
Activity representation and recognition



Take home points

• There is very seldom a taxonomy
• Generative models based around FSA/HMM are popular
• Discriminative models are well worth using
• Very little clear information about best ways to proceed.



Core difficulties

• The configuration of the body remains difficult to transduce
• and may not be essential to understand what’s going on
• whence appearance, location based methods

• There is no natural taxonomy of activity
• but we’re beginning to get beyond walk, run, jump
• introspection suggests taxonomy may be wrong approach?

• Composition and nulls create fearsome complexity
• few representational methods can really deal with this

• The role of dynamics is uncertain
• What needs to be transduced?



Classes of method

• Appearance based
• Logical representations
• Finite state representations
• fitted HMM
• switching linear dynamical systems

• Discriminative methods
• Authored models



Temporal scale and activity

• Very short timescales
• not much happens 
• low dimensional models seem to work in animation
• motion compresses well
• but body configuration is diagnostic

• Medium timescales
• Motions can be (at least):
• sustained (running, walking, jogging, etc. --- typically periodic)
• punctate (jump, punch, kick)
• parametric (reach, etc.)

• Long timescales
• Motions are complex composites
• visiting an ATM
• reading a book
• cooking a meal



Appearance

• Activities lead to characteristic patterns of image appearance
• in grey level
• in optic flow



Where you are is often a very powerful guide to what you are doing 

Intille et al 95, 97



Fig. 3. Example showing LOTS interface for the Department of Defense (DoD) Smart Sensor Web
program. At left is the unwarping of the paraimage into a pair of panoramic images. The right shows
unwarpings of the top four targets, with only two targets in the scene (one entering a building). The
map shows the targets’ current and recent location history (larger dots are more recent). Dot color
matches the window color showing that target. See Section V for more discussion.

primary goal was the ability to track camouflaged soldiers

moving in woods and fields, the omnidirectional imaging

was a critical feature—in woods, visibility distance is

limited, usually to the 30–50 m range.

It is worth noting that the “spatial resolution” of the

paraimage is not uniform. While it may seem counterin-

tuitive, the spatial resolution of the paraimages is greatest

along the horizon, just where objects are most distant. In

[28], we show that along the horizon, the resolution of an

omnicamera is 4.2 pixels per horizontal degree, which is

about the same as three traditional cameras with 150 FOV

that would be needed to watch the same region. With either

an omnidirectional camera or many traditional cameras,

objects to be tracked in a wide field of view will cover only

a small number of pixels. With 4.2 pixels per degree, a target

of dimension 0.5 m by 2.0 m at 50 m is approximately two

pixels by eight pixels, yielding 16 pixels per target. At 30

m, it is 32 pixels. The numbers stated here presume an ideal

imaging of the target, while actual imaging, “edge” effects,

and partial pixel fills reduce the number of effective pixels

on target. When one considers that the targets will also be

wearing camouflage, as in Figs. 2 and 4, it is clear that

tracking in such a wide field of view requires the processing

of the full resolution (640 480) image with a sensitive, yet

robust, algorithm.

In the next two sections, we review in detail the change

detection and grouping components of the LOTS system. To

illustrate the effectiveness of LOTS, we will present running

examples based on some of the most difficult types of change

detection—the detection and tracking of a sniper.

Fig. 4. This image shows the tracking of soldiers moving in the
woods at Ft. Benning, GA. Each box is on a moving target and only
the small white box on the lower left shows a target at significant
distance (about 20 m). LOTS can detect soldiers at 30–40 m, but
this example uses closer targets so the reader can actually see them.

III. CHANGE DETECTION

One of the most common types of change detection is

based on subtraction of a background model (or models) fol-

lowed by thresholding. At the core of this type of change de-

tection is the modeling of an expected value of a pixel. This

section discusses said techniques.

BOULT et al.: VISUAL SURVEILLANCE OF NONCOOPERATIVE AND CAMOUFLAGED TARGETS 1387

Boult et al 2001

Surveillance by omnidirectional cameras, 
detection of anomalous pixel groups

And can suggest 
you are doing what 
you should not be



Yan + Forsyth 04

Numerous curious 
phenomena related to 

location



Canonical spatiotemporal surface - Left leg Canonical walk - Both surfaces, viewed in XYT

Niyogi Adelson 94

Particular activities often have
characteristic appearance patterns.

Braids appear at the legs of a walker.



Polana Nelson 93, 94
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weights are the number of times that a pixel in is clas-

sified as a non-symmetric pixel during tracking. The initial

weights of are zero and are incremented each time

that the corresponding location (relative to the median tem-

plate coordinate) is detected as a foreground pixel in the in-

put image. Note that a temporal textural templates has two

components that can be used for subsequent identification:

a textural component which represents the appereance of

the object (Figure 7d,f); and a shape component ( ) which

represents weighted shape information (Figure 7c,e). Ex-

amples of temporal textural templates for the entire body

and for non-symmetric regions of a person while they are

walking with and without an object are shown in Figure 7.

Backpack segments the shape component of a temporal tex-

tural template to determine the regions where periodic mo-

tion analysis should be applied. Periodic motion analysis is

applied to a non-symmetric pixel if where

is the fundamental frequency of shape periodicity for the

entire body, and is a constant.

Non-symmetric pixels are group together into regions,

and the shape periodicity of each non-symmetric region is

computed individually. The horizontal projection histogram

segment bounded by a non-symmetric region is used to

compute the shape periodicity of the corresponding non-

symmetric region. A non-symmetric region which does not

exhibit significant periodicity is classified as an object car-

ried by a person, while a non-symmetric region which has

significant periodicity is classified as a body part. In Fig-

ure 8, the final classification results are shown for a walking

person who is not carrying an object, and a person who is

carrying an object.

In the first example, a person is walking with 1Hz fre-

quency (15 frames per half period with 100% confidence

value); the similarity plot of the vertical projection his-

togram for the entire body is shown in Figure 8(a)(right).

Note that the legs and arms of the person violate the sym-

metry constraint periodically during walking. The pixels

around the legs and arms are detected as non-symmetric

pixels and grouped into two non-symmetric regions (region

1 around legs, and region 2 around arms). Then, the simi-

larity plots for region 1 and region 2 are obtained as shown

in Figure 8(a). Note that the shape periodicity algorithm

is applied only to the horizontal projection histogram seg-

ments bounded by regions 1 and 2. Periodicity is detected

for region 1 at 1.1Hz and for region 2 at 1.03 Hz, which

are very similar to the shape periodicity of the entire body.

Therefore those regions are classified as body parts (shown

in green). In the second example, a person is walking and

carrying a bag with 0.85Hz frequency (17.9 frame per half

Haritaoglu, Cutler, Harwood, Davis

The appearance of a silhouette can show whether a person is carrying something
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Abstract

Our goal is to recognize human actions at a distance,

at resolutions where a whole person may be, say, 30 pix-

els tall. We introduce a novel motion descriptor based on

optical flow measurements in a spatio-temporal volume for

each stabilized human figure, and an associated similarity

measure to be used in a nearest-neighbor framework. Mak-

ing use of noisy optical flow measurements is the key chal-

lenge, which is addressed by treating optical flow not as

precise pixel displacements, but rather as a spatial pattern

of noisy measurements which are carefully smoothed and

aggregated to form our spatio-temporal motion descriptor.

To classify the action being performed by a human figure

in a query sequence, we retrieve nearest neighbor(s) from a

database of stored, annotated video sequences. We can also

use these retrieved exemplars to transfer 2D/3D skeletons

onto the figures in the query sequence, as well as two forms

of data-based action synthesis “Do as I Do” and “Do as I

Say”. Results are demonstrated on ballet, tennis as well as

football datasets.

1. Introduction

Consider video such as the wide angle shot of a foot-

ball field seen in Figure 1. People can easily track individ-

ual players and recognize actions such as running, kicking,

jumping etc. This is possible in spite of the fact that the

resolution is not high – each player might be, say, just 30

pixels tall. How do we develop computer programs that can

replicate this impressive human ability?

It is useful to contrast this medium resolution regime

with two others: ones where the figures are an order of mag-

nitude taller (“near” field), or an order of magnitude shorter

(“far” field). In near field, we may have 300 pixel tall fig-

ures, and there is reasonable hope of being able to segment

and label parts such as the limbs, torso, and head, and thus

mark out a stick figure. Strategies such as [19, 12, 11] work

best when we have data that support figures of this resolu-

tion. On the other hand, in far field, we might have only

3 pixel tall figures – in this case the best we can do is to

track the figure as a “blob” without the ability to articulate

the separate movements of the different locations in it. Blob

Figure 1. A typical frame from the NTSC World Cup broad-

cast video that we use as our data. Humans are extremely good

at recognizing the actions of the football players, despite the low

resolution (each figure is about 30 pixels tall; see the zoomed in

player at the lower left corner).

tracking is good enough for applications such as measuring

pedestrian traffic, but given that the only descriptor we can

extract is the translation of the blob as a whole, we cannot

expect to discriminate among too many action categories.

In this paper, we develop a general approach to recog-

nizing actions in “medium” field. Figure 2 shows a flow di-

agram. We start by tracking and stabilizing each human fig-

ure – conceptually this corresponds to perfect smooth pur-

suit movements in human vision or a skillful panning move-

ment by a camera operator who keeps the moving figure in

the center of the field of view. Any residual motion within

the spatio-temporal volume is due to the relative motions of

different body parts: limbs, head, torso etc. We will char-

acterize this motion by a descriptor based on computing the

optical flow, projecting it onto a number of motion chan-

nels, and blurring. Recognition is performed in a nearest

neighbor framework. We have a stored database of previ-

ously seen (and labeled) action fragments, and by comput-

ing a spatio-temporal cross correlation we can find the one

most similar to the motion descriptor of the query action

fragment. The retrieved nearest neighbor(s) can be used for

other applications than action recognition – we can transfer

attached attributes such as appearance or 2D/3D skeletons

Efros et al 03

Motion is a powerful cue at low resolution



Motion Descriptor

Image frame Optical flow 

BlurredComponents Rectified components

Efros et al 03



Comparing motion descriptors

t

motion-to-motion
similarity matrix

…

…

…

…

frame-to-frame
similarity matrix

Σ

Efros et al 03



Classifying Ballet Actions
16 Actions.  Men used to classify women and vice versa.

Efros et al 03



Applications in Computer Games



Bill Freeman flies a magic carpet.

Orientation histograms detect body configuration 
to control bank, raised arm to fire magic spell.

Freeman et al, 98.



Motion fields set javelin timing
Freeman et al 98



Images from ps2.gamezone.com

Sony’s eyetoy estimates motion fields,
links these to game inputs.

Huge hit in EU, well received in US



Correlation-like matching can reveal motion matches to queries
Schechtman Irani 05



Blank et al 05

Spatio-temporal volume is important



Blank et al 05

Extract silhouettes
Smooth to get volume

Compute moment representation on s-t volume referred to body
Match



Distance matrix between sequences of named motions, obtained by
computing distances as above, applying spectral clustering, then reordering.
Blue is small, red is large.  Generally, similar names have small distances.

Blank et al 05



Blank et al 05

Working in a motion query framework relieves the need for a motion taxonomy.  Features computed as 
before, we now seek sequences with small distances.



Detecting anomalous activities

• We may have no examples
• Taxonomy is unhelpful, because it won’t be complete
• and may not cover the cases we care about



Anomaly as a failure to be easily encodable
“Normal” motions have been seen before, at least in part.

Boiman+Irani, 05



Anomaly as a failure to be easily encodable
Anomalous motions are poorly encoded by example frames

Boiman+Irani, 05



Irani et al 05



Irani et al 05



Strengths

• Can be accurate at discrimination
• Query/Match paradigm can avoid taxonomy issue
• but requires examples for query

• Strong at low resolutions
• Location may be a very strong cue to activity in some cases



Critiques

• Segmentation is crucial, and harder than it is made to seem
• View variation may present a problem
• Composition presents problems
• Nulls present problems



Logical models of activity

• Logical formulas in primitives
• spatial relations, motion, support, contact, attachment
• with noise free transduction (Siskind, 92, 95)
• analogous with HMM’s (Siskind+Morris, 96)
• Attractions
• may be quite a broad class of representation
• very general activities (visit to the ATM) might be of this type
• Unproven



Temporal Calculus

Text

Start with an interval algebra 
structure for an activity with 
detectors, relations between

events such as start, finish, etc.

Allow relations to take form Past, Now, Future

Infer relations from detector responses
Note dynamic representation does not represent 

“speed”
Pinhanez Bobick 98



Sign Language as a Problem Domain

• Advantages
• large data sets can be found
• in principle, right answer can be known
• cooperative subjects? and rich problem
• socially useful, perhaps

• State of the art quite advanced for small vocab, controlled 
views
• otherwise rather open



ASL Rough SOA

• Recognition rates 
• 90% on 40 signs (Starner+Pentland 95)_
• 262 isolated signs (Grobel+Assan)
• continuous German 97 signs (Bauer+Heinz)
• 90’s on 53 words (Vogler+Metaxas)
• 90s on 131 Korean using datagloves (Kim et al)
• etc.  see printed text

• But there is no continuous transcription system for large 
vocab
• nothing resembling modern speech systems
• nothing resembling modern MT systems



HMM’S - core ideas 

• Finite state machine maintains hidden state; there are 
stochastic state transitions at known time steps
• At each time step, a measurement is emitted with probability 

conditioned on the hidden state
• Inference
• Dynamic programming
• beam search

• Learning
• EM



HMM’s in speech understanding

• A string of words is modelled at several levels, e.g.
• trigram word models
• pronunciation dictionary per word
• context dependence of phonemes
• acoustic model of context dependent phones

• Each is an FSM
• these are composed
• missing parameters can be supplied in a variety of ways
• count in text (trigrams)
• pronunciation dictionary
• learned from data (acoustics)

• Result:  enormous state space model with relatively few pars 
to learn



Phoneme model

Pronounciation model



Language models



HMM’s in activity recognition

• Gesture
• No pronunciation dictionaries, trigram models, etc. available
• very difficult to learn with large state spaces
• various hacks

• Sign language
• No pronunciation dictionaries, trigram models, etc. available
• but (perhaps) lots of data
• no pooling phone data over examples
• data essentially discriminative

• Surveillance
• same story



Activity recognition by HMM’s used discriminatively (choose the HMM with the highest likelihood), 
silhouettes for tennis activities.

Yamato et al 1992



Starner Pentland 95



Variant HMM’s

• Goal:
• reduce learning complexity of transition probability matrix

• Methods:
• variant architectures
• variant training algorithms 



Factorial HMM’s Ghahramani+Jordan 97



Oliver et al  04

Layered HMM
Note that, in principle, one could build a single HMM,

but the quantization process reduces number of parameters to learn



Oliver et al  04



Parallel HMM’s

• ASL words
• strong hand produces one sequence, weak hand another (or nothing)

• Possible squaring of the space of  phoneme models
• Use 
• phoneme transcription of words
• one HMM for each hand
• require inferred path to be consistent

•

Parallel HMM’s  Vogler and Metaxas  01



Parallel HMM’s

• Small improvement on HMM’s using 
• 3D arm configuration data, 3D tracked visual data



Coupled HMM’s

• Observations in two classes, states split, state transition 
matrix coupled, variant estimation algorithm
• Improvement in discriminative results for very small state 

models, three gestures

Coupled HMM - Brand et al. 97



Finite state models of activity

Variant generalized HMM with variant learning method, 6 states
Kettnaker Brand 99



Switching Linear Dynamical Systems

• Linear dynamical system 
• consists of state vector, linear state transition process, linear emission process
• fair model for some forms of activity, at least at short timescales
• handwriting
• dance (Li et al 02)

• Switching
• discrete state transition process chooses LDS

• In vision
• Bregler, 97; Pavlovic Rehg 2000



• Pavlovic Rehg 2000



Discriminative models of activity

• Matching inferred body to labelled 3D configuration data



Synthesis with off-line control 

• Annotate motions
• using a classifier and on-line learning
• efficient human-in-the loop training

• Produce a sequence that meets annotation demands
• a form of dynamic programming



Annotation - desirable features

• Composability
• run and wave; 

• Comprehensive but not canonical vocabulary
• because we don’t know a canonical vocabulary

• Speed and efficiency
• because we don’t know a canonical vocab.

• Can do this with one classifier per vocabulary item
• use an SVM applied to joint angles
• form of on-line learning with human in the loop
• works startlingly well (in practice 13 bits) Run classifier

Jump classifier

Stand classifier

Carry classifier

Walk classifier P

P

O

O

O
Arikan+Forsyth+O’Brien 03











Farhadi+Forsyth 06

Examples of words (subtitles for land before time III: journey to the mists) at signal res

Find word boundaries by voting using
3 distinct generative models



Spot words using multiclass logistic regression trained on small blocks of frames; regime involves 
base and derived forms of words to control dimension problems

Farhadi+Forsyth 06



Authored representations

• Build a system of representation that allows authoring a 
query
• typically, an FSA or RE
• but could be a query video as above?



Explicit models of activity - Hongeng et al 00



Explicit models of activity - Hongeng et al 00



Composite representations

• Build HMM for each of arm, leg
• for each of a set of labels

• Link states with similar emissions
• Large composite model
• Blocks of states csp to activities

• Now search with FSA
• alphabet 
• composites
• leg-run-arm-wave

• P(endstate| measurements)
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Ranked query results for composite queries for 73 videos, black is relevant
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Take home points

• There is very seldom a taxonomy
• It is not clear what is important
• expressive models of what the body is doing?
• location information?
• other sensors?

• Generative models based around FSA/HMM are popular
• Discriminative models are well worth using
• Very little clear information about best ways to proceed.


