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Preface

Computer vision as a field is an intellectual frontier. Like any frontier, it is exciting and disor-
ganised; there is often no reliable authority to appeal to—many useful ideas have no theoretical
grounding, and some theories are useless in practice; developed areas are widely scattered, and
often one looks completely inaccessible from the other. Nevertheless, we have attempted in this
book to present a fairly orderly picture of the field.

We see computer vision—or just “vision”; apologies to those who study human or ani-
mal vision—as an enterprise that uses statistical methods to disentangle data using models con-
structed with the aid of geometry, physics and learning theory. Thus, in our view, vision relies on
a solid understanding of cameras and of the physical process of image formation (part I of this
book) to obtain simple inferences from individual pixel values (part II), combine the information
available in multiple images into a coherent whole (part III), impose some order on groups of pix-
els to separate them from each other or infer shape information (part IV), and recognize objects
using geometric information (part V) or probabilistic techniques (part VI). Computer vision has
a wide variety of applications, old (e.g., mobile robot navigation, industrial inspection, and mili-
tary intelligence) and new (e.g., human computer interaction, image retrieval in digital libraries,
medical image analysis, and the realistic rendering of synthetic scenes in computer graphics).
We discuss some of these applications in part VII.

WHY STUDY VISION?

Computer vision’s great trick is extracting descriptions of the world from pictures or sequences
of pictures. This is unequivocally useful. Taking pictures is usually non-destructive and some-

xvii



xviii Preface

times discreet. It is also easy and (now) cheap. The descriptions that users seek can differ widely
between applications. For example, a technique known as structure from motion makes it pos-
sible to extract a representation of what is depicted and how the camera moved from a series
of pictures. People in the entertainment industry use these techniques to build three-dimensional
(3D) computer models of buildings, typically keeping the structure and throwing away the mo-
tion. These models are used where real buildings cannot be; they are set fire to, blown up, etc.
Good, simple, accurate and convincing models can be built from quite small sets of photographs.
People who wish to control mobile robots usually keep the motion and throw away the structure.
This is because they generally know something about the area where the robot is working, but
don’t usually know the precise robot location in that area. They can determine it from information
about how a camera bolted to the robot is moving.

There are a number of other, important applications of computer vision. One is in medical
imaging: One builds software systems that can enhance imagery, or identify important phenom-
ena or events, or visualize information obtained by imaging. Another is in inspection: One takes
pictures of objects to determine whether they are within specification. A third is in interpreting
satellite images, both for military purposes—a program might be required to determine what
militarily interesting phenomena have occurred in a given region recently; or what damage was
caused by a bombing—and for civilian purposes—what will this year’s maize crop be? How
much rainforest is left? A fourth is in organizing and structuring collections of pictures. We
know how to search and browse text libraries (though this is a subject that still has difficult open
questions) but don’t really know what to do with image or video libraries.

Computer vision is at an extraordinary point in its development. The subject itself has been
around since the 1960s, but it is only recently that it has been possible to build useful computer
systems using ideas from computer vision. This flourishing has been driven by several trends:
Computers and imaging systems have become very cheap. Not all that long ago, it took tens of
thousands of dollars to get good digital color images; now it takes a few hundred, at most. Not all
that long ago, a color printer was something one found in few, if any, research labs; now they are
in many homes. This means it is easier to do research. It also means that there are many people
with problems to which the methods of computer vision apply. For example, people would like
to organize their collection of photographs, make 3D models of the world around them, and
manage and edit collections of videos. Our understanding of the basic geometry and physics
underlying vision and, what is more important, what to do about it, has improved significantly.
We are beginning to be able to solve problems that lots of people care about, but none of the hard
problems have been solved and there are plenty of easy ones that have not been solved either (to
keep one intellectually fit while trying to solve hard problems). It is a great time to be studying
this subject.

What Is in This Book?

This book covers what we feel a computer vision professional ought to know. However, it is
addressed to a wider audience. We hope that those engaged in computational geometry, computer
graphics, image processing, imaging in general, and robotics will find it an informative reference.
We have tried to make the book accessible to senior undergraduates or graduate students with
a passing interest in vision. Each chapter covers a different part of the subject, and, as a glance
at Table 1 will confirm, chapters are relatively independent. This means that one can dip into
the book as well as read it from cover to cover. Generally, we have tried to make chapters run
from easy material at the start to more arcane matters at the end. Each chapter has brief notes at
the end, containing historical material and assorted opinions. We have tried to produce a book
that describes ideas that are useful, or likely to be so in the future. We have put emphasis on
understanding the basic geometry and physics of imaging, but have tried to link this with actual



Preface xix

applications. In general, the book reflects the enormous recent influence of geometry and various
forms of applied statistics on computer vision.

A reader who goes from cover to cover will hopefully be well informed, if exhausted;
there is too much in this book to cover in a one-semester class. Of course, prospective (or active)
computer vision professionals should read every word, do all the exercises, and report any bugs
found for the second edition (of which it is probably a good idea to plan buying a copy!). While
the study of computer vision does not require deep mathematics, it does require facility with
a lot of different mathematical ideas. We have tried to make the book self contained, in the
sense that readers with the level of mathematical sophistication of an engineering senior should
be comfortable with the material of the book, and should not need to refer to other texts. We
have also tried to keep the mathematics to the necessary minimum—after all, this book is about
computer vision, not applied mathematics—and have chosen to insert what mathematics we have
kept in the main chapter bodies instead of a separate appendix.

Generally, we have tried to reduce the interdependence between chapters, so that readers
interested in particular topics can avoid wading through the whole book. It is not possible to make
each chapter entirely self contained, and Table 1 indicates the dependencies between chapters.

TABLE 1 Dependencies between chapters: It will be difficult to read a chapter if you don’t have a
good grasp of the material in the chapters it “requires.” If you have not read the chapters labeled
“helpful,” you may need to look one or two things up.

Part Chapter Requires Helpful

I 1: Cameras
2: Geometric camera models 1
3: Geometric camera calibration 2
4: Radiometry—measuring light
5: Sources, shadows and shading 4, 1
6: Color 5

II 7: Linear filters
8: Edge detection 7
9: Texture 7 8

III 10: The geometry of multiple views 3
11: Stereopsis 10
12: Affine structure from motion 10
13: Projective structure from motion 12

IV 14: Segmentation by clustering 9, 6, 5
15: Segmentation by fitting a model 14
16: Segmentation and fitting using probabilistic methods 15,10
17: Tracking with linear dynamic models

V 18: Model-based vision 3
19: Smooth surfaces and their outlines 2
20: Aspect graphs 19
21: Range data 20, 19, 3

VI 22: Finding templates using classifiers 9, 8, 7, 6, 5
23: Recognition by relations between templates 9, 8, 7, 6, 5
24: Geometric templates from spatial relations 2, 1 16, 15, 14

VII 25: Application: Finding in digital libraries 16, 15, 14, 6
26: Application: Image-based rendering 10 13, 12, 11, 6, 5, 3, 2, 1
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What Is Not in This Book

The computer vision literature is vast, and it was not easy to produce a book about computer vi-
sion that can be lifted by ordinary mortals. To do so, we had to cut material, ignore topics, and so
on. We cut two entire chapters close to the last moment: One is an introduction to probability and
inference, the other an account of methods for tracking objects with non-linear dynamics. These
chapters appear on the book’s web page http://www.cs.berkeley.edu/∼daf/book.html.

We left out some topics because of personal taste, or because we became exhausted and
stopped writing about a particular area, or because we learned about them too late to put them in,
or because we had to shorten some chapter, or any of hundreds of other reasons. We have tended
to omit detailed discussions of material that is mainly of historical interest, and offer instead
some historical remarks at the end of each chapter. Neither of us claims to be a fluent intellectual
archaeologist, meaning that ideas may have deeper histories than we have indicated. We just
didn’t get around to writing up deformable templates and mosaics, two topics of considerable
practical importance; we will try to put them into the second edition.
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SAMPLE SYLLABI

The whole book can be covered in two (rather intense) semesters, by starting at the first page and
plunging on. Ideally, one would cover one application chapter—probably the chapter on image-
based rendering—in the first semester, and the other one in the second. Few departments will
experience heavy demand for so detailed a sequence of courses. We have tried to structure this
book so that instructors can choose areas according to taste. Sample syllabi for busy 15-week
semesters appear in Tables 2 to 6, structured according to needs that can reasonably be expected.
We would encourage (and expect!) instructors to rearrange these according to taste.

Table 2 contains a suggested syllabus for a one-semester introductory class in computer
vision for seniors or first-year graduate students in computer science, electrical engineering, or
other engineering or science disciplines. The students receive a broad presentation of the field,
including application areas such as digital libraries and image-based rendering. Although the

TABLE 2 A one-semester introductory class in computer vision for seniors or first-year graduate
students in computer science, electrical engineering, or other engineering or science disciplines.

Week Chapter Sections Key topics

1 1, 4 1.1, 4 (summary only) pinhole cameras, radiometric terminology
2 5 5.1–5.5 local shading models; point, line and area sources;

photometric stereo
3 6 all color
4 7, 8 7.1–7.5, 8.1–8.3 linear filters; smoothing to suppress noise; edge detection
5 9 all texture: as statistics of filter outputs; synthesis; shape from
6 10, 11 10.1, 11 basic multi-view geometry; stereo
7 14 all segmentation as clustering
8 15 15.1–15.4 fitting lines, curves; fitting as maximum likelihood;

robustness
9 16 16.1,16.2 hidden variables and EM

10 17 all tracking with a Kalman filter; data association
11 2, 3 2.1, 2.2, all of 3 camera calibration
12 18 all model-based vision using correspondence and

camera calibration
13 22 all template matching using classifiers
14 23 all matching on relations
15 25, 26 all finding images in digital libraries; image based rendering
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TABLE 3 A syllabus for students of computer graphics who want to know the elements of vision
that are relevant to their topic.

Week Chapter Sections Key topics

1 1, 4 1.1, 4 (summary only) pinhole cameras, radiometric terminology
2 5 5.1–5.5 local shading models; point, line and area sources;

photometric stereo
3 6.1–6.4 all color
4 7, 8 7.1–7.5, 8.1–8.3 linear filters; smoothing to suppress noise;

edge detection
5 9 9.1–9.3 texture: as statistics of filter outputs; synthesis
6 2, 3 2.1, 2.2, all of 3 camera calibration
7 10, 11 10.1, 11 basic multi-view geometry; stereo
8 12 all affine structure from motion
9 13 all projective structure from motion

10 26 all image-based rendering
11 15 all fitting; robustness; RANSAC
12 16 all hidden variables and EM
13 19 all surfaces and outlines
14 21 all range data
15 17 all tracking, the Kalman filter and data association

TABLE 4 A syllabus for students who are primarily interested in the applications of computer
vision.

Week Chapter Sections Key topics

1 1, 4 1.1, 4 (summary only) pinhole cameras, radiometric terminology
2 5, 6 5.1,5.3, 5.4, 5.5, 6.1–6.4 local shading models; point, line and area sources;

photometric stereo; color—physics,
human perception, color spaces

3 2, 3 all camera models and their calibration
4 7, 9 all of 7; 9.1–9.3 linear filters; texture as statistics of filter outputs;

texture synthesis
5 10, 11 all multiview geometry, stereo as an example
6 12,13 all affine structure from motion; projective structure

from motion
7 13, 26 all projective structure from motion; image-based

rendering
8 14 all segmentation as clustering, particular emphasis

on shot boundary detection and background
subtraction

9 15 all fitting lines, curves; robustness; RANSAC
10 16 all hidden variables and EM
11 25 all finding images in digital libraries
12 17 all tracking, the Kalman filter and data association
13 18 all model-based vision
14 22 all finding templates using classifiers
15 20 all range data
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hardest theoretical material is omitted, there is a thorough treatment of the basic geometry and
physics of image formation. We assume that students will have a wide range of backgrounds, and
can be assigned background readings in probability (we suggest the chapter on the book’s web
page) around week 2 or 3. We have put off the application chapters to the end, but many may
prefer to do chapter 20 around week 10 and chapter 21 around week 6.

Table 3 contains a syllabus for students of computer graphics who want to know the ele-
ments of vision that are relevant to their topic. We have emphasized methods that make it possible
to recover object models from image information; understanding these topics needs a working
knowledge of cameras and filters. Tracking is becoming useful in the graphics world, where it
is particularly important for motion capture. We assume that students will have a wide range of
backgrounds, and have some exposure to probability.

Table 4 shows a syllabus for students who are primarily interested in the applications of
computer vision. We cover material of most immediate practical interest. We assume that students
will have a wide range of backgrounds, and can be assigned background reading on probability
around week 2 or 3.

Table 5 is a suggested syllabus for students of cognitive science or artificial intelligence
who want a basic outline of the important notions of computer vision. This syllabus is less ag-
gressively paced, and assumes less mathematical experience. Students will need to read some
material on probability (e.g., the chapter on the book’s web page) around week 2 or 3.

Table 6 shows a sample syllabus for students who have a strong interest in applied mathe-
matics, electrical engineering or physics. This syllabus makes for a very busy semester; we move
fast, assuming that students can cope with a lot of mathematical material. We assume that stu-
dents will have a wide range of backgrounds, and can be assigned some reading on probability
around week 2 or 3. As a break in a pretty abstract and demanding syllabus, we have inserted a
brief review of digital libraries; the chapter on image-based rendering or that on range data could
be used instead.

TABLE 5 For students of cognitive science or artificial intelligence who want a basic outline of
the important notions of computer vision.

Week Chapter Sections Key topics

1 1, 4 1, 4 (summary only) pinhole cameras; lenses; cameras and the eye;
radiometric terminology

2 5 all local shading models; point, line and area
sources; photometric stereo; interreflections;
lightness computations

3 6 all color: physics, human perception, spaces; image
models; color constancy

4 7 7.1–7.5, 7.7 linear filters; sampling; scale
5 8 all edge detection
6 9 all texture; representation, synthesis, shape from
7 10.1,10.2 all basic multiple view geometry
8 11 all stereopsis
9 14 all segmentation by clustering

10 15 all fitting lines, curves; robustness; RANSAC
11 16 all hidden variables and EM
12 18 all model-based vision
13 22 all finding templates using classifiers
14 23 all recognition by relations between templates
15 24 all geometric templates from spatial relations
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TABLE 6 A syllabus for students who have a strong interest in applied mathematics, electrical
engineering or physics.

Week Chapter Sections Key topics

1 1, 4 all cameras, radiometry
2 5 all shading models; point, line and area sources;

photometric stereo; interreflections and shading
primitives

3 6 all color:—physics, human perception, spaces,
color constancy

4 2, 3 all camera parameters and calibration
5 7, 8 all linear filters and edge detection
6 8, 9 all finish edge detection; texture: representation,

synthesis, shape from
7 10, 11 all multiple view geometry, stereopsis as an

example
8 12, 13 all structure from motion
9 14, 15 all segmentation as clustering; fitting lines, curves;

robustness; RANSAC
10 15, 16 all finish fitting; hidden variables and EM
11 17, 25 all tracking: Kalman filters, data association;

finding images in digital libraries
12 18 all model-based vision
13 19 all surfaces and their outlines
14 20 all aspect graphs
15 22 all template matching

NOTATION

We use the following notation throughout the book: points, lines, and planes are denoted by
Roman or Greek letters in italic font (e.g., P , �, or �). Vectors are usually denoted by Roman
or Greek bold-italic letters (e.g., v, P, or ξ), but the vector joining two points P and Q is often
denoted by

−→
P Q. Lower-case letters are normally used to denote geometric figures in the image

plane (e.g., p, p, δ), and upper-case letters are used for scene objects (e.g., P , �). Matrices are
denoted by Roman letters in calligraphic font (e.g., U).

The familiar three-dimensional Euclidean space is denoted by E
3, and the vector space

formed by n-tuples of real numbers with the usual laws of addition and multiplication by a scalar
is denoted by R

n , with 0 being used to denote the zero vector. Likewise, the vector space formed
by m × n matrices with real entries is denoted by R

m×n . When m = n, Id is used to denote the
identity matrix—that is, the n × n matrix whose diagonal entries are equal to 1 and nondiagonal
entries are equal to 0. The transpose of the m×n matrix U with coefficients ui j is the n×m matrix
denoted by UT with coefficients u ji . Elements of R

n are often identified with column vectors or
n × 1 matrices, e.g., a = (a1, a2, a3)

T is the transpose of a 1 × 3 matrix (or row vector), i.e., an
3 × 1 matrix (or column vector), or equivalently an element of R

3.
The dot product (or inner product) of two vectors a = (a1, . . . , an)

T and b = (b1, . . . , bn)
T

in R
n is defined by

a · b = a1b1 + · · · + anbn,

and it can also be written as a matrix product, i.e., a · b = aT b = bT a. We denote by |a|2 = a · a
the square of the Euclidean norm of the vector a and denote by d the distance function induced
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by the Euclidean norm in E
n , i.e., d(P, Q) = |−→

P Q|. Given a matrix U in R
m×n , we generally

use |U | to denote its Frobenius norm, i.e., the square root of the sum of its squared entries.
When the vector a has unit norm, the dot product a · b is equal to the (signed) length of the

projection of b onto a. More generally,

a · b = |a| |b| cos θ,

where θ is the angle between the two vectors, which shows that a necessary and sufficient con-
dition for two vectors to be orthogonal is that their dot product be zero.

The cross product (or outer product) of two vectors a = (a1, a2, a3)
T and b = (b1, b2, b3)

T

in R
3 is the vector

a × b
def=




a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1


.

Note that a × b = [a×]b, where

[a×] def=



0 −a3 a2

a3 0 −a1

−a2 a1 0


.

The cross product of two vectors a and b in R
3 is orthogonal to these two vectors, and a

necessary and sufficient condition for a and b to have the same direction is that a × b = 0. If θ

denotes as before the angle between the vectors a and b, it can be shown that

|a × b| = |a| |b| |sin θ |.

PROGRAMMING ASSIGNMENTS AND RESOURCES

The programming assignments given throughout the book sometimes require routines for nu-
merical linear algebra, singular value decomposition, and linear and nonlinear least squares. An
extensive set of such routines is available in MATLAB as well as in public-domain libraries
such as LINPACK, LAPACK, and MINPACK, which can be downloaded from the Netlib reposi-
tory (http://www.netlib.org/). We offer some pointers to other software on the book’s web
page http://www.cs.berkeley.edu/∼daf/book.html. Datasets—or pointers to datasets—
for the programming assignment are also available there.




