
Imitating Humans
D.A. Forsyth

Points

• Getting poses right is important (seen motion VAE)

• Predicting batches might be better long term predictor

• LowD+Contact improves human 3D recons

• Quite simple objectives seem helpful at shaping motion

• Quite good motions can be learned from bounds

• Motion graphs can be quite bad

• interpolating between frames with same contacts helps

• Linear interpolations between frames with same contacts is good

physically

Motion VAE

• Synthesize x_i+1 conditioned on x_i

• which yields an autoregressive model

Ling et al 20

Motion VAE - making long time motions

• Autoregressive model on its own isn’t much good

• drift

• Use RL to produce latent variables

• Thoroughly enjoyable demo at

• https://belinghy.github.io/projects/MVAE/

• Note important point:

• locomotion has really quite simple structure, viewed right

Ling et al 20

Motion graph evaluations

• Summary:

• quality (equiv reachability) degrades fast with complex spatial environments

• fixing by brute force leads to very big graphs fast

• response to control input is poor except in easy cases

Reitsma + Pollard, 07

Motion in “chunks”

• Motion VAE, Motion graph predict next frame

• Perhaps better to think in sequences or “chunks”

• Evidence:

• Simple segmentations of motions are easy

• Linear blends of chunks are quite successful

• Some MG encodings are already chunks

Simple segmentations

• Break motions into sequences by

• acceleration peaks (old, OK)

• change of contact (more recent, better)

Safonova +Hodgins 05

Linear blends of chunks

• Take two corresponding phases (eg flight, previous slide)

• timescale

• interpolate linearly

Safonova +Hodgins 05

Root position

Root orientation,

Joint angles

But….

This is a consequence of interpolating joint

angles: the locations of masses are not

a linear function of joint angles, so…

If, instead, you interpolated joint positions,

the joint lengths might change.

Safonova +Hodgins 05

Better linear blends of chunks

• Take two corresponding phases (eg flight, previous slide)

• timescale

• interpolate linearly

Safonova +Hodgins 05

Center of mass position

Joint angles

Recover root from COM, angles

You need to handle time right, too

Instead, use

Safonova +Hodgins 05

Safonova +Hodgins 05

S+H N+Q

• Important point:

• parametric blends can be manipulated safely, IF properly defined

• To know:

• Handling a stance motion like this works, too

• There’s more detailed material on scaling

• Q:

• recorded z isn’t a perfect straight line in flight - why?

• are there other segmentation criteria that are important?

• note the segmentation scale is quite short

• flight doesn’t last long, contacts are continually changing

• should one segment at longer scales, too?

Interpolated motion graph

• Rather natural consequence

• Key points:

• the quality of search is important for the quality of generated motions

• you can use the interpolation idea to build a richer graph

• which allows optimal (or near optimal anytime) search

Safonova + Hodgins 07

Interpolated motion graph

• Construct correspondences between frames

• which allow interpolation, as above

• Now make two, interpolatable paths

• and interpolate

• This requires considerable detail to ensure

• graph can be represented

• paths can be constructed

• A* yields optimal paths

• etc.

Safonova + Hodgins 07

Interpolation helps

Safonova + Hodgins 07

S+H, II, N+Q

• Important point:

• you can assemble long-scale motions out of parametric blend places

• Q:

• mostly as above

• could one predict batches from batches?

• cf Motion VAE frames from frames

• YES

Predicting batches

Wang ea, 21

Predicting batches

Frames t… t-m Frames t… t-m

Frames t+1… t+n

LSTM

LSTM

This appears to be some

sort of temporal filter, 220c1

Wang ea, 21

Losses

• Evaluation

• prediction error

• quantitative

Wang ea, 21

N+Q

• Qualitatively, rather good motions

• movie at https://www.youtube.com/watch?v=1eZxWkLj1lg

• quite good control of footskate without postprocessing

• BUT occasional stop and turn stuff -temporal structure is weird

• Q:

• Prediction error is likely a very poor evaluation method

• what is better?

• How do they get diversity?

• long batches have much greater diversity than frames

• I don’t think they do…

• How could one get diversity?

• just injecting random numbers is quite unreliable

• what about ditching direct training loss and using an adversary?

See “DynamicFutureNet” - but not sure how this works?

Knowing some animation useful for vision

• (Finally!)

•

Rempe et al 20

Rempe et al 20

Fewer frames with bad forces

or foot penetration/skate/float

3D recon not much worse,

sometimes better

Rempe et al 20

Concept

• Notice motion VAE concept:

• make frames, use RL controller to make paths

• We can

• make human frames

• make chunks of human motion

• But joining them up is iffy

• Claim:

• Assume we have all the frames/chunks we need, but can’t join up

• We don’t need RL (don’t know loss)

• What we need is IRL or imitation learning

• We have lots of observed real motion data

• which is the result of a human controller joining up frames/chunks

• Use this to impute “join up” cost/policy/etc.

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Direct possibilities

Fragkiadaki, ND

Fragkiadaki, ND

Fragkiadaki, ND

Important difference

• Driving:

• mostly, goal is obvious

• Motion:

• you can choose many frames/chunks given one

• some form of latent variable is required to explain choice

• how?

• this is likely some summary of long scale goal

• eg desired path; desired endpoint; etc

As you get further off the path, the probability

of making an error grows, cause the classifier

thinks this state is rare

Fragkiadaki, ND

Fragkiadaki, ND

Interdependence might not matter (much)

• Likely much easier to recover from an off-policy move

• motion “glitch”

• no “perception”

• latent variable changes from frame/chunk to frame/chunk

Fragkiadaki, ND

Notice you might not actually need

a human here - if your states are

discretized, and you have enough data,

you might get this by matching

Fragkiadaki, ND

Further algorithmic possibilities

• Aggrevate

• Aggrevated

• rough sketch in linked movies

Indirect possibilities

Actually, we don’t really have pi; we have

observations of what happens under pi, which

is not quite the same thing

This is really like structured prediction

Strategy for structured prediction

• Construct a parametric cost function

• So that, for training X*

• is close to correct Y*

• (see movies for some details on construction)

H(X ,Y; ✓)

Fragkiadaki, ND

argmin
Y H(X ⇤

,Y; ✓)

For sequences

• Some natural choices

• cost function:

• we want to find best y for given x

• easily done with dynamic programming

• Make V, E linear in theta

• might involve complicated feature constructions

• BUT simplifies learning

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .

This yields

• The cost function has the form

• Choose theta so that for all training pairs x*, y*

• Note

• this isn’t one inequality - it’s one inequality per possible y!

• also, likely not feasible

• also, doesn’t prefer y’s that are “close” to y*

H(x, y; ✓) = ✓TG(x, y)

✓TG(x⇤, y⇤)  ✓TG(x⇤, y)

So rearrange inequalities

• Force G(x*, y) to grow:

• Rearrange, slack variable, and deal with many y:

✓TG(x⇤, y⇤) + ✏D(y, y⇤)  ✓TG(x⇤, y)

⇠ = (max(0,
max
y

✓T (G(x⇤, y⇤)�G(x⇤, y)) + ✏D(y, y⇤)

And now solve optimization problem

⇠i = (max(0,
max
y

✓T (G(x⇤
i, y

⇤
i)�G(x⇤

i, y)) + ✏D(y, y⇤i)

1

2
✓T ✓ +

X

i

⇠i

Don’t choose large theta - this helps generalization

Which is much nastier than it looks

⇠i = (max(0,
max
y

✓T (G(x⇤
i, y

⇤
i)�G(x⇤

i, y)) + ✏D(y, y⇤i)

1

2
✓T ✓ +

X

i

⇠i

Don’t choose large theta - this helps generalization

To take a step, we’ll need to know the sequence that maximizes this

Strategy

• Subgradient descent

• slacks aren’t differentiable, but it doesn’t really matter (piecewise linear)

• when you know the maximising y, the slacks are linear in theta

• Repeat

• pass through data, computing maximizing y

• can be brutally expensive

• this gives slacks as linear function of theta

• differentiate, take a gradient step

LEARCH=IRL via structured prediction

• Adopt dual representation of policies in MDP

• Then it all boils down to what we’ve seen

