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Application: Image-Based
Rendering

The entertainment industry touches hundreds of millions of people every day, and synthetic pic-
tures of real scenes, often mixed with actual film footage, are now common place in computer
games, sports broadcasting, TV advertising, and feature films. Creating these images is what
image-based rendering—defined here as the synthesis of new views of a scene from prerecorded
pictures—is all about, and it does require the recovery of quantitative (although not necessarily
three-dimensional) shape information from images. This chapter presents a number of represen-
tative approaches to image-based rendering, dividing them, rather arbitrarily, into (a) techniques
that first recover a three-dimensional scene model from a sequence of pictures, then render it
with classical computer graphics tools (naturally, these approaches are often related to stereo and
motion analysis); (b) methods that do not attempt to recover the camera or scene parameters,
but construct instead an explicit representation of the set of all possible pictures of the observed
scene, then use the image position of a small number of tie points to specify a new view of the
scene and transfer all the other points into the new image, in the photogrammetric sense already
mentioned in chapter 10; and (c) approaches that model images by a two-dimensional set of light
rays (or more precisely by the value of the radiance along these rays) and the set of all pictures
of a scene by a four-dimensional set of rays, the light field (Figure 26.1).

26.1 CONSTRUCTING 3D MODELS FROM IMAGE SEQUENCES

This section addresses the problem of building and rendering a three-dimensional object model
from a sequence of pictures. It is, of course, possible to construct such a model by fusing regis-
tered depth maps acquired by range scanners as described in chapter 21, but we focus here on the
case where the input images are digitized photographs or film clips of a rigid or dynamic scene.

620
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Figure 26.1 Approaches to image-based rendering. From top to bottom: three-
dimensional model construction from image sequences, transfer-based image
synthesis, the light field. From left to right, the image-based rendering pipeline:
A scene model (that may not be three-dimensional) is constructed from sample
images, and used to render new images of the scene. The rendering engine may
be controlled by a joystick (or equivalently by the specification of camera param-
eters) or, in the case of transfer-based techniques, by setting the image position
of a small number of tie points.

26.1.1 Scene Modeling from Registered Images

Volumetric Reconstruction Let us assume that an object has been delineated (per-
haps interactively) in a collection of photographs registered in the same global coordinate system.
It is impossible to uniquely recover the object shape from the image contours since, as observed
in chapter 19, the concave portions of its surface never show up on the image contour. Still,
we should be able to construct a reasonable approximation of the surface from a large enough
set of pictures. There are two main global constraints imposed on a solid shape by its image
contours: (a) it lies in the volume defined by the intersection of the viewing cones attached to
each image, and (b) the cones are tangent to its surface (there are other local constraints; e.g., as
shown in chapter 19, convex [resp. concave] parts of the contour are the projections of convex
[resp. saddle-shaped] parts of the surface). Baumgart exploited the first of these constraints in his
1974 PhD thesis to construct polyhedral models of various objects by intersecting the polyhedral
cones associated with polygonal approximations of their silhouettes. His ideas have inspired a
number of approaches to object modeling from silhouettes, including the technique presented in
the rest of this section (Sullivan and Ponce, 1998) that also incorporates the tangency constraint
associated with the viewing cones. As in Baumgart’s system, a polyhedral approximation of the
observed object is first constructed by intersecting the visual cones associated with a few pho-
tographs (Figure 26.2). The vertices of this polyhedron are then used as the control points of a
smooth spline surface, which is deformed until it is tangent to the visual rays. We focus here on
the construction and deformation of this surface.
Spline Construction. A spline curve is a piecewise-polynomial parametric curve that satisfies
certain smoothness conditions. For example, it may be Ck (i.e., differentiable with continuous
derivatives of order up to k), with k usually taken to be 1 or 2, or Gk (i.e., not necessarily
differentiable everywhere, but with continuous tangents in the G1 case and continuous curvatures
in the G2 case). Spline curves are usually constructed by stitching together Bézier arcs. A Bézier
curve of degree n is a polynomial parametric curve P : [0, 1] → E

3 defined as the barycentric
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(a)

(b)

(c)

Figure 26.2 Constructing object models by intersecting (polyhedral) viewing
cones: (a) six photographs of a teapot, (b) the raw intersection of the correspond-
ing viewing cones, (c) the triangulation obtained by splitting each face into tri-
angles and simplifying the resulting mesh. Reprinted from “Automatic Model
Construction, Pose Estimation, and Object Recognition from Photographs Using
Triangular Splines,” by S. Sullivan and J. Ponce, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(10):1091–1096, (1998). c© 1998 IEEE.

combination

P(t) =
n∑

i=0

b(n)
i (t)Pi

of n + 1 control points P0, . . . , Pn , where the weights b(n)
i (t)

def= (n
i

)
t i(1 − t)n−i are called the

Bernstein polynomials of degree n.1 A Bézier curve interpolates its first and last control points,
but not the other ones (Figure 26.3a). As shown in the exercises, the tangents at its endpoints are
along the first and last line segments of the control polygon formed by the control points.

The definition of Bézier arcs and spline curves naturally extends to surfaces: A triangu-
lar Bézier patch of degree n is a parametric surface P : [0, 1] × [0, 1] → E

3 defined as the
barycentric combination

P(u, v) =
∑

i+ j+k=n

b(n)
i j k(u, v, 1 − u − v)Pi jk

of a triangular array of control points Pi jk , where the homogeneous polynomials b(n)
i j k(u, v,w)

def=
n!

i ! j !k!u
iv jwk are the trivariate Bernstein polynomials of degree n. In the rest of this section, we

use quartic Bézier patches (n = 4), each defined by 15 control points (Figure 26.3b). Their
boundaries are the quartic Bézier curves P(u, 0), P(0, v), and P(u, 1 − u). By definition, a G1

triangular spline is a network of triangular Bézier patches that share the same tangent plane along
their common boundaries. A necessary (but not sufficient) condition for G1 continuity is that all
control points surrounding a common vertex be coplanar. We first construct these points, then
place the remaining control points to ensure that the resulting spline is indeed G1 continuous. As
discussed in Loop (1994), a set of coplanar points Q1, . . . , Q p can be created as a barycentric

1This is indeed a barycentric combination (as defined in chapter 12) since the Bernstein polynomials are easily
shown to always add to 1. In particular, Bézier curves are affine constructs—a desirable property since it allows the
definition of these curves purely in terms of their control points and independently of the choice of any external coordinate
system.
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Figure 26.3 Bézier curves and patches: (a) a cubic Bézier curve and its con-
trol polygon; (b) a quartic triangular Bézier patch and its control mesh. Tensor-
product Bézier patches can also be defined using a rectangular array of control
points (Farin 1993). Triangular patches are, however, more appropriate for mod-
eling free-form closed surfaces.

V

C1

C2C3

C0 A0

A1

A2

A3
V V

V’

t
t’

F F’

G G’

interior
quartic
control
points

cubic
control
points
Ai

V0 V1

V2

V0 V1

V2
degree-
raised
quartic
control
points

Figure 26.4 Construction of a triangular spline over a triangular polyhedral
mesh. Top, from left to right: The cubic boundary control points, the boundary
curves surrounding a mesh vertex, and the construction of internal control points
from tangent specification. Bottom: Splitting a patch three ways to enforce G1

continuity: The white points are the control points obtained by raising the de-
gree of the control curves, and the gray points are the remaining control points,
computed to ensure G1 continuity. After Sullivan and Ponce (1998).
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combination of p other points C1, . . . , Cp in general position (in our case, the centroids of the
p triangles Tj adjacent to a vertex V of the input triangulation, Figure 26.4, top left) as

Qi =
p∑

j=1

1

p

{
1 + cos

π

p
cos

(
[2( j − i) − 1]π

p

)}
C j .

This construction places the points Qi in a plane passing through the centroid O of the points Ci .
Translating this plane so that O coincides with V yields a new set of points Ai lying in a plane
passing through V (Figure 26.4, top center).

Since cubic Bézier curves are defined by four points, we can interpret two adjacent vertices
V and V ′ and the points Ai and A′

i associated with the corresponding edge as the control points of
a cubic curve. This yields a set of cubic arcs that interpolate the vertices of the control mesh and
form the boundaries of triangular patches. Once these curves have been constructed, the control
points on both sides of a boundary can be chosen to satisfy interpatch G1 continuity. In this con-
struction, the cross-boundary tangent field linearly interpolates the tangents at the two endpoints
of the boundary curve. At the endpoint V , the tangent t across the curve that contains the point Ai

is taken to be parallel to the line joining Ai−1 to Ai+1. The tangent t′ is obtained by a similar con-
struction. The interior control points F , F ′, G, and G ′ (Figure 26.4, top right) are constructed by
solving the set of linear equations associated with this geometric condition (Chiyokura, 1983).
However, there are not enough degrees of freedom in a quartic patch to allow the simultane-
ous setting of the interior points for all three boundaries. Thus, each patch must be split three
ways, using, for example, the method of Shirman and Sequin (1987) to ensure continuity among
the new patches: Performing degree elevation on the boundary curves replaces them by quartic
Bézier curves with the same shape (see Exercises). Three quartic triangular patches can then be
constructed from the boundaries as shown in Figure 26.4, bottom. The result is a set of three
quartic patches for each mesh face, which are G1 continuous across all boundaries.
Spline Deformation. We have given a method for constructing a G1-continuous triangular spline
approximation of a surface from a triangulation such as the one shown in Figure 26.2(b). Let us
now show how to deform this spline to ensure that it is tangent to the viewing cones associated
with the input photographs. The shape of the spline surface S is determined by the position of
its control vertices V1, . . . , Vp . We denote by Vjk (k = 1, 2, 3) the coordinates of the point Vj

( j = 1, . . . , p) in some reference Euclidean coordinate system, and use these 3p coefficients as
shape parameters. Given a set of rays R1, . . . , Rq , we minimize the energy function

1

q

q∑
i=1

d2(Ri , S) + λ

r∑
i=1

∫∫ [|Puu |2 + 2|Puv|2 + |Pvv|2
]

du dv

with respect to the parameters Vjk of S. Here, d(R, S) denotes the distance between the ray R
and the surface S, the integral is a thin-plate spline energy term used to enforce smoothness in ar-
eas of sparse data, and λ is a constant weight introduced to balance the distance and smoothness
terms. The variables u and v in this integral are the patch parameters, and the summation is done
over the r patches that form the spline surface. The signed distance between a ray and a surface
patch can be computed using Newton’s method. For rays that do not intersect the surface, we de-
fine d(R, S) = min{|−→

Q P|, Q ∈ R, P ∈ S}, and compute the distance by minimizing |−→
Q P|2. For

those rays that intersect the surface, we follow Brunie, Lavallée, and Szeliski (1992) and mea-
sure the distance to the farthest point from the ray that lies on the surface in the direction of the
surface normal at the corresponding occluding contour point. In both cases, Newton iterations
are initialized from a sampling of the surface S. During surface fitting, the spline is deformed
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Figure 26.5 Shaded and texture-mapped models of a teapot, gargoyle and di-
nosaur. The teapot was constructed from six registered photographs; the gar-
goyle and dinosaur models were each built from nine images. Reprinted from
“Automatic Model Construction, Pose Estimation, and Object Recognition from
Photographs Using Triangular Splines,” by S. Sullivan and J. Ponce, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(10):1091–1096,
(1998). c© 1998 IEEE.

to minimize the mean-squared ray-surface distance using a simple gradient descent technique.
Although each distance is computed numerically, its derivatives with respect to the surface pa-
rameters Vjk are easily computed by differentiating the constraints satisfied by the surface and
ray points where the distance is reached.

The three object models shown in Figure 26.5 have been constructed using the method
described in this section. This technique does not require establishing any correspondence across
the input pictures, but its scope is (currently) limited to static scenes. In contrast, the approach
presented next is based on multicamera stereopsis, and, as such, requires correspondences, but it
handles dynamic scenes as well as static ones.

Virtualized Reality Kanade and his colleagues (1997) have proposed the concept of
Virtualized Reality as a new visual medium for manipulating and rendering prerecorded and
synthetic images of real scenes captured in a controlled environment. The first physical imple-
mentation of this concept at Carnegie-Mellon University consisted of a geodesic dome equipped
with 10 synchronized video cameras hooked to consumer-grade VCRs. As of this writing, the
latest implementation is a “3D Room”, where a volume of 20 × 20 × 9 cubic feet is observed
by 49 color cameras connected to a PC cluster and registered in the same world coordinate sys-
tem, with the capability of digitizing in real-time the synchronized video streams of all cameras.
Three-dimensional scene models are acquired by fusing dense depth maps acquired via multiple-
camera stereo (see Okutami and Kanade, 1993, chapter 11). One such map is acquired by each
camera and a small number of its neighbors (between three and six). Every range image is then
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Figure 26.6 Multicamera stereo. From left to right: the range map associated
with a cluster of cameras; a texture-mapped image of the corresponding mesh,
observed from a different viewpoint; note the dark areas associated with depth
discontinuities in the map; a texture-mapped image constructed from two adja-
cent camera clusters; note that the gaps have been filled. Reprinted from “Vir-
tualized Reality: Constructing Virtual Worlds From Real Scenes,” by T. Kanade,
P.W. Rander and J.P. Narayanan, IEEE Multimedia, 4(1):34–47, (1997). c© 1997
IEEE.

(a) (b)

Figure 26.7 Virtualized Reality: (a) a sequence of synthetic images; note that
occlusion in the two elliptical regions of the first view is handled correctly;
(b) the corresponding mesh model. Reprinted from “Appearance-Based Virtual
View Generation of Temporally-Varying Events from Multi-Camera Images in
the 3D Room,” by H. Saito, S. Baba, M. Kimura, S. Vedula, and T. Kanade, Tech.
Rep. CMU-CS-99-127, School of Computer Science, Carnegie-Mellon Univer-
sity, (1999).
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converted to a surface mesh that can be rendered using classical computer graphics techniques
such as texture mapping. As shown by Figure 26.6, images of a scene constructed from a single
depth map may exhibit gaps. These gaps can be filled by rendering in the same image the meshes
corresponding to adjacent cameras.

It is also possible to directly merge the surface meshes associated with different cameras
into a single surface model. This task is challenging since: (a) multiple, conflicting measure-
ments of the same surface patches are available in areas where the fields of view of several
cameras overlap, and (b) certain scene patches are not observed by any camera. Both problems
can be solved using the volumetric technique for range image fusion proposed by Curless and
Levoy (1996) and introduced in chapter 21. Once a global surface model has been constructed,
it can of course be texture mapped as before. Synthetic animations can also be obtained by inter-
polating two arbitrary views in the input sequence. First, the surface model is used to establish
correspondences between these two views: The optical ray passing through any point in the first
image is intersected with the mesh and the intersection point is reprojected in the second image,
yielding the desired match.2 Once the correspondences are known, new views are constructed
by linearly interpolating both the positions and colors of matching points. As discussed in Saito
et al. (1999), this simple algorithm only provides an approximation of true perspective imaging,
and additional logic has to be added in practice to handle points that are visible in the first image
but not in the second one. Nevertheless, it can be used to generate realistic animations of dynamic
scenes with changing occlusion patterns, as demonstrated by Figure 26.7.

26.1.2 Scene Modeling from Unregistered Images

This section addresses again the problem of acquiring and rendering three-dimensional object
models from a set of images, but this time the positions of the cameras observing the scene are
not known a priori and must be recovered from image information using methods related to those
presented in chapters 12 and 13. The techniques presented in this section are, however, explicitly
geared toward computer graphics applications.

The Façade System The Façade system for modeling and rendering architectural
scenes from digitized photographs was developed at UC Berkeley by Debevec, Taylor, and Ma-
lik (1996). This system takes advantage of the relatively simple overall geometry of many build-
ings to simplify the estimation of scene structure and camera motion, and it uses the simple but
powerful idea of model-based stereopsis, to be described in a minute, to add detail to rough
building outlines. Figure 26.8 shows an example.

Façade models are constrained hierarchies of parametric primitives such as boxes, prisms,
and solids of revolution. These primitives are defined by a small number of coefficients (e.g., the
height, width, and breadth of a box) and related to each other by rigid transformations. Any of
the parameters defining a model is either a constant or variable, and constraints can be specified
between the various unknowns (e.g., two blocks may be constrained to have the same height).
Model hierarchies are defined interactively with a graphical user interface, and the main com-
putational task of the Façade system is to use image information to assign definite values to
the unknown model parameters. The overall system is divided into three main components: The
first one, or photogrammetric module, recasts structure and motion estimation as the nonlinear
optimization problem of minimizing the discrepency between line segments selected by hand
in the photographs and the projections of the corresponding parts of the parametric model (see
Exercises for details). As shown in Debevec et al. (1996), this process involves relatively few

2Classical narrow-baseline methods like correlation would be ineffective in this context since the two views
may be far from each other. A similar method is used in the Façade system described later in this chapter to establish
correspondences between widely separated images when the rough shape of the observed surface is known.
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Figure 26.8 Façade model of the Berkeley Campanile. From left to right:
A photograph of the Campanile, with selected edges overlaid; the 3D model
recovered by photogrammetric modeling; reprojection of the model into the
photograph; a texture-mapped view of the model. Reprinted from “Modeling
and Rendering Architecture from Photographs: A Hybrid Geometry- and Image-
Based Approach,” by P. Debevec, C.J. Taylor, and J. Malik, Proc. SIGGRAPH,
(1996). c© 1996 ACM, Inc. Included here by permission.

variables, namely the positions and orientations of the cameras used to photograph a building
and the parameters of the building model, and when the orientation of some of the model edges
is fixed relative to the world coordinate system, an initial estimate for these parameters is easily
found using linear least squares.

The second main component of Façade is the view-dependent texture-mapping module
that renders an architectural scene by mapping different photographs onto its geometric model
according to the user’s viewpoint. Conceptually, the cameras are replaced by slide projectors
that project the original images onto the model. Of course, each camera only sees a portion
of a building, and several photographs must be used to render a complete model. In general,
parts of a building are observed by several cameras, so the renderer must not only pick, but also
appropriately merge, the pictures relevant to the synthesis of a virtual view. The solution adopted
in Façade is to assign to each pixel in a new image a weighted average of the values predicted
from the overlapping input pictures, with weights inversely proportional to the angle between the
corresponding light rays in the input and virtual views.

The last component of Façade is the model-based stereopsis module, which uses stereo
pairs to add fine geometric detail to the relatively rough scene description constructed by the
photogrammetric modeling module. The main difficulty in using stereo vision in this setting is
the wide separation of the cameras, which prevents the straightforward use of correlation-based
matching techniques. The solution adopted in Façade is to exploit a priori shape information to
map the stereo images into the same reference frame (Figure 26.9, top). Specifically, given key
and offset pictures, the offset image can be projected onto the scene model before being rendered
from the key camera’s viewpoint, yielding a warped offset picture similar to the key image (Fig-
ure 26.9, bottom). In turn, this allows the use of correlation to establish correspondences between
these two images, and thus between the key and offset images as well. Once the matches between
these two pictures have been established, stereo reconstruction reduces to the usual triangulation
process.
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Figure 26.9 Model-based stereopsis. Top: Synthesis of a warped offset image.
The point p′ in the offset image is mapped onto the point Q of the surface model,
then reprojected onto the point q of the warped offset image. The actual surface
point P observed by both cameras projects onto the point p of the key image.
Note that the point q must lie on the epipolar line ep, which facilitates the search
for matches as in the conventional stereo case. Note also that the disparity be-
tween p and q along the epipolar line measures the discrepancy between the
modeled and actual surfaces. After Debevec et al. (1996, Figure 15). Bottom,
from left to right: A key image, an offset image, and the corresponding warped
offset image. Reprinted from “Modeling and Rendering Architecture from Pho-
tographs: A Hybrid Geometry- and Image-Based Approach,” by P. Debevec, C.J.
Taylor, and J. Malik, Proc. SIGGRAPH, (1996). c© 1996 ACM, Inc. Included here
by permission.

26.2 TRANSFER-BASED APPROACHES TO IMAGE-BASED RENDERING

This section explores a completely different approach to image-based rendering. In this frame-
work, an explicit three-dimensional scene reconstruction is never performed. Instead, new images
are created directly from a (possibly small) set of views among which point correspondences have
been established by feature tracking or conventional stereo matching. This approach is related to
the classical transfer problem from photogrammetry already mentioned in chapter 10. Given the
image positions of a number of tie points in a set of reference images and in a new image, and
given the image positions of a ground point in the reference images, predict the position of that
point in the new image.

Transfer-based techniques for image-based rendering were introduced in the projective
setting by Laveau and Faugeras (1994), who proposed to first estimate the pairwise epipolar ge-
ometry between reference views, then reproject the scene points into a virtual image, specified
by the projections of the new optical center in two reference pictures (i.e., the epipoles) and the
position of four tie points in the new view. By definition, the epipolar geometry constrains the
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Figure 26.10 Augmented reality experiment. The (affine) world coordinate
system is defined by corners of the black polygons. Reprinted from “Calibration-
Free Augmented Reality,” by K. Kutulakos and J. Vallino, IEEE Transactions on
Visualization and Computer Graphics, 4(1):1–20, (1998). c© 1998 IEEE.

possible reprojections of points in the reference images. In the new view, the projection of the
scene point is at the intersection of the two epipolar lines associated with the point and two ref-
erence pictures. Once the feature points have been reprojected, realistic pictures are synthesized
using ray tracing and texture mapping. As noted by Laveau and Faugeras, however, since the Eu-
clidean constraints associated with calibrated cameras are not enforced, the rendered images are
separated from correct pictures by arbitrary planar projective transformations unless additional
scene constraints are taken into account. The rest of this section explores two affine variants of
the transfer-based approach that circumvent this difficulty. Both techniques construct a param-
eterization of the set of all images of a rigid scene: In the first case (Section 26.2.1), the affine
structure of the space of affine images is used to render synthetic objects in an augmented re-
ality system. Because the tie points in this case are always geometrically valid image features
(e.g., the corners of calibration polygons; see Figure 26.10), the synthesized images are automat-
ically Euclidean ones. In the second instance (Section 26.2.2), the metric constraints associated
with calibrated cameras are explicitly taken into account in the image space parameterization,
guaranteeing once again the synthesis of correct Euclidean images.

Let us note again a particularity of transfer-based approaches to image-based rendering
already mentioned in the introduction: Because no three-dimensional model is ever constructed,
a joystick cannot be used to control the synthesis of an animation. Instead, the position of tie
points must be specified interactively by a user. This is not a problem in an augmented reality
context, but whether this is a viable user interface for virtual reality applications remains to be
shown.

26.2.1 Affine View Synthesis

Here we address the problem of synthesizing new (affine) images of a scene from old ones with-
out setting an explicit three-dimensional Euclidean coordinate system. Recall from chapter 12
that if we denote the coordinate vector of a scene point P in some world coordinate system by
P = (x, y, z)T and denote by p = (u, v)T the coordinate vector of the projection p of P onto
the image plane, the affine camera model of Eq. (2.19) can be written as

p = AP + b, where A =
(

aT
1

aT
2

)
, (26.1)

b is the position of the projection into the image of the object coordinate system’s origin, and a1

and a2 are vectors in R
3.
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Let us consider four (noncoplanar) scene points, say P0, P1, P2, and P3. We can choose
(without loss of generality) these points as an affine reference frame so their coordinate vectors
are

P0 =

0

0
0


, P1 =


1

0
0


, P2 =


0

1
0


, P3 =


0

0
1


.

The points Pi (i = 1, 2, 3) are not in general at a unit distance from P0, nor are the vectors−−→
P0 Pi and

−−→
P0 Pj orthogonal to each other when i �= j . This is irrelevant since we work in an affine

setting. Since the 3 × 3 matrix with columns P1, P2, and P3 is the identity, Eq. (26.1) can be
rewritten as

p = AP + b =
(

aT
1

aT
2

)
[P1|P2|P3]


x

y
z


+ b.

Finally, since we have chosen P0 as the origin of the world coordinate system, we have
b = p0 and we obtain

p = (1 − x − y − z)p0 + x p1 + y p2 + z p3. (26.2)

This result is related to the affine structure of affine images as discussed in chapter 12. In
the context of image-based rendering, it follows from Eq. (26.2) that x , y, and z can be computed
from m ≥ 2 images of the points P0, P1, P2, P3, and P through linear least squares. Once
these values are known, new images can be synthesized by specifying the image positions of the
points p0, p1, p2, p3 and using Eq. (26.2) to compute all the other point positions (Kutulakos and
Vallino, 1998). In addition, since the affine representation of the scene is truly three-dimensional,
the relative depth of scene points can be computed and used to eliminate hidden surfaces in the
z-buffer part of the graphics pipeline. It should be noted that specifying arbitrary positions for
the points p0, p1, p2, p3 generally produces affinely deformed pictures. This is not a problem in
augmented reality applications, where graphical and physical objects co-exist in the image. In
this case, the anchor points p0, p1, p2, p3 can be chosen among true image points, guaranteed
to be in the correct Euclidean position. Figure 26.10 shows an example where synthetic objects
have been overlaid on real images.

When longer image sequences are available, a variant of this approach that takes into ac-
count all scene points in a uniform manner can be obtained as follows. Suppose we observe a
fixed set of points P0, . . . , Pn−1 with coordinate vectors Pi (i = 0, . . . , n − 1) and let pi denote
the coordinate vectors of the corresponding image points. Writing Eq. (26.1) for all the scene
points yields


 p0

. . .

pn−1


 =




PT
0 0T 1 0

0T PT
0 0 1

. . . . . . . . . . . .

PT
n−1 0T 1 0

0T PT
n−1 0 1




a1

a2

b


.

In other words, the set of all affine images of n fixed points is an eight-dimensional vector
space V embedded in R

2n and parameterized by the vectors a1, a2, and b.3 Given m ≥ 8 views

3This does not contradict the result established in chapter 12, which states that the set of m fixed views of an
arbitrary collection of points is a three-dimensional affine subspace of R

2m .
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of n ≥ 4 points, a basis for this vector space can be identified by performing the singular value
decomposition of the 2n × m matrix

 p(1)
0 . . . p(m)

0
. . . . . . . . .

p(1)
n−1 . . . p(m)

n−1


,

where p( j)
i denotes the position of the image point number i in frame number j .4 Once a basis

for V has been constructed, new images can be constructed by assigning arbitrary values to
a1, a2 and b. For interactive image synthesis purposes, a more intuitive control of the imaging
geometry can be obtained by specifying as before the position of four image points, solving for
the corresponding values of a1, a2, and b, and computing the remaining image positions.

26.2.2 Euclidean View Synthesis

As discussed earlier, a drawback of the method presented in the previous section is that specifying
arbitrary positions for the points p0, p1, p2, p3 generally yields affinely deformed pictures. This
can be avoided by taking into account from the start the Euclidean constraints associated with
calibrated cameras. We saw in chapter 12 that a weak-perspective camera is an affine camera
satisfying the two quadratic constraints

a1 · a2 = 0 and |a1|2 = |a2|2.
The previous section showed that the affine images of a fixed scene form an eight-dimensional
vector space V . Now if we restrict our attention to weak-perspective cameras, the set of im-
ages becomes the six-dimensional subspace defined by these two polynomial constraints. Sim-
ilar constraints apply to paraperspective and true perspective projection, and they also define a
six-dimensional variety (i.e., a subspace defined by polynomial equations) in each case.

Let us suppose that we observe three points P0, P1, P2 whose images are not collinear. We
can choose (without loss of generality) a Euclidean coordinate system such that the coordinate
vectors of the four points in this system are

P0 =

0

0
0


, P1 =


1

0
0


, P2 =


p

q
0


,

where p and q are nonzero, but (a priori) unknown. Let us denote as before by pi the projection
of the point Pi (i = 0, 1, 2). Since P0 is the origin of the world coordinate system, we have
b = p0. We are also free to pick p0 as the origin of the image coordinate system (this amounts
to submitting all image points to a known translation), so Eq. (26.1) simplifies into

p = AP =
(

aT
1 P

aT
2 P

)
. (26.3)

Now applying Eq. (26.3) to P1, P2, and P yields

u
def=

u1

u2

u


 = Pa1 and v

def=

v1

v2

v


 = Pa2, (26.4)

4Requiring at least eight images may seem like overkill since the affine structure of a scene can be recovered from
two pictures as shown in chapter 12. Indeed, as shown in the exercises, a basis for V can in fact be constructed from two
images of at least four points.
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where

P def=



PT
1

PT
2

PT


 =


1 0 0

p q 0
x y z


.

In turn, this implies that

a1 = Qu and a2 = Qv, (26.5)

where

Q def= P−1 =

 1 0 0

λ µ 0
α/z β/z 1/z


 and




λ = −p/q,

µ = 1/q,

α = −(x + λy),

β = −µy.

Using Eq. (26.5) and letting R def= z2QT Q, the weak-perspective constraints of Eq. (12.10)
can be rewritten as {

uT Ru − vT Rv = 0,

uT Rv = 0,
(26.6)

with

R =

ξ1 ξ2 α

ξ2 ξ3 β

α β 1


 and




ξ1 = (1 + λ2)z2 + α2,

ξ2 = λµz2 + αβ,

ξ3 = µ2z2 + β2.

Equation (26.6) defines a pair of linear constraints on the coefficients ξi (i = 1, 2, 3), α,
and β. These can be rewritten as (

dT
1

dT
2

)
ξ = 0, (26.7)

where

d1
def=




u2
1 − v2

1
2(u1u2 − v1v2)

u2
2 − v2

2
2(u1u − v1v)

2(u2u − v2v)

u2 − v2




, d2
def=




u1v1

u1v2 + u2v1

u2v2

u1v + uv1

u2v + uv2

uv




, and ξ
def=




ξ1

ξ2

ξ3

α

β

1




.

When the four points P0, P1, P2, and P are rigidly attached to each other, the five structure
coefficients ξ1, ξ2, ξ3, α, and β are fixed. For a rigid scene formed by n points, choosing three
of the points as a reference triangle and writing Eq. (26.7) for the remaining ones yields a set
of 2n − 6 quadratic equations in 2n unknowns, which define a parameterization of the set of all
weak-perspective images of the scenes. This is the parameterized image variety (PIV) of Genc
and Ponce (2001).

Note again that the weak-perspective constraints of Eq. (26.7) are linear in the five structure
coefficients. Thus, given a collection of images and point correspondences, these coefficients can
be estimated through linear least squares. Once the vector ξ has been estimated, arbitrary image
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Figure 26.11 Z-buffering. Reprinted from “Parameterized Image Varieties:
A Novel Approach to the Analysis and Synthesis of Image Sequences,” by Y.
Genc and J. Ponce, Proc. International Conference on Computer Vision, (1998).
c© 1998 IEEE.

positions can be assigned to the three reference points. Equation (26.7) yields, for each feature
point, two quadratic constraints on the two unknowns u and v. Although this system should
a priori admit four solutions, it admits, as shown in the exercises, exactly two real solutions. In
fact, given n point correspondences and the image positions of the three tie points, it can also be
shown (Genc and Ponce, 2001) that the pictures of the remaining n − 3 points can be determined
in closed form up to a two-fold ambiguity. Once the positions of all feature points have been
determined, the scene can be rendered by triangulating these points and texture-mapping the
triangles. Interestingly, hidden-surface removal can also be performed via traditional z-buffer
techniques, although no explicit three-dimensional reconstruction is performed: The idea is to
assign relative depth values to the vertices of the triangulation, and it is closely related to the
method used in the affine structure-from-motion theorem from chapter 12. Let � denote the
image plane of one of our input images, and �′ the image plane of our synthetic image. To
render correctly two points P and Q that project onto the same point r ′ in the synthetic image,
we must compare their depths (Figure 26.11).

Let R denote the intersection of the viewing ray joining P to Q with the plane spanned
by the reference points A0, A1, and A2, and let p, q, r denote the projections of P , Q, and R
into the reference image. Suppose for the time being that P and Q are two of the points tracked
in the input image; it follows that the positions of p and q are known. The position of r is
easily computed by remarking that its coordinates in the affine basis of � formed by the pro-
jections a0, a1, a2 of the reference points are the same as the coordinates of R in the affine
basis formed by the points A0, A1, A2 in their own plane, and thus are also the same as the
coordinates of r ′ in the affine basis of �′ formed by the projections a′

0, a′
1, a′

2 of the reference
points. The ratio of the depths of P and Q relative to the plane � is simply the ratio pr/qr .
Not that deciding which point is actually visible requires orienting the line supporting the points
p, q, r , which is simply the epipolar line associated with the point r ′. A coherent orientation
should be chosen for all epipolar lines (this is easy since they are all parallel to each other).
Note that this does not require explicitly computing the epipolar geometry: Given a first point
p′, one can orient the line pr and then use the same orientation for all other point correspon-
dences. The orientations chosen should also be consistent over successive frames, but this is not
a problem since the direction of the epipolar lines changes slowly from one frame to the next,
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Figure 26.12 Two images of a face synthesized using parameterized image
varieties. Courtesy of Yakup Genc.

and one can simply choose the new orientation so that it makes an acute angle with the pre-
vious one. Examples of synthetic pictures constructed using this method are shown in Figure
26.12.

26.3 THE LIGHT FIELD

This section discusses a different approach to image-based rendering, whose only similarity with
the techniques discussed in the previous section is that, like them, it does not require the construc-
tion of any implicit or explicit 3D model of a scene. Let us consider, for example, a panoramic
camera that optically records the radiance along rays passing through a single point and covering
a full hemisphere (see, e.g., Peri and Nayar, 1997; Figure 26.13, left). It is possible to create

Synthetic Images

Mosaics
Cylindrical

Mosaics
Panoramic
Cameras

Figure 26.13 Constructing synthetic views of a scene from a fixed viewpoint.
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Figure 26.14 The plenoptic function and the light field. Left: the plenoptic
function can be parameterized by the position P of the observer and the viewing
direction v. Right: the light field can be parameterized by the four parameters
u, v, s, t defining a light slab. In practice, several light slabs are necessary to
model a whole object and obtain full spherical coverage.

any image observed by a virtual camera whose pinhole is located at this point by mapping the
original image rays onto virtual ones. This allows a user to arbitrarily pan and tilt the virtual
camera and interactively explore his or her visual environment. Similar effects can be obtained
by stitching together close-by images taken by a hand-held camcorder into a mosaic (see, e.g.,
Shum and Szeliski, 1998; Figure 26.13, middle), or by combining the pictures taken by a camera
panning (and possibly tilting) about its optical center into a cylindrical mosaic (see, e.g., Chen,
1995; Figure 26.13, right).

These techniques have the drawback of limiting the viewer motions to pure rotations about
the optical center of the camera. A more powerful approach can be devised by considering the
plenoptic function (Adelson and Bergen, 1991) that associates with each point in space the
(wavelength-dependent) radiant energy along a ray passing through this point at a given time
(Figure 26.14, left). The light field (Levoy and Hanrahan, 1996) is a snapshot of the plenoptic
function for light traveling in vacuum in the absence of obstacles. This relaxes the dependence of
the radiance on time and on the position of the point of interest along the corresponding ray (since
radiance is constant along straight lines in a nonabsorbing medium) and yields a representation
of the plenoptic function by the radiance along the four-dimensional set of light rays. These rays
can be parameterized in many different ways (e.g., using the Plücker coordinates introduced in
chapter 3), but a convenient parameterization in the context of image-based rendering is the light
slab, where each ray is specified by the coordinates of its intersections with two arbitrary planes
(Figure 26.14, right).

The light slab is the basis for a two-stage approach to image-based rendering. During the
learning stage, many views of a scene are used to create a discrete version of the slab that can
be thought of as a four-dimensional lookup table. At synthesis time, a virtual camera is defined,
and the corresponding view is interpolated from the lookup table. The quality of the synthe-
sized images depends on the number of reference images. The closer the virtual view is to the
reference images, the better the quality of the synthesized image. Note that constructing the
light slab model of the light field does not require establishing correspondences between images.
It should be noted that, unlike most methods for image-based rendering that rely on texture
mapping and thus assume (implicitly) that the observed surfaces are Lambertian, light-field
techniques can be used to render (under a fixed illumination) pictures of objects with arbitrary
BRDFs.
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Figure 26.15 The acquisition of a light slab from images and the synthesis
of new images from a light slab can be modeled via projective transformations
between the (x, y) image plane and the (u, v) and (s, t) planes defining the slab.

In practice, a sample of the light field is acquired by taking a large number of images
and mapping pixel coordinates onto slab coordinates. Figure 26.15 illustrates the general case:
The mapping between any pixel in the (x, y) image plane and the corresponding areas of the
(u, v) and (s, t) plane defining a light slab is a planar projective transformation. Hardware- or
software-based texture mapping can thus be used to populate the light field on a four-dimensional
rectangular grid. In the experiments described in Levoy and Hanrahan (1996), light slabs are
acquired in the simple setting of a camera mounted on a planar gantry and equipped with a pan-
tilt head so it can rotate about its optical center and always point toward the center of the object
of interest. In this context, all calculations can be simplified by taking the (u, v) plane to be the
plane in which the camera’s optical center is constrained to remain.

At rendering time, the projective mapping between the (virtual) image plane and the two
planes defining the light slab can once again be used to efficiently synthesize new images. Fig-
ure 26.16 shows sample pictures generated using the light-field approach. The top three im-
age pairs were generated using synthetic pictures of various objects to populate the light field.
The last pair of images was constructed by using the planar gantry mentioned earlier to acquire
2048 256 × 256 images of a toy lion, grouped into four slabs each consisting of 32 × 16 im-
ages.

An important issue is the size of the light slab representation: The raw input images of the
lion take 402MB of disk space. There is, of course, much redundancy in these pictures, as in
the case of successive frames in a motion sequence. A simple but effective two-level approach
to image (de)compression is proposed in Levoy and Hanrahan (1996): The light slab is first
decomposed into four-dimensional tiles of color values. These tiles are encoded using vector
quantization (Gersho and Gray, 1992), a lossy compression technique where the 48-dimensional
vectors representing the RGB values at the 16 corners of the original tiles are replaced by a rel-
atively small set of reproduction vectors, called codewords, that best approximate in the mean-
squared-error sense the input vectors. The light slab is thus represented by a set of indexes in
the codebook formed by all codewords. In the case of the lion, the codebook is relatively small
(0.8MB) and the size of the set of indexes is 16.8MB. The second compression stage consists
of applying the gzip implementation of entropy coding (Ziv and Lempel, 1977) to the codebook
and the indexes. The final size of the representation is only 3.4MB, corresponding to a compres-
sion rate of 118:1. At rendering time, entropy decoding is performed as the file is loaded in main
memory. Dequantization is performed on demand during display, and it allows interactive refresh
rates.
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Figure 26.16 Images synthesized with the light field approach. Reprinted from
“Light Field Rendering,” by M. Levoy and P. Hanrahan, Proc. SIGGRAPH,
(1996). c© 1996 ACM, Inc. Included here by permission.
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26.4 NOTES

Image-based rendering is a quickly expanding field. To close this chapter, let us just mention a
few alternatives to the approaches already mentioned in the previous sections. The intersection
of all of the cones that graze the surface of a solid forms its visual hull (Laurentini, 1995). A solid
is always contained in its visual hull, which, in turn, is contained in the solid’s convex hull. The
volumetric approach to object modeling from registered silhouettes presented in Section 26.1
is aimed at constructing an approximation of the visual hull from a finite set of photographs.
Variants use polyhedra or octrees (Martin and Aggarwal, 1983, Connolly and Stenstrom, 1989,
Srivastava and Ahuja, 1990) to represent the cones and their intersection, and include a commer-
cial system, Sphinx3D (Niem and Buschmann, 1994), for automatically constructing polyhedral
models from images. See also Kutulakos and Seitz (1999) for a related approach, called space
carving, where empty voxels are iteratively removed using brightness or color coherence con-
straints. The tangency constraint has been used in various approaches for reconstructing a surface
from a continuous sequence of outlines under known or unknown camera motions (Arbogast and
Mohr, 1991, Cipolla and Blake, 1992, Vaillant and Faugeras, 1992, Cipolla et al., 1995, Boyer
and Berger, 1996, Cross et al., 1999, Joshi et al., 1999). Variants of the view interpolation method
discussed in Section 26.1 include Williams and Chen (1993) and Seitz and Dyer (1995, 1996).
Transfer-based approaches to image-based rendering include, besides those discussed in Sec-
tion 26.2, Havaldar et al. (1996) and Avidan and Shashua (1997). As briefly mentioned in Sec-
tion 26.3, a number of techniques have been developed for interactively exploring a user’s visual
environment from a fixed viewpoint. These include a commercial system, QuickTime VR, de-
veloped at Apple by Chen (1995), and algorithms that reconstruct pinhole perspective images
from panoramic pictures acquired by special-purpose cameras (see, e.g., Peri and Nayar, 1997).
Similar effects can be obtained in a less controlled setting by stitching together close-by images
taken by a hand-held camcorder into a mosaic (see, e.g., Irani et al., 1996, Shum and Szeliski,
1998). For images of distant terrains or cameras rotating about their optical center, the mosaic
can be constructed by registering successive pictures via planar homographies. In this context,
estimating the optical flow (i.e., the vector field of apparent image velocities at every image point,
a notion that has, admittedly, largely been ignored in this book), may also prove important for
fine registration and deghosting (Shum and Szeliski, 1998). Variants of the light field approach
discussed in Section 26.3 include McMillan and Bishop (1995) and Gortler et al. (1996). An
excellent introduction to Bézier arcs and patches and spline curves and surfaces can be found in
Farin (1993).

PROBLEMS

26.1. Given n + 1 point P0, . . . , Pn , we recursively define the parametric curve Pk
i (t) by P0

i (t) = Pi

and

Pk
i (t) = (1 − t)Pk−1

i (t) + t Pk−1
i+1 (t) for k = 1, . . . , n and i = 0, . . . , n − k.

We show in this exercise that Pn
0 (t) is the Bézier curve of degree n associated with the n + 1

points P0, . . . , Pn . This construction of a Bézier curve is called the de Casteljeau algorithm.
(a) Show that Bernstein polynomials satisfy the recursion

b(n)

i (t) = (1 − t)b(n−1)

i (t) + tb(n−1)

i−1 (t)

with b(0)

0 (t) = 1 and, by convention, b(n)
j (t) = 0 when j < 0 or j > n.



640 Application: Image-Based Rendering Chap. 26

(b) Use induction to show that

Pk
i (t) =

k∑
j=0

b(k)
j (t)Pi+ j for k = 0, . . . , n and i = 0, . . . , n − k.

26.2. Consider a Bézier curve of degree n defined by n + 1 control points P0, . . . , Pn . We address here the
problem of constructing the n + 2 control points Q0, . . . , Qn+1 of a Bézier curve of degree n + 1
with the same shape. This process is called degree elevation. Show that Q0 = P0 and

Q j = j

n + 1
Pj−1 +

(
1 − j

n + 1

)
Pj for j = 1, . . . , n + 1.

Hint: Write that the same point is defined by the barycentric combinations associated with the
two curves, and equate the polynomial coefficients on both sides of the equation.

26.3. Show that the tangent to the Bézier curve P(t) defined by the n + 1 control points P0, . . . , Pn is

P ′(t) = n
n−1∑
j=0

b(n−1)
j (t)(Pj+1 − Pj ).

Conclude that the tangents at the endpoints of a Bézier arc are along the first and last line segments
of its control polygon.

26.4. Show that the construction of the points Qi in Section 26.1.1 places these points in a plane that passes
through the centroid O of the points Ci .

26.5. Façade’s photogrammetric module. We saw in the exercises of Chapter 3 that the mapping between
a line δ with Plücker coordinate vector ∆ and its image δ with homogeneous coordinates ∆ can be
represented by ρδ = M̃∆. Here, ∆ is a function of the model parameters, and M̃ depends on the
corresponding camera position and orientation.
(a) Assuming that the line δ has been matched with an image edge e of length l, a convenient measure

of the discrepancy between predicted and observed data is obtained by multiplying by l the mean
squared distance separating the points of e from δ. Defining d(t) as the signed distance between
the edge point p = (1 − t)p0 + tp1 and the line δ, show that

E =
∫ 1

0
d2(t) dt = 1

3

(
d(0)2 + d(0)d(1) + d(1)2

)
,

where d0 and d1 denote the (signed) distances between the endpoints of e and δ.
(b) If p0 and p1 denote the homogeneous coordinate vectors of these points, show that

d0 = 1

|[M̃∆]2|
pT

0 M̃∆ and d1 = 1

|[M̃∆]2|
pT

1 M̃∆,

where [a]2 denotes the vector formed by the first two coordinates of the vector a in R
3.

(c) Formulate the recovery of the camera and model parameters as a non-linear least-squares prob-
lem.

26.6. Show that a basis for the eight-dimensional vector space V formed by all affine images of a fixed set
of points P0, . . . , Pn−1 can be constructed from at least two images of these points when n ≥ 4.

Hint: Use the matrix 
 u(1)

0 v
(1)

0 . . . u(m)

0 v
(m)

0

. . . . . . . . .

u(1)

n−1 v
(1)

n−1 . . . u(m)

n−1 v
(m)

n−1


,

where (u( j)
i , v

( j)
i ) are the coordinates of the projection of the point Pi into image number j .

26.7. Show that the set of all projective images of a fixed scenes is an eleven-dimensional variety.
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26.8. Show that the set of all perspective images of a fixed scene (for a camera with constant intrinsic
parameters) is a six-dimensional variety.

26.9. In this exercise, we show that Eq. (26.7) only admits two solutions.
(a) Show that Eq. (26.6) can be rewritten as{

X 2 − Y 2 + e1 − e2 = 0,

2XY + e = 0,
(26.8)

where {
X = u + αu1 + βu2,

Y = v + αv1 + βv2,

and e, e1, and e2 are coefficients depending on u1, v1, u2, v2 and the structure parameters.
(b) Show that the solutions of Eq. (26.8) are given by{

X ′ = 4
√

(e1 − e2)2 + e2 cos
(

1
2 arctan(e, e1 − e2)

)
,

Y ′ = 4
√

(e1 − e2)2 + e2 sin
(

1
2 arctan(e, e1 − e2)

)
,

and (X ′′, Y ′′) = (−X ′, −Y ′).
Hint: Use a change of variables to rewrite Eq. (26.8) as a system of trigonometric equa-

tions.




