoding, respectively. The same applies to rows 3 and 4. For example, in image

“a”, our decoding boosts the confidence of the bicycle classifier and suppresses the confidences of wrong person detections using a reliable

“person riding bicycle” detection. In image “c”, a confident “dog lying on sofa” detector improves the confidence of the sofa detection and

decreases the confidences of wrong person detections. In image “d”, the “person sitting on chair” detector increases the confidence of the

chair detection. Our decoding shows that visual phrases help object detection and vice versa. In image “b”, the confident sofa detection

boosts the confidence of “dog lying on sofa” detection.

tells a story: Generating sentences from images. In ECCV, 2010.

1348
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Conclusion

• Recognition is subtle
• strong basic methods based on classifiers
• many meanings, useful in different contexts

• Important recognition technologies coming 
• attributes
• phrases
• geometry
• sentences

• Crucial open questions
• dataset bias
• links to utility



Subtleties:  Environmental knowledge

Hoiem et al 06



Environmental knowledge is powerful

Hoiem et al 06



V. Hedau et al ‘09



V. Hedau et al ‘09



Environmental knowledge is powerful

Hedau et al 2010



Conclusion

• Recognition is subtle
• strong basic methods based on classifiers
• many meanings, useful in different contexts

• Important recognition technologies coming 
• attributes
• phrases
• geometry
• sentences

• Crucial open questions
• dataset bias
• links to utility



Subtleties: What is worth saying?
Two girls take a break to sit and talk .

Two women are sitting , and one of them is holding something .

Two women chatting while sitting outside

Two women sitting on a bench talking .

Two women wearing jeans , one with a blue scarf around 
her head , sit and talk .

Sentences from Julia Hockenmaier’s work

Rashtchian ea 10

For language people:  Pragmatics - what is worth saying?



Gupta ea 09

Predicting stylized narrations



Rich(ish) sentences from simple intermediates

Farhadi ea 10

Object, action, scene



Examples
12 Authors Suppressed Due to Excessive Length

(pet, sleep, ground) see something unexpected.

(dog, sleep, ground) Cow in the grassfield.

(animal, sleep, ground) Beautiful scenery surrounds a fluffly sheep.

(animal, stand, ground) Dog hearding sheep in open terrain.

(goat, stand, ground) Cattle feeding at a trough.

(furniture, place, furniture) Refrigerator almost empty.

(furniture, place, room) Foods and utensils.

(furniture, place, home) Eatables in the refrigerator.

(bottle, place, table) The inside of a refrigerator apples, cottage cheese, tupperwares and lunch bags.

(display, place, table) Squash apenny white store with a hand statue, picnic tables in

front of the building.

(transportation, move, track) A man stands next to a train on a cloudy day

(bike, ride, track) A backpacker stands beside a green train

(transportation, move, road) This is a picture of a man standing next to a green train

(pet, sleep, ground) There are two men standing on a rocky beach, smiling at the camera.

(bike, ride, road) This is a person laying down in the grass next to their bike in

front of a strange white building.

(display, place, table) This is a lot of technology.

(furniture, place, furniture) Somebody’s screensaver of a pumpkin

(furniture, place, furniture) A black laptop is connected to a black Dell monitor

(bottle, place, table) This is a dual monitor setup

(furniture, place, home) Old school Computer monitor with way to many stickers on it

Fig. 3. Generating sentences for images: We show top five predicted triplets in the

middle column and top five predicted sentences in the right column.

4.4 Out of Vocabulary Extension

Figure 6 depicts examples of the cases where we could successfully recognize ob-

jects/actions for which we have no detector/classifier. This is very interesting as

the intermediate meaning space allows us to benefit from distributional seman-

tics. This means that we can learn to recognize unknown objects/actions/scenes

by looking at the patterns of responses from other similar known detector/classifiers.

5 Discussion and Future Work

Sentences are rich, compact and subtle representations of information. Even

so, we can predict good sentences for images that people like. The intermediate

meaning representation is one key component in our model as it allows benefiting

from distributional semantics. Our sentence model is oversimplified. We think

an iterative procedure for going deeper in sentences and images would be the

right direction. Once a sentence is generated for an image, it is much easier to

check for adjectives and adverbs.
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Adding Attributes and Prepositions

Kulkarni et al 11



Adding Attributes and Prepositions

Kulkarni et al 11



Nobody was hurt in the coming movie





How many adults were on the platform and what were they doing?



What’s going to happen to the baby?

What outcome do we expect?

How are other people feeling?

What will they do?





Conclusion

• Recognition is subtle
• strong basic methods based on classifiers
• many meanings, useful in different contexts

• Important recognition technologies coming 
• attributes
• phrases
• geometry
• sentences

• Crucial open questions
• dataset bias
• links to utility



Bias

• Frequencies in the data may misrepresent the application

• Because the labels are often wrong 

• Because of what gets labelled
• P(labelled|X) is not uniform
• eg obscure but important objects in complex clutter
• eg pedestrians in crowds

• Because of what gets collected
• eg. pictures from the web are selected - not like a camera on head
• eg.  “Profession” labelling for faces in news pictures 

Should not be perjorative

X=data

Curation bias

Label bias

Label error



Bias is pervasive

Torralba+Efros 11



Size doesn’t make bias go away

• And could make it worse...
• eg  your dataset collector really likes red cars

• cf next slide





Induction

• Fundamental principle of machine learning
• if the world is like the dataset, then future performance will be like training
• Chernoff bounds, VC dimension, etc., etc.

• But what if the world can’t be like the dataset?



Object recognition

• The world can’t be like the dataset because
• many things are rare 
• this exaggerates bias

Wang et al, 10



Defenses against Bias

• Appropriate feature representations
• eg illumination invariance

• Appropriate intermediate representations
• which could have less biased behavior
• perhaps attributes?

• Appropriate representations of knowledge
• eg geometry --- pedestrian example



Conclusion

• Recognition is subtle
• strong basic methods based on classifiers
• many meanings, useful in different contexts

• Important recognition technologies coming 
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• links to utility



Another belief space about recognition

• Categories are highly fluid 
• opportunistic devices to aid generalization
• affected by current problem, utility 

• instances can belong to many categories
• simultaneously

• at different times, the same instance may belong to different categories
• categories are shaded
• much “within class variation” is principled

• Most categories are rare
• Many might be personal, many are negotiated

• Understanding (recognition)
• constant coping with the (somewhat) unfamiliar
• bias is pervasive, affects representation



Co-existing category systems

Monkey or Plastic toy or  both or irrelevant

Person or child or beer drinker or 
beer-drinking child or tourist or

holidaymaker or obstacle or 
potential arrest or irrelevant or...

Some of this depends on what you’re
trying to do, in ways we don’t understand



Conclusion

• Recognition is subtle
• strong basic methods based on classifiers
• many meanings, useful in different contexts

• Important recognition technologies coming 
• attributes
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• geometry
• sentences

• Crucial open questions
• dataset bias
• links to utility



The end
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• ONR, NSF, Google



Query on

“Rose”

Example from Berkeley 
Blobworld system

Annotation results in complementary words and pictures 

Observation



Query on

Example from Berkeley 
Blobworld system

Annotation results in complementary words and pictures 



Query on

and

“Rose”

Example from Berkeley 
Blobworld system

Annotation results in complementary words and pictures 



Roots

• Observation:
• Pictures affect nearby words (Barnard ea 01a, 01b; Duygulu ea 02; 

probably many others)
• Even if they’re not really annotations (Berg, 06; quite likely Google, too?) 
• now a really useful commonplace

• Analogy:
• Object recognition seems somewhat like machine translation, etc.
• Fertile

• attributes ?=? adjectives
• visual phrases

• These are correlations - what’s the latent variable?

Meaning



What we can do

• Primary machine is the classifier
• features in, decision out

• Immensely powerful feature constructions

• Decision is typically label
• “cat”, “dog”, “motorcycle”, etc.
• drawn from vocabularies of 20-1000 

• (or so, depending on paper)

Vision has first rate intellectual tools for attacking recognition; 
we’re in amazingly good shape.



Aspects of Meaning

• What is the output of an object recognition system like?
• not just a list of what’s there

• What fragments should be recognized?
• objects
• ?
• scenes

• What are the things we recognize like?
• what can they do?
• how do we learn about it?

• How can we deal with the unfamiliar?



• What is the output of an object recognition system like?
• not just a list of what’s there

• What fragments should be recognized?
• objects
• ?
• scenes

• What are the things we recognize like?
• what can they do?
• how do we learn about it?

• How can we deal with the unfamiliar?

Aspects of Meaning



Scenes > Visual phrases > Objects
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Figure 4: Key word based matte searching. The top two rows are the top 8 ranked mattes returned for search with key words ”running dog”;

the bottom two rows are the top 8 ranked mattes returned for search with the key word ”girl”. Note that the ranking is based on mattes’

quality instead of semantic closeness to the search words, e.g., the 7th result from search for ”girl”.

on Caltech256 and VOC2010 data sets.243

Figure 3 shows the precision-recall curve on each data set. Note244

that the performance of the classifier varies from different data set,245

mainly due to the varying level of matting difficulty in different246

data sets. For moderately well-behaved data set, e.g., flickr, we get247

39% recall at 81% precision. The positive labeling rate for flickr248

data set is about 24%. By setting the classifier’s threshold at 39%249

recall, we expect to get about 35 positive responses with 28 true250

positives. These number indicates that our automatic matting sys-251

tem are very promising in building large pool of fragments from252

web-scale image collections. For example, by applying the system253

to a 7663-image flickr data set, we obtain 2477 positive fragments.254

5 Applications255

Having a system that can fully automatically produce high accuracy256

makes photo editing practical. With a web-scale repository of ac-257

curately segmented image fragments image composition is as sim-258

ple as putting these pieces together. One issue is how to organize259

these fragments so that an artist can easily find what she needs. In260

this chapter we first explain a natural approach to a keyword search261

method and then show interesting results on image composition.262

5.1 Keyword Based Matte Searching263

We provide a large-scale matte dictionary using our fully automatic264

matting method on internet images. At this scale, we need to or-265

ganize the fragments in a way that makes the search easy. One266

natural approach is to tag fragments with keywords and then search267

our matte dictionary by the keywords. The images we use either268

come with a category label (PASCAL or Caltech256 images), or269

have multiple tags associated with them. We use these tags to index270

our fragments. For each tag, we sort the matching fragments based271

on our classification accuracy explained in section ??. For example272

Figure ?? shows examples of the top fragments corresponding to a273

the keyword “girl”. Since our images may have tagged with multi-274

ple tags we can query with complex keyword like “running dogs” or275

“happy kid”. The ability to search for fragments that correspond to276

complex queries significantly reduces the amount of time an artist277

spend to make a novel image. An artist can search as she thinks278

about the image in her mind. Our system allows users to search for279

scenes, objects, actions and adjective. For example, if an artist is280

thinking about putting a “black dog running” in a “park” she can281

search for the “park scene” first and select the fragments of interest282

among several proposals and then search for “black dog” or “dog283

running” or even “black dog running” and select among several pro-284

posals.285

To provide a sense of the coverage of our system we show the286

number of fragments we have in our dictionary for several cate-287

gories. (Figure 6). This is a subset of our vocabularies to show the288

coverage of our dictionary and a sample for the number of avail-289

able fragments in out system. Since our method is fully automatic290

it is straightforward to scale up our system to anyones desirable291

size. The Bottom histogram in Figure 6 shows the top 25 categories292

based on the average per class scores.

Figure 6: Category coverage histogram: the number of positive

mattes returned for the categories on our flickr data set. 604 cate-

gories (key words from user annotated descriptions) are generated

from the data set. Upper: the coverage histogram for all categories.

Bottom: the coverage histogram for the top 25 categories. X axis

are the categories, Y axis are the number of positive responses.

293

5.2 Image Composition294

Once a user selects the fragments from our proposals, putting frag-295

ments together is straight forward. Since our matting algorithm pro-296

duces high accuracy fragments, image composition involves using297
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“Sledder” 
Is this one thing?  

Should we cut her off her sled?



• What is the output of an object recognition system like?
• not just a list of what’s there

• What fragments should be recognized?
• objects
• ?
• scenes

• What are the things we recognize like?
• what can they do?
• how do we learn about it?

• How can we deal with the unfamiliar?

Aspects of Meaning



Describing objects
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Extra attributes
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Learn by reading
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• What is the output of an object recognition system like?
• not just a list of what’s there

• What fragments should be recognized?
• objects
• ?
• scenes

• What are the things we recognize like?
• what can they do?
• how do we learn about it?

• How can we deal with the unfamiliar?

Aspects of Meaning



Most things are unfamiliar
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Abstract

Learning models for recognizing objects with few or no

training examples is important, due to the intrinsic long-
tailed distribution of objects in the real world. In this paper,

we propose an approach to use comparative object similar-

ity. The key insight is that: given a set of object categories
which are similar and a set of categories which are dis-

similar, a good object model should respond more strongly

to examples from similar categories than to examples from
dissimilar categories. We develop a regularized kernel ma-

chine algorithm to use this category dependent similarity
regularization. Our experiments on hundreds of categories

show that our method can make significant improvement,

especially for categories with no examples.

1. Introduction

There are very many object names. Training a system
with many examples of each is likely to be difficult (most
categories have few examples as shown in Figure 1). Even
if we could train such a system, doing so would not yield
much insight into how people recognize objects. People
seem to manage with few or no visual examples, because
there is much other information available to help identify
objects. An important cue is being told what an object is
“like”. For example, few people know what a “serval” is,
but when told it is like a leopard, but with longer legs and
lighter body, most can identify one in a picture. “A serval
is like a leopard” is a statement defining a new category in
terms of existing categories.

Current methods to exploit similarity information in
computer vision cannot deal with such statements. The
usual method is metric learning. Here one measures sim-
ilarity with some distance in a feature space, and adjusts
feature weights to make objects more similar to those in
the same category and dissimilar to those in different cat-
egories [10, 26, 25]; analogous procedures can be applied
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Figure 1. Most categories in the dataset we use (which is a part of La-
belme) have few or no examples. The top image shows “object clouds”.
Objects with bigger names have more instances. Most objects have small
names because they have few examples. The bottom image shows number
of instances for the top 200 objects. The top 5 categories are: window,
tree, wall, building and car. The number of instances decays very quickly.

to measures of similarity that are not metric [4]. These
methods cannot use explicit inter-category information. In
the absence of category labels, data-dependent measures of
smoothness can be used to weight features [9]. In each case,
the result is a global similarity procedure — the metric is
adjusted to be consistent with all available similarity infor-
mation.

An alternative global similarity procedure uses multidi-

1
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For language people:  distributional semantics?



What is to be done?

• Cross border raiding by vision, NLP communities is fertile
• long may it continue
• even if the details of the analogy are sometimes shaky

• Build a body of knowledge about everyday objects
• “mundane’’ knowledge, hard to harvest from the web

• Build a theory of what it means to be “like” something
• in what respect are things similar? how can we use this idea?

• Build a theory of knowing and reasoning about objects
• as applied to the concrete world
• linked to visual observations


