- We want to represent counts
 Poisson R.V.'s capture the idea of uniformity.

 - The count in an interval
 - depends on length of interval
 - in fact, \propto length
 - Events are independent.

 (Idea works in multiple dimensions).

 If X is Poisson, intensity λ.

 $E(X) = \lambda$

 $\text{Var}(X) = \lambda$

 Notice λ has units (e.g. $\frac{\#}{s}$, etc.

 and depends on scale of interval.
PMF:

\[P(X = n \mid \text{unit \, \text{rate} } \lambda) = \frac{e^{-\lambda} \lambda^n}{n!} \]

Straightforward series manipulation gives

- This is a PMF
- Expectation
- Variance

Now assume whatever we're watching is Poisson

- Types are independent

These assumptions are a stretch; words aren't like this; neither are animals or objects; but they're simple + generic
Notice:

1) If I observe a Poisson RV for an interval longer than 1

\[P(X = n \mid \text{interval length } t \lambda) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]

2) If I observe Poisson RV for \(N \) unit intervals, seeing count \(n_i \)
 in the \(i \)'th, Max likelihood est \(\lambda \) is

\[\lambda^* = \frac{1}{N} \sum n_i \]

3) If I observe poisson RV for \(N \) unit intervals, \(i \)th has length \(\lambda_i \),
 and see \(n_i \) in \(i \)'th, Max likelihood gives

\[\lambda^* = \frac{1}{N} \sum_i \left(\frac{n_i}{\lambda_i} \right) \]
Now assume we see \{ words, objects \} for an interval (which could be time or space). We choose a scale so this interval is $[-1, \infty]$. Each word type has intensity

$$\lambda_{\omega} = \text{intensity of type } \omega$$

which is unknown. Natural to try and draw conclusions from word type counts,

$$n_{\omega c} = \left[\frac{\text{number of word types}}{\text{that appear } x \text{ times}} \right]$$

Natural because Max likelihood on individual words is no help.
Also, assume future is like the past.

i.e. if a word has \(\lambda_0 \) in \([1, 0]\)

it has this \(\lambda \) later.

E+T phrase this as

"conditionally binomial"
Mk est. $\theta \propto \lambda$ for words we haven't seen is 0.

But n_1 large compared to n_2, etc. suggests there are words types where

- we haven't seen them
- $\lambda_w > 0$

So we should be looking at $G(\lambda)$.

$$G(\lambda) = P(\lambda_w \leq \lambda)$$

- clearly, a discrete distribution
- represents CDF (cumulative dist. function)

$$dG(\lambda) = p(\lambda_w = \lambda) d\lambda$$

S functions or atoms
Now

\[p(\text{a word type has count } x | \lambda_w) \]

\[= e^{-\lambda_w} \frac{\lambda_w^x}{x!} \]

\[\therefore \quad \mathbb{E}[\text{# of word types w/ count } x] \]

\[= \sum_{\text{all word types}} p(\text{word type } i \text{ has count } x) \]

\[= C \int e^{-\lambda} \frac{\lambda^x}{x!} p(G(\lambda)) \, d\lambda = \eta_x \]

\[\text{total # of word types, unknown!} \]
Another way to look at this is that

\[d\Gamma(\lambda) = C dG(\lambda) \] is a measure

(like a PDF, i.e., but doesn't \(\int \) to 1)

Notice that \(C \) could be hard to get, because we could have support for \(G(\lambda) \) at, say,

\[\lambda = 10^{-12} \]

there is a word we see about once in \(10^{12} \) intervals.

affects \(C \), but not a significant effect on observations.
Now \(\eta_x \) is the observed value of an RV call it \(\eta_x \)

we have

\[E(\eta_x) = \eta_x \]

reasonable approx

\[\text{Var}(\eta_x) = \eta_x \]

\(\sum \) of \(\eta_x \)

\(\eta_x \sim N(\eta_x, \sqrt{\eta_x}) \)

\(\sum \) of random variables

This will come in useful.
Now consider

\[\Delta(t) = E[\text{\# \& types seen in } [0, t], \text{ but not in } [-1, 0]] \]

then

\[\Delta(t) = \int_0^\infty \left[e^{-\lambda t} \right] \left[1 - e^{-\lambda t} \right] dG(\lambda) \]

seen 0 times in \([-1, 0] \]
not seen 0 times in \([0, t] \)

Notice you can derive expressions for

\[E[\text{\# seen a times in } [-1, 0] \text{ and b times in } [0, t]] \]

in the straightforward way.
Notice also that you don't need C to evaluate this, just $CdG(\lambda)$.

Q: estimate $\Delta(t)$ given n_{∞}

Notice

$$1 - e^{-\lambda t} = \lambda t - \frac{(\lambda t)^2}{2!} + \frac{(\lambda t)^3}{3!} - \frac{(\lambda t)^4}{4!} \ldots$$

So:

$$\Delta(t) = n_1 t - n_2 t^2 + n_3 t^3 - n_4 t^4 \ldots$$

(assuming convergence, etc).

Natural estimator:

Assume $n_1 = n_1$, $n_2 = n_2$, etc.

Substitute
Paper gives word counts, word type counts

884647 words,
14376 only once
31534 word types

Q: if we saw another 884647 words, how many new words would there be?

A: \[t = \frac{\# \text{ of words in new}}{\# \text{ in net}} \]
\[t = 1 \]
\[\Delta(t) = 11430 = \Delta(1) \]
\[\text{Var}(\Delta(1)) \text{ by assuming the n}_x \text{ are indep, poisson} \]
\[\text{Var}\{\Delta(1)\} \approx \sum_{i=1}^{8} n_i t^i = 31534 \]
\[\text{std} = 178 \]
(skip Fisher model)

Notice that, for \(t > 1 \)

\[
n_{1}t - n_{2}t^{2} + n_{3}t^{3} - \ldots
\]

is a series that oscillates savagely.

You could interpret this several ways:

• it doesn't converge. - panic
• the oscillations "cancel", and we need some way to accelerate this cancellation

It's quite plausible, as \(n \to 0 \)

\[\text{as } x \to \infty.\]

This gives §4 - Euler's transform.

Now skip to §7.
Recall that $\Delta(t)$ may be hard to estimate for large t (because there may be low frequency words).

Instead, they look for a lower bound on $\Delta(t)$ — call this bound $b(t)$.

The problem becomes:

$$b(t) = \inf_{CdG(x)} \left[\int_0^\infty e^{-\lambda t} [1 - e^{-\lambda t}] [C \cdot dG(x)] \right]$$

Subject to:

$$n_x = \epsilon \int_0^\infty \left[\frac{x^e}{x!} \right] [CdG(x)]$$

This would be an LP in $CdG(x)$, IF we knew n_x.
Strategy 1:

* assume \(n_x = n_x \)

* discretize \(n_x \)

\[\implies \text{then we have an honest LP and can solve.} \]

* This works for \(\mathbb{E}[X] + t \), but failed on object data (infeasible - ??)

Strategy 2:

* assume \(\mu + \gamma \sqrt{n_x} < n_x + r \sqrt{n_x} \)

\(n_x \geq n_x - \gamma \sqrt{n_x} \)

(i.e. \(\gamma \) stds away from mean)

* This might slacken the bound, but is probably better practice
But S_2 isn't all that reliable either
(on objects, get feasibility only if you apply big F AND use only n_x for $x \in [1..5]$ which is worrying.)

What is going on here?

Consider $\frac{e^{-\lambda}x^c}{c!}$ as a function of λ

This means we can't have

$\eta_1 = 100; \eta_2 = 0; \eta_3 = 100$; etc.

because these functions overlap so strongly. $\int e^{-\lambda} C_dG(\lambda)$ is similar to $\sum_{i=5}^c e^{-\lambda} \lambda^2 C_dG(\lambda)$
Alternative View:

\[\text{feasible } C_dG(x) \rightarrow \text{linear map} \] (integals) \[\rightarrow \eta_x \]

\(\inf \text{ - min; Convex; finite min;} \)

Since \(C_dG(x) \geq 0 \)
this isn't the whole space we \(\eta \) 's can't occur.

This picture strongly implies that use this picture with plots;
there are vectors of \(\eta_x \) that are (a) non-negative (b) infeasible

and if you use \(\eta_x = \eta_x \) this gets infeasibility
Also explains why large r is required, and why large n_x creates problems (the n_x estimates are poor).

What to do?

* we actually know quite a bit about n_x, which is what we should be working with
 * approximately Gaussian
 * $\text{Var approx} = \text{mean}$

Strategy 3

Assume $r_{n_x} \sim N(n_x, \sqrt{n_x})$

and $\tilde{n}_x = \hat{r}_x$.
Now we must \(\text{\textcircled{2}} \) estimate the counts and \(\text{\textcircled{3}} \) estimate \(b(t) \)

\[
\inf_{\text{CdG}(\lambda)} \int e^{-\lambda} \left[1 - e^{-\lambda t} \right] \text{CdG}(\lambda) + \mu \sum_{i=1}^{K} s_i^2
\]

\[
s_i^2 = \frac{(r_i - n_i)^2}{2n_i^2}
\]

\[
r_i = \int \frac{e^{-\lambda t}}{c(t)} \text{CdG}(\lambda)
\]

Q: how to choose \(\mu \)?
A: cross validation

Now a QP, but it's convex, so no worries.
Notice also that
\[g(\lambda,t) = e^{-\lambda} (1 - e^{-\lambda t}) \] is important

This (basically) looks for weight in small \(\lambda \)'s (at \(\text{CdG}(\lambda) \)) which makes sense.

Issue: lower bounds are helpful, but we want more (estimates, etc).

Options
- work w/ continuous \(\text{CdG}(\lambda) \) models
- make models explicitly discrete.
Notice one attractive feature of this formulation.

- \(x \), \(b(t) \), \(\Delta(t) \) are quite insensitive to "small" changes in \(C_0[G(t)] \)

- because

\[
\frac{e^{-x} \cdot x^x}{x!}
\]

This means that big shifts in where the weight is in a prob model are required to change counts.

In turn, we could use quite rough discretizations (but finer near 0).