
Inferring 3D from 2D

• History

• Monocular vs. multi-view analysis

• Difficulties
– structure of the solution and ambiguities

– static and dynamic ambiguities

• Modeling frameworks for inference and learning
– top-down (generative, alignment-based) 

– bottom-up (discriminative, predictive, exemplar-based)

– Learning joint models

• Take-home points



History of Analyzing Humans in Motion

• Multiple Cameras
(Eadweard Muybridge , 1884)

• Markers (Etienne Jules Marey, 1882)

chronophotograph



Human motion capture today
120 years and still fighting …

• VICON ~ 100,000 $
– Excellent performance,    

de-facto standard for special
effects, animation, etc

• But heavily instrumented
– Multiple cameras
– Markers in order to simplify the image correspondence
– Special room, simple background

Major challenge: Move from the laboratory to the real world



What is so different between multi-
view and single-view analysis?

• Different emphasis on the relative importance 
of measurement and prior knowledge 
– Depth ambiguities
– Self-occluded body parts

• Similar techniques at least one-way
– Transition monocular->multiview straightforward

• Monocular as the `robust limit’ of multi-view 
– Multiple cameras unavailable, or less effective in 

real-world environments due to occlusion from other 
people, objects, etc.



3D Human Motion Capture Difficulties

Loss of 3D information in 

the monocular projection

Self-occlusions

Reduced observability of

body parts due to loose

fitting clothing

Different body sizes

Accidental allignments

Several people, occlusions

Difficult to segment the

individual limbs

General poses

Motion blur

Partial Views



Levels of 3d Modeling

• Coarse body model

• 30 - 35 d.o.f

• Simple appearance 
(implicit texture map)

• Complex body model

• 50 - 60 d.o.f

• Simple appearance
(edge histograms)

• Complex body model

• ? (hundreds)  d.o.f

• Sophisticated modeling 
of clothing and lighting

Photo           Synthetic
This section



Difficulties

• High-dimensional state space (30-60 dof)

• Complex appearance due to articulation, deformation, 
clothing, body proportions

• Depth ambiguities and self-occlusion

• Fast motions, only vaguely known a-priori 
– External factors, objects, sudden intentions…

• Data association (what is a human part, what is 
background – see the Data Association section)



Difficulties, more concretely

Data association 
ambiguities

Preservation of         
physical constraints

Occlusions

(missing data)

Left arm

Left / right leg ?

Depth ambiguities



Articulated 3d from 2d Joint Positions 
Structure of the monocular solution: Lee and Chen, CVGIP 1985 (!)

• Characterizes the space of solutions, assuming
– 2d joint positions + limb lengths 
– internal camera parameters

• Builds an interpretation tree of projection-
consistent hypotheses (3d joint positions)
– obtained by forward-backward flips in-depth 
– O(2# of body parts) solutions
– In principle, can prune some by physical reasoning
– But no procedure to compute joint angles, hence 

difficult to reason about physical constraints

• Not an automatic 3d reconstruction method
– select the true solution (out of many) manually

• Adapted for orthographic cameras (Taylor 2000)

Taylor, CVIU 2000
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Why is 3D-from-monocular hard? <v> 
Static, Kinematic, Pose Ambiguities

• Monocular static pose optima

– ~ 2Nr of Joints, some pruned by physical constraints

– Temporally persistent 

Sminchisescu and Triggs ‘02



Model / image                Filtered Smoothed

Trajectory Ambiguities <v>
General smooth dynamics

2 (out of several) plausible trajectories
Sminchisescu and Jepson ‘04



Trajectory Ambiguities
Smooth dynamics

2 (out of several) plausible trajectories



Trajectory Ambiguities <v>
Learned latent space and smooth dynamics

• Image consistent, smooth, typically human…

Interpretation #1

Says `salut’ when conversation ends

(before the turn)

Interpretation #2

Points at camera when conversation ends

(before the turn)

Sminchisescu and Jepson ‘04



Visual Inference in a 12d Space 

6d rigid motion + 6d learned latent coordinate

Interpretation #1

Points at camera when 

conversation ends

(before the turn)

Interpretation #2

Says `salut’ when 

conversation ends

(before the turn)



The Nature of 3D Ambiguities

• Persistent over long time-scales (each S-branch)

• Loops (a, b, c) have limited time-scale support, 
hence ambiguity cannot be resolved by extending it

State

Observationr1

x1

x3

x2



• Predict state distributions from 
image features

• Learning to `invert’ perspective 
projection and kinematics is difficult 
and produces multiple solutions

– Multivalued mappings ≡ multimodal 

conditional state distributions

• Temporal extensions necessary

Generative vs. Discriminative Modelling
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x  is the model state

r  are image observations

are parameters to learn

given training set of (r,x) pairs

θ

• Optimize alignment with image 
features

• Can learn state representations, 
dynamics, observation models; 
but difficult to model human 
appearance

• State inference is expensive, 
need effective optimization
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Temporal Inference (tracking)
• Generative (top-down) chain models 

(Kalman Filter, Extended KF, Condensation)

• Discriminative (bottom-up) chain models

(Conditional Bayesian Mixture Of Experts Markov Model - BM3E,

Conditional Random Fields -CRF, Max. Entropy Models - MEMM)

Model the 
observation

Condition on
the observation



Temporal Inference
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Generative / Alignment Methods

• Modeling

• Methods for temporal inference

• Learning low-dimensional representations 
and parameters



Model-based Multiview
Reconstruction
Kehl, Bray and van Gool ‘05

• Body represented as a textured 3D mesh

• Tracking by minimizing distance between 3d 
points on the mesh and volumetric 
reconstruction obtained from multiple cameras



Generative 3D Reconstruction
Annealed Particle Filter

(Deutscher, Blake and Reid, ‘99-01)

Improved results (complex motions) when  
multiple cameras (3-6) were used

Careful design

• Dynamics

• Observation likelihood

– edge + silhouettes

• Annealing-based 
search procedure, 
improves over particle 
filtering

• Simple background and 
clothing

monocular



Generative 3D Reconstruction
Sidenbladh, Black and Fleet, ’00-02; Sigal et al ‘04

Monocular Multi-camera

• Condensation-based filter

• Dynamical models 

– walking, snippets

• Careful learning of observation 
likelihood distributions

• Non-parametric belief 
propagation, initialization by limb 

detection and triangulation



Candidate Sampling Chains

s=CovarianceScaledSampling(mi)

T=BuildInterpretationTree (s,C)

E=InverseKinematics(T)

Prune and locally optimize E
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Kinematic Jump Sampling
Sminchisescu & Triggs ‘03
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Kinematic Jump Sampling <v>

Sminchisescu and Triggs ‘03



What can we learn?
• Low-dimensional perceptual representations, 

dynamics (unsupervised)
– What is the intrinsic model dimensionality?

– How to preserve physical constraints?

– How to optimize efficiently?

• Parameters (typically supervised)
– Observation likelihood (noise variance, feature weighting)

– Can learn separately (easier) but how well we do?

– Best to learn by doing (i.e. inference)
• Maximize the probability of the right answer on the training data, 

hence learning = inference in a loop

• Need efficient inference methods 



Intrinsic Dimension Estimation <v>
and Latent Representation for Walking

Intrinsic dimension estimation
• 2500 samples from motion capture

• The Hausdorff dimension (d) is 
effectively 1, lift to 3 for more flexibility

• Use non-linear embedding to learn the 
latent 3d space embedded in an 
ambient 30d human joint angle space

Optimize in 3d 
latent space
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Sminchisescu and Jepson ‘04



3D Model-Based Reconstruction
(Urtasun, Fleet, Hertzmann and Fua’05)

• Track human joints using the WSL tracker (Jepson et al’01)

• Optimize model joint re-projection error in a low-dimensional 
space obtained using probabilistic PCA (Lawrence’04)



Learning Empirical Distribution of 
Edge Filter Responses

(original slide courtesy of Michael Black)

pon(F) poff (F)

Likelihood ratio, pon/ poff ,  used for edge detection
Geman & Jednyak and Konishi, Yuille, & Coughlan



Learning Dependencies
(original slide courtesy of Michael Black); Roth, Sigal and Black’04



Learning Dependencies
(original slide courtesy of Michael Black); Roth, Sigal and Black ’04

Filter responses are not conditionally independent

Leaning by Maximum Entropy



The effect of learning on the 
trajectory distribution

Before After
• Learn body proportions + parameters of the observation model (weighting 

of different feature types, variances, etc)

• Notice reduction in uncertainty

• The ambiguity diminishes significantly but does not disappear

Sminchisescu, Welling and Hinton ‘03



Conditional /Discriminative/ Indexing 
Methods

• Nearest-neighbor, snippets

• Regression

• Mixture of neural networks

• Conditional mixtures of experts

• Probabilistic methods for temporal 
Integration



Discriminative 3d: Nearest Neighbor
Parameter Sensitive Hashing (PSH)

Shakhnarovich, Viola and Darell ’03

• Relies on database of (observation, state) pairs rendered 
artificially
– Locates samples that have observation components similar to the 

current image data (nearest neighbors) and use their state as putative 
estimates

• Extension to multiple cameras and tracking by non-linear model 
optimization (PSH used for initialization Demirdjan et al, ICCV05)
– Foreground / background segmentation from stereo



Annotations

{run,walk, wave, etc.}

3D motion
library

original video 2D track

3D pose and 
annotation

Motion Synthesizer

user

StandWave

detect
model
build

+

Discriminative 3d: Nearest Neighbor Matching

2D->3D Pose + Annotation

match 1/2 second clips of motion

Ramanan and Forsyth ‘03



Ramanan and Forsyth’03

2D->3D pose + annotation <v>



Discriminative 3d: Regression Methods
Aggarwal and Triggs ‘04, Elgammal & Lee ‘04

• (A&T) 3d pose recovery by non-linear 
regression against silhouette 
observations represented as shape 
context histograms
– Emphasis on sparse, efficient predictions, 

good generalization

• (A&T) Careful study of dynamical 
regression-based predictors for walking 
and extensions to mixture of regressors
(HCI’05)

• (E&L) pose from silhouette regression 
where the dimensionality of the input is 
reduced using non-linear embedding
– Latent (input) to joint angle (output) state 

space map based on RBF networks



Discriminative 3d:

Specialized Mappings Architecture
Rosales and Sclaroff ‘01

• Static 3D human pose 
estimation from 
silhouettes (Hu moments)

• Approximates the 
observation-pose 
mapping from training 
data
– Mixture of neural networks

– Models the joint distribution

• Uses the forward model 
(graphics rendering) to 
verify solutions



Conditional Bayesian Mixtures of Experts

Cluster 1

Cluster 2

Cluster 3

Expert 1

Expert 2

Expert 3
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• A single expert cannot represent multi-valued relations

• Multiple experts can focus on representing parts of the data

• But the expert contribution (importance) is contextual

– Disregarding context introduces systematic error (invalid extrapolation)

• The experts need observation-sensitive mixing proportions

Data Sample Multiple Experts          Expert Proportions (Gates)

vs. uniform coefficients (Joint)

Single Expert 



Discriminative Temporal Inference
BM3E= Conditional Bayesian Mixture of Experts Markov Model

• The temporal prior is a Gaussian mixture

• The local conditional is a Bayesian mixture of Gaussian experts

• Integrate pair-wise products of Gaussians analytically

• `Bottom-up’ chain

Conditions on
the observation
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Local conditional Temporal (filtered) prior

Sminchisescu, Kanaujia, Li, Metaxas ‘05



Turn during Dancing  <v>

Notice imperfect silhouettes
Sminchisescu, Kanaujia, Li, Metaxas ‘05



Low-dimensional Discriminative  Inference

• The pose prediction problem is highly structured

– Human joint angles are correlated, not independent 

– Learn conditional mixtures between low-dimensional 
spaces decorrelated using kernel PCA (kBME)

RVM – Relevance Vector Machine

KDE – Kernel Dependency Estimator

Sminchisescu, Kanaujia, Li, Metaxas ‘05



6d 56d

4d 10d

Sminchisescu, Kanaujia, Li, Metaxas ‘05

Low-dimensional Discriminative  Inference
(translation removed for better comparison)



Evaluation on artificially generated 
silhouettes with 3d ground truth

(average error / average maximum error, per joint angle)

84

• NN = nearest neighbor

• RVM = relevance vector machine

• BME = conditional Bayesian mixture of experts



Evaluation, low-dimensional models
(average error / joint angle)

• KDE-RR=ridge regressor between low-dimensional spaces

• KDE-RVM=RVM between low-dimensional spaces
– Unimodal methods average competing solutions

• kBME=conditional Bayesian mixture between low-
dimensional state and observation spaces
– Training and inference is about 10 time faster



Self-supervised Learning of a 
Joint Generative-Recognition Model

• Maximize the probability of the (observed) 
evidence (e.g. images of humans)

• Hence, the KL divergence between what the 
generative model p infers and what the 
recognition model Q predicts, with tight bound at 
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Self-supervised Learning of a
Joint Generative-Recognition Model

• Local optimum for parameters

• Recognition model is a conditional mixture of data-

driven mean field experts 

– Fast expectations, dimensions decouple



Generalization under clutter

Sminchisescu, Kanaujia, Metaxas ‘06

Single 
expert

Mixture 
of 
experts



Take home points
• Multi-view 3d reconstruction reliable in the lab 

– Measurement-oriented

– Geometric, marker-based 
• correspondence + triangulation

– Optimize multi-view alignment 
• generative, model-based

– Data-association in real-world (occlusions) open

• Monocular 3d as robust limit of multi-view
– Difficulties: depth perception + self-occlusion

– Stronger dependency on efficient non-convex 
optimization and good observation models

– Increased emphasis on prior vs. measurement



Take home points (contd.)

• Top-down / Generative / Alignment Models
– Flexible, but difficult to model human appearance
– Difficult optimization problems, local optima
– Can learn constrained representations and 

parameters 
• Can handle occlusion, faster search (low-d)
• Fewer local optima -- the best more likely true solutions

• Discriminative / Conditional / Exemplar–based 
Models
– Need to model complex multi-valued relations
– Replace inference with indexing / prediction
– Good for initialization, recovery from failure, on-line
– Still need to deal with segmentation / data association


