Big datasets - promise
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Conclusion

Collecting datasets 1s highly creative
e rather than a nuisance activity
® tools are getting better by the day

Bias, weird frequencies are a major issue

® There are no best practices for avoiding problems
® May shape our representations

Recognition problems are hard to frame
® excess certainty may be dangerous



¢ Frequencies in the data may misrepresent the application

® Because the labels are often wrong

e Because of what gets labelled
e P(labelledlX) is not uniform

® eg obscure but important objects in complex clutter
® cg pedestrians in crowds

e Because of what gets collected

® cg. pictures from the web are selected - not like a camera on head
e cg. “Profession” labelling for faces in news pictures




Induction 1s why bias matters

¢ Fundamental principle of machine learning

e if the world is like the dataset, then future performance will be like training
® Chernoff bounds, VC dimension, etc., etc.

e But what if the world can’t be like the dataset?




Pedestrian Detection

e Pedestrian detection:

e We may not run down people who behave strangely
e want “will fail to detect with frequency ...”
e cando “...” IF test setis like training set
e There is a large weight of easy cases which may conceal hard cases

e Resolution (frankly implausible)
e cnsure that training set is like test set

e Resolution (perhaps)

® (try only to learn things that are “fairly represented” in datasets
® i.e. build models
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Representation 1s a response to bias

Attributes
Semantic parts
Tying
Example
e Ramanan’s activity example
® where you are often reveals what you are doing
® but how do we encode where you are
® Xx-y coords?
® near the stove?




Conclusion

Q: What do big datasets tell us?
A: Not much, if the emphasis 1s on size

Collecting datasets 1s highly creative
e rather than a nuisance activity
® tools are getting better by the day

Bias, weird frequencies are a major issue
® There are no best practices for avoiding problems
® May shape our representations



One belietf space about recognition

Categories are fixed and known
e Each instance belongs to one category of k

Object recognition=k-way classification

current data sets ok in principle
® improve coverage
e collect unbiased datasets with fair coverage

research agenda:
e more features, better classifiers:
e perhaps category hierarchies for statistical leverage (tying)




What have we inherited from this view?

e Deep pool of information about feature constructions
e Tremendous skill and experience in building classifiers

e Much practice at empiricism
® which is valuable, and hard to do right
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Another beliet space about recognition

e (ategories are highly fluid
® opportunistic devices to aid generalization
e affected by current problem
instances can belong to many categories
® simultaneously
at different times, the same instance may belong to different categories
categories are shaded
® much “within class variation” is principled
Most categories are rare
Many might be personal, many are negotiated

e Understanding (recognition)
® constant coping with the (somewhat) unfamiliar
® bias is pervasive, affects representation




Visual complexity

e Some “categories” hard to detect, others easy?
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Co-existing category systems

Monkey or Plastic toy or both or irrelevant

Person or child or beer drinker or
beer-drinking child or tourist or
holidaymaker or obstacle or
potential arrest or irrelevant or...




Research agenda

e How do we build bias-robust representations?

e What should we mean by “category”?
® how are categories created?
® how can multiple category systems co-exist?
® how can we sew together categorization and utility?

e What should we report about pictures?

¢ What kind of clumps of meaning should we detect?
® What should we say about things?




