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Bayesian Machine Learning



Probabilistic Machine Learning

e Machine Learning 1s all about data.
 Stochastic, chaotic and/or complex process
* Noisily observed
 Partially observed
* Probability theory 1s a rich language to express these uncertainties.
* Probabilistic models
* Graphical tool to visualize complex models for complex problems.
« Complex models can be built from simpler parts.
« Computational tools to derive algorithmic solutions.

» Separation of modelling questions from algorithmic questions.



Probabilistic Modelling

* Data: x;,x2,....,Xn.
* Latent variables: y;,y2,...,yn.

* Parameter: 0.

* A probabilistic model 1s a parametrized joint distribution over variables.
P(x,...,Zn,Y1,---,Yn|0)

» Typically interpreted as a generative model of data.

 Inference, of latent variables given observed data:

P(xy,...,Zn,Y1,---,Yn|0)
P(z1,...,2,|0)

P(y1,...,yn‘x1,...,xn,6’) —



Probabilistic Modelling

* Learning, typically by maximum likelihood:

MY = argmax P(x1,...,2,|0)
0
e Prediction:
P(wn—l—la yn—I—l‘wla ooy i, 9)

e (Classification:

argmax P(x,.11/|0°)

C
* Visualization, interpretation, summarization.

 Standard algorithms: EM, junction tree, variational inference, MCMC...



Bayesian Modelling

e Prior distribution:
P(0)

 Posterior distribution (both inference and learning):
P(le) ceeyLny Y1, 7y’n’9)P(9)
P(xy,...,x,)

P(yi,....yn,0lx1,...,2,) =

* Prediction:
Plxpiilxy,...,xn) = /P(afn+1|(9)P((9|a:1, e, Xy )dO
* Classification:
Pz as|af. ... 2°) = / P(,,41 |09V P(6°|a5. ... 2% )db"



Graphical Models
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Model-based Clustering

e Model for data from heterogeneous unknown sources. .

* Each cluster (source) modelled using a parametric

model (e.g. Gaussian).
e Data item i:
z;|m ~ Discrete(m)
377;’2727 9/? ™~ F(H;")

@ @

* Mixing proportions:

7= (m,...,7K)|a ~ Dirichlet(a/K, ..., a/K) ¥ ¥
* Cluster k: ﬁ)
9;2 ‘H ~ H PR

o}
1=1,..., n




Hidden Markov Models

e Popular model for time series data.
* Unobserved dynamics modelled using a Markov model

* Observations modelled as independent conditioned on current state.
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Collaborative Filtering

 Data: for each user i ratings R;; for a subset of products ;.

e Problem: predict how much users would like products that they haven’t seen.

Product Features
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R;i|&,m; ~ N(&Tm, o)

User Features



Bayesian Nonparametrics

[Hjort et al 2010]



Bayesian Nonparametrics

* What is a nonparametric model?
A really large parametric model;
* A parametric model where the number of parameters increases with data;

» A family of distributions that 1s dense 1n some large space relevant to the
problem at hand.



Bayesian Nonparametrics




Bayesian Nonparametrics




Bayesian Nonparametrics




Bayesian Nonparametrics




Bayesian Nonparametrics




Reason 1: Model Selection and Averaging

* Model selection/averaging typically very expensive computationally.
« Used to prevent overfitting and underfitting.
« But a well-specified Bayesian model should not overfit anyway.

* By using a very large Bayesian model or one that grows with amount of data,
we will not underfit either.

* Bayesian nonparametric models.



Reason 2: Large Function Spaces

e Large function spaces.

* More straightforward to infer the
infinite-dimensional objects themselves.

* Bayesian nonparametric models.
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* Learning structures.
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» Bayesian prior over
combinatorial structures.

« Nonparametric priors
sometimes end up simpler
than parametric priors.
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Reason 4: Novel and Useful Properties

* Many interesting Bayesian nonparametric models with interesting and useful
properties:

* Projectivity, exchangeability.

« Zipf, Heap and other power laws
(Pitman-Yao, 3-parameter IBP).

 Flexible ways of building complex models

(Hierarchical nonparametric models, dependent Dirichlet processes).



Are Nonparametric Models Nonparametric?

« Nonparametric just means not parametric: cannot be described by a fixed set
of parameters.

* Nonparametric models still have parameters, they just have an infinite
number of them.

e No free lunch: cannot learn from data unless you make assumptions.

* Nonparametric models still make modelling assumptions, they are just
less constrained than the typical parametric models.

* Models can be nonparametric in one sense and parametric in another:
semiparametric models.



Issues with Bayesian Nonparametrics

» Developing classes of nonparametric priors suitable for modelling data.
* Developing algorithms that can efficiently compute the posterior 1s important.

* Developing theory of asymptotics in nonparametric models.



Previous Tutorials and Reviews

 Mike Jordan’s tutorial at NIPS 2005.
e Zoubin Ghahramani’s tutorial at UAI 2005.
« Peter Orbanz’ tutorial at MLSS 2009 (videolectures)

My own tutorials at MLSS 2007, 2009 (videolectures), 2011 (Singapore) and
elsewhere.

 Introduction to Dirichlet process [Teh 2010], nonparametric Bayes [Orbanz &
Teh 2010, Gershman & Ble1 2011], hierarchical Bayesian nonparametric

models [Teh & Jordan 2010].

« Bayesian nonparametrics book [Hjort et al 2010].

 This tutorial: Dirichlet processes, Pitman-Yor processes, random partitions,
random trees, hierarchical DPs, and hierarchical PYPs.



Dirichlet Process



Dirichlet Process

* Cornerstone of modern Bayesian nonparametrics.
« Rediscovered many times as the infinite limit of finite mixture models.
* Formally defined by [Ferguson 1973] as a distribution over measures.
« Can be derived 1n different ways, and as special cases of different processes.
« We will derive:
e the infinite limit of a Gibbs sampler for finite mixture models

 the Chinese restaurant process

* the stick-breaking construction



The Infinite Limit of
Finite Mixture Models



Finite Mixture Models

e Model for data from heterogeneous unknown sources. ﬁé)
* Each cluster (source) modelled using a parametric

model (e.g. Gaussian). o @

Data item i:

z;|m ~ Discrete(m)

Ti|2i, O ~ F(‘g;kz)
* Mixing proportions: Ve k=1 K

w = (m1,...,7x)|a ~ Dirichlet (a/K, ..., a/K) @/

e Cluster £:

HZ‘HNH 1=1,..., n



Finite Mixture Models

e Dirichlet distribution on the K-dimensional
probability simplex { T | Zk T = ] }

a/K 1

P(r|a) = T a/K 1_]

with T'(a fo x® et dy.

 Standard dlStI'lbutIOIl on probability vectors, due to
conjugacy with multinomial.




Dirichlet Distribution

(1,1,1) (2,2,2)

(2,5,5) (2,2,5) (0.7,0.7,0.7)




Dirichlet-Multinomial Conjugacy

e Joint distribution over z; and m:

P(7|a) x HP(ZZ-\W) =

Nl@)

[Ti—i D(a/K) 5

a/K 1><H7T

where nc=#{zi=c }.

e Posterior distribution:

K
I'(n+ «) H ne+o/K—1

H§:1 [(ng + O‘/K

P(r|z,a) =

* Marginal distribution:

P(Z‘a) — F(a) Hk;:1 F(nk -+ Oé/K)

H?:l [(a/K) ['(n+a)




Gibbs Sampling

 All conditional distributions are simple to compute:

p(z; = k|others) o< i f(x;|0;)

7|others ~ Dilrichlet(g +ni,..., % +nK)
p(6;,, = Olothers) o h(6 H f(x;]0)
J:zj=k

* Not as efficient as collapsed Gibbs sampling, which
integrates out 7, 0°’s:

-7
+nk

p(zi = klothers) oc Lt f(z;|{z; : j#1,2;=k})

f(xil{x; 1 7#1,2=k}) x /h(@)f(a:zw) H f(x;]60)do
j#i:Zj =k
« Conditional distributions can be efficiently computed 1f
F1s conjugate to H.




Infinite Limit of Collapsed Gibbs Sampler

e We will take K — 0.

e Imagine a very large value of K.

* There are at most n < K occupied clusters, so most @ @
components are empty. We can lump these empty

components together:

ng'+ 5% .
p(zs = Klothers) = —E—B 1| {a; : j#1, 2= k})
ozK_K* k=1,..., K
pzi = Kumpisfothers) = “—E— f(a,|{(} v
1=1,..., n

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



Infinite Limit of Collapsed Gibbs Sampler

e We will take K — 0.

e Imagine a very large value of K.

* There are at most n < K occupied clusters, so most @ @
components are empty. We can lump these empty

components together:

n . . .
p(zi = klothers) = —E——— f(xil{x; : i, 2 =k})

() /k:1 ..... K

P(2; = kempty|Others) = Y af

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



Infinite Limit

* The actual infinite limit of the finite mixture model does not make sense:
 any particular cluster will get a mixing proportion of 0.

* Better ways of making this infinite limit precise:
* Chinese restaurant process.

 Stick-breaking construction.

Both are different views of the Dirichlet process (DP).
* DPs can be thought of as infinite dimensional Dirichlet distributions.

* The K — o Gibbs sampler 1s for DP mixture models.



Ferguson’s Definition of the
Dirichlet Process



Tiny Bit of Probability Theory

* A c-algebra X2 1s a family of subsets of a set @ such that
e 2 1s not empty;
e ifA€ 2 then ®\4 €2
o 1fA5,A42,... € X then U4, € L.

(0, 2) 1s a measure space and 4 € 2 are the measurable sets.
A measure u over (6, 2) 1s a function u : 2’ —[0,o0] such that
* u() =0,

e 1f A;, A,... € X are disjoint then u(U;A4;) = 2; u(A.);

 a probability measure i1s one where y(®) = 1.

* Everything we consider here will be measurable.



Tiny Bit of Probability Theory

* Given two measure spaces (6, 2) and (4, @) a function f: @ — 4 1s
measurable if f-/(4) € X for every 4 € ®.

 If P 1s a probability measure on (6, 2), a random variable X taking values in
A 1s simply a measurable function X : @ — 4.

 This of the probability space (O, 2, P) as a black-box random number
generator, and X as a fixed function taking random samples in @ and
producing random samples 1n 4.

 The probability of an event A € @ is P(XE A) = P(X!(A4)).

A stochastic process is simply a collection of random variables {X;};cover
the same measure space (@, 2), where [ 1s an index set.

[ can be an infinite (even uncountably infinite) set.



A

Ferguson’s Definition of Dirichlet Processes

* A Dirichlet process (DP) 1s a random probability measure G over (6, 2)
such that for any finite set of measurable sets 4,,...Ax € 2 partitioning 0, 1.¢.

AU---UAx =06
we have
(G(Aq1),...,G(Ak)) ~ Dirichlet(aH (A1), ..., aH(Ak))

where o and H are parameters of the DP.

|[Ferguson 1973]



Parameters of the Dirichlet Process

o 1s called the strength, mass or concentration parameter.
* H 1s called the base distribution.

e Mean and variance:

where A4 1s a measurable subset of @.

« H 1s the mean of G, and «a 1s an 1nverse variance.



Posterior Dirichlet Process

e Suppose
G ~ DP(a, H)

* We can define random variables that are G distributed:
HZ‘GNG fOI’iZl,...,n

* The usual Dirichlet-multinomial conjugacy carries over to the DP as well:

G|01,. .. ,0n ~ DP(a + n, 2= 00y




Polya Urn Scheme

G ~ DP(a, H)
;|G ~G fori=1,2,...

* Marginalizing out G, we get:

(XH—I—Z:-L: 59@.
9n+1’917"°79nN :

a-+n

e This 1s called the Polya, Hoppe or Blackwell-MacQueen urn scheme.
 Start with an urn with a balls of a special colour.
 Pick a ball randomly from urn:

 If it 1s a special colour, make a new ball with colour sampled from H,
note the colour, and return both balls to urn.

 If not, note 1ts colour and return two balls of that colour to urn.

[Blackwell & MacQueen 1973, Hoppe 1984]



Clustering Property

G ~ DP(a, H)
;|G ~G fori=1,2,...

 The n variables 0,,0,,...,6, can take on K < n distinct values.

 Let the distinct values be 6;%,...,0x". This defines a partition of {/,...,n} such
that 1 is in cluster k if and only if 8, = 6.

* The induced distribution over partitions 1s the Chinese restaurant process.



Chinese Restaurant Process

[Aldous 1985, Pitman 2006]



Partitions

* A partition p of a set §S'1s:

A disjoint family of non-empty subsets of S whose union in S.

« §= {Alice, Bob, Charles, David, Emma, Florence}.
* o= { {Alice, David}, {Bob, Charles, Emma}, {Florence} }.

Bob
Charles

Alice

David
Emma

 Denote the set of all partitions of S as Ps.
« Random partitions are random variables taking values in Ps.

* We will work with partitions of S = [n] = {1,2,...n}.



Chinese Restaurant Process

O OO O

e Each customer comes into restaurant and sits at a table:
Ne Q!

sit at table ¢) = sit at new table) =
p( ) S S p( ) Ty n

* Customers correspond to elements of S, and tables to clusters 1n .

* Rich-gets-richer: large clusters more likely to attract more customers.

* Multiplying conditional probabilities together, the overall probability of g,
called the exchangeable partition probability function (EPPF), is:

|Q|I‘
P(ola) = — Hr )

n Oé
T ccpo

[Aldous 1985, Pitman 2006]



Number of Clusters

* The prior mean and variance of K are:

E % Oé,TL: — 04(1?(04 o n)
Viplla,n] = a(¥(a +n)

P(a) = L log(a)
a=30, d=0
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Model-based Clustering with
Chinese Restaurant Process



Partitions in Model-based Clustering

 Partitions are the natural latent objects of
inference 1n clustering.

 Given a dataset S, partition it into clusters \
of similar items. "‘f'"‘ R )
e Cluster ¢ € ¢ described by a model - ,'a
F(67) o

parameterized by 6.”.

« Bayesian approach: introduce prior over ¢ and
6."; compute posterior over both.




Finite Mixture Model

* Explicitly allow only K clusters in partition:

* Each cluster £ has parameter 6.

« Each data item i assigned to £ with mixing
probability 7.

* Gives a random partition with at most K clusters.

e Priors on t

T

e other parameters:
a ~ Dirichlet(a/K, ..., a/K)

0| H ~ H




Induced Distribution over Partitions

D(a)  [[, T(ng + a/K)
[[;T(a/K)  T'(n+«a)

P(z|a) =

* P(z|«x) describes a partition of the data set into clusters, and a labelling of
each cluster with a mixture component index.

* Induces a distribution over partitions ¢ (without labelling) of the data set:

() L] +a/K)
'T(n+ a) H ['a/K)

where [z]y = x(z +D)--- (x4 (a — 1)b).

* Taking K — oo, we get a proper distribution over partitions without a limit on
the number of clusters:

|Q|I‘

Q)

P > | | F
(Q‘a n+az i C‘

P(gla) = [K]=

cco




Chinese Restaurant Process

« An important representation of the Dirichlet process
* An important object of study 1n 1ts own right.

» Predates the Dirichlet process and originated in genetics (related to Ewen’s
sampling formula there).

e Large number of MCMC samplers using CRP representation.

* Random partitions are useful concepts for clustering problems in machine
learning

* CRP mixture models for nonparametric model-based clustering.
* hierarchical clustering using concepts of fragmentations and coagulations.
e clustering nodes 1n graphs, e.g. for community discovery in social nets.

« Other combinatorial structures can be built from partitions.



Stick-breaking Construction



Clustering Property

G ~ DP(a, H)
0,|G~G fori=1,2,...
« The same values can be repeated among the variables 6,,60,...,0,.

 This can only be the case if G 1s an atomic distribution.

G = i 7'('/459;;
k=1



A draw from a Dirichlet Process
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Atomic Distributions

e Draws from Dirichlet processes will always be atomic:
o
G =) mido;
k=1

where 2= I and 6, € O.

« A number of ways to specify the joint distribution of {m, 0x"}.
 Stick-breaking construction;

 Poisson-Dirichlet distribution.



Stick-breaking Construction

——— T |
—— (5

' *
ﬁ g

® Ty
®

Stick-breaking construction for the joint distribution:

0, ~ H vr ~ Beta(l, a) for k=1,2,....
k—1 00

T = Uk H(l—fuj) G:ZW};%Z
j=1 k=1

* mi’s are decreasing on average but not strictly.
 Distribution of {7zx} 1s the Griffiths-Engen-McCloskey (GEM) distribution.

* Poisson-Dirichlet distribution [Kingman 1975] gives a strictly decreasing
ordering (but 1s not computationally tractable).



Finite Mixture Model

* Explicitly allow only K clusters in partition:

* Each cluster £ has parameter 6.

» Each data item i assigned to £ with mixing
probability 7.

* Gives a random partition with at most K clusters.

e Priors on t

T

e other parameters:
a ~ Dirichlet(a/K, ..., a/K)

0| H ~ H




Size-biased Permutation

* Reordering clusters do not change the marginal distribution on partitions or
data items.

By strictly decreasing mx: Poisson-Dirichlet distribution.

Reorder stochastically as follows gives stick-breaking construction:
 Pick cluster £ to be first cluster with probability 7 .
 Remove cluster k£ and renormalize rest of { mx : j # k }; repeat.

» Stochastic reordering 1s called a size-biased permutation.

 After reordering, taking K — oo gives the corresponding DP representations.



Stick-breaking Construction

* Easy to generalize stick-breaking construction:

e to other random measures;

 to random measures that depend on covariates or vary spatially.
* Easy to work with different algorithms:

« MCMC samplers;

 variational inference;

* parallelized algorithms.

[Ishwaran & James 2001, Dunson 2010 and many others]



DP Mixture Model:
Representations and Inference



DP Mixture Model

* A DP mixture model: °

G|o, H ~ DP(a, H)

0,|G ~ G <§}€D

v
 Different representations: @

e 01,0,,...,0, are clustered according to Polya urn
scheme, with induced partition given by a CRP.

* (5 1s atomic with weights and atoms described
by stick-breaking construction. i

Il
-y

Rl

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



CRP Representation

* Representing the partition structure explicitly with
a CRP: °

pla ~ CRP(|n}, a)

0" |H ~ H for c € p ~-
x;|0% ~ F(07) for ¢ > i

v

P
v
« Makes explicit that this 1s a clustering model. @. @

*
C
» Using a CRP prior for ¢ obviates need to limit | i
number of clusters as in finite mixture models. =1 cicep

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



A

Marginal Sampler pla ~ CRP([n], o)
0°|H ~ H for c € p
e “Marginal” MCMC sampler. |0F ~ F(07) for ¢ 34

* Marginalize out G, and Gibbs sample partition.
« Conditional probability of cluster of data item i:

P(pilp\i, x,0) =P(pi|p\i) P(xi|piy X\i, 0)

(

<]

Plpilp) =4 "L
 n—1+«o

P
( 2(9 : f 7 — i y
[ f(x:|0)R(0)d0  if p; = new -« 0

if p; =c € p\;

if p;, = new

* A variety of methods to deal with new clusters.

 Difficulty lies in dealing with new clusters,
especially when prior £ 1s not conjugate to f.

[Neal 2000]



Induced Prior on the Number of Clusters

* The prior expectation and variance of |p| are:
Ellplla, n] = a(i(a+n) = v(a)) = alog (1+ %)
Vlplla, n] = a(¥(a +n) —(a)) + o* (¥’ (a +n) — ¢'(@)) = alog (1 + )

alpha =1 alpha =10 alpha =100
0.25 - - 0.12 - : 0.1 : :
0.2 PO | o.08}
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0.061
0.1y 0.041
0.04¢
0.05¢ | 0.02l | 0.02¢
0 0 0
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Stick-breaking Representation

 Dissecting stick-breaking representation for G:
™ |a ~ GEM(a)
0.|H ~H

z;|m* ~ Discrete(n™)

» Makes explicit that this 1s a mixture model with an

@
infinite number of components. 0*
-
... k
* Conditional sampler:

« Standard Gibbs sampler, except need to truncate the
number of clusters.

* Easy to work with non-conjugate priors. i=1..n

* For sampler to mix well need to introduce moves
for permuting the order of clusters.

[Ishwaran & James 2001, Walker 2007, Papaspiliopoulos & Roberts 2008]



Explicit G Sampler

* Represent G explicitly, alternately sampling {6;}|G
(simple) and G|{6;}:. v

G =m, —I—Z7Tk53*

(WS,WT,...,T('K) NDlrlchlet(oz,nl,..,,nK) @
G~ DP(a, H)

» Use a stick-breaking representation for G’ and @
truncate as before.

* No explicit ordering of the non-empty clusters Glo, H ~ DP (o, H)
makes for better mixing. ’ ’

* Explicit representation of G allows for posterior
estimates of functionals of G.




Other Inference Algorithms

* Split-merge algorithms [Jain & Neal 2004].

* Close 1n spirit to reversible-jump MCMC methods [Green & richardson
2001].

* Sequential Monte Carlo methods [Liu 1996, Ishwaran & James 2003,
Fearnhead 2004, Mansingkha et al 2007].

* Variational algorithms [Ble1 & Jordan 2006, Kurihara et al 2007, Teh et al
2008].

* Expectation propagation [Minka & Ghahramani 2003, Tarlow et al 2008].



Pitman-Yor Process

[Aldous 1985, Pitman 2006]



Partitions

* A partition p of a set §S'1s:

A disjoint family of non-empty subsets of S whose union in S.

« §= {Alice, Bob, Charles, David, Emma, Florence}.
* o= { {Alice, David}, {Bob, Charles, Emma}, {Florence} }.

Bob
Charles

Alice

David
Emma

 Denote the set of all partitions of S as Ps.
« Random partitions are random variables taking values in Ps.

* We will work with partitions of S = [n] = {1,2,...n}.



Chinese Restaurant Process

O OO O

 Each customer comes 1nto restaurant and sits at a table:

: Uz
p(sit at table ¢) =
( ) O+ ZCEQ N
Q
p(sit at new table) =
O+ ZCEQ n
» Customers correspond to elements of set S, and tables to clusters in the

partition g.

« Multiplying conditional probabilities together, we get the overall probability
of o

IQIF
P(ola) = = Hr )



Projectivity and Exchangeability



Projective and Exchangeable Models of Data




Projective and Exchangeable Models of Data

e There will be 1 test item.
Will this change your predictions? 4




Projective and Exchangeable Models of Data

¢ 0200¢¢

e There will be 1 test item.

Will this change your predictions? 4 “

X1
X3

* There will be 5 additional test items. y Xs

Will this change your predictions? !

X6
>




Projective and Exchangeable Models of Data

2 22222

e There will be 1 test item.
Will this change your predictions?

* There will be 5 additional test items. Xs
Will this change your predictions?

 Item labels were permuted. >
Will this change your predictions?




Consistency and Projectivity

* Let o be a partition of S, and S’ ¢ S be a subset. The projection of g onto S’
1s the partition of S’ defined by g:

PROJ(0, S’)={cnS’|cnS #3,ce S}

* L.e., all elements of § except those in S’ are removed from g.

* For example,

PROJ(111,3,6§,12,7§,14,5,8},19} }, [6]) = 111,3,65,12,14,5}



Consistent/Projective Random Partitions

* A sequence of distributions P1,P2,... over P[1, P[2y,... 1s projective or
consistent if

pmNPm

pn. = PROJ(ppm, [n])

Pr({pm : PROJ(pm, [n]) = pn}) = Pulpn)

« Such a sequence can be extended to a distribution over Py

e The Chinese restaurant process 1s projective since:
* The finite mixture model 1s, and
* also 1t 1s defined sequentially.

* A projective model is one that does not change when more data items are
introduced (and can be learned sequentially 1n a self-consistent manner).



Exchangeable Random Partitions

« A distribution over partitions Psis exchangeable if it is invariant to
permutations of S: For example,

P(o=111,3,6§,12,75,14,5,8§,19}}) =
P(o = {10(1), 0(3), 6(6)},10(2), 6(7)},{0(4), 6(5), 6(8)},{0(9)} })
where S = [9] = {1,...,9}, and o 1s a permutation of [9].
* The Chinese restaurant process satisfies exchangeability:

* The finite mixture model 1s exchangeable (11d given parameters).

* The probability of ¢ under the CRP does not depend on the i1dentities of
elements of S.

* An exchangeable 1s one that does not depend on the (arbitrary) way data
items are indexed.



Infinitely Exchangeable Random Variables

 Let 1,22, 23,... be an infinitely exchangeable sequence of random
variables:

P(xl, ce ,CEn) = P(Zg(l), c . ,xa(n))
for all n and permutations o of [n].

* (Generalization of 1.1.d. variables, and can be constructed as mixtures of such:
Plzy.....x,) = /P(G) I P(x:|G)dG
i=1

* de Finetti’s Theorem: infinitely exchangeable sequences can always be
represented as mixtures of 1.1.d. variables. Further the latent parameter G 1s
unique, called the de Finetti measure.



Dirichlet Process

» Since the CRP 1s projective and exchangeable, we can define an infinitely
exchangeable sequence as follows:

« Sample ¢ ~ CRP(N,x).

* Forcep: X N N
* sampleyc~H. Xi@ X;@ X>5<8® o000
 Fori=1,2,....

» setx; =y.wherei € c.

* The resulting de Finetti measure 1s the DP with parameters o and H.

[Ferguson 1973, Blackwell & MacQueen 1973 ]



Why Infinitely Exchangeable Models?

* A model for a dataset x;,x>,...,x, 1s a joint distribution P(x;,x>,...,x»).
* An infinitely exchangeable model means:
* The way data items are ordered or indexed does not matter.

* Model 1s unaffected by existence of additional unobserved data items, e.g.
test 1tems.

 To predict m additional test items, we would need
P(xX1,...,%0 Xn+1,.c, Xn+m)

 If model 1s not infinitely exchangeable, predictive probabilities will be
different for different values of m.

* There are scenarios where infinite exchangeability is suitable or unsuitable.



Exchangeability in Bayesian Statistics

* Fundamental role of de Finetti’s Theorem 1n Bayesian statistics:

* From an assumption of exchangeability, we get a representation as a
Bayesian model with a prior over the latent parameter.

Pley.....x,) = /P(G) [[ PeiGaG

* Generalizing infinitely exchangeable sequences lead to Bayesian models for
richly structured data. E.g.,

 exchangeability in network and relational data.
* hierarchical exchangeability 1n hierarchical Bayesian models.

« Markov exchangeability in sequence data.



Two-parameter Chinese Restaurant Process

* The two-parameter Chinese restaurant process CRP(|n],d,x) 1s a
distribution over Py (0 <d <1, a > -d), described by the following process:

O OO O

P(sit at table ¢) =

P(sit at new table) =

 Difference: discount parameter d.

» Expect to get more tables, and more tables with few customers.



Pitman-Yor Process

* The EPPF under CRP(|n],d,o) 1s:

o |Q| 1
P(Q):[ +dn1H1— 2| = 2(2+Db) - (24 (m — 1)b)

[ cco
* The two-parameter CRP 1s projective and exchangeable.

e The de Finetti measure 1s the Pitman-Yor process, which 1s a generalization
of the Dirichlet process.

[Perman et al 1992, Pitman & Yor 1997, Ishwaran & James 2001 ]



Power-law Properties



Power-laws in Pitman-Yor Processes

e Power-laws are commonly observed in nature and in human generated data.

» Pitman-Yor processes exhibit power-law properties and can be used to model
data with such properties.

ne — d

P(sit at table ¢) =
o+ Zceg Ne

P(sit at new table) =

* With more occupied tables, chance of even more tables becomes higher.

» Tables with small occupancy numbers tend to have lower chance of
getting new customers.

[Pitman 2006, Goldwater et al 2006, Teh 2006]



Power-Laws In Pitman-Yor Processes

200

T T T
1 50 B ? .
: .
: .
.‘.
l.!. e
#5. Iy . -
o !
— ‘.: .
S 100 < - b
K L A o e :,,
© L T
/.,,; P A Tt AP SR TRy
D T A I TR R SN Seve w0 0 2
e '.‘-:E.."'",".: o' .‘::.:;.1'..",'.' A PRI -
T A Tl e Ll
oo o “ll.l-l oo , ®mo, 00 . . . . . -.‘.l .
R R O L AT T -
50 I . ,...,,., R . .-,..: te% e g ... - o . .
FAS ...-..': - ot e -
. .ge DY l'_. “-:..rcu*-.u* 3 “.7. LN
LI ""’."".'Lc..i" c't"-'i" .n'... v

'.-" na-m-i.-

‘l"'l’ 'all"'- t' ™% ™% l-
.

A rarws oy A ‘.,‘_.

SIS - iy g_: - q' X

YRR ﬁﬂ::s.,és::,&ﬁe"
3--; ‘_;._:::..":::..- b -3

e o el

e

s % °

EA R )

Bete, 0 *
.

.. .._.....

.. g .:._ N
.,,,.s,s-; 'vg."-.s‘ *

u-1 R
SN

T"" ‘-:F "’_
’.-‘.:“.u"

!I
o

',,‘,-I;;.

0
0

2000

4000 6000
customer

8000

10000

250

200}

150

100

50

O
0

‘.n. e

“eme @ ene ofn eoe
e s

4000

2000

.
e
v
o ’
N
o
W4
.
0....
2
. - '
% o ) M . - “-
..‘-. R -

.s.\a o %oy 0 oo, ,---.,...v s.g,., ope -
" o mmp ghy

6000
customer

. .
‘ WY e T %
.

-“ v ,a.- -.‘.' ,l,';s-,_y,,..n’. A“p"",\'.‘ik.s" ot s (\_0‘-‘\& s-, ‘..s .p.rq. 5"““#} ,..O:‘m’

o 4, @ttt ..-..-
.'....,......4.—.
v

8000

..-...

10C



Power-Laws In Pitman-Yor Processes
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Power-Laws In Pitman-Yor Processes
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Power-law of English Word Frequencies
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Power-law of Image Se
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Pitman-Yor Process

e Pitman-Yor processes have been applied in domains with power-laws:
e computational linguistics;
e computer vision.

* They also have interesting properties related to fragmentations and
coagulations of partitions which can be used to build effective methods for
sequence modelling and text compression.

* They also have stick-breaking constructions and are the next simplest
generalization of Dirichlet processes. Other generalizations include:

* normalized random measures;
 species sampling models;

* stick-breaking processes.



Hierarchical Bayesian
Nonparametric Models

[Teh & Jordan 2010]



Nonparametric Building Blocks

» Easy to construct complex probabilistic models
from simpler parts.

« Nonparametric Bayesian models are new classes of
components for the statistical modeller.

* Dependent random measures;
» Hierarchical nonparametric models.

* Nested models.




Hierarchical Dirichlet Process

[Teh et al 2006]



Topic Modelling

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

[Ble1 et al 2003, Griffiths & Steyvers 2004 ]




| atent Dirichlet Allocation

* Model a topic as a distribution over words that
tend to co-occur together among documents.

* Model words 1n documents as exchangeable and
documents as mixtures of topics.

m; ~ Dirichlet(a/K, ..., a/K)
0, ~ Dirichlet(8/W,...,5/W)

Zji‘ﬂ'j ~ Discrete(wj)

* e *
zji|2ji, 0%, ~ Discrete(67 ) 4 @

words i=1...nd topics k=1...K

 How many topics can we find 1n a corpus? document j=1...D

@

[Ble1 et al 2003, Griffiths & Steyvers 2004 ]



Nonparametric Latent Dirichlet Allocation?

 Use a DP for each document.

L \H A

* There 1s no sharing of topics across different
documents, because H 1s smooth.

e Solution: make H discrete.

e Put a DP prior on H.
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Hierarchical Dirichlet Process

A hierarchy of Dirichlet processes:

Gy
G

Go ~
Go ~
Go ~

DP(ag, H)
DP (a1, Go)

DP(as, Go)

* Extension to larger hierarchies straightforward:

Gj ~ DP(O‘J’» Gpa(j))

e Hierarchical modelling are a widespread technique
to share statistical strength.

h et al 2006]



Hierarchical Dirichlet Process

Go




HDP-LDA

Posterior over number of topics in HDP mixtures

15
Perplexity on test abstacts of LDA and HDP mixture
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Chinese Restaurant Franchise

e
e

* (; and G? can both be represented using CRPs.




Chinese Restaurant Franchise

01 919
Gr 913 912 915 o000
16 17

* (; and G? can both be represented using CRPs.
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Chinese Restaurant Franchise

01 919
Gr 913 912 915 o000
16 17
021

* (; and G? can both be represented using CRPs.




Chinese Restaurant Franchise

* (y can also be represented using a CRP.

01 919
Gr 913 912 915 o000
16 17
021

* (; and G? can both be represented using CRPs.




Chinese Restaurant Franchise

* (y can also be represented using a CRP.

G(): 0000
Gi: o000
Go: 0000

* (; and G? can both be represented using CRPs.




Hierarchical Bayesian Modelling

« An important overarching theme in modern statistics.

 In machine learning, have been used for multitask learning, transfer learning,
learning-to-learn and domain adaptation.

®

y y y

@) | @ |} @

i=1...n1 i=1...n2 i=1...n3

|Gelman et al, 1995, James & Stein 1961 ]



Hierarchical Bayesian Nonparametrics

* Bayesian nonparametric models are increasingly used as building blocks by
modellers to build complex probabilistic models.

» Hierarchical modelling are a natural technique for combining building blocks.

* Applications span computational linguistics, time series and sequential
models, vision, genetics etc.

* Dependent random measures:

* techniques for introducing dependencies among random measures indexed
by spatial or temporal covariates.

* Nested processes:

 technique for modelling heterogeneity 1n data.



Dependent Random Measures

* A measure-valued stochastic process {G4} 1ndexed by a covariate space .

G4 1s the random measure at location ¢ € @.

If each Gy41s marginally DP, we have a dependent Dirichlet process.
* Density regression: estimating density over output space conditional on ¢.

* Applications include i1mage segmentation, topic models through time,
dictionary learning, spatial models, and many others 1n biostatistics, signal
processing etc.

[MacEachern 1999, Dunson 2010]



Hierarchical Pitman-Yor
Language Model

|Goldwater et al 2006, Teh 2006]



n-gram Language Models



Sequence Models for Language and Text

* Probabilistic models for sequences of words and characters, €.g.
south, parks, road

s,o,u,t,h, ,p,ark,s, ,r,0,ad

* n-gram language models are high order Markov models of such discrete
sequence:

P(sentence) = H P(word;|word; _ni11...word; 1)



n-gram Language Models

» High order Markov models:
P(sentence) = H P(word;|word; _ni11...word; 1)

» Large vocabulary size means naively estimating parameters of this
model from data counts 1s problematic for N>2.

C(Wordi_N+1 ce WOI‘di)

PML(Word”;‘Wordi_NH o word; ) = C'(word;—n41...word;_1)

« Naive priors/regularization fail as well: most parameters have no
associated data.

* Smoothing.

 Hierarchical Bayesian models.



Smoothing in Language Models

 Smoothing is a way of dealing with data sparsity by combining large
and small models together.

Psmooth (

Mz

word;|word} ;) n)Qn(word;|word;~, . ;)

n=1

* Combines expressive power of large models with better estimation of
small models (cf bias-variance trade-oft).

psmeoth (road|south parks)

= A(3)Q3(road|south parks) +
A(2)Q2(road|parks) +
A(1)Q1(road|d)




Smoothing in Language Models

relative performance of algorithms on WSJ/NAB corpus, 4-gram
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* Interpolated and modified Kneser-Ney are best.

[Chen & Goodman 1999]



Hierarchical Pitman-Yor
Language Models



Context Tree

e Context of conditional probabilities naturally organized

using a tree. PsmOOth(road|south parks)

= A(3)Q3(road|south parks) +
e Smoothing makes conditional probabilities ~ A(2)Q2(road|parks) +

of neighbouring contexts more similar. A(1)Q1(road|0)
0
e [ater words in context more important / \
in predicting next word. parks
south parks to parks university parks

N SN\

along south parks at south parks




Hierarchical Bayes on Context Tree

» Parametrize the conditional probabilities of Markov model:
P(word; = w|word!”; Nyl = u) = Gy(w)

Gu — [Gu (w)]wEVocabulary

* Gu1s a probability vector associated with context u.

Gy
parks
south parks to parks university parks

~ N SN\

Galong south parks at south parks



Hierarchical Dirichlet Language Models

» What is P(G |G pa(u))? Obvious choice is the standard Dirichlet

distribution over probability vectors.

T N-1| IKN MKN HDLM
2x10° 2| 148.8 144.1 191.2
4x10% 2| 137.1 132.7 172.7
6x10° 2| 130.6 126.7 162.3
8x 10° 211259 122.3 154.7

10 x 106 2| 122.0 118.6 148.7
12 x 105 2| 119.0 115.8 144.0
14 x 10 2| 116.7 113.6 140.5
14 x 10 1] 169.9 169.2 180.6
14 x10° 3] 106.1 1024 136.6

* We will use Pitman-Yor processes instead.

[MacKay and Peto 1994]



Hierarchical Pitman-Yor Language Models

* Parametrize the conditional probabilities of Markov model:
P(word; = w|word!”; Nyl = u) = Gy(w)
Gu — [Gu (w)]wEVocabulary

* Guis a probability vector associated with context u.

* Place Pitman-Yor process prior on each Gu. /G(Z)\
parks
south parks to parks unlver81ty parks
Galong south parks at south parks

|Goldwater et al 2006, Teh 2006]



Hierarchical Pitman-Yor Language Models

» Significantly improved on the hierarchical Dirichlet language model.

* Results better Kneser-Ney smoothing, state-of-the-art language models.

T N-1| IKN MKN HDLM HPYLM

2 % 10° 2 | 148.8 144.1 191.2 144.3
4 x 106 2 1 137.1 132.7 172.7 132.7
6 x 106 2 1 130.6 126.7 162.3 126.4
8 x 106 211259 122.3 154.7 121.9
10 x 10° 2 1 122.0 118.6 148.7 118.2
12 x 106 2 1119.0 115.8 144.0 115.4
14 x 10° 2 | 116.7 113.6 140.5 113.2
14 x 10° 1] 169.9 169.2 180.6 169.3
14 x 106 3| 106.1 1024 136.6 101.9

» Similarity of perplexities not a surprise---Kneser-Ney can be derived as a

particular approximate inference method.



Hierarchical Pitman-Yor Process

* Application of hierarchical Pitman-Yor processes to n-gram language models:

* Hierarchical Bayesian modelling allows for sharing of statistical strength
and improved parameter estimation.

* Pitman-Yor processes has power law properties more suitable 1n
modelling linguistic data.

 State-of-the-art language models, theoretical justification for another state-of-
the-art model called interpolated Kneser-Ney.



Infinite Hidden Markov Model



Hidden Markov Models

7, ~ Dirichlet(a/K, ..., a/K) 2p|ze 1 ~ T,
HZNH CIZt’ZtNHH*
K

e Can we take K — o0?



Infinite Hidden Markov Models

7, ~ Dirichlet(a/K, ..., a/K) 24|21 ~ 7th )
(9;; ~ H CIZt’Zt ~ H

*@%@\4
@ coes

K

« Cannot sitmply take K — oo for the model above; same failure as LDA.

* Again can use a hierarchical Dirichlet process to define an infinite hidden
Markov model.

[Beal et al 2002, Teh et al 2006]



Word Segmentation

L HR - FTERE SR 31N H o 5 &4 <. Ml Ed &Ml
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A DATE B LLWER O #E 2 ol £ \WZE, i
XIR 2z A THREED HA D ..

« Fla —ER I, AME R & % b gt B, mH —2 SRl i
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R MK 5

e yuwanttusiD6bUk?



IHMM Word Segmentation

Q want to see @ book

SANNS TN

yuwanttusiD6bUk

 Number of word types 1s unknown (and part of the output of learning).

* We can use the infinite HMM coupled with a model to generate strings of
characters for each word.

|Goldwater et al 2006, Mochihashi et al 2009]



IHMM Word Segmentation

P R F BP BR BF LP LR LF
NGS-u 67.7 70.2 689 | 80.6 84.8 82.6 | 529 51.3 52.0
MBDP-1 | 67.0 694 68.2 | 80.3 &84.3 823 | 53.6 5H1.3 524
DP 61.9 476 53.8 | 924 62.2 743 | 57.0 57.5 957.2
NGS-b 68.1 68.6 683 | 81.7 82.5 82.1 | 54.5 57.0 557
HDP 79.4 74.0 76.6 | 92.4 83.5 &87.7 | 67.9 58.9 63.1
Model MSR CITYU Kyoto

NPY(2)|80.2 (51.9) |82.4 (126.5) 62.1 (23.1)
NPY(3)|80.7 (48.8) |81.7 (128.3) |66.6 (20.6)

ZKO08 [66.7(—) [69.2(—) —




Coagulations,
Fragmentations, and
Trees



Overview

* Bayesian nonparametric learning of trees and hierarchical partitions.
» Fragmentations and coagulations.

« Unifying view of various Bayesian nonparametric models for random trees.



From Random Partitions
to Random Trees
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Bayesian Inference for Trees

« Computational and statistical methods for constructing trees:
 Algorithmic, not model-based.
* Maximum likelithood
 Maximum parsimony

« Bayesian inference: introduce prior over trees and compute posterior.

P(T|x) o« P(T)P(x|T)

« Bayesian nonparametric priors for P(7).
* Exchangeable and projective models.

* Models for trees has to be nonparametric.



Trees as Sequences of Partitions
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Trees as Sequences of Partitions

Phylogeny based on nucleotide differences in the gene for cytochrome ¢
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Trees as Sequences of Partitions

Phylogeny based on nucleotide differences in the gene for cytochrome ¢
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Trees as Sequences of Partitions
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Trees as Sequences of Partitions

Phylogeny based on nucleotide differences in the gene for cytochrome ¢
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Trees as Sequences of Partitions

Phylogeny based on nucleotide differences in the gene for cytochrome ¢
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Trees as Sequences of Partitions

Phylogeny based on nucleotide differences in the gene for cytochrome ¢
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Fragmenting Partitions

L1 T I t 1 %
* Sequence of finer and finer partitions. @ (5) (6) (3) (789> (4)

* Each cluster fragments until all clusters
contain only 1 data item.

* Can define a distribution over trees
using a Markov chain of fragmenting (1 25 6) <3 78 9)

partitions, with absorbing state 0Os ¥ ¥ ¥
(partition where all data items are in | ‘

their own clusters). (1 5345678 9)




Coagulating Partitions

21810101810101010

* Sequence of coarser and coarser Voo v v ’
partitions. EE)E) (89) () (22
* Each cluster formed by coagulating l
smaller clusters until only 1 left. - @%) CS . 9)
* Can define a distribution over trees by '
using a Markov chain of coagulating (1 25 6) CS ’8 9) @ @
partitions, with absorbing state Is |
(partition where all data items are in one '




Random Fragmentations and
Random Coagulations

[Bertoin 2006]



Coagulation and Fragmentation Operators

S)E =)

22

[



A

Coagulation and Fragmentation Operators

) )
I A
3 )
02 —
A <
) @ N
2 D
\—/
7 Coagulate
—
B
o1 =
4
5
2 Jc
)
9
D

[



A

Coagulation and Fragmentation Operators

) )
| A |
3 B 2
02 —
6 < 3
SR — 6
2 D
\——/ 7
7 Coagulate

- | X |

22

(U
(



Coagulation and Fragmentation Operators

) )
I A I
3 B 2
02 —
6 < 3
S N 6
2 D
\—/ V4
7 Coagulate
—
B
Q1 = — €
5 TFragment g
) )
8 Jc 30 (4] [9 )
) )
9 Flé/ Fa| 5 | F3 9
) 8
2 —/ —/
\_/D \L \___/




Random Fragmentations

e Let C € Py and for each ¢ € Clet Fe € P..
e Denote fragmentation of C by {F.} as frag(C,{F.}).
* Write ¢o; | C ~ FRAG(C,d, @) if o1 = frag(C,{F.}) with
F.~ CRP(c,d, o) independently.
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Random Coagulations

* Let g € Py and g2 € Py
* Denote coagulation of g; by g2 as coag(os, 02).
* Write C | o1 ~ COAG(g,,d, @) if C= coag(gi, 02) with
02 | o1~ CRP(p1,d, ).
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Random Trees and
Random Hierarchical Partitions



Nested Chinese Restaurant Processes

/1\

‘,{j‘ z |,.t’_’7’ g |3 oo |3‘ 3

A tourist arrives at the city for an culinary vacation. On the first evening, he enters
the root Chinese restaurant and selects a table using the CRP distribution in Eq. (1).
On the second evening, he goes to the restaurant identified on the first night’s table
and chooses a second table using a CRP distribution based on the occupancy pattern
of the tables in the second night’s restaurant. He repeats this process forever. After
M tourists have been on vacation in the city, the collection of paths describes a
random subtree of the infinite tree; this subtree has a branching factor of at most
M at all nodes. See Figure 3 for an example of the first three levels from such a

random tree. [Blei et al 2004, 2010]
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Nested Topic Model
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Nested Topic Model
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Nested Chinese Restaurant Process

* Start with the null partition gy = {[n]}.
« Foreachlevel /= 1,2,...,.L:

o= FRAG(¢1-1,0, o))

* Fragmentations in different clusters (branches of the
hierarchical partition) operate independently.

e Nested Chinese restaurant processes (nCRP) define a
Markov chain of partitions, each of which 1s exchangeable.

 Can be used to define an infinitely exchangeable sequence,
with de Finetti measure being the nested Dirichlet process
(nDP).

(&= eee (B

[Bler et al 2004, 2010, Rodriguez et al JASA 2008]



Coagulation of Random Partitions

» Consider a Chinese restaurant franchise corresponding to a two level HDP:
{{1,3,6,2,7},{4,5,8}, {9}}

911 919
913 912 615 oo
Oi6 17

1,3,6},12,7},14.5,8}, {9}}

» Corresponds to a random coagulation with:
p1 ~ CRP([9],0, 1)
polp1 ~ COAG(p1,0, ap)

Go ~ DP(a, H)
G1|Go ~ DP (a1, Go)

[Teh et al 2006]



Chinese Restaurant Franchise

e For a simple linear hierarchy of DPs (restaurants linearly
chained together), the Chinese restaurant franchise
(CRF) 1s a sequence of coagulations:

o At the lowest level L+, we start with the trivial
partition gz+; = {{1},{2},...,{n}}.
e Foreachlevel/=L,L-1,...,1:
o= COAG(gr+1,0, o)

* This 1s also Markov chain of partitions.

OaOREINORO



Hierarchical Dirichlet/Pitman-Yor Processes

* Each partition in the Chinese restaurant franchise is again
exchangeable.

e The corresponding de Finetti measure 1s a Hierarchical
Dirichlet process (HDP).

G1|Gi-1 ~ DP(a;, Gi—1)

* The CRF has been rarely used as a model of hierarchical
partitions. Typically 1t 1s only used as a convenient
representation for inference in the HDP and HPYP.

D oo @&
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Random Trees

e Nonparametric models of trees are natural.
 Construction of random trees as Markov chains of random partitions.

* Models are infinitely exchangeable.



Continuum Limit of
Partition-valued Markov Chains



Trees with Infinitely Many Levels

‘ A/L
« Random trees described so far all consist of a finite number of @ '
levels L. “
* We can be “nonparametric” about the number of levels of A/L
random trees. |
* Allow a finite amount of change even with an infinite number of
levels, by decreasing the change per level. :

o

l A/L



Dirichlet Diffusion Trees_
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In general, the ith point in the data set is obtained by following a path from the origin
that initially coincides with the path to the previous ¢ —1 data points. If the new path
has not diverged at a time when paths to past data points diverged, the new path chooses
between these past paths with probabilities proportional to the numbers of past paths that
went each way. If at time ¢, the new path is following a path traversed by m previous
paths, the probability that it will diverge from this path within an infinitesimal interval
of duration dt is a(t)dt/m. Once divergence occurs, the new path moves independently of

previous paths. [Neal 2003]



Dirichlet Diffusion Trees

e The Dirichlet diffusion tree (DFT) hierarchical partitioning structure can be
derived from the continuum limit of a nCRP:

* Start with the null partition gy = {[n]}.
* For each time ¢, define
or+dr = FRAG(0,0,a(t)dt)

* The continuum limit of the Markov chain of partitions becomes a continuous
time partition-valued Markov process: a fragmentation process.

 (Generalization to Pitman-Yor diffusion trees.

[Knowles & Ghahramani 2011 ]



Kingman’s Coalescent

e Taking the continuum limit of the one-parameter (Markov chain) CRF leads
to another partition-valued Markov process: Kingman’s coalescent.

* Start with the trivial partition go = {{1},{2},....,{n}}.
* For each time ¢ < 0:
or-at= COAG(g,0,a(t)/dt)
* This 1s the simplest example of a coalescence or coagulation process.

A standard genealogical process in genetics.

* A generalization called A-coalescent.

[Kingman 1982a,b, Pitman 1999]



Kingman’s Coalescent

e Derived from the Wright-
Fisher model of population
genetics.

* Model of the genealogies of n
haploid individuals among a
size N population.

Z

* G1ves a tree-structured
genealogy because each
individual assumed to have
one parent.
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Kingman’s Coalescent
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Kingman’s Coalescent

e Derived from the Wright-
Fisher model of population
genetics.

* Model of the genealogies of n
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Kingman’s Coalescent

e Derived from the Wright-
Fisher model of population

genetics. 8 8 8 8 Q:A/O ~

* Model of the genealogies of n O O O O Q\Q
haploid individuals among a O O O O 0O—0O
size N population. O O O O Q\Q \
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Kingman’s Coalescent

e Derived from the Wright-
Fisher model of population
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Kingman’s Coalescent

e Derived from the Wright-
Fisher model of population
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Kingman’s Coalescent
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Kingman’s Coalescent
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Binary Ultrametric Random Trees

« Both Dirichlet diffusion trees and Kingman’s coalescent are priors over
binary trees, 1.e. every internal node has exactly 2 children.

* (Generalizations allow for more than 2 children.

« Both models are priors over ultrametric trees, 1.e. all observations are at
leaves which are equidistant from the root.

* Can generalize by allowing observations at different distances from root.

 Constructions for other types of random trees:
* Gibbs fragmentation trees
e Continuum random trees

e Standard additive coalescent



Sequence Memoizer



Markov Models for Language and Text

* Usually makes a Markov assumption to simplify model:

P(south parks road) ~

P(south)*
P(parks | south)*
P(road | south parks)

* Language models: usually Markov models of order 2-4 (3-5-grams).
 How do we determine the order of our Markov models?
e Is the Markov assumption a reasonable assumption?

* Be nonparametric about Markov order...



Non-Markov Models for Language and Text

* Model the conditional probabilities of each possible word occurring after
cach possible context (of unbounded length).

* Use hierarchical Pitman-Yor process prior to share information
across all contexts.

Gy
e Hierarchy is infinitely deep. / \

* Sequence memoizer. Gparks
south parks Gto parks unlver81ty parks
Galong south parkS Gat south parks

/NN

meet at south parks



Model Size: Infinite -> O(T?)

* The sequence memoizer model 1s very large (actually, infinite).

e (G1ven a training sequence (e€.g.: 0,a,c¢,a,c), most of the model can be 1gnored
(integrated out), leaving a finite number of
nodes 1n context tree.

 But there are still O(77?) number of nodes
in the context tree. F?
Gl




Model Size: Infinite -> O(T4) -> O(2T)

* The sequence memoizer model 1s very large (actually, infinite).

e (G1ven a training sequence (e€.g.: 0,a,c¢,a,c), most of the model can be 1gnored
(integrated out), leaving a finite number of
nodes 1n context tree.

 But there are still O(77?) number of
nodes 1n the context tree.

 Integrate out non-branching, non-leaf
nodes leaves O(T) nodes.

e Conditional distributions
Pitman-Yor due to

property.

oac
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Duality of Coagulation and Fragmentation

* The following statements are equivalent:
(I) 02 ~ CRP([TL]? d27 deQ) and 91’Q2 ™~ CRP(QZ) d17 Ck)
(II) C ~ CRP([TL], dldg, dez) and FC‘C ~ CRP(C, dg, —dldg) Ve € C
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Closure under Marginalization

e Marginalizing out internal Pitman-Yor processes is equivalent to
coagulating the corresponding Chinese restaurant processes.

Gla) Gl

Glea) PY (02d3, d2ds, Gig))

PY(92d37 d37 G[Ca])

v v
G[aca] G[aca]

e Fragmentation and coagulation duality means that the coagulated
partition is also Chinese restaurant process distributed.

e Corresponding Pitman-Yor process is the resulting marginal distribution
Of G[aca].

[Wood et al 2009, Gasthaus & Teh 2010]



Comparison to Finite Order HPYLM
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Compression Results

Model Average bits/byte
gzIp 2.61
bzip2 2.11
CTW 1.99
PPM 1.93
Sequence Memoizer 1.89

Calgary corpus

SM inference: particle filter

PPM: Prediction by Partial Matching
CTW: Context Tree Weigting

Online inference, entropic coding.



Fragmentation-Coagulation
Processes

| Berestycki 2004, Teh et al 2011 ]



Duality of Coagulation and Fragmentation

* The following statements are equivalent:
(I) 02 ~ CRP([TL]? d27 deQ) and 91’Q2 ™~ CRP(QZ) d17 Ck)
(II) C ~ CRP([TL], dldg, dez) and FC‘C ~ CRP(C, dg, —dldg) Ve € C
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Markov Chain over Partitions

CRP([n], u, Re) CRP([n], u, Re)

* Defines a Markov chain over partitions.

« Each transition is a fragmentation followed by coagulation.



Stationary Distribution

CRP([n], i, Re)

» Stationary distribution 1s a CRP with parameters p and 0.



Exchangeability and Projectivity

CRP([n], u, Re) CRP([n], u, Re)

« Each mt1s exchangeable, so that the whole Markov chain 1s an exchangeable
process.

* Projectivity of the Chinese restaurant process extends to the Markov chain as
well.



Reversibility of Markov Chain

CRP([n], i, Re)

 The Markov chain is reversible.

e Coagulation and fragmentation are duals of each other.



Continuum Limit

([n], 1, Re)

» Taking e—0 obtains a continuous time Markov process over partitions, an
exchangeable fragmentation-coalescence process (Berestycki 2004).

« At each time, at most one coagulation (involving two blocks) or one
fragmentation (splitting into two blocks) will occur.



Conditional Distribution of a Trajectory
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* This process is reversible.



Coagulation and Fragmentation Rates

* Describe Markov process 1in terms of rates of fragmentation and coagulation
events:

» Rate of fragmentation of a € It intoband ¢: LU 1§|()|1;|()|C|)

* Rate of coagulation of a,b € Iy into into alUb: g /1
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Number of Clusters and Events

* Over an 1nterval T, if It are partitions of [n], then the expected number
clusters at each point t is:

p(p(n + p) —(p)) = O(plog(n — 5 + )

« Expected number of fragmentation and coagulation events is:

RuT ((w(n + ) = ()" + 4 (n 4 ) — w’(u))
=0 (RuT log(n — % + p)?)



Dirichlet Diffusion Trees and Coalescents

» Rate of fragmentation 1s same as for Dirichlet diffusion trees with constant
fragmentation rate (Neal 2003).

« Rate of coagulation is same as for the coalescent (with time rescaled)
(Kingman 1982).

» Reversibility means that the Dirichlet diffusion tree 1s the “reverse” of
Kingman’s coalescent.

 Class of exchangeable fragmentation-coalescence processes (Berestycki
2004) includes more general processes.

 This process seems to be a canonical example of exchangeable
fragmentation-coalescence processes, but cannot find a reference in
literature?



Relationship with Hidden Markov Models

* Both can be interpreted as models of sequence data with a latent partition
structure at each time point.

« Hidden Markov models have explicit labels of hidden states, fragmentation-
coagulation processes do not.

« Hidden Markov models need to specify the number of states, fragmentation-
coagulation processes do not.

« HMM labels allow generalization across times, but lead to label switching
problems.
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Comparison with Bayesian HMMs

=
=)

normalized log likelihood
O O O O O
Ul OO d 00 O

data: y
0000000000000000 -
0000000000000000 | FCP |

0.4l — BHMMI-
1111111111111 0 3L | | . . .
TTTTT11111111111 =0 200 40 60 80 100

FCP—W -
BHMM[ |- - - =

0O 20 40 60 80
MCMC iterations until optimum



Genotype Imputation---Pre-phased data
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Genotype Imputation---Unphased data
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A Few Final Words



Summary

 Introduction to Bayesian learning and Bayesian nonparametrics.
 Dirichlet processes:
o Infinite limit of finite mixture models.
* Chinese restaurant processes, stick-breaking construction.
* Ferguson’s Definition
e Pitman-Yor processes:
* Two-parameter Chinese restaurant processes.
* Power-law properties.
« Hierarchical Bayesian nonparametric models.
e Infinite hidden Markov models.

 Random partitions, coagulations, fragmentations, trees.



What Were Not Covered Here

 (Gaussian processes

 Indian buffet processes, beta processes.

e Other nonparametric dynamical models.

* Dependent random measures.

« Completely random measures and other generalizations of DPs.

« Combinatorial stochastic processes and their relationship to data structures
and programming languages.

* Relational models, topic models etc.

* Foundational 1ssues, convergence and asymptotics.



Future of Bayesian Nonparametrics

* Augmenting the standard modelling toolbox of machine learning.
* Development of better inference algorithms and software toolkits.
* Exploration of novel stochastic processes.

* More applications 1n machine learning and beyond.



