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Bayesian Machine Learning



Probabilistic Machine Learning

• Machine Learning is all about data.

• Stochastic, chaotic and/or complex process

• Noisily observed

• Partially observed

• Probability theory is a rich language to express these uncertainties.

• Probabilistic models 

• Graphical tool to visualize complex models for complex problems.

• Complex models can be built from simpler parts.

• Computational tools to derive algorithmic solutions.

• Separation of modelling questions from algorithmic questions.



Probabilistic Modelling

• Data: x1,x2,....,xn.

• Latent variables: y1,y2,...,yn.

• Parameter: θ.

• A probabilistic model is a parametrized joint distribution over variables.

• Typically interpreted as a generative model of data.

• Inference, of latent variables given observed data:

P (y1, . . . , yn|x1, . . . , xn, θ) =
P (x1, . . . , xn, y1, . . . , yn|θ)

P (x1, . . . , xn|θ)

P (x1, . . . , xn, y1, . . . , yn|θ)



Probabilistic Modelling

• Learning, typically by maximum likelihood:

• Prediction:

• Classification:

• Visualization, interpretation, summarization.

• Standard algorithms: EM, junction tree, variational inference, MCMC...

P (xn+1, yn+1|x1, . . . , xn, θ)

argmax
c

P (xn+1|θc)

θML = argmax
θ

P (x1, . . . , xn|θ)



Bayesian Modelling

• Prior distribution:

• Posterior distribution (both inference and learning):

• Prediction:

• Classification:

P (θ)

P (y1, . . . , yn, θ|x1, . . . , xn) =
P (x1, . . . , xn, y1, . . . , yn|θ)P (θ)

P (x1, . . . , xn)

P (xn+1|xc
1, . . . , x

c
n) =

�
P (xn+1|θc)P (θc|xc

1, . . . , x
c
n)dθ

c

P (xn+1|x1, . . . , xn) =

�
P (xn+1|θ)P (θ|x1, . . . , xn)dθ



Graphical Models

Earthquake Burglar

Alarm

Visit to Asia Smoking

Tuberculosis Lung Cancer Bronchitis

Dyspnea

Tuberculosis 
or lung cancer

Abnormal 
X ray

• Nodes = variables

• Edges = dependencies

• Lack of edges = conditional 
independencies



Model-based Clustering

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K

• Model for data from heterogeneous unknown sources.

• Each cluster (source) modelled using a parametric 
model (e.g. Gaussian).

• Data item i:

• Mixing proportions:

• Cluster k:

zi|π ∼ Discrete(π)

xi|zi, θ∗k ∼ F (θ∗zi)

θ∗k|H ∼ H

π = (π1, . . . ,πK)|α ∼ Dirichlet(α/K, . . . ,α/K)



Hidden Markov Models

z0 z1 z2 zτ

x1 x2 xτ

β πk

θ∗k
K

• Popular model for time series data.

• Unobserved dynamics modelled using a Markov model

• Observations modelled as independent conditioned on current state.



Collaborative Filtering

• Data: for each user i ratings Rij for a subset of products j.

• Problem: predict how much users would like products that they haven’t seen.

Rij |ξi, ηj ∼ N (ξ�i ηj ,σ
2)



Bayesian Nonparametrics

[Hjort et al 2010]



Bayesian Nonparametrics

• What is a nonparametric model?

• A really large parametric model;

• A parametric model where the number of parameters increases with data; 

• A family of distributions that is dense in some large space relevant to the 
problem at hand.



Bayesian Nonparametrics
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Reason 1: Model Selection and Averaging

• Model selection/averaging typically very expensive computationally.

• Used to prevent overfitting and underfitting.

• But a well-specified Bayesian model should not overfit anyway.

• By using a very large Bayesian model or one that grows with amount of data, 
we will not underfit either.

• Bayesian nonparametric models.



Reason 2: Large Function Spaces

• Large function spaces.

• More straightforward to infer the 
infinite-dimensional objects themselves.

• Bayesian nonparametric models.
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Reason 3: Structural Learning

• Learning structures.

• Bayesian prior over 
combinatorial structures.

• Nonparametric priors 
sometimes end up simpler 
than parametric priors.

duck
chicken

seal
dolphin
mouse

rat
squirrel

cat
cow

sheep
pig

deer
horse

tiger
lion

lettuce
cucumber

carrot
potato
radish
onions

tangerine
orange

grapefruit
lemon
apple
grape

strawberry
nectarine
pineapple

drill
clamp
pliers

scissors
chisel
axe

tomahawk
crowbar

screwdriver
wrenchhammer

sledgehammer
shovel
hoe
rake
yacht
ship

submarine
helicopter

train
jet
carvan

truck
bus

motorcycle
bike

wheelbarrow
tricycle
jeep[Adams et al 2010, Blundell et al 2010]



Reason 4: Novel and Useful Properties

• Many interesting Bayesian nonparametric models with interesting and useful 
properties:

• Projectivity, exchangeability.

• Zipf, Heap and other power laws 

• (Pitman-Yao, 3-parameter IBP).

• Flexible ways of building complex models 

• (Hierarchical nonparametric models, dependent Dirichlet processes).



Are Nonparametric Models Nonparametric?

• Nonparametric just means not parametric: cannot be described by a fixed set 
of parameters.

• Nonparametric models still have parameters, they just have an infinite 
number of them.

• No free lunch: cannot learn from data unless you make assumptions.

• Nonparametric models still make modelling assumptions, they are just 
less constrained than the typical parametric models.

• Models can be nonparametric in one sense and parametric in another: 
semiparametric models.



Issues with Bayesian Nonparametrics

• Developing classes of nonparametric priors suitable for modelling data.

• Developing algorithms that can efficiently compute the posterior is important.

• Developing theory of asymptotics in nonparametric models.



Previous Tutorials and Reviews
• Mike Jordan’s tutorial at NIPS 2005.

• Zoubin Ghahramani’s tutorial at UAI 2005.

• Peter Orbanz’ tutorial at MLSS 2009 (videolectures)

• My own tutorials at MLSS 2007, 2009 (videolectures), 2011 (Singapore) and 
elsewhere.

• Introduction to Dirichlet process [Teh 2010], nonparametric Bayes [Orbanz & 
Teh 2010, Gershman & Blei 2011], hierarchical Bayesian nonparametric 
models [Teh & Jordan 2010].

• Bayesian nonparametrics book [Hjort et al 2010].

• This tutorial: Dirichlet processes, Pitman-Yor processes, random partitions, 
random trees, hierarchical DPs, and hierarchical PYPs.



Dirichlet Process



Dirichlet Process

• Cornerstone of modern Bayesian nonparametrics.

• Rediscovered many times as the infinite limit of finite mixture models.

• Formally defined by [Ferguson 1973] as a distribution over measures.

• Can be derived in different ways, and as special cases of different processes.

• We will derive:

• the infinite limit of a Gibbs sampler for finite mixture models

• the Chinese restaurant process

• the stick-breaking construction



The Infinite Limit of
Finite Mixture Models



Finite Mixture Models

• Model for data from heterogeneous unknown sources.

• Each cluster (source) modelled using a parametric 
model (e.g. Gaussian).

• Data item i:

• Mixing proportions:

• Cluster k:

zi|π ∼ Discrete(π)

xi|zi, θ∗k ∼ F (θ∗zi)

θ∗k|H ∼ H

π = (π1, . . . ,πK)|α ∼ Dirichlet(α/K, . . . ,α/K)

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K



Finite Mixture Models

• Dirichlet distribution on the K-dimensional 
probability simplex { π | Σk πk = 1 }:

• with                                      .

• Standard distribution on probability vectors, due to 
conjugacy with multinomial. 

Γ(a) =
�∞
0 xa−1exdx zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K

P (π|α) = Γ(α)�
k Γ(α/K)

K�

k=1

πα/K−1
k



Dirichlet Distribution
(1, 1, 1) (2, 2, 2)

(2, 2, 5)

(5, 5, 5)

(2, 5, 5) (0.7, 0.7, 0.7)

P (π|α) =
Γ(

�
k αk)�

k Γ(αk)

K�

c=1

παc−1
k



Dirichlet-Multinomial Conjugacy

• Joint distribution over zi and π:

• where nc = #{ zi = c }.

• Posterior distribution:

• Marginal distribution:

P (π|α)×
n�

i=1

P (zi|π) =
Γ(α)

�K
k=1 Γ(α/K)

K�

k=1

πα/K−1
k ×

K�

k=1

πnk
k

P (π|z,α) = Γ(n+ α)
�K

k=1 Γ(nk + α/K)

K�

k=1

πnk+α/K−1
k

P (z|α) = Γ(α)
�K

k=1 Γ(α/K)

�K
k=1 Γ(nk + α/K)

Γ(n+ α)



Gibbs Sampling

• All conditional distributions are simple to compute:

• Not as efficient as collapsed Gibbs sampling, which 
integrates out π, θ*’s:

• Conditional distributions can be efficiently computed if 
F is conjugate to H.

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K

p(zi = k|others) ∝
α
K +n¬i

k

α+n−1 f(xi|{xj : j �= i, zj=k})

f(xi|{xj : j �= i, zj=k}) ∝
�

h(θ)f(xi|θ)
�

j �=i:zj=k

f(xj |θ)dθ

p(zi = k|others) ∝ πkf(xi|θ∗k)
π|others ∼ Dirichlet( α

K + n1, . . . ,
α
K + nK)

p(θ∗k = θ|others) ∝ h(θ)
�

j:zj=k

f(xj |θ)



Infinite Limit of Collapsed Gibbs Sampler

• We will take K → ∞.

• Imagine a very large value of K.

• There are at most n < K occupied clusters, so most 
components are empty.  We can lump these empty 
components together:

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K

p(zi = k|others) =
n¬i
k + α

K

n− 1 + α
f(xi|{xj : j �= i, zj=k})

p(zi = kempty|others) =
αK−K∗

K

n− 1 + α
f(xi|{})

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



Infinite Limit of Collapsed Gibbs Sampler

• We will take K → ∞.

• Imagine a very large value of K.

• There are at most n < K occupied clusters, so most 
components are empty.  We can lump these empty 
components together:

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K

p(zi = k|others) =
n¬i
k + α

K

n− 1 + α
f(xi|{xj : j �= i, zj=k})

p(zi = kempty|others) =
αK−K∗

K

n− 1 + α
f(xi|{})

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



Infinite Limit

• The actual infinite limit of the finite mixture model does not make sense:

• any particular cluster will get a mixing proportion of 0.

• Better ways of making this infinite limit precise:

• Chinese restaurant process.

• Stick-breaking construction.

• Both are different views of the Dirichlet process (DP).

• DPs can be thought of as infinite dimensional Dirichlet distributions.

• The K → ∞ Gibbs sampler is for DP mixture models.



Ferguson’s Definition of the
Dirichlet Process



Tiny Bit of Probability Theory

• A σ-algebra Σ is a family of subsets of a set Θ such that

• Σ is not empty;

• if A ∈ Σ then Θ\A ∈ Σ;

• if A1,A2,... ∈ Σ then ∪iAi ∈ Σ.

• (Θ, Σ) is a measure space and A ∈ Σ are the measurable sets.

• A measure µ over (Θ, Σ) is a function µ : Σ →[0,∞] such that

• µ(∅) = 0;

• if A1, A2,... ∈ Σ are disjoint then µ(∪iAi) = Σi µ(Ai);

• a probability measure is one where µ(Θ) = 1.

• Everything we consider here will be measurable.



Tiny Bit of Probability Theory

• Given two measure spaces (Θ, Σ) and (Δ, Φ) a function f : Θ → Δ is 
measurable if f -1(A) ∈ Σ for every A ∈ Φ.

• If P is a probability measure on (Θ, Σ), a random variable X taking values in 
Δ is simply a measurable function X : Θ → Δ.

• This of the probability space (Θ, Σ, P) as a black-box random number 
generator, and X as a fixed function taking random samples in Θ and 
producing random samples in Δ.

• The probability of an event A ∈ Φ is P(X ∈ A) = P(X-1(A)).

• A stochastic process is simply a collection of random variables {Xi}i ∈ I over 
the same measure space (Θ, Σ), where I is an index set.

• I can be an infinite (even uncountably infinite) set.



Ferguson’s Definition of Dirichlet Processes

• A Dirichlet process (DP) is a random probability measure G over (Θ, Σ) 
such that for any finite set of measurable sets A1,...AK ∈ Σ partitioning Θ, i.e.

• we have

• where α and H are parameters of the DP.

A1∪̇ · · · ∪̇AK = Θ

(G(A1), . . . , G(AK)) ∼ Dirichlet(αH(A1), . . . ,αH(AK))

6

A

A1

A A
A

A

2

3

4

5

[Ferguson 1973]



Parameters of the Dirichlet Process

• α is called the strength, mass or concentration parameter.

• H is called the base distribution.

• Mean and variance:

• where A is a measurable subset of Θ.

• H is the mean of G, and α is an inverse variance.

E[G(A)] = H(A)

V[G(A)] =
H(A)(1−H(A))

α+ 1



Posterior Dirichlet Process

• Suppose

• We can define random variables that are G distributed:

• The usual Dirichlet-multinomial conjugacy carries over to the DP as well:

G ∼ DP(α, H)

θi|G ∼ G for i = 1, . . . , n

G|θ1, . . . , θn ∼ DP(α+ n,
αH+

�n
i=1 δθi

α+n
)



Pólya Urn Scheme

• Marginalizing out G, we get:

• This is called the Pólya, Hoppe or Blackwell-MacQueen urn scheme.

• Start with an urn with α balls of a special colour.

• Pick a ball randomly from urn:

• If it is a special colour, make a new ball with colour sampled from H, 
note the colour, and return both balls to urn.

• If not, note its colour and return two balls of that colour to urn.

G ∼ DP(α,H)

θi|G ∼ G for i = 1, 2, . . .

θn+1|θ1, . . . , θn ∼ αH+
�n

i=1 δθi
α+n

[Blackwell & MacQueen 1973, Hoppe 1984]



Clustering Property

• The n variables θ1,θ2,...,θn can take on K ≤ n distinct values.

• Let the distinct values be θ1*,...,θK*.  This defines a partition of {1,...,n} such 
that i is in cluster k if and only if θi = θk*.

• The induced distribution over partitions is the Chinese restaurant process.

G ∼ DP(α,H)

θi|G ∼ G for i = 1, 2, . . .



Chinese Restaurant Process

[Aldous 1985, Pitman 2006]



Partitions

• A partition ϱ of a set S is:

• A disjoint family of non-empty subsets of S whose union in S.

• S = {Alice, Bob, Charles, David, Emma, Florence}.

• ϱ = { {Alice, David}, {Bob, Charles, Emma}, {Florence} }.

• Denote the set of all partitions of S as PS.

• Random partitions are random variables taking values in PS.

• We will work with partitions of S = [n] = {1,2,...n}.

Alice
David

Bob
Charles
Emma

Florence



Chinese Restaurant Process

• Each customer comes into restaurant and sits at a table:

• Customers correspond to elements of S, and tables to clusters in ϱ.

• Rich-gets-richer: large clusters more likely to attract more customers.

• Multiplying conditional probabilities together, the overall probability of ϱ, 
called the exchangeable partition probability function (EPPF), is:

1
3
6

2
7

4
5
8

9

P (�|α) = α|�|Γ(α)

Γ(n+ α)

�

c∈�

Γ(|c|)

[Aldous 1985, Pitman 2006]

p(sit at table c) =
nc

α+
�

c∈� nc
p(sit at new table) =

α

α+
�

c∈� nc



Number of Clusters
• The prior mean and variance of K are:

ψ(α) = ∂
∂α logΓ(α)

0 2000 4000 6000 8000 10000
0

50

100

150

200

customer

ta
b
le

!=30, d=0

0 20 40 60 80 100
0
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0.04

0.06

0.08

0.1

0.12
alpha = 10

E[|ρ||α, n] = α(ψ(α+ n)− ψ(α)) ≈ α log
�
1 + n

α

�

V[|ρ||α, n] = α(ψ(α+ n)− ψ(α)) + α2(ψ�(α+ n)− ψ�(α)) ≈ α log
�
1 + n

α

�



Model-based Clustering with 
Chinese Restaurant Process



Partitions in Model-based Clustering

• Partitions are the natural latent objects of 
inference in clustering.

• Given a dataset S, partition it into clusters 
of similar items.

• Cluster c ∈ ϱ described by a model

parameterized by θc*.

• Bayesian approach: introduce prior over ϱ and 
θc*; compute posterior over both.

F (θ∗c )



Finite Mixture Model

• Explicitly allow only K clusters in partition:

• Each cluster k has parameter θk.

• Each data item i assigned to k with mixing 
probability πk.

• Gives a random partition with at most K clusters.

• Priors on the other parameters:

•

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K

π|α ∼ Dirichlet(α/K, . . . , α/K)

θ
∗
k|H ∼ H



Induced Distribution over Partitions

• P(z|α) describes a partition of the data set into clusters, and a labelling of 
each cluster with a mixture component index.

• Induces a distribution over partitions ϱ (without labelling) of the data set:

• where                                                         .

• Taking K → ∞, we get a proper distribution over partitions without a limit on 
the number of clusters:

P (�|α) = [K]k−1
Γ(α)

Γ(n+ α)

�

c∈�

Γ(|c|+ α/K)

Γ(α/K)

[x]ab = x(x+ b) · · · (x+ (a− 1)b)

P (�|α) → α|�|Γ(α)

Γ(n+ α)

�

c∈�

Γ(|c|)

P (z|α) = Γ(α)�
k Γ(α/K)

�
k Γ(nk + α/K)

Γ(n+ α)



Chinese Restaurant Process

• An important representation of the Dirichlet process

• An important object of study in its own right.

• Predates the Dirichlet process and originated in genetics (related to Ewen’s 
sampling formula there).

• Large number of MCMC samplers using CRP representation.

• Random partitions are useful concepts for clustering problems in machine 
learning

• CRP mixture models for nonparametric model-based clustering.

• hierarchical clustering using concepts of fragmentations and coagulations.

• clustering nodes in graphs, e.g. for community discovery in social nets.

• Other combinatorial structures can be built from partitions.



Stick-breaking Construction



Clustering Property

• The same values can be repeated among the variables  θ1,θ2,...,θn.

• This can only be the case if G is an atomic distribution.

G ∼ DP(α,H)

θi|G ∼ G for i = 1, 2, . . .

G =
∞�

k=1

πkδθ∗
k



A draw from a Dirichlet Process 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5000

10000

15000



Atomic Distributions

• Draws from Dirichlet processes will always be atomic:

• where Σk πk = 1 and θk* ∈ Θ. 

• A number of ways to specify the joint distribution of {πk, θk*}.

• Stick-breaking construction;

• Poisson-Dirichlet distribution.

G =
∞�

k=1

πkδθ∗
k



Stick-breaking Construction

• Stick-breaking construction for the joint distribution:

• πk’s are decreasing on average but not strictly.

• Distribution of {πk} is the Griffiths-Engen-McCloskey (GEM) distribution.

• Poisson-Dirichlet distribution [Kingman 1975] gives a strictly decreasing 
ordering (but is not computationally tractable). 

θ∗k ∼ H vk ∼ Beta(1,α) for k = 1, 2, . . ..

π∗
k = vk

k−1�

j=1

(1− vj) G =
∞�

k=1

π∗
kδθ∗

k



Finite Mixture Model

• Explicitly allow only K clusters in partition:

• Each cluster k has parameter θk.

• Each data item i assigned to k with mixing 
probability πk.

• Gives a random partition with at most K clusters.

• Priors on the other parameters:

•

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K

π|α ∼ Dirichlet(α/K, . . . , α/K)

θ
∗
k|H ∼ H



Size-biased Permutation

• Reordering clusters do not change the marginal distribution on partitions or 
data items.

• By strictly decreasing πk: Poisson-Dirichlet distribution.

• Reorder stochastically as follows gives stick-breaking construction:

• Pick cluster k to be first cluster with probability πk .

• Remove cluster k and renormalize rest of { πk : j ≠ k }; repeat.

• Stochastic reordering is called a size-biased permutation.

• After reordering, taking K → ∞ gives the corresponding DP representations.



 Stick-breaking Construction

• Easy to generalize stick-breaking construction:

• to other random measures;

• to random measures that depend on covariates or vary spatially.

• Easy to work with different algorithms:

•  MCMC samplers;

• variational inference;

• parallelized algorithms.

[Ishwaran & James 2001, Dunson 2010 and many others]



DP Mixture Model: 
Representations and Inference



DP Mixture Model

• A DP mixture model: 

• Different representations:

• θ1,θ2,...,θn are clustered according to Pólya urn 
scheme, with induced partition given by a CRP.

• G is atomic with weights and atoms described 
by stick-breaking construction.

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]

G|α,H ∼ DP(α,H)

θi|G ∼ G

xi|θi ∼ F (θi)



CRP Representation

• Representing the partition structure explicitly with 
a CRP:

• Makes explicit that this is a clustering model.

• Using a CRP prior for ϱ obviates need to limit 
number of clusters as in finite mixture models.

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]

ρ|α ∼ CRP([n], α)

θ
∗
c |H ∼ H for c ∈ ρ

xi|θ∗c ∼ F (θ∗c ) for c � i



Marginal Sampler
• “Marginal” MCMC sampler.

• Marginalize out G, and Gibbs sample partition.

• Conditional probability of cluster of data item i:

• A variety of methods to deal with new clusters.

• Difficulty lies in dealing with new clusters, 
especially when prior h is not conjugate to f.

[Neal 2000]

ρ|α ∼ CRP([n], α)

θ
∗
c |H ∼ H for c ∈ ρ

xi|θ∗c ∼ F (θ∗c ) for c � i

P (ρi|ρ\i,x,θ) =P (ρi|ρ\i)P (xi|ρi,x\i,θ)

P (ρi|ρ\i) =
�

|c|
n−1+α if ρi = c ∈ ρ\i

α
n−1+α if ρi = new

P (xi|ρi,x\i,θ) =

�
f(xi|θρi) if ρi = c ∈ ρ\i�
f(xi|θ)h(θ)dθ if ρi = new



Induced Prior on the Number of Clusters
• The prior expectation and variance of |ϱ| are:
E[|ρ||α, n] = α(ψ(α+ n)− ψ(α)) ≈ α log

�
1 + n

α

�

V[|ρ||α, n] = α(ψ(α+ n)− ψ(α)) + α2(ψ�(α+ n)− ψ�(α)) ≈ α log
�
1 + n

α

�
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Stick-breaking Representation
• Dissecting stick-breaking representation for G: 

• Makes explicit that this is a mixture model with an 
infinite number of components.

• Conditional sampler:

• Standard Gibbs sampler, except need to truncate the 
number of clusters.

• Easy to work with non-conjugate priors.

• For sampler to mix well need to introduce moves 
for permuting the order of clusters.

π
∗|α ∼ GEM(α)

θ
∗
k|H ∼ H

zi|π∗ ∼ Discrete(π∗)

xi|zi, θ∗zi ∼ F (θ∗zi)

[Ishwaran & James 2001, Walker 2007, Papaspiliopoulos & Roberts 2008]



Explicit G Sampler
• Represent G explicitly, alternately sampling {θi}|G 

(simple) and G|{θi}:.

• Use a stick-breaking representation for G’ and 
truncate as before.

• No explicit ordering of the non-empty clusters 
makes for better mixing.

• Explicit representation of G allows for posterior 
estimates of functionals of G.

G|α,H ∼ DP(α,H)

θi|G ∼ G

xi|θi ∼ F (θi)

G|θ1, . . . , θn ∼ DP(α+ n,
αH+

�n
i=1 δθi

α+n
)

G = π
∗
0G

� +
K�

k=1

π
∗
k
δθ∗

k

(π∗
0 , π

∗
1 , . . . , π

∗
K
) ∼ Dirichlet(α, n1, . . . , nK)

G
� ∼ DP(α,H)



Other Inference Algorithms

• Split-merge algorithms [Jain & Neal 2004].

• Close in spirit to reversible-jump MCMC methods [Green & richardson 
2001].

• Sequential Monte Carlo methods [Liu 1996, Ishwaran & James 2003, 
Fearnhead 2004, Mansingkha et al 2007].

• Variational algorithms [Blei & Jordan 2006, Kurihara et al 2007, Teh et al 
2008].

• Expectation propagation [Minka & Ghahramani 2003, Tarlow et al 2008]. 



Pitman-Yor Process

[Aldous 1985, Pitman 2006]



Partitions

• A partition ϱ of a set S is:

• A disjoint family of non-empty subsets of S whose union in S.

• S = {Alice, Bob, Charles, David, Emma, Florence}.

• ϱ = { {Alice, David}, {Bob, Charles, Emma}, {Florence} }.

• Denote the set of all partitions of S as PS.

• Random partitions are random variables taking values in PS.

• We will work with partitions of S = [n] = {1,2,...n}.

Alice
David

Bob
Charles
Emma

Florence



Chinese Restaurant Process

• Each customer comes into restaurant and sits at a table:

• Customers correspond to elements of set S, and tables to clusters in the 
partition ϱ.

• Multiplying conditional probabilities together, we get the overall probability 
of ϱ:

1
3
6

2
7

4
5
8

9

p(sit at table c) =
nc

α+
�

c∈� nc

p(sit at new table) =
α

α+
�

c∈� nc

P (�|α) = α|�|Γ(α)

Γ(n+ α)

�

c∈�

Γ(|c|)



Projectivity and Exchangeability



Projective and Exchangeable Models of Data

x1
x2

x3

x4
x5

x6



Projective and Exchangeable Models of Data

x1
x2

x3

x4
x5

x6

• There will be 1 test item.                         
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Projective and Exchangeable Models of Data

x1
x2

x3

x4
x5

x6

• There will be 1 test item.                         
Will this change your predictions?

• There will be 5 additional test items.       
Will this change your predictions?

• Item labels were permuted.                     
Will this change your predictions?

? ?????



Consistency and Projectivity

• Let ϱ be a partition of S, and S’ ⊂ S be a subset.  The projection of ϱ onto S’ 
is the partition of S’ defined by ϱ:

• PROJ(ϱ, S’) = { c ∩ S’ | c ∩ S’ ≠ ∅, c ∈ S }

• I.e., all elements of S except those in S’ are removed from ϱ. 

• For example,

• PROJ({{1,3,6},{2,7},{4,5,8},{9}}, [6]) = {{1,3,6},{2},{4,5}}



Consistent/Projective Random Partitions

• A sequence of distributions P1,P2,... over P[1], P[2],... is projective or 
consistent if 

• Such a sequence can be extended to a distribution over PN.

• The Chinese restaurant process is projective since:

• The finite mixture model is, and

• also it is defined sequentially.

• A projective model is one that does not change when more data items are 
introduced (and can be learned sequentially in a self-consistent manner).

ρm ∼ Pm

ρn = PROJ(ρm, [n])
⇒ ρn ∼ Pn

Pm({ρm : PROJ(ρm, [n]) = ρn}) = Pn(ρn)



Exchangeable Random Partitions

• A distribution over partitions PS is exchangeable if it is invariant to 
permutations of S:  For example, 

• P(ϱ = {{1,3,6},{2,7},{4,5,8},{9}}) = 

• P(ϱ = {{σ(1), σ(3), σ(6)},{σ(2), σ(7)},{σ(4), σ(5), σ(8)},{σ(9)}})

• where S = [9] = {1,...,9}, and σ is a permutation of [9].

• The Chinese restaurant process satisfies exchangeability:

• The finite mixture model is exchangeable (iid given parameters).

• The probability of ϱ under the CRP does not depend on the identities of 
elements of S.

• An exchangeable is one that does not depend on the (arbitrary) way data 
items are indexed.



Infinitely Exchangeable Random Variables

• Let                         be an infinitely exchangeable sequence of random 
variables:

• for all n and permutations σ of [n].

• Generalization of i.i.d. variables, and can be constructed as mixtures of such:

• de Finetti’s Theorem: infinitely exchangeable sequences can always be 
represented as mixtures of i.i.d. variables.  Further the latent parameter G is 
unique, called the de Finetti measure.

x1, x2, x3, . . .

P (x1, . . . , xn) = P (xσ(1), . . . , xσ(n))

P (x1, . . . , xn) =

�
P (G)

n�

i=1

P (xi|G)dG



Dirichlet Process

• Since the CRP is projective and exchangeable, we can define an infinitely 
exchangeable sequence as follows:

• Sample ϱ ~ CRP(N,α).

• For c ∈ ϱ :

• sample yc ~ H.

• For i = 1,2,...:

• set xi = yc where i ∈ c.

• The resulting de Finetti measure is the DP with parameters α and H.

y1 y2 y3 y4

x1

x3
x6

x2
x7

x4

x5

x8

x9

[Ferguson 1973, Blackwell & MacQueen 1973]



Why Infinitely Exchangeable Models?

• A model for a dataset x1,x2,...,xn is a joint distribution P(x1,x2,...,xn).

• An infinitely exchangeable model means:

• The way data items are ordered or indexed does not matter.

• Model is unaffected by existence of additional unobserved data items, e.g. 
test items.

• To predict m additional test items, we would need 

• P(x1,...,xn, xn+1,...,xn+m)

• If model is not infinitely exchangeable, predictive probabilities will be 
different for different values of m.

• There are scenarios where infinite exchangeability is suitable or unsuitable.



• Fundamental role of de Finetti’s Theorem in Bayesian statistics:

• From an assumption of exchangeability, we get a representation as a 
Bayesian model with a prior over the latent parameter.

• Generalizing infinitely exchangeable sequences lead to Bayesian models for 
richly structured data.  E.g.,

• exchangeability in network and relational data.

• hierarchical exchangeability in hierarchical Bayesian models.

• Markov exchangeability in sequence data.

Exchangeability in Bayesian Statistics

P (x1, . . . , xn) =

�
P (G)

n�

i=1

P (xi|G)dG



• The two-parameter Chinese restaurant process CRP([n],d,α) is a 
distribution over P[n]: (0 ≤ d < 1, α > -d), described by the following process:

• Difference: discount parameter d.

• Expect to get more tables, and more tables with few customers.

Two-parameter Chinese Restaurant Process

1
3
6

2
7

4
5
8

9

P (sit at table c) =
nc − d

α+
�

c∈� nc
P (sit at new table) =

α+ d|�|
α+

�
c∈� nc



• The EPPF under CRP([n],d,α) is:

• The two-parameter CRP is projective and exchangeable.

• The de Finetti measure is the Pitman-Yor process, which is a generalization 
of the Dirichlet process.

Pitman-Yor Process

P (�) =
[α+ d]|�|−1

d

[α+ 1]n−1
1

�

c∈�

[1− d]|c|−1
1 [z]mb = z(z + b) · · · (z + (m− 1)b)

[Perman et al 1992, Pitman & Yor 1997, Ishwaran & James 2001]



Power-law Properties



Power-laws in Pitman-Yor Processes

• Power-laws are commonly observed in nature and in human generated data.

• Pitman-Yor processes exhibit power-law properties and can be used to model 
data with such properties.

• With more occupied tables, chance of even more tables becomes higher.

• Tables with small occupancy numbers tend to have lower chance of 
getting new customers.

P (sit at table c) =
nc − d

α+
�

c∈� nc
P (sit at new table) =

α+ d|�|
α+

�
c∈� nc

[Pitman 2006, Goldwater et al 2006, Teh 2006]



Power-Laws in Pitman-Yor Processes

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

customer

ta
b
le

!=1, d=.5

0 2000 4000 6000 8000 10000
0

50

100

150

200

customer

ta
b
le

!=30, d=0



Power-Laws in Pitman-Yor Processes
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Power-Laws in Pitman-Yor Processes
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Power-law of English Word Frequencies
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[Wood et al 2011]



Power-law of Image Segmentations

[Sudderth & Jordan 2009]



Pitman-Yor Process

• Pitman-Yor processes have been applied in domains with power-laws:

• computational linguistics;

• computer vision.

• They also have interesting properties related to fragmentations and 
coagulations of partitions which can be used to build effective methods for 
sequence modelling and text compression.

• They also have stick-breaking constructions and are the next simplest 
generalization of Dirichlet processes.  Other generalizations include:

• normalized random measures;

• species sampling models;

• stick-breaking processes.



Hierarchical Bayesian 
Nonparametric Models

[Teh & Jordan 2010]



Nonparametric Building Blocks

• Easy to construct complex probabilistic models 
from simpler parts.

• Nonparametric Bayesian models are new classes of 
components for the statistical modeller.

• Dependent random measures;

• Hierarchical nonparametric models.

• Nested models.



Hierarchical Dirichlet Process

[Teh et al 2006]



Topic Modelling

[Blei et al 2003, Griffiths & Steyvers 2004]
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Latent Dirichlet Allocation

• Model a topic as a distribution over words that 
tend to co-occur together among documents.

• Model words in documents as exchangeable and 
documents as mixtures of topics.

• How many topics can we find in a corpus?
topics k=1...K

document j=1...D

words i=1...nd

πj

zji

xji θ∗k

πj ∼ Dirichlet(α/K, . . . , α/K)

θ∗k ∼ Dirichlet(β/W, . . . , β/W )

zji|πj ∼ Discrete(πj)

xji|zji, θ∗zji ∼ Discrete(θ∗zji)

[Blei et al 2003, Griffiths & Steyvers 2004]



G1

H

i = 1 . . . n1

x1i

θ1i

G2

i = 1 . . . n2

x2i

θ2i

Nonparametric Latent Dirichlet Allocation?

• Use a DP for each document.

• There is no sharing of topics across different 
documents, because H is smooth.

• Solution: make H discrete.

• Put a DP prior on H.



G1

H

i = 1 . . . n1

x1i

θ1i

G2

i = 1 . . . n2

x2i

θ2i

G0

Hierarchical Dirichlet Process

• A hierarchy of Dirichlet processes:

• Extension to larger hierarchies straightforward:

• Hierarchical modelling are a widespread technique 
to share statistical strength.

G0 ∼ DP(α0, H)

G1|G0 ∼ DP(α1, G0)

G2|G0 ∼ DP(α2, G0)

Gj ∼ DP(αj , Gpa(j))

[Teh et al 2006]



Hierarchical Dirichlet Process



HDP-LDA
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Chinese Restaurant Franchise

• G1 and G2 can both be represented using CRPs.

G1

H

i = 1 . . . n1

x1i

θ1i

G2

i = 1 . . . n2

x2i

θ2i

G0



Chinese Restaurant Franchise

• G1 and G2 can both be represented using CRPs.

G1

H

i = 1 . . . n1

x1i

θ1i

G2

i = 1 . . . n2

x2i

θ2i

G0

θ01 θ02 θ03 θ04

θ11

θ13
θ16

θ12
θ17

θ14

θ15

θ18

θ19

G1:



Chinese Restaurant Franchise

• G1 and G2 can both be represented using CRPs.

G1

H

i = 1 . . . n1

x1i

θ1i

G2

i = 1 . . . n2

x2i

θ2i

G0

θ01 θ02 θ03 θ04

θ11

θ13
θ16

θ12
θ17

θ14

θ15

θ18

θ19

G1:

θ05 θ06 θ07

θ21

θ23

θ22

θ24G2:



Chinese Restaurant Franchise
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Chinese Restaurant Franchise

• G1 and G2 can both be represented using CRPs.

G1

H

i = 1 . . . n1

x1i

θ1i

G2

i = 1 . . . n2

x2i

θ2i

G0

• G0 can also be represented using a CRP.

θ01 θ02 θ03 θ04

θ11

θ13
θ16

θ12
θ17

θ14

θ15

θ18

θ19

G1:

θ05 θ06 θ07

θ21

θ23

θ22

θ24G2:

θ1
* θ2

* θ3
*

θ01

θ03

θ02 θ06

G0: θ05 θ07

θ04



Hierarchical Bayesian Modelling

• An important overarching theme in modern statistics.

• In machine learning, have been used for multitask learning, transfer learning, 
learning-to-learn and domain adaptation.

i=1...n2

φ0

φ2

x2i

i=1...n3

φ3

x3i

i=1...n1

φ1

x1i

[Gelman et al, 1995, James & Stein 1961]



Hierarchical Bayesian Nonparametrics

• Bayesian nonparametric models are increasingly used as building blocks by 
modellers to build complex probabilistic models.

• Hierarchical modelling are a natural technique for combining building blocks.

• Applications span computational linguistics, time series and sequential 
models, vision, genetics etc.

• Dependent random measures:

• techniques for introducing dependencies among random measures indexed 
by spatial or temporal covariates.

• Nested processes:

• technique for modelling heterogeneity in data.



Dependent Random Measures

• A measure-valued stochastic process {Gϕ} indexed by a covariate space Φ.

• Gϕ is the random measure at location ϕ ∈ Φ.

• If each Gϕ is marginally DP, we have a dependent Dirichlet process.

• Density regression: estimating density over output space conditional on ϕ.

• Applications include image segmentation, topic models through time, 
dictionary learning, spatial models, and many others in biostatistics, signal 
processing etc.

[MacEachern 1999, Dunson 2010]



Hierarchical Pitman-Yor 
Language Model

[Goldwater et al 2006, Teh 2006]



n-gram Language Models



Sequence Models for Language and Text

• Probabilistic models for sequences of words and characters, e.g.
south, parks, road

s, o, u, t, h, _, p, a, r, k, s, _, r, o, a, d

• n-gram language models are high order Markov models of such discrete 
sequence:

P (sentence) =
�

i

P (wordi|wordi−N+1 . . .wordi−1)



• High order Markov models:

• Large vocabulary size means naïvely estimating parameters of this 
model from data counts is problematic for N>2.

• Naïve priors/regularization fail as well: most parameters have no 
associated data.

• Smoothing.

• Hierarchical Bayesian models.

n-gram Language Models

PML(wordi|wordi−N+1 . . .wordi−1) =
C(wordi−N+1 . . .wordi)

C(wordi−N+1 . . .wordi−1)

P (sentence) =
�

i

P (wordi|wordi−N+1 . . .wordi−1)



Smoothing in Language Models

• Smoothing is a way of dealing with data sparsity by combining large 
and small models together.

• Combines expressive power of large models with better estimation of 
small models (cf bias-variance trade-off).

P smooth(wordi|wordi−1
i−N+1) =

N�

n=1

λ(n)Qn(wordi|wordi−1
i−n+1)

P smooth(road|south parks)

= λ(3)Q3(road|south parks) +

λ(2)Q2(road|parks) +
λ(1)Q1(road|∅)



Smoothing in Language Models

• Interpolated and modified Kneser-Ney are best.

[Chen & Goodman 1999]



Hierarchical Pitman-Yor 
Language Models



• Context of conditional probabilities naturally organized 
using a tree.

• Smoothing makes conditional probabilities                                
of neighbouring contexts more similar.

• Later words in context more important                                        
in predicting next word.

∅

Context Tree

along south parks

south parks

parks

to parks university parks

at south parks

P smooth(road|south parks)

= λ(3)Q3(road|south parks) +

λ(2)Q2(road|parks) +
λ(1)Q1(road|∅)



• Parametrize the conditional probabilities of Markov model:

• Gu is a probability vector associated with context u.
G∅

Hierarchical Bayes on Context Tree

P (wordi = w|wordi−1
i−N+1 = u) = Gu(w)

Gu = [Gu(w)]w∈vocabulary

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks



Hierarchical Dirichlet Language Models
• What is                       ? Obvious choice is the standard Dirichlet 

distribution over probability vectors.

• We will use Pitman-Yor processes instead.

P (Gu|Gpa(u))

T N-1 IKN MKN HDLM

2× 106 2 148.8 144.1 191.2
4× 106 2 137.1 132.7 172.7
6× 106 2 130.6 126.7 162.3
8× 106 2 125.9 122.3 154.7

10× 106 2 122.0 118.6 148.7
12× 106 2 119.0 115.8 144.0
14× 106 2 116.7 113.6 140.5
14× 106 1 169.9 169.2 180.6
14× 106 3 106.1 102.4 136.6

[MacKay and Peto 1994]



Hierarchical Pitman-Yor Language Models
• Parametrize the conditional probabilities of Markov model:

• Gu is a probability vector associated with context u.

• Place Pitman-Yor process prior on each Gu.

P (wordi = w|wordi−1
i−N+1 = u) = Gu(w)

Gu = [Gu(w)]w∈vocabulary

G∅

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks

[Goldwater et al 2006, Teh 2006]



Hierarchical Pitman-Yor Language Models
• Significantly improved on the hierarchical Dirichlet language model.

• Results better Kneser-Ney smoothing, state-of-the-art language models.

• Similarity of perplexities not a surprise---Kneser-Ney can be derived as a 
particular approximate inference method.

T N-1 IKN MKN HDLM HPYLM

2× 106 2 148.8 144.1 191.2 144.3
4× 106 2 137.1 132.7 172.7 132.7
6× 106 2 130.6 126.7 162.3 126.4
8× 106 2 125.9 122.3 154.7 121.9

10× 106 2 122.0 118.6 148.7 118.2
12× 106 2 119.0 115.8 144.0 115.4
14× 106 2 116.7 113.6 140.5 113.2
14× 106 1 169.9 169.2 180.6 169.3
14× 106 3 106.1 102.4 136.6 101.9



Hierarchical Pitman-Yor Process

• Application of hierarchical Pitman-Yor processes to n-gram language models:

• Hierarchical Bayesian modelling allows for sharing of statistical strength 
and improved parameter estimation.

• Pitman-Yor processes has power law properties more suitable in 
modelling linguistic data.

• State-of-the-art language models, theoretical justification for another state-of-
the-art model called interpolated Kneser-Ney.



Infinite Hidden Markov Model



Hidden Markov Models

z0 z1 z2 zτ

x1 x2 xτ

β πk

θ∗k
K

πk ∼ Dirichlet(α/K, . . . , α/K)

θ
∗
k ∼ H

zt|zt−1 ∼ πzt−1

xt|zt ∼ H(θ∗zt)

• Can we take K → ∞?



Infinite Hidden Markov Models

z0 z1 z2 zτ

x1 x2 xτ

β πk

θ∗k
K

πk ∼ Dirichlet(α/K, . . . , α/K)

θ
∗
k ∼ H

zt|zt−1 ∼ πzt−1

xt|zt ∼ H(θ∗zt)

• Cannot simply take K → ∞ for the model above; same failure as LDA.

• Again can use a hierarchical Dirichlet process to define an infinite hidden 
Markov model.

[Beal et al 2002, Teh et al 2006]



Word Segmentation

• 山花 貞夫 ・ 新 民連 会長 は 十六 日 の 記者 会見 で 、 村山 富市 首相 
ら 社会党 執行 部 と さきがけ が 連携 強化 を めざした 問題 に ついて 
「 私 たち の 行動 が 新しい 政界 の 動き を 作った と いえる 。 統一 
会派 を 超え て 将来 の 日本 の ...

• 今后 一段 时期 , 不但 居民 会 更 多 地 选择 国债 , 而且 一些 金融 机构 
在 准备金 利率 调 低 后 , 出于 安全性 方面 的 考虑 , 也 会 将 部分 资金 
用来 购买 国债 。

• yuwanttusiD6bUk?



iHMM Word Segmentation

• Number of word types is unknown (and part of the output of learning).

• We can use the infinite HMM coupled with a model to generate strings of 
characters for each word.

you want to see the book

yuwanttusiD6bUk

y u w a n t t u s i D 6 b U k

[Goldwater et al 2006, Mochihashi et al 2009]



iHMM Word Segmentation

P R F BP BR BF LP LR LF

NGS-u 67.7 70.2 68.9 80.6 84.8 82.6 52.9 51.3 52.0

MBDP-1 67.0 69.4 68.2 80.3 84.3 82.3 53.6 51.3 52.4

DP 61.9 47.6 53.8 92.4 62.2 74.3 57.0 57.5 57.2

NGS-b 68.1 68.6 68.3 81.7 82.5 82.1 54.5 57.0 55.7

HDP 79.4 74.0 76.6 92.4 83.5 87.7 67.9 58.9 63.1



Coagulations, 
Fragmentations, and 

Trees



Overview

• Bayesian nonparametric learning of trees and hierarchical partitions.

• Fragmentations and coagulations.

• Unifying view of various Bayesian nonparametric models for random trees.



From Random Partitions
to Random Trees



Trees
duck

chicken
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Bayesian Inference for Trees

• Computational and statistical methods for constructing trees:

• Algorithmic, not model-based.

• Maximum likelihood

• Maximum parsimony

• Bayesian inference: introduce prior over trees and compute posterior.

• Bayesian nonparametric priors for P(T).

• Exchangeable and projective models.

• Models for trees has to be nonparametric.

P (T |x) ∝ P (T )P (x|T )



Trees as Sequences of Partitions
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Trees as Sequences of Partitions



Fragmenting Partitions

• Sequence of finer and finer partitions.

• Each cluster fragments until all clusters 
contain only 1 data item.

• Can define a distribution over trees 
using a Markov chain of fragmenting 
partitions, with absorbing state 0S 
(partition where all data items are in 
their own clusters).
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Coagulating Partitions

• Sequence of coarser and coarser 
partitions.

• Each cluster formed by coagulating 
smaller clusters until only 1 left.

• Can define a distribution over trees by 
using a Markov chain of coagulating 
partitions, with absorbing state 1S 
(partition where all data items are in one 
cluster). 
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Random Fragmentations and 
Random Coagulations

[Bertoin 2006]



Coagulation and Fragmentation Operators
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Random Fragmentations
• Let C ∈ P[n] and for each c ∈ C let Fc ∈ Pc.

• Denote fragmentation of C by {Fc} as frag(C,{Fc}).

• Write ϱ1 | C ~ FRAG(C,d,α) if ϱ1 = frag(C,{Fc}) with 

• Fc ~ CRP(c,d,α) independently.
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Random Coagulations
• Let ϱ1 ∈ P[n] and ϱ2 ∈ Pϱ1.

• Denote coagulation of ϱ1 by ϱ2 as coag(ϱ1, ϱ2).

• Write C | ϱ1 ~ COAG(ϱ1,d,α) if C = coag(ϱ1, ϱ2) with 

• ϱ2 | ϱ1 ~ CRP(ϱ1,d,α).

•
3

1

6

2

7

5

4

8

9

A

B

C

D

ϱ1

2

1

3

6

7

5

4

8

9

C

Coagulate

A
B

C

D

ϱ2

Fragment

3
1

6

2

7

5

4

8

9

F1 F2 F3



Random Trees and
Random Hierarchical Partitions



Nested Chinese Restaurant Processes

[Blei et al 2004, 2010]



Nested Topic Model
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Nested Chinese Restaurant Process

• Start with the null partition ϱ0 = {[n]}.

• For each level l = 1,2,...,L:

• ϱl = FRAG(ϱl-1,0,αl)

• Fragmentations in different clusters (branches of the 
hierarchical partition) operate independently.

• Nested Chinese restaurant processes (nCRP) define a 
Markov chain of partitions, each of which is exchangeable.

• Can be used to define an infinitely exchangeable sequence, 
with de Finetti measure being the nested Dirichlet process 
(nDP).

�1

�0

�2

�L

[Blei et al 2004, 2010, Rodriguez et al JASA 2008]



• Consider a Chinese restaurant franchise corresponding to a two level HDP:

• Corresponds to a random coagulation with:

Coagulation of Random Partitions

θ01 θ02 θ03 θ04

θ11

θ13
θ16

θ12

θ17

θ14

θ15

θ18

θ19

θ1
* θ2

* θ3
*

θ01

θ03

θ02 θ04G0 ∼ DP(α0, H)

G1|G0 ∼ DP(α1, G0)

{{1,3,6}, {2,7}, {4,5,8}, {9}}

{{1,3,6,2,7}, {4,5,8}, {9}}

ρ1 ∼ CRP([9], 0, α1)

ρ0|ρ1 ∼ COAG(ρ1, 0, α0)

[Teh et al 2006]



Chinese Restaurant Franchise

• For a simple linear hierarchy of DPs (restaurants linearly 
chained together), the Chinese restaurant franchise 
(CRF) is a sequence of coagulations:

• At the lowest level L+1, we start with the trivial 
partition ϱL+1 = {{1},{2},...,{n}}.

• For each level l = L,L-1,...,1:

• ϱl = COAG(ϱl+1,0,αl)

• This is also Markov chain of partitions.
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Hierarchical Dirichlet/Pitman-Yor Processes

• Each partition in the Chinese restaurant franchise is again 
exchangeable.

• The corresponding de Finetti measure is a Hierarchical 
Dirichlet process (HDP).

• The CRF has been rarely used as a model of hierarchical 
partitions.  Typically it is only used as a convenient 
representation for inference in the HDP   and HPYP.
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Gl|Gl−1 ∼ DP(αl, Gl−1)



Random Trees

• Nonparametric models of trees are natural.

• Construction of random trees as Markov chains of random partitions.

• Models are infinitely exchangeable.



Continuum Limit of 
Partition-valued Markov Chains



Trees with Infinitely Many Levels

• Random trees described so far all consist of a finite number of 
levels L.

• We can be “nonparametric” about the number of levels of 
random trees.

• Allow a finite amount of change even with an infinite number of 
levels, by decreasing the change per level.
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Δ/L

Δ/L

Δ/L



Dirichlet Diffusion Trees

[Neal 2003]



Dirichlet Diffusion Trees

• The Dirichlet diffusion tree (DFT) hierarchical partitioning structure can be 
derived from the continuum limit of a nCRP:

• Start with the null partition ϱ0 = {[n]}.

• For each time t, define

• ϱt+dt = FRAG(ϱt,0,a(t)dt)

• The continuum limit of the Markov chain of partitions becomes a continuous 
time partition-valued Markov process: a fragmentation process.

• Generalization to Pitman-Yor diffusion trees.

[Knowles & Ghahramani 2011]



Kingman’s Coalescent

• Taking the continuum limit of the one-parameter (Markov chain) CRF leads 
to another partition-valued Markov process: Kingman’s coalescent.

• Start with the trivial partition ϱ0 = {{1},{2},...,{n}}.

• For each time t < 0:

• ϱt-dt = COAG(ϱt,0,a(t)/dt)

• This is the simplest example of a coalescence or coagulation process.

• A standard genealogical process in genetics.

• A generalization called Λ-coalescent.

[Kingman 1982a,b, Pitman 1999]  



Kingman’s Coalescent

• Derived from the Wright-
Fisher model of population 
genetics.

• Model of the genealogies of n 
haploid individuals among a 
size N population.

• Gives a tree-structured 
genealogy because each 
individual assumed to have 
one parent.
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Kingman’s Coalescent

• Derived from the Wright-
Fisher model of population 
genetics.

• Model of the genealogies of n 
haploid individuals among a 
size N population.

• Gives a tree-structured 
genealogy because each 
individual assumed to have 
one parent.
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Kingman’s Coalescent



Binary Ultrametric Random Trees

• Both Dirichlet diffusion trees and Kingman’s coalescent are priors over 
binary trees, i.e. every internal node has exactly 2 children.

• Generalizations allow for more than 2 children.

• Both models are priors over ultrametric trees, i.e. all observations are at 
leaves which are equidistant from the root.

• Can generalize by allowing observations at different distances from root.

• Constructions for other types of random trees:

• Gibbs fragmentation trees

• Continuum random trees

• Standard additive coalescent



Sequence Memoizer



Markov Models for Language and Text

• Usually makes a Markov assumption to simplify model:

• Language models: usually Markov models of order 2-4 (3-5-grams).

• How do we determine the order of our Markov models?

• Is the Markov assumption a reasonable assumption?

• Be nonparametric about Markov order...

P(south parks road) ~ 
P(south)*

P(parks | south)*
P(road | south parks)



Non-Markov Models for Language and Text
• Model the conditional probabilities of each possible word occurring after 

each possible context (of unbounded length).

• Use hierarchical Pitman-Yor process prior to share              information 
across all contexts. 

• Hierarchy is infinitely deep.

• Sequence memoizer.

...
.

...
.

...
.

...
.

G∅

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks

Gmeet at south parks



• The sequence memoizer model is very large (actually, infinite).

• Given a training sequence (e.g.: o,a,c,a,c), most of the model can be ignored 
(integrated out), leaving a finite number of                                                
nodes in context tree.

• But there are still O(T2) number of                                                            nodes 
in the context tree.     

Model Size: Infinite -> O(T2) 
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• The sequence memoizer model is very large (actually, infinite).

• Given a training sequence (e.g.: o,a,c,a,c), most of the model can be ignored 
(integrated out), leaving a finite number of                                                
nodes in context tree.

• But there are still O(T2) number of                                                             
nodes in the context tree.

• Integrate out non-branching, non-leaf                                                        
nodes leaves O(T) nodes.

• Conditional distributions                                                                       still 
Pitman-Yor due to                                                                     closure 
property.

Model Size: Infinite -> O(T2) -> O(2T)
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Duality of Coagulation and Fragmentation
• The following statements are equivalent:
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(I) �2 ∼ CRP([n], d2,αd2) and �1|�2 ∼ CRP(�2, d1,α)

(II) C ∼ CRP([n], d1d2,αd2) and Fc|C ∼ CRP(c, d2,−d1d2) ∀c ∈ C



Closure under Marginalization

G[a]

G[ca]

G[aca]

PY(θ2, d2, G[a])

G[a]

G[aca]

PY(θ2d3, d3, G[ca])

PY(θ2d3, d2d3, G[a])

• Marginalizing out internal Pitman-Yor processes is equivalent to 
coagulating the corresponding Chinese restaurant processes.

• Fragmentation and coagulation duality means that the coagulated 
partition is also Chinese restaurant process distributed.

• Corresponding Pitman-Yor process is the resulting marginal distribution 
of G[aca].

[Wood et al 2009, Gasthaus & Teh 2010]



Comparison to Finite Order HPYLM



Compression Results

Calgary corpus
SM inference: particle filter
PPM: Prediction by Partial Matching
CTW: Context Tree Weigting
Online inference, entropic coding.

Model Average bits/byte

gzip 2.61

bzip2 2.11

CTW 1.99

PPM 1.93

Sequence Memoizer 1.89



Fragmentation-Coagulation 
Processes

[Berestycki 2004, Teh et al 2011]



Duality of Coagulation and Fragmentation
• The following statements are equivalent:

3

1

6

2

7

5

4

8

9

Coagulate

A

B

C

D

A
B

C

D

Fragment

3
1

6

2

7

5

4

8

9

ϱ2

2

1

3

6

7

5

4

8

9

C

ϱ1

F1 F2 F3

(I) �2 ∼ CRP([n], d2,αd2) and �1|�2 ∼ CRP(�2, d1,α)

(II) C ∼ CRP([n], d1d2,αd2) and Fc|C ∼ CRP(c, d2,−d1d2) ∀c ∈ C

[Pitman 1999]



Markov Chain over Partitions

ϱ0

ωε

ϱε

ω2ε

ϱ2ε

• Defines a Markov chain over partitions.

• Each transition is a fragmentation followed by coagulation.
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Stationary Distribution

• Stationary distribution is a CRP with parameters µ and 0.
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Exchangeability and Projectivity

• Each πt is exchangeable, so that the whole Markov chain is an exchangeable 
process.

• Projectivity of the Chinese restaurant process extends to the Markov chain as 
well.
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Reversibility of Markov Chain

• The Markov chain is reversible.

• Coagulation and fragmentation are duals of each other.
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Continuum Limit

• Taking ε→0 obtains a continuous time Markov process over partitions, an 
exchangeable fragmentation-coalescence process (Berestycki 2004).

• At each time, at most one coagulation (involving two blocks) or one 
fragmentation (splitting into two blocks) will occur.

ϱ0

ωε

ϱε

ω2ε

ϱ2ε

CRP([n], µ, 0) CRP([n], µ, 0) CRP([n], µ, 0)

CRP([n], µ,R�) CRP([n], µ,R�)

FR
AG

(� 0
, 0
, R
�)

FR
AG

(� �
, 0
, R
�)C

O
A
G
(ω
� , µ
R
� , 0)

C
O
A
G
(ω
2� , µ

R
� , 0)



Conditional Distribution of a Trajectory 
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• This process is reversible.



Coagulation and Fragmentation Rates

• Describe Markov process in terms of rates of fragmentation and coagulation 
events:

• Rate of fragmentation of a ∈ Π[n],t into b and c: 

• Rate of coagulation of a,b ∈ Π[n],t into into a∪b: 
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• Over an interval T, if Πt are partitions of [n], then the expected number 
clusters at each point t is:

• Expected number of fragmentation and coagulation events is:

Number of Clusters and Events

RµT

�
(ψ(n+ µ)− ψ(µ))2 + ψ�(n+ µ)− ψ�(µ)

�

=O
�
RµT log(n− 1

2 + µ)2
�

µ(ψ(n+ µ)− ψ(µ)) = O(µ log(n− 1
2 + µ))



Dirichlet Diffusion Trees and Coalescents

• Rate of fragmentation is same as for Dirichlet diffusion trees with constant 
fragmentation rate (Neal 2003).

• Rate of coagulation is same as for the coalescent (with time rescaled) 
(Kingman 1982).

• Reversibility means that the Dirichlet diffusion tree is the “reverse” of 
Kingman’s coalescent.

• Class of exchangeable fragmentation-coalescence processes (Berestycki 
2004) includes more general processes.

• This process seems to be a canonical example of exchangeable 
fragmentation-coalescence processes, but cannot find a reference in 
literature?



Relationship with Hidden Markov Models

• Both can be interpreted as models of sequence data with a latent partition 
structure at each time point.

• Hidden Markov models have explicit labels of hidden states, fragmentation-
coagulation processes do not.

• Hidden Markov models need to specify the number of states, fragmentation-
coagulation processes do not.

• HMM labels allow generalization across times, but lead to label switching 
problems.



Comparison with Bayesian HMMs
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Genotype Imputation---Pre-phased data



Genotype Imputation---Unphased data 



A Few Final Words



Summary
• Introduction to Bayesian learning and Bayesian nonparametrics.

• Dirichlet processes: 

• Infinite limit of finite mixture models.

• Chinese restaurant processes, stick-breaking construction.

• Ferguson’s Definition

• Pitman-Yor processes:

• Two-parameter Chinese restaurant processes.

• Power-law properties.

• Hierarchical Bayesian nonparametric models.

• Infinite hidden Markov models.

• Random partitions, coagulations, fragmentations, trees.



What Were Not Covered Here

• Gaussian processes

• Indian buffet processes, beta processes.

• Other nonparametric dynamical models.

• Dependent random measures.

• Completely random measures and other generalizations of DPs.

• Combinatorial stochastic processes and their relationship to data structures 
and programming languages.

• Relational models, topic models etc.

• Foundational issues, convergence and asymptotics.



Future of Bayesian Nonparametrics

• Augmenting the standard modelling toolbox of machine learning.

• Development of better inference algorithms and software toolkits.

• Exploration of novel stochastic processes.

• More applications in machine learning and beyond.


