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An Introduction to Probability

As the previous chapters have illustrated, it is often quite easy to come up
with physical models that determine the effects that result from various causes —
we know how image intensity is determined, for example. The difficulty is that
effects could have come from various causes and we would like to know which
— for example, is the image dark because the light level is low, or because the
surface has low albedo? Ideally, we should like to take our measurements and
determine a reasonable description of the world that generated them. Accounting
for uncertainty is a crucial component of this process, because of the ambiguity of
our measurements. Our process of accounting needs to take into account reasonable
preferences about the state of the world — for example, it is less common to see
very dark surfaces under very bright lights than it is to see a range of albedoes
under a reasonably bright light.

Probability is the proper mechanism for accounting for uncertainty. Axiomatic
probability theory is gloriously complicated, and we don’t attempt to derive the
ideas in detail. Instead, this chapter will first review the basic ideas of probability.
We then describe techniques for building probabilistic models and for extracting
information from a probabilistic model, all in the context of quite simple examples.
In chapters ??, 2, ?? and ??, we show some substantial examples of probabilistic
methods; there are other examples scattered about the text by topic.

Discussions of probability are often bogged down with waffle about what prob-
ability means, a topic that has attracted a spectacular quantity of text. Instead,
we will discuss probability as a modelling technique with certain formal, abstract
properties — this means we can dodge the question of what the ideas mean and
concentrate on the far more interesting question of what they can do for us.

We will develop probability theory in discrete spaces first, because it is possible
to demonstrate the underpinning notions without much notation (section 1.1). We
then pass to continuous spaces (section 1.2). Section 1.3 describes the important
notion of a random variable, and section 1.4 describes some common probability
models. Finally, in section 1.5, we get to probabilistic inference, which is the main
reason to study probability.

1.1 PROBABILITY IN DISCRETE SPACES

Probability models compare the outcomes of various experiments. These outcomes
are represented by a collection of subsets of some space; the collection must have
special properties. Once we have defined such a collection, we can define a proba-
bility function. The interesting part is how we choose a probability function for a
particular application, and there are a series of methods for doing this.
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1.1.1 Representing Events

Generally, a probability model is used to compare various kinds of experimental
outcomes. We assume that we can distinguish between these outcomes, which are
usually called events. Now if it is possible to tell whether an event has occurred,
it is possible to tell if it has not occurred, too. Furthermore, if it is possible to tell
that two events have occurred independently, then it is possible to tell if they have
occurred simultaneously.

This motivates a formal structure. We take a discrete space, D, which could be
infinite and which represents the world in which experiments occur. Now construct
a collection of subsets of D, which we shall call F , each of which represents an
event. This collection must have the following properties:

• The empty set is in F and so is D. In effect, we are saying that “nothing
happened” and “something happened” are events.

• Closure under complements: if S1 ∈ F then S1 = D − S1 ∈ F — i.e. if it is
possible to tell whether an event has occurred, it is possible to tell if it has
not occurred, too.

• Closure under intersection: if S1 ∈ F and S2 ∈ F , then S1 ∩ S2 ∈ F — i.e.
if it is possible to tell that two events have occurred independently, then it is
possible to tell if they have occurred simultaneously.

The elements of F correspond to the events. Note that we can we can tell whether
any logical combinations of events has occurred, too, because a logical combination
of events corresponds to set unions, negations or intersections.

EXAMPLE 1.1 The space of events for a single toss of a coin.

Given a coin that is flipped once,

D = {heads, tails}

There are only two possible sets of events in this case:

{∅, D}

(which implies we flipped the coin, but can’t tell what happened!) and

{∅, D, {heads}, {tails}}

EXAMPLE 1.2 Two possible spaces of events for a single flip each of two coins.

Given two coins that are flipped,

D = {hh, ht, tt, th}
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There are rather more possible sets of events in this case. One useful one would be

F =




∅, D,
{hh}, {ht}, {tt}, {th},
{hh, ht}, {hh, th}, {hh, tt}, {ht, th},
{ht, tt}, {th, tt}, {hh, ht, th}, {hh, ht, tt},
{hh, th, tt}, {ht, th, tt}




which would correspond to all possible cases. Another (perhaps less useful) struc-
ture would be:

F = {∅, D, {hh, ht}, {th, tt}}

which implies that we cannot measure the state of the second coin

1.1.2 Probability: the P-function

Now we construct a function P , which takes elements of F to the unit interval. We
require that P has some important properties:

• P is defined for every element of F

• P (∅) = 0

• P (D) = 1

• for A ∈ F and B ∈ F , P (A ∪B) = P (A) + P (B) − P (A ∩B)

which we call the axiomatic properties of probability. Note that 0 ≤ P (A) ≤ 1 for
all A ∈ F , because the function takes elements of F to the unit interval. We call the
collection of D, P and F a probability model. We call P (A) the probability
of the event A — because we are still talking about formal structures, there
is absolutely no reason to discuss what this means; it’s just a name. Rigorously
justifying the properties of P is somewhat tricky. It can be helpful to think of P as
a function that measures the size of a subset of D — the whole of D has size one,
and the size of the union of two disjoint sets is the sum of their sizes.

EXAMPLE 1.3 The possible P functions for the flip of a single coin.

In example 1, for the first structure onD, there is only one possible choice of P ; for
the second, there is a one parameter family of choices, we could choose P (heads)
to be an arbitrary number in the unit interval, and the choice of P (tails) follows.

EXAMPLE 1.4 The P functions for two coins, each flipped once.

In example 2, there is a three-parameter family of choices for P in the case of
the first event structure shown in that example — we can choose P (hh), P (ht)
and P (th), and all other values will be given by the axioms. For the second event
structure in that example, P is the same as that for a single coin (because we can’t
tell the state of one coin).
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1.1.3 Conditional Probability

If we have some element A of F where P (A) �= 0 — and this constraint is important
— then the collection of sets

FA = {u ∩A|u ∈ F}

has the same properties as F (i.e. ∅ ∈ FA, A ∈ FA, and FA is closed under
complement and intersection), only now its domain of definition is A. Now for any
C ∈ F we can define a P function for the component of C that lies in FA. We
write

PA(C) =
P (C ∩A)

P (A)

This works because C ∩ A is in FA, and P (A) is non-zero. In particular, this
function satisfies the axiomatic properties of probability on its domain, FA. We
call this function the conditional probability of C, given A; it is usually written
as P (C|A). If we adopt the metaphor that P measures the size of a set, then the
conditional probability measures the size of the set C ∩A relative to A. Notice that

P (A ∩ C) = P (A|C)P (C) = P (C|A)P (A)

an important fact that you should memorize. It is often written as

P (A,C) = P (A|C)P (C) = P (C|A)P (A)

where P (A,C) is often known as the joint probability for the events A and C.
Assume that we have a collection of n sets Ai, such that Aj ∩ Ak = ∅ for

every j �= k and A =
⋃
iAi. The analogy between probability and size motivates

the result that

P (B|A) =
n∑
i=1

P (B|Ai)P (Ai|A)

a fact well worth remembering. In particular, if A is the whole domain D, we have
the useful fact that for n disjoint sets Ai, such that D =

⋃
iAi,

P (B) = P (B|D)

=

n∑
i=1

P (B|Ai)P (Ai|D)

=

n∑
i=1

P (B|Ai)P (Ai)

1.1.4 Choosing P

We have a formal structure — to use it, we need to choose values of P that have
useful semantics. There are a variety of ways of doing this, and it is essential to
understand that there is no canonical choice. The choice of P is an essential part of
the modelling process. A bad choice will lead to an unhelpful or misleading model,
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and a good choice may lead to a very enlightening model. There are some strategies
that help in choosing P .

Symmetry. Many problems have a form of symmetry that means we have
no reason to distinguish between certain sets of events. In this case, it is natural
to choose P to reflect this fact. Examples 5 and 6 illustrate this approach.

EXAMPLE 1.5 Choosing the P function for a single coin flip using symmetry.

Assume we have a single coin which we will flip, and we can tell the difference
between heads and tails. Then

F = {∅, D, {heads}, {tails}}

is a reasonable model to adopt. Now this coin is symmetric — there is no reason to
distinguish between the heads side and the tails side from a mechanical perspective.
Furthermore, the operation of flipping it subjects it to mechanical forces that do
not favour one side over the other. In this case, we have no reason to believe that
there is any difference between the outcomes, so it is natural to choose

P (heads) = P (tails) = 1/2

EXAMPLE 1.6 Choosing the P function for a roll of a die using symmetry.

Assume we have a die that we believe to be fair, in the sense that it has been
manufactured to have the symmetries of a cube. This means that there is no
reason to distinguish between any of the six events defined by distinct faces pointing
up. We can therefore choose a P function that has the same value for each of these
events. A more sophisticated user of a die labels each vertex of each face, and throws
the die onto ruled paper; each face then has four available states, corresponding to
the vertex that is furthest away from the thrower. Again, we have no reason to
distinguish between the states, so we can choose a P function that has the same
value for each of the 24 possible states that can result.

Independence. In many probability models, events do not depend on one
another. This is reflected in the conditional probability. If there is no interaction
between events A and B, then P (A|B) cannot depend on B. This means that
P (A|B) = P (A) (and, also, P (B|A) = P (B)), a property known as indepen-
dence. In turn, if A and B are independent, we have P (A∩B) = P (A|B)P (B) =
P (A)P (B). This property is important, because it reduces the number of parame-
ters that must be chosen in building a probability model (example 7).

EXAMPLE 1.7 Choosing the P function for a single flip each of two coins using the
idea of independence.

We adopt the first of the two event structures given for the two coins in example 2
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(this is where we can tell the state of both coins). Now we assume that neither coin
knows the other’s intentions or outcome.

This assumption restricts our choice of probability model quite considerably
because it enforces a symmetry. Let us choose

P ({hh, ht}) = p1h

and

P ({hh, th}) = p2h

Now let us consider conditional probabilities, in particular

P ({hh, ht}|{hh, th})

(which we could interpret as the probability that the first coin comes up heads
given the second coin came up heads). If the coins cannot communicate, then this
conditional probability should not depend on the conditioning set, which means
that

P ({hh, ht}|{hh, th}) = P ({hh, ht})

In this case, we know that

P ({hh}) = P ({hh, ht}|{hh, th})P ({hh, th}) = P ({hh, ht})P ({hh, th}) = p1hp2h

Similar reasoning yields P (A) for all A ∈ F , so that our assumption that the two
coins are independent means that there is now only a two parameter family of
probability models to choose from — one parameter describes the first coin, the
other describes the second.

A more subtle version of this property is conditional independence. For-
mally, A and B are conditionally independent given C if

P (A,B, C) = P (A,B|C)P (C) = P (A|C)P (B|C)P (C)

Like independence, conditional independence simplifies modelling by (sometimes
substantially) reducing the number of parameters that must be chosen in con-
structing a model (example 8).

EXAMPLE 1.8 Simplifying a model using conditional independence: the case of
rain, sprinklers and lawns.

Both I and my neighbour have a lawn; each lawn has its own sprinkler system.
There are two reasons that my lawn could be wet in the morning — either it rained
in the night, or my sprinkler system came on. There is no reason to believe that
the neighbour’s sprinkler system comes on at the same times or on the same days
as mine does. Neither sprinkler system is smart enough to know whether it has
rained. Finally, if it rains, both lawns are guaranteed to get wet; however, if the
sprinkler system comes on, there is some probability that the lawn will not get wet
(perhaps a jammed nozzle).
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A reasonable model has five binary variables (my lawn is wet or not; the
neighbour’s lawn is wet or not; my sprinkler came on or not; the neighbour’s sprin-
kler came on or not; and it rained or not). D has 32 elements, and the event space
is too large to write out conveniently. If there was no independence in the model,
specifying P could require 31 parameters.

However, if I know it did not rain in the night, then the state of my lawn is
independent of the state of the neighbour’s lawn, because the two sprinkler systems
do not communicate. Our joint probability function is

P (W, Wn, S, Sn, R) = P (W, S|R)P (Wn, Sn|R)P (R)

We know that P (W = true, S|R = true) = P (S) (this just says that if it rains, the
lawn is going to be wet); a similar observation applies to the neighbour’s lawn.
The rain and the sprinklers are independent and there is a symmetry — both my
neighbour’s lawn and mine behave in the same way. This means that, in total, we
need only 5 parameters to specify this model.

Notice that in this case, independence is a model; it is possible to think of
any number of reasons that the sprinkler systems might well display quite similar
behaviour, even though they don’t communicate (the neighbour and I might like
the same kind of plants; there could be laws restricting when the sprinklers come
on; etc.). This means that, like any model, we will need to look for evidence that
tends either to support or to discourage our use of the model. One form that this
evidence very often takes is the observation that the model is good at predicting
what happened in the past.

Frequency:. Data reflecting the relative frequency of events can be easily
converted into a form that satisfies the axioms for P , as example 9 indicates.

EXAMPLE 1.9 Choosing a P function for a single coin flip using frequency infor-
mation.

Assume that, in the past, we have flipped the single coin described above many
times, and observed that for 51% of these flips it comes up heads, and for 49% it
comes up tails. We could choose

P ({heads}) = 0.51 and P ({tails}) = 0.49

This choice is a sensible choice, as example 10 indicates.

An interpretation of probability as frequency is consistent, in the following
sense. Assume that we obtain repeated, independent outcomes from an experiment
which has been modelled with a P allocated using frequency data. Events will be
long sequences of outcomes, and the events with the highest probability will be those
that show the outcomes with about the right frequency. Example 10 illustrates this
effect for repeated flips of a single coin.
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EXAMPLE 1.10 The probability of various frequencies in repeated coin flips

Now consider a single coin that we flip many times, and where each flip is indepen-
dent of the other. We set up an event structure that does not reflect the order in
which the flips occur. For example, for two flips, we would have:

{∅, D, {hh}, {tt}, {ht, th}, {hh, tt}, {hh, ht, th}, {tt, ht, th}}

(which we can interpret as “no event”, “some event”, “both heads”, “both tails”,
“coins different”, “coins the same”, “not both tails”, and “not both heads”). We
assume that P ({hh}) = p2; a simple computation using the idea of independence
yields that P ({ht, th}) = 2p(1 − p) and P (tt) = (1 − p)2. We can generalise this
result, to obtain

P (k heads and n− k tails in n flips) =

(
n
k

)
pk(1− p)n−k

Saying that the relative frequency of an event is f means that, in a very large
number of independent trials (say, N), we expect that the event occurs in about
fN of those trials. Now for large n, the expression(

n
k

)
pk(1− p)n−k

(which is what we obtained for the probability of a sequence of trials showing k
heads and n − k tails in example 10) has a substantial peak at p = k

n . This peak
gets very narrow and extremely pronounced as n → ∞. This effect is extremely
important, and is consistent with an interpretation of probability as relative fre-
quency:

• firstly, because it means that we assign a high probability to long sequences
of coin flips where the event occurs with the “right” frequency

• and secondly, because the probability assigned to these long sequences can
also be interpreted as a frequency — essentially, this interpretation means
that long sequences where the events occur with the “right” frequency occur
far more often than other such sequences (see figure 1.1).

All this means that, if we choose a P function for a coin flip — or some other
experiment — on the basis of sufficiently good frequency data, then we are very
unlikely to see long sequences of coin flips — or repetitions of the experiment —
that do not show this frequency.

This interpretation of probability as frequency is widespread, and common.
One valuable advantage of the interpretation is that it simplifies estimating prob-
abilities for some sorts of models. For example, given a coin, one could obtain
P (heads) by flipping the coin many times and measuring the relative frequency
with which heads appear.
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FIGURE 1.1: We assume that a single flip of a coin has a probability 0.5 of coming up
heads. If we interpret probability as frequency, then long sequences of coin flips should
almost always have heads appearing about half the time. This plot shows the width of the
interval about 0.5 that contains 95% of the probability for various numbers of repeated
coin flips. Notice that as the sequence gets longer, the interval gets narrower — one is
very likely to observe a frequency of heads in the range [0.43, 0.57] for 170 flips of a coin
with probability 0.5 of coming up heads.

Subjective probability. It is not always possible to use frequencies to
obtain probabilities. There are circumstances in which we would like to account
for uncertainty but cannot meaningfully speak about frequencies. For example, it
is easy to talk about the probability it will rain tomorrow, but hard to interpret
this use of the term as a statement about frequency1 . An alternative source of
P is to regard probability as encoding degree of belief. In this approach, which
is usually known as subjective probability, one chooses P to reflect reasonable
beliefs about the situation that applies.

EXAMPLE 1.11 Assigning P functions to coins from different sources, using sub-
jective probability.

A friend with a good reputation for probity and no obvious need for money draws
a coin from a pocket, and offers to bet with you on whether it comes up heads or
tails — your choice of face. What probability do you ascribe to the event that it
comes up heads?

Now an acquaintance draws a coin from a pocket and offers a bet: he’ll pay you
15 dollars for your stake of one dollar if the coin comes up heads. What probability

1One dodge is to assume that there are a very large set of equivalent universes which are the
same today. In some of these worlds, it rains tomorrow and in others it doesn’t; the frequency
with which it rains tomorrow is the probability. This philosophical fiddle isn’t very helpful in
practice, because we can’t actually measure that frequency by looking at these alternative worlds.
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do you ascribe to the event that it comes up heads?
Finally you encounter someone in a bar who (it emerges) has a long history of

disreputable behaviour and an impressive conviction record. This person produces
a coin from a pocket and offers a bet: you pay him 1000 dollars for his stake of one
dollar if it lands on its edge and stands there. What probability do you ascribe to
the event that it lands on its edge and stands there?

You have to choose your answer for these cases — that’s why it’s subjective.
You could lose a lot of money learning that the answer in the second case is going
to be pretty close to zero. Similarly, the answer in the third case is pretty close to
one. There is a lot of popular and literary information about subjective probability.
People who are thoughtless in there estimates of subjective probability offer a living
to those of sharp wits; John Bradshaw’s wonderful book “Fast Company” is a
fascinating account of this world. One version of the third case — that if you bet
with a stranger that a card will not leap out of a pack and squirt cider in your ear,
you will end up with a wet ear — is expounded in detail in Damon Runyon’s story
“The Idyll of Miss Sarah Brown.”

Subjective probability must still satisfy the axioms of probability. It is simply
a way of choosing free parameters in a probability model without reference to
frequency. The attractive feature of subjective probability is that it emphasizes that
a choice of probability model is a modelling exercise — there are few circumstances
where the choice is canonical. One natural technique to adopt is to choose a function
P that yields good behaviour in practice; this strategy is pervasive through the
following chapters.

1.2 PROBABILITY IN CONTINUOUS SPACES

Much of the discussion above transfers quite easily to a continuous space, as long
as we are careful about events. The difficulty is caused by the “size” of continuous
spaces — there are an awful lot of numbers between 1.0 and 1.00000001, one for each
number between 1.0 and 2.0. For example, if we are observing noise — perhaps by
measuring the voltage across the terminals of a warm resistor — the noise will very
seldom take the value 1 exactly. It is much more helpful to consider the probability
that the value is in the range 1 to 1 + δ, for δ a small step.

1.2.1 Event Structures for Continuous Spaces

This observation justifies using events that look like intervals or boxes for continuous
spaces. Given a space D, our space of events will be a set F with the following
properties:

• The empty set is in F and so is D.

• Closure under finite intersections: if Si is a finite collection of subsets, and
each Si ∈ F then ∩iSi ∈ F .

• Closure under finite unions: if Si is an finite collection of subsets, and each
Si ∈ F then ∪iSi ∈ F .

• Closure under complements: if S1 ∈ F then S1 = D − S1 ∈ F .



12 Chapter 1 An Introduction to Probability

The basic axioms for P apply here too. For D the domain, and A and B events,
we have:

• P (D) = 1

• P (∅) = 0

• for any A, 0 ≤ P (A) ≤ 1

• if A ⊂ B, then P (A) ≤ P (B)

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

The concepts of conditional probability, independence and conditional indepen-
dence apply in continuous spaces without modification. For example, the condi-
tional probability of an event given another event can be defined by

P (A ∩B) = P (A|B)P (B)

and the conditional probability can be thought of as probability restricted to the
set B. Events A and B are independent if and only if

P (A ∩B) = P (A)P (B)

and A and B are conditionally independent given C if and only if

P (A ∩B|C) = P (A|C)P (B|C)

Of course, to build a useful model we need to be more specific about what the
events should be.

1.2.2 Representing P-functions

One difficulty in building probability models on continuous spaces is expressing the
function P in a useful way — it is clearly no longer possible to write down the
space of events and give a value of P for each event. We will deal only with Rn,
with subsets of this space, or with multiple copies of this space.

The Real Line.
The set of events for the real line is far too big to write down. All events look

like unions of a basic collection of sets. This basic collection consists of:

• individual points (i.e a);

• open intervals (i.e. (a, b));

• half-open intervals (i.e. (a, b] or [a, b));

• and closed intervals (i.e. [a, b]).

All of these could extend to infinity. The function P can be represented by a
function F with the following properties:
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• F (−∞) = 0

• F (∞) = 1

• F (x) is monotonically increasing.

and we interpret F (x) as P ((−∞, x]). The function F is referred to as the cu-
mulative distribution function. The value of P for all the basic sets de-
scribed can be extracted from F , with appropriate attention to limits; for example,
P ((a, b]) = F (b)− F (a) and P (a) = limε←0+(F (a)− F (a− ε)). Notice that if F is
continuous, P (a) = 0.

Higher Dimensional Spaces.
In Rn, events are unions of elements of a basic collection of sets, too. This

basic collection consists of a product of n elements from the basic collection for the
real line. A cumulative distribution function can be defined in this case, too. It is
given by a function F with the property that P ({x1 ≤ u1, x2 ≤ u2, . . . xn ≤ un}) =
F (u). This function is constrained by other properties, too. However, cumulative
distribution functions are a somewhat unwieldy way to specify probability.

1.2.3 Representing P-functions with Probability Density Functions

For the examples we will deal with in continuous spaces, the usual way to specify
P is to provide a function p such that

P (event) =

∫
event

p(u)du

This function is referred to as a probability density function.
Not every probability model admits a density function, but all our cases will.

Note that a density function cannot have a negative value, but that its value could
be larger than one. In all cases, probability density functions integrate to one, i.e.

P (D) =

∫
D

p(u)du = 1

and any non-negative function with this property is a probability density function.
The value of the probability density function at a point represents the probability
of the event that consists of an infinitesimal neighbourhood at that value, i.e.:

p(u1)du = P ({u ∈ [u1, u1 + du]})

Notice that this means that (unless we are willing to be rather open minded about
what constitutes a function), for a probability model on a continuous space that can
be represented using a probability density, the probability of an event that consists
of a finite union of points must be zero. For the examples we will deal with, this
doesn’t create any issues. In fact, it is intuitive, in the sense that we don’t expect
to be able to observe the event that, say, a noise voltage has value 1; instead, we
can observe the event that it lies in some tiny interval — defined by the accuracy
of our measuring equipment — about 1.

Conditional probability, independence and conditional independence are ideas
that can be translated into properties of probability density functions. In their most
useful form, they are properties of random variables.
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1.3 RANDOM VARIABLES

Assume that we have a probability model on either a discrete or a continuous
domain, {D,F , P }. Now let us consider a function of the outcome of an experiment.
The values that this function takes on the different elements of D form a new set,
which we shall call D′. There is a structure, with the same formal properties as F
on D′ defined by the values that this function takes on different elements of F —
call this structure F ′.

This function is known as a random variable. We can talk about the proba-
bility that a random variable takes a particular set of values, because the probability
structure carries over. In particular, assume that we have a random variable ξ. If
A′ ∈ F ′, there is some A ∈ F such that A′ = ξ(A). This means that

P ({ξ ∈ A′}) = P (A)

EXAMPLE 1.12 Assorted examples of random variables

The simplest random variable is given by the identity function — this means that
D′ is the same as D, and F ′ is the same as F . For example, the outcome of a coin
flip is a random variable.

Now gamble on the outcome of a coin flip: if it comes up heads, you get a
dollar, and if it comes up tails, you pay a dollar. Your income from this gamble is
a random variable. In particular, D′ = {1,−1} and F ′ = {∅, D′, {1}, {−1}}.

Now gamble on the outcome of two coin flips: if both coins come up the same,
you get a dollar, and if they come up different, you pay a dollar. Your income from
this gamble is a random variable. Again, D′ = {1,−1} and F ′ = {∅, D′, {1}, {−1}}.
In this case, D′ is not the same as D and F ′ is not the same as F ; however, we
can still speak about the probability of getting a dollar — which is the same as
P ({hh, tt}).

Density functions are very useful for specifying the probability model for the
value of a random variable. However, they do result in quite curious notations
(probability is a topic that seems to encourage creative use of notation). It is
common to write the density function for a random variable as p. Thus, the dis-
tribution for λ would be written as p(λ) — in this case, the name of the variable
tells you what function is being referred to, rather than the name of the function,
which is always p. Some authors resist this convention, but its use is pretty much
universal in the vision literature, which is why we adopt it. For similar reasons,
we write the probability function for a set of events as P , so that the probability
of an event P (event) (despite the fact that different sets of events may have very
different probability functions).

1.3.1 Conditional Probability and Independence

Conditional probability is a very useful idea for random variables. Assume we
have two random variables, m and n— (for example, the value I read from my rain
gauge asm and the value I read on the neighbour’s as n). Generally, the probability
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density function is a function of both variables, p(m, n). Now

p(m1, n1)dmdn = P ({m ∈ [m1 , m1 + dm]} and {n ∈ [n1, n1 + dm]})

= P ({m ∈ [m1 , m1 + dm]} | {n ∈ [n1, n1 + dm]})P ({n ∈ [n1, n1 + dm]})

We can define a conditional probability density from this by

p(m1, n1)dmdn = P ({m ∈ [m1 , m1 + dm]} | {n ∈ [n1, n1 + dm]})P ({n ∈ [n1, n1 + dm]})

= (p(m1 |n1)dm)(p(n1)dn)

Note that this conditional probability density has the expected property, that

p(m|n) =
p(m, n)

p(n)

Independence and conditional independence carry over to random variables and
probability densities without fuss.

EXAMPLE 1.13 Independence in random variables associated with two coins.

We now consider the probability that each of two different coins comes up heads.
In this case, we have two random variables, being the probability that the first
coin comes up heads and the probability that the second coin comes up heads (it’s
quite important to understand why these are random variables — if you’re not sure,
look back at the definition). We shall write these random variables as p1 and p2.
Now the density function for these random variables is p(p1, p2). Let us assume
that there is no dependency between these coins, so we should be able to write
p(p1, p2) = p(p1)p(p2). Notice that the notation is particularly confusing here; the
intended meaning is that p(p1, p2) factors, but that the factors are not necessarily
equal. In this case, a further reasonable modelling step is to assume that p(p1) is
the same function as p(p2) (perhaps they came from the same minting machine).

1.3.2 Expectations

The expected value or expectation of a random variable (or of some function
of the random variable) is obtained by multiplying each value by its probability
and summing the results — or, in the case of a continuous random variable, by
multiplying by the probability density function and integrating. The operation is
known as taking an expectation. For a discrete random variable, x, taking the
expectation of x yields:

E[x] =
∑

i∈values

xip(xi)

For a continuous random variable, the process yields

E[x] =

∫
D

xp(x)dx
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often referred to as the average, or the mean in polite circles. One model for an
expectation is to consider the random variable as a payoff, and regard the expec-
tation as the average reward, per bet, for an infinite number of repeated bets. The
expectation of a general function g(x) of a random variable x is written as E[g(x)].

The variance of a random variable x is

var(x) = E[x2 − (E(x))2]

This expectation measures the average deviance from the mean. The variance of
a random variable gives quite a strong indication of how common it is to see a
value that is significantly different from the mean value. In particular, we have the
following useful fact:

P ({|x− E[x] |≥ ε}) ≤
var(x)

ε2

The standard deviation is obtained from the variance:

sd(x) =
√
var(x) =

√
E[x2 − (E[x])2]

For a vector of random variables, the covariance is

cov(x) = E[xxt − (E[x]E[x]t)]

This matrix (look carefully at the transpose) is symmetric. Diagonal entries are
the variance of components of x, and must be non-negative. Off-diagonal elements
measure the extent to which two variables co-vary. For independent variables, the
covariance must be zero. For two random variables that generally have different
signs, the covariance can be negative.

EXAMPLE 1.14 The expected value of gambling on a coin flip.

You and an acquaintance decide to bet on the outcome of a coin flip. You will
receive a dollar from your acquaintance if the coin comes up heads, and pay one if
it comes up tails. The coin is symmetric.

This means the expected value of the payoff is

1P (heads)− 1P (tails) = 0

The variance of the payoff is one, as is the standard deviation.
Now consider the probability of obtaining 10 dollars in 10 coin flips, with a

fair coin. Our random variable x is the income in 10 coin flips. Equation 1.3.2 yields
P ({|x |≥ 10}) ≤ 1

100 , which is a generous upper bound — the actual probability is
of the order of one in a thousand.

Expectations of functions of random variables are extremely useful. The no-
tation for expectations can be a bit confusing, because it is common to omit the
density with respect to which the expectation is being taken, which is usually ob-
vious from the context. For example, E[x2] is interpreted as∫

D

x2p(x)dx
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1.3.3 Joint Distributions and Marginalization

Assume we have a model describing the behaviour of a collection of random vari-
ables. We will proceed on the assumption that they are discrete, but (as should
be clear by now) the discussion will work for continuous variables if summing is
replaced by integration. One way to specify this model is to give the probability
distribution for all variables, known in jargon as the joint probability distribu-
tion function— for concreteness, write this as P (x1, x2, . . .xn). If the probability
distribution is represented by its density function, the density function is usually
referred to as the joint probability density function. Both terms are often
abbreviated as “joint.”

EXAMPLE 1.15 Marginalising out parameters for two different types of coin.

Let us assume we have a coin which could be from one of two types; the first type
of coin is evenly balanced; the other is wildly unbalanced. We flip our coin some
number of times, observe the results, and should like to know what type of coin we
have. Assume that we flip the coin once. The set of outcomes is

D = {(heads, I), (heads, II), (tails, I), (tails, II)}

An appropriate event space is:


∅, D,
{(heads, I)}, {(heads, II)},
{(tails, I)}, {(tails, II)},

{(heads, I), (heads, II)} , {(tails, I), (tails, II),} ,
{(tails, I), (heads, I)} , {(tails, II), (heads, II)} ,

{(heads, II), (tails, I), (tails, II)}, {(heads, I), (tails, I), (tails, II)}
{(heads, I), (heads, II), (tails, II)} {(heads, I), (heads, II), (tails, I)}




In this case, assume that we know P (face, type), for each face and type. Now, for
example, the event that the coin shows heads (whatever the type) is represented
by the set

{(heads, I), (heads, II)}

We can compute the probability that the coin shows heads (whatever the type) as
follows

P ({(heads, I), (heads, II)}) = P ((heads, I) ∪ (heads, II))

= P ({(heads, I)}) + P ({(heads, II)})

We can compute the probability that the coin is of type I, etc. with similar ease
using the same line of reasoning, which applies quite generally.

As we have already seen, the value of P for some elements of the event space
can be determined from the value of P for other elements. This means that if we
know

P ({x1 = a, x2 = b, . . . xn = n})

for each possible value of a, b, . . . , n, then we should know P for a variety of other
events. For example, it might be useful to know P ({x1 = a}). If we can form
P ({x2 = b, . . . xn = n}) from P ({x1 = a, x2 = b, . . . xn = n}), then we can obtain
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any other (smaller) set of values too by the same process. You should now look at
example 15, which illustrates how the process works using the event structure for
a simple case.

In fact, the event structure is getting unwieldy as a notation. It is quite
common to use a rather sketchy notation to indicate the appropriate event. For
example 15, we would write

P ({(heads, I), (heads, II)}) = P (heads)

We would like to form P ({x2 = b, . . . xn = n}) from P ({x1 = a, x2 = b, . . . xn = n}).
By using the argument about event structures in example 15, we obtain

P (x2 = b, . . .xn = n) =
∑

v∈values of x1

P (x1 = v, x2 = b, . . .xn = n)

which we could write as

P (x2, . . . xn) =
∑

values of x1

P (x1, x2, . . .xn)

This operation is referred to as marginalisation. marginalisation
A similar argument applies to probability density functions, but the operation

is now integration. Given a probability density function p(x1, x2, . . . , xn), we obtain

p(x2, . . . xn) =

∫
D

p(x1, x2, . . . xn)dx1

marginalisation

1.4 STANDARD DISTRIBUTIONS AND DENSITIES

There are a variety of standard distributions that arise regularly in practice. Ref-
erences such as [Patel et al., 1976; Evans et al., 2000] give large numbers; we will
discuss only the most important cases.

The uniform distribution has the same value at each point on the domain.
This distribution is often used to express an unwillingness to make a choice or a
lack of information. On a continuous space, the uniform distribution has a density
function that has the same value at each point. Notice that a uniform density on
an infinite continuous domain isn’t meaningful, because it could not be scaled to
integrate to one. In practice, one can often avoid this point, either by pretending
that the value is a very small constant and arranging for it to cancel, or using a
normal distribution (described below) with a really big covariance, such that its
value doesn’t change much over the region of interest.

The binomial distribution applies to situations where one has independent
identically distributed samples from a distribution with two values. For example,
consider drawing n balls from an urn containing equal numbers of black and white
balls. Each time a ball is drawn, its colour is recorded and it is replaced, so that
the probability of getting a white ball — which we denote p — is the same for each
draw. The binomial distribution gives the probability of getting k white balls(

n
k

)
pk(1− p)n−k
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The mean of this distribution is np and the variance is np(1− p).

The Poisson distribution applies to spatial models that have uniformity
properties. Assume that points are placed on the real line randomly in such a way
that the expected number of points in an interval is proportional to the length of
the interval. The number of points in a unit interval will have a Poisson distribution
where

P ({N = x}) =
λxe−x

x!

(where x = 0, 1, 2 . . . and λ > 0 is the constant of proportionality). The mean of
this distribution is λ and the variance is λ

1.4.1 The Normal Distribution

The probability density function for the normal distribution for a single random
variable x is

p(x;µ, σ) =
1

√
2πσ

exp−

{
(x− µ)2

2σ2

}

The mean of this distribution is µ and the standard deviation is σ. This distribution
is widely called a Gaussian distribution in the vision community.

The multivariate normal distribution for d-dimensional vectors x has
probability density function

p(x;µ,Σ) =
1

(2π)
d
2 det(Σ)1/2

exp−

{
(x− µ)TΣ−1(x−µ)

2

}

The mean of this distribution is µ and the covariance is Σ. Again, this distribution
is widely called a Gaussian distribution in the vision community.

The normal distribution is extremely important in practice, for several rea-
sons:

• The sum of a large number of random variables is normally distributed, pretty
much whatever the distribution of the individual random variables. This fact
is known as the central limit theorem. It is often cited as a reason to
model a collection of random effects with a single normal model.

• Many computations that are prohibitively hard for any other case are easy
for the normal distribution.

• In practice, the normal distribution appears to give a fair model of some kinds
of noise.

• Many probability density functions have a single peak and then die off; a
model for such distributions can be obtained by taking a Taylor series of the
log of the density at the peak. The resulting model is a normal distribution
(which is often quite a good model).
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1.5 PROBABILISTIC INFERENCE

Very often, we have a sequence of observations produced by some process whose
mechanics we understand, but which has some underlying parameters that we do
not know. The problem is to make useful statements about these parameters. For
example, we might observe the intensities in an image, which are produced by the
interaction of light and surfaces by principles we understand; what we don’t know
— and would like to know — are such matters as the shape of the surface, the
reflectance of the surface, the intensity of the illuminant, etc. Obtaining some
representation of the parameters from the data set is known as inference. There
is no canonical inference scheme; instead, we need to choose some principle that
identifies the most desirable set of parameters.

1.5.1 The Maximum Likelihood Principle

A general inference strategy known as maximum likelihood inference, can be
described as

Choose the world parameters that maximise the probability of the mea-
surement observed

In the general case, we are choosing

argmaxP (measurements|parameters)

(where the maximum is only over the world parameters because the measurements
are known, and argmax means “the argument that maximises”). In many prob-
lems, it is quite easy to specify the measurements that will result from a particular
setting of model parameters — this means that P (measurements|parameters), often
referred to as the likelihood, is easy to obtain. This can make maximum likelihood
estimation attractive.

EXAMPLE 1.16 Maximum likelihood inference on the type of a coin from its be-
haviour.

We return to example 15. Now assume that we know some conditional probabilities.
In particular, the unbiased coin has P (heads|I) = P (tails|I) = 0.5, and the biased
coin has P (tails|II) = 0.2 and P (heads|II) = 0.8.

We observe a series of flips of a single coin, and wish to know what type of coin
we are dealing with. One strategy for choosing the type of coin represented by our
evidence is to choose either I or II, depending on whether P (flips observed|I) >
P (flips observed|II). For example, if we observe four heads and one tail in
sequence, then P (hhhht|II) = (0.8)40.2 = 0.08192 and P (hhhht|I) = 0.03125, and
we choose type II.

Maximum likelihood is often an attractive strategy, because it can admit quite
simple computation. A classical application of maximum likelihood estimation
involves estimating the parameters of a normal distribution from a set of samples
of that distribution (example 17).
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EXAMPLE 1.17 Estimating the parameters of a normal distribution from a series
of independent samples from that distribution.

Assume that we have a set of n samples — the i’th of which is xi — that are known
to be independent and to have been drawn from the same normal distribution. The
likelihood of our sample is

P (sample|µ, σ) = L(x1, . . . xn;µ, σ)

=
∏
i

p(xi;µ, σ) =
∏
i

1
√
2πσ

exp

(
−
(xi − µ)2

2σ2

)

Working with the log of the likelihood will remove the exponential, and not change
the position of the maximum. For the log-likelihood, we have

Q(x1, . . . xn;µ, σ) = −
∑
i

(xi − µ)2

2σ2
− n(

1

2
log 2 +

1

2
log π + log σ)

and we want the maximum with respect to µ and σ. This must occur when the
derivatives are zero, so we have

∂Q

∂µ
= 2
∑
i

(xi − µ)

2σ2
= 0

and a little shuffling of expressions shows that this maximum occurs at

µ =

∑
i xi

n

Similarly
∂Q

∂σ
=

∑
i(xi − µ)

2

σ3
−
n

σ
= 0

and this maximum occurs at

σ =

√∑
i(xi − µ)

2

n

Note that this estimate of σ is biased, in that its expected value is σ(n/(n − 1))
and it is more usual to use (1/(n− 1))

√∑
i(xi − µ)

2 as an estimate.

1.5.2 Priors, Posteriors and Bayes’ rule

In example 16, our maximum likelihood estimate incorporates no information about
P (I) or P (II) — which can be interpreted as how often coins of type I or type II
are handed out, or as our subjective degree of belief that we have a coin of type I
or of type II before we flipped the coin. This is unfortunate, to say the least; for
example, if coins of type II are rare, we would want to see an awful lot of heads
before it would make sense to infer that our coin is of this type. Some quite simple
algebra suggests a solution.
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Recall that P (A,B) = P (A|B)P (B). This simple observation gives rise to an
innocuous looking identity for reversing the order in a conditional probability:

P (B|A) =
P (A|B)P (B)

P (A)

This is widely referred to as Bayes’ theorem or Bayes’ rule.
Now the interesting property of Bayes’ rule is that it tells us which choice

of parameters is most probable, given our model and our prior beliefs. Rewriting
Bayes’ rule gives

P (parameters|data) =
P (data|parameters)P (parameters)

P (data)

The term P (parameters) is referred to as the prior (it describes our knowledge of
the world before measurements have been taken). The term P (parameters|data) is
usually referred to as the posterior (it describes the probability of various models
after measurements have been taken). P (data) can be computed by marginalisation
(which requires computing a high dimensional integral, often a nasty business) or
for some problems can be ignored. As we shall see in following sections, attempting
to use Bayes’ rule can result in difficult computations — that integral being one —
because posterior distributions often take quite unwieldy forms.

1.5.3 Bayesian Inference

The Bayesian philosophy is that

all information about the world is captured by the posterior.

The first reason to accept this view is that the posterior is a principled combination
of prior information about the world and a model of the process by which measure-
ments are generated — i.e. there is no information missing from the posterior, and
the information that is there, is combined in a proper manner. The second reason
is that the approach appears to produce very good results. The great difficulty is
that computing with posteriors can be very difficult — we will encounter various
mechanisms for computing with posteriors in following sections.

For example, we could use the study of physics in the last few chapters to get
expressions relating pixel values to the position and intensity of light sources, the
reflectance and orientation of surfaces, etc. Similarly, we are likely to have some
beliefs about the parameters that have nothing to do with the particular values of
the measurements that we observe. We know that albedos are never outside the
range [0, 1]; we expect that illuminantswith extremely high exitance are uncommon;
and we expect that no particular surface orientation is more common than any
other. This means that we can usually cobble up a reasonable choice of prior.

MAP Inference. An alternative to maximum likelihood inference is to infer
a state of the world that maximises the posterior:

Choose the world parameters that maximise the conditional probability
of the parameters, conditioned on the measurements taking the observed
values
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This approach is known as maximum a posteriori (or MAP) reasoning.

EXAMPLE 1.18 Determining the type of a coin using MAP inference.

Assume that we have three flips of the coin of example 16, and would like to
determine whether it has type I or type II. We know that the mint has 3 machines
that produce type I coins and 1 machine that produces type II coins, and there is
no reason to believe that these machines run at different rates. We therefore assign
P (I) = 0.75 and P (II) = 0.25. Now we observe three heads, in three consecutive
flips. The value of the posterior for type I is:

P (I|hhh) =
P (hhh|I)P (I)

P (hhh)

=
P (h|I)3P (I)

P (hhh, I) + P (hhh, II)

=
P (h|I)3P (I)

P (hhh|I)P (I) + P (hhh|II)P (II)

=
0.530.75

0.530.75 + 0.830.25

= 0.422773

By a similar argument, the value of the posterior for type II is 0.577227. An MAP
inference procedure would conclude the coin is of type II.

The denominator in the expression for the posterior can be quite difficult to
compute, because it requires a sum over what is potentially a very large number of
elements (imagine what would happen if there were many different types of coin).
However, knowing this term is not crucial if we wish to isolate the element with the
maximum value of the posterior, because it is a constant. Of course, if there are
a very large number of events in the discrete space, finding the world parameters
that maximise the posterior can be quite tricky.

The Posterior as an Inference.

EXAMPLE 1.19 Determining the probability a coin comes up heads from the out-
come of a sequence of flips.

Assume we have a coin which comes from a mint which has a continuous control
parameter, λ, which lies in the range [0, 1]. This parameter gives the probability
that the coin comes up heads, so P (heads|λ) = λ. We know no reason to prefer
any one value of λ to any other, so as a prior probability distribution for λ we use
the uniform distribution so p(λ) = 1.

Assume we flip the coin twice, and observe heads twice; what do we know
about λ? All our knowledge is captured by the posterior, which is

P (λ ∈ [x, x+ dx]|hh)

dx
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we shall write this expression as p(λ|hh). We have

p(λ|hh) =
p(hh|λ)p(λ)

p(hh)

=
p(hh|λ)p(λ)∫ 1

0
p(hh|λ)p(λ)dλ

=
λ2p(λ)∫ 1

0 p(hh|λ)p(λ)dλ

= 3λ2

It is fairly easy to see that if we flip the coin n times, and observe k heads and n−k
tails, we have

p(λ|k heads and n− k tails) ∝ λk(1− λ)n−k

We have argued that choosing parameters that maximise the posterior is a
useful inference mechanism. But, as figure 1.2 indicates, the posterior is good for
other uses as well. This figure plots the posterior distribution on the probability
that a coin comes up heads, given the result of some number of flips. In the
figure, the posterior distributions indicate not only the single “best” value for the
probability that a coin comes up heads, but also the extent of the uncertainty in
that value. For example, inferring a value of this probability after two coin flips
leads to a value that is not particularly reliable — the posterior is a rather flat
function, and there are many different values of the probability with about the
same value of the posterior. Possessing this information allows us to compare this
evidence with other sources of evidence about the coin.

Bayesian inference is a framework within which it is particularly easy to com-
bine various types of evidence, both discrete and continuous. It is often quite easy
to set up the sums.

EXAMPLE 1.20 Determining the type of a coin from a sequence of flips, incorpo-
rating information from an occasionally untruthful informant.

We use the basic setup of example 19. Assume you have a contact at the coin
factory, who will provide a single estimate of λ. Your contact has poor discrimi-
nation, and can tell you only whether λ is low, medium or high (i.e in the range
[0, 1/3], (1/3, 2/3) or [2/3, 1]). You expect that a quarter of the time your contact,
not being habitually truthful, will simply guess rather than checking how the coin
machine is set. What do you know about λ after a single coin flip, which comes up
heads, if your contact says high? We need

p(λ|high, heads) =
p(high, heads|λ)p(λ)

p(high, heads)

∝ p(high, heads|λ)p(λ)
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FIGURE 1.2: On the left, the value of the posterior density for the probability that a coin
will come up heads, given an equal number of heads and tails are observed. This posterior
is shown for different numbers of observations. With no evidence, the posterior is the
prior; but as the quantity of evidence builds up, the posterior becomes strongly peaked
— this is because one is very unlikely to observe a long sequence of coin flips where the
frequency of heads is very different from the probability of obtaining a head. On the right,
a similar plot, but now for the case where every flip comes up heads. As the number of flips
builds up, the posterior starts to become strongly peaked near one. This overwhelming of
the prior by evidence is a common phenomenon in Bayesian inference.

The interesting modelling problem is in p(high, heads|λ). This is

p(high, heads|λ) = p(high, heads|λ, truth = 1)p(truth = 1)

+ p(high, heads|λ, truth = 0)p(truth = 0)

= p(high, heads|λ, truth = 1)p(truth = 1)

+ p(heads|λ, truth = 0)p(high|λ, truth = 0)p(truth = 0)

Now from the details of the problem

p(truth = 1) = 0.75

p(truth = 0) = 0.25

p(heads|λ, truth = 0) = λ

p(high|λ, truth = 0) =
1

3

and the term to worry about is p(high, heads|λ, truth = 1). This term reflects the
behaviour of the coin and the informant when the informant is telling the truth;
in particular, this term must be zero for λ ∈ [0, 2/3), because in this case λ is not
high, so we never see a truthful report of high with λ in this range. For λ in the
high range, this term must be λ, because now it is the probability of getting a head
with a single flip. Performing the computation of P (λ|high, heads), we obtain the
posterior graphed in figure 1.3.
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FIGURE 1.3: On the left, the posterior probability density for the probability a coin comes
up heads, given a single flip that shows a head and a somewhat untruthful informant who
says high, as in example 20. In the center, a posterior probability density for the same
problem, but now assuming that we have seen two tails and the informant says high (a
sketch of the formulation appears in example 21). On the right, a posterior probability
density for the case when the coin shows five tails and the informant says high. As
the number of tails builds up, the weight of the posterior in the high region goes down,
strongly suggesting the informant is lying.

EXAMPLE 1.21 Determining the type of a coin from a sequence of flips, incorpo-
rating information from an occasionally untruthful informant — II.

Now consider what happens in example 20 if the contact says high and we see two
tails. We need

p(λ|high, tt) =
p(high, tt|λ)p(λ)

p(high, tt)

∝ p(high, tt|λ)p(λ)

Now p(high, tt|λ) is

p(high, tt|λ) = p(high, tt|λ, truth = 1)P (truth = 1)

+ p(high, tt|λ, truth = 0)P (truth = 0)

= p(high, tt|λ, truth = 1)P (truth = 1)

+ p(tt|λ, truth = 0)p(high|λ, truth = 0)P (truth = 0)

Now p(tt|λ, truth = 0) = (1−λ)2 and the interesting term is p(high, tt|λ, truth =
1). Again, this term reflects the behaviour of the coin and the informant when the
informant is telling the truth; in particular, this term must be zero for λ ∈ [0, 2/3),
because in this case λ is not high. For λ in the high range, this term must be (1−λ)2,
because now it is the probability of getting two tails with two flips. Performing the
computation, we obtain the posterior graphed in figure 1.3.

Bayesian Model Selection.
The crucial virtue of Bayesian inference is the accounting for uncertainty

shown in examples 20 and 21. We have been able to account for an occasionally
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untruthful informant and a random measurement; when there was relatively little
contradictory evidence from the coin’s behaviour, our process placed substantial
weight on the informant’s testimony, but when the coin disagreed, the informant
was discounted. This behaviour is highly attractive, because we are able to combine
uncertain sources of information with confidence.

EXAMPLE 1.22 Is the informant lying?

We now need to know whether our informant lied to us. Assume we see a single
head and an informant saying high, again. The relevant posterior is:

P (truth=0|head, high) =
P (head, high|truth=0)P (truth=0)

P (head, high)

=

∫
P (λ, head, high|truth=0)P (truth=0)dλ

P (head, high)

=

∫
P (head, high|λ, truth=0)P (λ)P (truth=0)dλ

P (head, high)

=
1

1 +

∫
P(head,high|λ,truth=1)P(λ)dλP(truth=1)∫
P(head,high|λ,truth=0)P(λ)dλP(truth=0)

Example 22 shows how to tell whether the informant of examples 20 and 21
is telling the truth or not, given the observations. A useful way to think about
this example is to regard it as comparing two models (as opposed to the value of
a binary parameter within one model). One model has a lying informant, and the
other has a truthful informant. The posteriors computed in this example compare
how well different models explain a given data set, given a prior on the models.
This is a very general problem — usually called model selection — with a wide
variety of applications in vision:

• Recognition: Assume we have a region in an image, and an hypothesis that
an object might be present in that region at a particular position and orienta-
tion (the hypothesis will have been obtained using methods from chapter ??,
which aren’t immediately relevant). Is there an object there or not? A prin-
cipled answer involves computing the posterior over two models — that the
data was obtained from noise, or from the presence of an object.

• Are these the same? Assume we have a set of pictures of surfaces we want
to compare. For example, we might want to know if they are the same colour,
which would be difficult to answer directly if we didn’t know the illuminant.
A principled answer involves computing the posterior over two models — that
the data was obtained from one surface, or from two (or more).

• What camera was used? Assume we have a sequence of pictures of a
world. With a certain amount of work, it is usually possible to infer a great
deal of information about the shape of the objects from such a sequence (e.g.
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chapters ??, ?? and ??). The algorithms involved differ quite sharply, de-
pending on the camera model adopted (i.e. perspective, orthographic, etc.).
Furthermore, adopting the wrong camera model tends to lead to poor infer-
ences. Determining the right camera model to use is quite clearly a model
selection problem.

• How many segments are there? We would like to break an image into
coherent components, each of which is generated by a probabilistic model.
How many components should there be? (section ??).

The solution is so absurdly simple in principle (in practice, the computations can
be quite nasty) that it is easy to expect something more complex, and miss it. We
will write out Bayes’ rule specialised to this case to avoid this:

P (model|data) =
P (data|model)

P (data)

=

∫
P (data|model, parameters)P (parameters)d{parameters}

P (data)

∝

∫
P (data|model, parameters)P (parameters)d{parameters}

which is exactly the form used in the example. Notice that we are engaging
in Bayesian inference here, too, and so can report the MAP solution or report
the whole posterior. The latter can be quite helpful when it is difficult to dis-
tinguish between models. For example, in the case of the dodgy informant, if
P (truth=0|data) = 0.5001, it may be undesirable to conclude the informant is ly-
ing — or at least, to take drastic action based on this conclusion. The integral is
potentially rather nasty, which means that the method can be quite difficult to use
in practice. Useful references include [Gelman et al., 1995; Carlin and Louis, 1996;
Gamerman, 1997; Newman and Barkema, 1998; Evans and Swartz, 2000].

1.5.4 Open Issues

In the rest of the book, we will have regular encounters with practical aspects of
the Bayesian philosphy. Firstly, although the posterior encapsulates all information
available about the world, we very often need to make discrete decisions — should
we shoot it or not? Typically, this decision making process requires some accounting
for the cost of false positives and false negatives.

Secondly, how do we build models? There are three basic sources of likelihood
functions and priors:

• Judicious design: it is possible to come up with models that are too hard to
handle computationally. Generally, models on very high-dimensional domains
are difficult to deal with, particularly if there is a great deal of interdependence
between variables. For some models, quite good inference algorithms are
known. The underlying principle of this approach is to exploit simplifications
due to independence and conditional independence.

• Physics: particularly in low-level vision problems, likelihood models follow
quite simply from physics. It is hard to give a set of design rules for this
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strategy. It has been used with some success on occasion (see, for exam-
ple, [Forsyth, 1999]).

• Learning: a poor choice of model results in poor performance, and a good
choice of model results in good performance. We can use this observation to
tune the structure of models if we have a sufficient set of data. We describe
aspects of this strategy in chapter ?? and in chapter ??.

Finally, the examples above suggest that posteriors can have a nasty functional
form. This intuition is correct, and there is a body of technique that can help handle
ugly posteriors which we explore as and when we need it (see also [Gelman et al.,
1995; Carlin and Louis, 1996; Gamerman, 1997; Newman and Barkema, 1998]).
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1.6 NOTES

Our discussion of probability is pretty much straight down the line. We have
discussed the subject in terms of σ-algebras (implicitly!) because that is the right
way to think about it. It is important to keep in mind that the foundations of
probability are difficult, and that it takes considerable sophistication to appreciate
purely axiomatic probability. Very little real progress appears to have come from
asking “what does probability mean?”; instead, the right question is what it can
do. The reason probabilistic inference techniques lie at the core of any solution
to serious vision problems is that probability is a good book-keeping technique for
keeping track of uncertainty.

Inference is hard, however. The great difficulty in applying probability is, in
our opinion, arriving at a model that is both sufficiently accurate and sufficiently
compact to allow useful inference. This isn’t at all easy. A naive Bayesian view
of vision — write out a posterior using the physics of illumination and reflection,
guess some reasonable priors, and then study the posterior — very quickly falls
apart. In terms of what representation should this posterior be written? and
how can we extract information from the posterior? These questions are exciting
research topics. A number of advanced inference techniques appear in the vision
literature, including expectation maximisation (which we shall see in chapter ??; see
also [Wang and Adelson, 1993; Wang and Adelson, 1994; Adelson and Weiss, 1995;
Adelson and Weiss, 1996; Dellaert et al., 2000]); sampling methods (for image
reconstruction [Geman and Geman, 1984]; for recognition [Ioffe and Forsyth, 1999;
Zhu et al., 2000]; for structure from motion [Forsyth et al., 1999; Dellaert et al.,
2000]; and for texture synthesis [Zhu et al., 1998]); dynamic programming (which we
shall see in chapter ??; see also [Belhumeur and Mumford, 1992; Papademetris and
Belhumeur, 1996; Ioffe and Forsyth, 1999; Felzenszwalb and Huttenlocher, 2000]);
independent components analysis (for separating lighting and reflections [Farid and
Adelson, 1999]); and various inference algorithms for Bayes nets (e.g. [Binford et al.,
1989; Mann and Binford, 1992; Buxton and Gong, 1995; Kumar and Desai, 1996;
Krebs et al., 1998]).

The examples in this chapter are all pretty simple, so as to expose the line of
reasoning required. We do some hard examples below. Building and handling com-
plex examples is still very much a research topic; however, probabilistic reasoning
of one form or another is now pervasive in vision, which is why it’s worth studying.

PROBLEMS

1.1. The event structure of section 1.1 did not explicitly include unions. Why does the
text say that unions are here?

1.2. In example 1, if P (heads) = p, what is P (tails)?

1.3. In example 10 show that if P (hh) = p2 then P ({ht, th}) = 2p(1− p) and P (tt) =
(1− p)2.

1.4. In example 10 it says that

P (k heads and n− k tails in n flips) =

(
n
k

)
pk(1− p)n−k

Show that this is true.
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1.5. A careless study of example 10 often results in quite muddled reasoning, of the
following form: I have bet on heads successfully ten times, therefore I should bet
on tails next. Explain why this muddled reasoning — which has its own name, the
gambler’s fallacy in some circles, anti-chance in others — is muddled.

1.6. Confirm the count of parameters in example 8.
1.7. In example 19, what is c?
1.8. As in example 16, you are given a coin of either type I or type II; you do not know

the type. You flip the coin n times, and observe k heads. You will infer the type of
the coin using maximum likelihood estimation. for what values of k do you decide
the coin is of type I?

1.9. Compute P (truth|high, coin behaviour) for each of the three cases of example 21.
You’ll have to estimate an integral numerically.

1.10. In example 22, what is the numerical value of the probability that the informant is
lying, given that the informant said high and the coin shows a single tail? What
is the numerical value of the probability that the informant is lying, given that the
informant said high and the coin shows seven tails in eight flips?

1.11. The random variable x = (x1, x2, . . . xn)
T has a normal distribution. Show that the

random variable x̂ = (x2, . . . , xn)
T has a normal distribution (which is obtained by

marginalizing the density). A good way to think about this problem is to consider
the mean and covariance of x̂, and reason about the behaviour of the integral; a
bad way is to storm ahead and try and do the integral.

1.12. The random variable p has a normal distribution. Furthermore, there are symmet-
ric matrices A, B and C and vectors D and E such that P (d|p) has the form

− logP (d|p) = pTAp+ pTBd+ dT Cd+ pTD + dTE + C

(C is the log of the normalisation constant). Show that P (p|d) is a normal distri-
bution for any value of d. This has the great advantage that inference is relatively
easy.

1.13. x is a random variable with a continuous cumulative distribution function F (x).
Show that u = F (x) is a random variable with a uniform density on the range [0, 1].
Now use this fact to show that w = F−1(u) is a random variable with cumulative
distribution function F .
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Topic What you must know

Probability
model

A space D, a collection F of subsets of that space containing (a)
the empty set; (b) D; (c) all finite unions of elements of F ; (d)
all complements of elements of F , and a function P such that (a)
P (∅) = 0; (b) P (D) = 1; and (c) for A ∈ F and B ∈ F , P (A∪B) =
P (A) + P (B) − P (A ∩ B). It is usual to discuss F only implicitly
and to represent P by a probability density function for continuous
spaces.

Random vari-
ables

A function of the outcome of an experiment; supports a probability
model. If we have a random variable ξ, mapping A → A′ and F →
F ′, defined on the probability model above, and if A′ ∈ F ′, there is
some A ∈ F such that A′ = ξ(A). This means that P ({ξ ∈ A′}) =
P (A).

Conditional
probability

Given a probability model and a set A ⊂ D such that P (A) �= 0 and
A ∈ F , then A together with F ′ = {C ∩A|C ∈ F} and P ′ such that
P ′(C) = P (C ∩ A)/P (A) form a new probability model. P ′(C) is
often written as P (C|A) and called the conditional probability of the
event C, given that A has occurred.

Probability
density func-
tion

A function p such that P{u ∈ E} =
∫
E
p(x)dx. All the probability

models we deal with on continuous spaces will admit densities, but
not all do.

Marginalisation Given the joint probability density p(X,Y ) of two random variables
X and Y , the probability of Y alone — referred to as the marginal
probability density for Y — is given by∫

p(x, Y )dx

The domain is all possible values of X ; if the random variables are
discrete, the integral is replaced by a sum.

Expectation The “expected value” of a random variable, computed as E[f(x)] =∫
f(x)p(x)dx. Useful expectations include the mean E[x] and the

covariance E[(x− E[x])(x− E[x])T ].
Normal ran-
dom variable

A random variable whose probability density function is the normal
(or gaussian) distribution. For an n-dimensional random variable,
this is

p(x) =
1

(2π)(n/2) |Σ |
exp(−(1/2)(x− µ)TΣ−1(x− µ))

having mean µ and covariance Σ.

Chapter summary for chapter 1: Probabilistic methods manipulate repre-
sentations of the “size” of sets of events. Events are defined so that unions and
negations are meaningful, leading to a family of subsets of a space. The probabil-
ity of a set of events is a function defined on this structure. A random variable
represents the outcome of an experiment. A generative model gives the probability
of a set of outcomes from some inputs; inference obtains a representation of the
probable inputs that gave rise to some known outcome.


