Imitating Humans

D.A. Forsyth

Points

Getting poses right 1s important (seen motion VAE)
Predicting batches might be better long term predictor
LowD+Contact improves human 3D recons

Quite simple objectives seem helpful at shaping motion
® (Quite good motions can be learned from bounds

Motion graphs can be quite bad
® interpolating between frames with same contacts helps

® [Linear interpolations between frames with same contacts is good
physically

Motion VAE

® Synthesize x_i+1 conditioned on x_i

® which yields an autoregressive model

Feedback Autoregress Render

Decoder

Blending

Di

Gating Network

Fig. 2. The conditional VAE has two parts. The encoder takes past (p;_;) and current (p;) pose as input and outputs both p and o, which is then used t
sample a latent variable z. The decoder uses p;_ and z to reconstruct p;. For the decoder, we use a MANN-style mixture-of-expert neural network. Whe
using scheduled sampling during training or at run-time, the decoder output, p;, is fed back as input for generating the next prediction.

Ling et al 20

Motion VAE - making long time motions

Autoregressive model on its own 1sn’t much good
drift

Use RL to produce latent variables

Thoroughly enjoyable demo at
https://belinghy.github.io/projects/ MVAE/

Note important point:
locomotion has really quite simple structure, viewed right

Ling et al 20

Motion graph evaluations

® Summary:
® quality (equiv reachability) degrades fast with complex spatial environments
® fixing by brute force leads to very big graphs fast
® response to control input is poor except in easy cases

Reitsma + Pollard, 07

Motion 1n “chunks”

® Motion VAE, Motion graph predict next frame
Perhaps better to think in sequences or “chunks”

® [Evidence:
® Simple segmentations of motions are easy
® Linear blends of chunks are quite successful
® Some MG encodings are already chunks

Simple segmentations

® Break motions into sequences by
® acceleration peaks (old, OK)
® change of contact (more recent, better)

In our work, as in most other approaches to interpola-
tion, we automatically locate these key frames at changes
in the contact with the environment because the physical
laws governing the motion change with contact. Motions
Mj, M,.....M;, are split into phases based on these key frames
and the corresponding phases are interpolated. For exam-
ple, a jumping motion would consist of three phases: lift-off,
flight and landing. Additional key frames can be added dur-
ing long contact phases to better align the motions without
violating the assumptions behind our analysis.

Safonova +Hodgins 05

Linear blends of chunks

® Take two corresponding phases (eg flight, previous slide)
timescale
® interpolate linearly

We compute each phase of motion M by interpolating cor-
responding phases of motions M, M>.....M; with a constant
set of weights, wy, wo,...,w;:

M =wiMi +w2My + ... +w M, (1)

where Y'¥_, w; = 1. The analysis in this paper assumes that
the weights sum to one so our results are limited to interpo-
lation and do not generalize to extrapolation. The analysis
is presented for interpolation of only two motions, M; and
M, but generalizes to the interpolation of X motions because
equation 1 can be recursively computed by interpolating two
motions at a time. The weights for each interpolation sum
to 1 and the final interpolation produces a motion with the
weighting given in equation 1.

Consider a particular phase F. Ateach timer of that phase

we compute motion M(z,w) as follows: Root pOSitiOH
-—

N Pmot(f)=wplma(tl)+(l_W)P'.’ma(t'.’) . .
Mie,w) = { 0; = wQii(t1) + (1~ w)Qsilta), fori=1.n <= Root orientation,

where w = 0..1 is the interpolation weight, Ty, 7> and T are Joint ang]es
the time of phase F in motions M1, M2 and M respectively, Safonova +Hodgins 05

But....

07~

E=1
w

o
w

This is a consequence of interpolating joint
angles: the locations of masses are not
a linear function of joint angles, so...

=
o

o
w

o
[

If, instead, you interpolated joint positions,
the joint lengths might change.

z component of com in meters

0 20 a0 60 8 0 120 140 160 180
frame number

Figure 1: The Z component of the trajectory of the center
of mass for: (a) forward jump with no turn (motion My);
(b) forward jump with 360 degree turn (motion My); (c) the
motion that results from interpolating motions M| and M.
Vertical bars are used to indicate the beginning and ending
of the flight phase for each motion. The trajectory of the cen-
ter of mass of the interpolated motion during flight is not a

straight line as it should be. _
Safonova +Hodgins 05

Better linear blends of chunks

® Take two corresponding phases (eg flight, previous slide)

timescale
® interpolate linearly

from the new center of mass position and joint angles (see
Appendix A). The interpolation equation is now:

Center of mass position

Peom(t) = WPicom(t1) + (1 — W)Pacom(tz) <
M(t,w) =< Qilt) =wi(t))+ (1 —w)Qailt2), fori=1..n (4)

<

Joint angles

Pma (’) = F(Pcom(')sQ(’)) <

where F is the function that computes the root position from
the center of mass and the joint angles. With this small

Recover root from COM, angles

Safonova +Hodgins 05

You need to handle time right, too

In the literature, the time of an interpolated motion has
generally been computed as: T = wT} 4+ (1 —w)T5. But set-
ting time in this way results in scaling gravity by:

wlZ + (1 —w)T3
(wTi + (1 —w)Tr)?
In many cases this error will be small and will not be notice-
able. Reitsma and Pollard [RP03] determined that if gravity

is between —9.0 and —12.7 the error is not visible to the
human observer.

(8)

Instead, use

T = \/Tw+T2(1—w)

(7)

Safonova +Hodgins 05

Z component of com in meters

1 1 L I L 1 I I J
0 20 40 80 80 100 120 140 160 18C

frame number

Figure 2: Example from figure 1 but with the flight phase of
the interpolated motion computed by interpolating the center
of mass positions of the input motions instead of the root
positions and with the time of the flight phase computed as

T — \/T12w+T22(1 —w).

Safonova +Hodgins 05

S+H N+Q

® [mportant point:
® parametric blends can be manipulated safely, IF properly defined

® To know:
® Handling a stance motion like this works, too
® There’s more detailed material on scaling

o Q;
® recorded z isn’t a perfect straight line in flight - why?
are there other segmentation criteria that are important?

® note the segmentation scale is quite short
® flight doesn’t last long, contacts are continually changing

® should one segment at longer scales, too?

Interpolated motion graph

® Rather natural consequence
o Key points:

the quality of search is important for the quality of generated motions
® you can use the interpolation idea to build a richer graph
® which allows optimal (or near optimal anytime) search

optimal | ' - | l‘rnal

Figure 1: Optimal and greedy solutions for walking a given distance and for picking up an object.

Safonova + Hodgins 07

Interpolated motion graph

® (Construct correspondences between frames

® which allow interpolation, as above

® Now make two, interpolatable paths
® and interpolate

® This requires considerable detail to ensure
graph can be represented

paths can be constructed

A* yields optimal paths

etc.

Figure 10: Synthesized motion Safonova + Hodgins 07

Interpolation helps

Figure 12: (Left Image) The optimal solution with interpolation. The character walks across the
first column and jumps across the second column. (Right Image) The optimal solution without
interpolation. The character jumps between each pair of columns. Because the behaviors change
between the two solutions, we cannot warp the solution found without interpolation to match the
more efficient solution found with interpolation.

Safonova + Hodgins 07

S+H, II, N+Q

® [mportant point:
® you can assemble long-scale motions out of parametric blend places

o Q;
mostly as above
® could one predict batches from batches?

® cf Motion VAE frames from frames
e YES

Predicting batches

cee Residual

Spatial
Encoder

Spatial
Encoder

Temporal Encoder Concat

Spatial —
Predictor
(XX
Spatial 1
Predictor ﬁ —lp

Fig. 2. The network architecture of the Spatio-temporal Recurrent Neural Networks. Detailed network structures of the Temporal Encoder/Decoder/
Predictor and the Spatial Encoder/Decoder/Predictor can be found in Figs. 3 and 4 respectively.

—

We start by parameterizing the motion manifold as a time
series: P(Xiin,---, Xts1| Xty ..., Xiom) where X, is the
motion frame at time ¢ and P is the conditional probabilistic
distribution of n frames from ¢ + 1 given m + 1 frames before
t + 1. What the model captures is the dependencies between
the past m + 1 frames and the future n frames. Many existing
data-driven models fall under this umbrella. Most of them
consider the situation when n =1 and m = 0, such as the
motion graphs [2] and autoregression [12]. Some consider Wang ea, 21

Predicting batches

This appears to be some
Frames t... t-m Frames t... t-m sort of temporal filter, 220c1

see Residual

Spatial Spatial Spatial

Encoder Encoder Decoder ? —lp
Temporal Encoder Concat

Spatial -
Predictor
X
Spatial il
Predictor ﬁ —
+n

Frames t+1...

Fig. 2. The network architecture of the Spatio-temporal Recurrent Neural Networks. Detailed network structures of the Temporal Encoder/Decoder/
Predictor and the Spatial Encoder/Decoder/Predictor can be found in Figs. 3 and 4 respectively.

Temporal
Predictor

LSTM

_J

Wang ea, 21

4.2.1 Reconstruction Error

We use Mean Squared Error (MSE) for C, to force STRNN to
reconstruct motions. C, = Cy + C,,

Ci= Y IE @@ E (X)) - X)IE)

m

o= IE @@ (LX) - K ©

where C; and C,, are the reconstruction loss of the decoded
and predicted motions. m and n are the decoding and predic-
tion lengths, X = {X,, X,}, X, and X, are the ground-truth
decoding/predicted motions, and 3" is simply the inverse
function of %.. Minimizing C, results in a tight approxima-
tion of the motion manifold. We will denote this cost as MSE
in Section 5.

4.2.2 Long-horizon (LH) Cost
C; in Equation (4) is smoothness cost

1 ot+1 5 o112
min Z 1 Xhody — 2X 50y + Xay |

+ Z "Xtmot -)“(tr;olt"’z’

where m and n are the decoding and prediction lengths, X
is the concatenation (along the time axis) of the decoded
and predicted motions, C; governs the smoothness of the
motions and has been widely used in many optimization-
based character animation approaches. Note this constraint
essentially penalizes big accelerations only and does not
overly dampen the motion dynamics. We will denote it as
long horizon constraint (LH) in Section 5.

(M

L.osses

Evaluation

prediction error
quantitative

Wang ea, 21

N+Q

® (QQualitatively, rather good motions
® movie at https://www.youtube.com/watch?v=1eZxWkL;j1lg
quite good control of footskate without postprocessing
® BUT occasional stop and turn stuff -temporal structure is weird
o Q;
® Prediction error is likely a very poor evaluation method
® what is better?
® How do they get diversity?
® Jong batches have much greater diversity than frames
® [don’t think they do...
® How could one get diversity?
® just injecting random numbers is quite unreliable
® what about ditching direct training loss and using an adversary?

See “DynamicFutureNet” - but not sure how this works?

Knowing some animation useful for vision

Input Video MTC (side view) Ours (side view)

® (Finally!)
°

Fig. 1. Our contact prediction and physics-based optimization corrects numerous phys-
ically implausible artifacts common in 3D human motion estimations from, e.g., Monoc-
ular Total Capture (MTC) [47] such as foot floating (top row), foot penetrations (mid-
dle), and unnatural leaning (bottom).

Rempe et al 20

Ft Contacts

!
Contact | Physics-Based
Estimation "| Optimization
? 3 v
|
nputs 2D = - Ground Plane
Pose | - 1 : Kinematic

Video Initialization

l Refined 3D Pose

I Character I
| Retargeing pr— »~,-
| (optional) 3D Pose, Foot Contacts and Forces

Fig. 2. Method overview. Given an input video, our method starts with initial estimates
from existing 2D and 3D pose methods [4,47]. The lower-body 2D joints are used to
infer foot contacts (orange box). Our optimization framework contains two parts (blue
boxes). Inferred contacts and initial poses are used in a kinematic optimization that
refines the 3D full-body motion and fits the ground. These are given to a reduced-
dimensional physics-based trajectory optimization that applies dynamics.

Rempe et al 20

Table 2. Physical plausibility evaluation on synthetic test set. Mean/Maz GRF are
contact forces as a proportion of body weight; see text for discussion of plausible
values. Ballistic GRF are unexplained forces during flight; smaller values are better.
Foot position metrics measure the percentage of frames containing typical foot contact

errors per joint; smaller values are better.

| Dynamics (Contact forces) Kinematics (Foot positions)
Method | Mean GRF Max GRF Ballistic GRF | Floating Penetration Skate
MTC [47] 143.0% 9055.3% 115.6% 58.7% 21.1% 16.8%
Kinematics (ours) 124.4% 1237.5% 255.2% 2.3% 28% 1.6%
Physics (ours) 99.0% 338.6% 0.0% 8.2% 0.3% 3.6%

Fewer frames with bad forces
or foot penetration/skate/float

Table 3. Pose evaluation on synthetic and HumanEva-I walking datasets. We measure
mean global per-joint 3D position error (no alignment) for feet and full-body joints.
For full-body joints, we also report errors after root alignment on only the first frame
of each sequence. We remain competitive while providing key physical improvements.

Rempe et al 20

| Synthetic Data HumanEva-1 Walking
Methodl Feet Body Body-Align 1 | Feet Body Body-Align 1

MTC [47] | 581.095 560.090 277.215 511.59 532.286 402.749
Kinematics (ours) [573.097 562.356 281.044 496.671 525.332 407.869
Physics (ours) | 571.804 573.803 323.232 508.744 499.771 421.931 3D recon not much worse,

sometimes better

Concept

® Notice motion VAE concept:
® make frames, use RL controller to make paths

® Wecan

make human frames

® make chunks of human motion

® But joining them up is iffy

® (laim:
Assume we have all the frames/chunks we need, but can’t join up
We don’t need RL (don’t know loss)
What we need is IRL or imitation learning
® We have lots of observed real motion data
® which is the result of a human controller joining up frames/chunks

® Use this to impute “join up” cost/policy/etc.

Reinforcement Learning: Learning policies guided by sparse rewards, e.g.,
win or not the game.

- Good: simplest, cheapest form of supervision
- Bad: High sample complexity
Where is it successful so far?

- In simulation, where we can afford a lot of trials, easy to parallelize

* not in robotic systems:
1. action execution takes long
2. we cannot afford to fall

3. safety concerns
Crusher robot

Fragkiadaki, ND

Ideally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?

1.We will manually design them: “cost function design by hand remains one of the
‘black arts’ of mobile robotics, and has been applied to untold numbers of robotic
systems”

2.We will learn them from demonstrations: “rather than having a human expert tune a

system to achieve desired behavior, the expert can demonstrate desired behavior and
the robot can tune itself to match the demonstration”

Fragkiadaki, ND

Learning from demonstrations a.k.a. Imitation Learning:

Supervision through an expert (teacher) that provides a set of
demonstration trajectories: sequences of states and actions.

Imitation learning is useful when is easier for the expert to
demonstrate the desired behavior rather than:

a) coming up with a reward that would generate such behavior,
b) coding up the desired policy directly.

Fragkiadaki, ND

The Imitation Learning problem

The agent (learner) needs to come up with a policy whose
resulting state, action trajectory distribution matches the expert
trajectory distribution.

Does this remind us of something...?

GANs! Generative Adversarial Networks (on state-action trajectories)

Generator Discriminator
& g Generated Real
2 3 Example Fake
Real
|
FG Example FD

Fragkiadaki, NByerative Adversarial Networks., Goodfellow et al. 2014

The Imitation Learning problem: Challenge

Actions along the trajectories are interdependent, as actions determine
state transitions and thus states and actions down the road.

interdependent labels -> structure prediction

Action interdependence in time:

Algorithms developed in Robaotics for imitation learning found
applications in structured predictions problems, such as, sequence

Fragglgaggia}h@\/labelling e.g. parsing.

Imitation Learning

For taking this structure into account, numerous formulations have
been proposed:

» Direct: Supervised learning for (mapping states to actions)
using the demonstration trajectories as ground-truth(a.k.a.
behavior cloning) + ways to handle the neglect of action
Interdependence.

» Indirect: Learning the latent /goals of the teacher and
planning under those rewards to get the policy, a.k.a. Inverse
Reinforcement Learning (next lecture)

Experts can be:

- Humans

- Optimal or near Optimal Planners/Controllers
Fragkiadaki, ND

Direct possibilities

Imitation Learning as supervised Learning

Driving policy: a mapping from (history of) observations to steering wheel
angles

mo(ue|oy)
Behavior Cloning=Imitation Learning as Supervised learning
- Assume actions in the expert trajectories are 1.i.d.

- Train a classifier or regressor to map observations to actions at each
time step of the trajectory.

supervised

training learning

data

7\'()([11 |0t)

Fl‘agk}lflllgz%(bnlc\lI]E)veMg for Self-Driving Cars, Bojarski et al. 2016

Classifier or regressor?

Because multiple actions u may be plausible at any given observation o,
policy network P (ut|0t) usually is not a regressor but rather:

- Aclassifier (e.g., softmax output and cross-entropy loss, after
discretizing the action space)

m K
J(O0) == D Ly@=k10g[P(y) = klz(); 0)]
i=1 k=1
- A GMM (mixture components weights, means and variances are
parametrized at the output of a neural net, minimize GMM loss, (e.g.,
Hand writing generation Graves 2013)

- A stochastic network (previous lecture)

Fragkiadaki, ND

Independent in time errors

error at time t with probability
E[Total errors] = T

Fragkiadaki, ND

Important difference

® Driving:
® mostly, goal is obvious

® Motion:

® you can choose many frames/chunks given one

® some form of latent variable 1s required to explain choice
® how?

® this is likely some summary of long scale goal
® cg desired path; desired endpoint; etc

Compounding Errors

L

-—-** As you get further off the path, the probability
/ S~ of making an error grows, cause the classifier

thinks this state is rare

error at time t with probability

E[Total errors] = &(T + (T-1) + (T-2) + ...+ 1) & T2

Fragkiadaki, ND

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

Data Distribution Mismatch!

P~ (075) 7é Pro (Ot)

Expert trajectory
Learned Policy

—
\o.‘.'.‘.'-'-".""ﬂ- e, "
. -.'0"\“ — \...'o
No data on / "

how to recover = i ("-.‘I

Fragkiadaki, ND

Interdependence might not matter (much)

® [ikely much easier to recover from an off-policy move
® motion “glitch”
® 1o “perception”
® Jatent variable changes from frame/chunk to frame/chunk

DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train We(ut|0t) from human data Dﬂ* — {01,U1, ...,ON,UN}

| run mo(uelor) to get dataset D, =

3| Ask human to label D,. with actions U¢

4. Aggregate: D« < D« UD,

5. GOTO step 1.

Problems:
- execute an unsafe/partially trained policy

- repeatedly query the expert

Execute current policy and Query Expert
oy i New Data

Steering g—
from expert oo @D \ ’ @
S
’ @
N\
Nz 4§
g "AW
- Aggregate
New ‘ A= Dataset [~ All previous data h
Policy ’ ‘
¢ =
-—JC
- J
Supervised Leamning

Fl’agkiadaki s NIA Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train W@(Ut|0t) from human data DW* — {01,U1, ...,ON,uN}

A run 7Té?(ut|0t) to get dataset Dﬂ = {01, OM}

3| Ask human to label D,. with actions U¢

4. Aggregate: D« < D« UD,

\Notice you might not actually need
a human here - if your states are
discretized, and you have enough data,

5. GOTO step 1. you might get this by matching

Problems:
- execute an unsafe/partially trained policy

- repeatedly query the expert

Fragkladakl s NIA Reduction of Imitation Learning and Structured Predictior

Further algorithmic possibilities

® Aggrevate
® Aggrevated

® rough sketch in linked movies

Indirect possibilities

Inverse Reinforcement Learning

Dynamics
Model T

Il

Describes desirability
of being in a state.

Reward Reinfor(?ement
Function R Learning /

Optimal Control

distribution over next
states given current
state and action

Probability

J

arg max, E[>_, 7' R(st)|7] [

-

Controller/
Policy =*

Prescribes action to
take for each state

Actually, we don’t really have pi; we have
observations of what happens under pi, which

is not quite the same thing

Given T, let’s recover R!

Diagram: Pieter Abbeel

Problem Setup

* Given:
State space, action space - Dynamics (sometimes) Ts,a[3t+1 |st, at]
No reward function - Teacher’'s demonstration:
S0, 4o, 81, @1, 82,02, ...
(= trace of the teacher’s policy 7*)
* Inverse RL

Can we recover R?

Apprenticeship learning via inverse RL

Can we then use this R to find a good policy?

Behavioral cloning (previous)

Can we directly learn the teacher’s policy using supervised learning?

This 1s really like structured prediction

Strategy for structured prediction

® (Construct a parametric cost function H(X,);0)

® So that, for training X*

argmin

S H(X*,);0)

® js close to correct Y*

® (see movies for some details on construction)

Fragkiadaki, ND

For sequences

® Some natural choices
® cost function:

V(z1,y150) + E(y1,y2;0) + V(x2,y2;0) + E(y2,93;0) + ...

® we want to find best y for given x
® casily done with dynamic programming
® Make V, E linear in theta
® might involve complicated feature constructions
® BUT simplifies learning

This yields

® The cost function has the form

H(z,y;0) = 0" G(z,y)

® Choose theta so that for all training pairs x*, y*

01 G(x*,y*) < 01 G(z*,y)
® Note

® this isn’t one inequality - it’s one inequality per possible y!
® also, likely not feasible
® also, doesn’t prefer y’s that are “close” to y*

So rearrange inequalities

® Force G(x*,y) to grow:

0T G(x*,y*) + eD(y,y*) < 07 G(z*, y)

® Rearrange, slack variable, and deal with many vy:

Imax

¢ = (max(0, "

0" (G(z*,y") — G(z*,y)) + eD(y, y*)

And now solve optimization problem

Don’t choose large theta - this helps generalization

%HTH + Z &

max

¢ = (max(0, y

HT(G(x*% y*z) o G(ZC*’M y)) T GD(yv y*z)

Which 1s much nastier than it looks

Don’t choose large theta - this helps generalization
1
—910 + g &
2 .
1

max
Y

A

§i = (max(O, HT(G($*i7 y*z) — G(Cﬁ*z‘,y)) + GD(yvy*i)

To take a step, we’ll need to know the sequence that maximizes this

Strategy

® Subgradient descent
® slacks aren’t differentiable, but it doesn’t really matter (piecewise linear)
® when you know the maximising y, the slacks are linear in theta

® Repeat
® pass through data, computing maximizing y
® can be brutally expensive
® this gives slacks as linear function of theta
e (ifferentiate, take a gradient step

LEARCH=IRL via structured prediction

® Adopt dual representation of policies in MDP
® Then it all boils down to what we’ve seen

