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Points

• Getting poses right is important (seen motion VAE)
• Predicting batches might be better long term predictor
• LowD+Contact improves human 3D recons
• Quite simple objectives seem helpful at shaping motion

• Quite good motions can be learned from bounds

• Motion graphs can be quite bad
• interpolating between frames with same contacts helps
• Linear interpolations between frames with same contacts is good 

physically



Motion VAE

• Synthesize x_i+1  conditioned on x_i
• which yields an autoregressive model

Ling et al 20



Motion VAE - making long time motions

• Autoregressive model on its own isn’t much good
• drift

• Use RL to produce latent variables
• Thoroughly enjoyable demo at

• https://belinghy.github.io/projects/MVAE/

• Note important point: 
• locomotion has really quite simple structure, viewed right

Ling et al 20



Motion graph evaluations

• Summary:
• quality (equiv reachability) degrades fast with complex spatial environments
• fixing by brute force leads to very big graphs fast
• response to control input is poor except in easy cases

Reitsma + Pollard, 07 



Motion in “chunks”

• Motion VAE, Motion graph predict next frame
• Perhaps better to think in sequences or “chunks”
• Evidence:

• Simple segmentations of motions are easy
• Linear blends of chunks are quite successful
• Some MG encodings are already chunks



Simple segmentations

• Break motions into sequences by
• acceleration peaks (old, OK)
• change of contact (more recent, better)

Safonova +Hodgins 05



Linear blends of chunks

• Take two corresponding phases (eg flight, previous slide)
• timescale
• interpolate linearly

Safonova +Hodgins 05

Root position

Root orientation,
Joint angles



But….

This is a consequence of interpolating joint
angles:  the locations of masses are not 
a linear function of joint angles, so…

If, instead, you interpolated joint positions, 
the joint lengths might change.

Safonova +Hodgins 05



Better linear blends of chunks

• Take two corresponding phases (eg flight, previous slide)
• timescale
• interpolate linearly 

Safonova +Hodgins 05

Center of mass position

Joint angles

Recover root from COM,  angles



You need to handle time right, too

Instead, use

Safonova +Hodgins 05
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S+H N+Q

• Important point:
• parametric blends can be manipulated safely, IF properly defined

• To know:
• Handling a stance motion like this works, too
• There’s more detailed material on scaling

• Q:
• recorded z isn’t a perfect straight line in flight - why?
• are there other segmentation criteria that are important?
• note the segmentation scale is quite short 

• flight doesn’t last long, contacts are continually changing
• should one segment at longer scales, too?



Interpolated motion graph

• Rather natural consequence
• Key points:

• the quality of search is important for the quality of generated motions
• you can use the interpolation idea to build a richer graph 

• which allows optimal (or near optimal anytime) search

Safonova + Hodgins 07



Interpolated motion graph

• Construct correspondences between frames
• which allow interpolation, as above

• Now make two, interpolatable paths
• and interpolate

• This requires considerable detail to ensure
• graph can be represented
• paths can be constructed
• A* yields optimal paths
• etc.



Safonova + Hodgins 07



Interpolation helps

Safonova + Hodgins 07



S+H, II, N+Q

• Important point:
• you can assemble long-scale motions out of parametric blend places

• Q:
• mostly as above
• could one predict batches from batches?

• cf Motion VAE frames from frames
• YES



Predicting batches

Wang ea, 21



Predicting batches

Frames t… t-m Frames t… t-m

Frames t+1… t+n

LSTM

LSTM

This appears to be some 
sort of temporal filter, 220c1

Wang ea, 21



Losses

• Evaluation
• prediction error
• quantitative

Wang ea, 21



N+Q

• Qualitatively, rather good motions 
• movie at  https://www.youtube.com/watch?v=1eZxWkLj1lg
• quite good control of footskate without postprocessing
• BUT occasional stop and turn stuff -temporal structure is weird

• Q:
• Prediction error is likely a very poor evaluation method

• what is better?
• How do they get diversity?

• long batches have much greater diversity than frames
• I don’t think they do…

• How could one get diversity?
• just injecting random numbers is quite unreliable
• what about ditching direct training loss and using an adversary?

See “DynamicFutureNet”  - but not sure how this works?



Knowing some animation useful for vision

• (Finally!)
•

Rempe et al 20
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Fewer frames with bad forces
or foot penetration/skate/float

3D recon not much worse,
sometimes better

Rempe et al 20



Concept

• Notice motion VAE concept:
• make frames, use RL controller to make paths

• We can
• make human frames
• make chunks of human motion
• But joining them up is iffy

• Claim:
• Assume we have all the frames/chunks we need, but can’t join up
• We don’t need RL (don’t know loss)
• What we need is IRL or imitation learning

• We have lots of observed real motion data
• which is the result of a human controller joining up frames/chunks

• Use this to impute “join up” cost/policy/etc.



Fragkiadaki, ND
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Direct possibilities
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Important difference

• Driving:
• mostly, goal is obvious

• Motion:
• you can choose many frames/chunks given one
• some form of latent variable is required to explain choice

• how?
• this is likely some summary of long scale goal 

• eg desired path; desired endpoint; etc



As you get further off the path, the probability 
of making an error grows, cause the classifier

thinks this state is rare

Fragkiadaki, ND
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Interdependence might not matter (much)

• Likely much easier to recover from an off-policy move
• motion “glitch”
• no “perception”

• latent variable changes from frame/chunk to frame/chunk



Fragkiadaki, ND



Notice you might not actually need 
a human here - if your states are 

discretized, and you have enough data, 
you might get this by matching

Fragkiadaki, ND



Further algorithmic possibilities

• Aggrevate
• Aggrevated

• rough sketch in linked movies



Indirect possibilities



Actually, we don’t really have pi; we have 
observations of what happens under pi, which

is not quite the same thing



This is really like structured prediction



Strategy for structured prediction

• Construct a parametric cost function

• So that, for training X*

• is close to correct Y*

• (see movies for some details on construction)

H(X ,Y; ✓)

Fragkiadaki, ND

argmin
Y H(X ⇤

,Y; ✓)



For sequences

• Some natural choices
• cost function:

• we want to find best y for given x
• easily done with dynamic programming

• Make V, E linear in theta
• might involve complicated feature constructions
• BUT simplifies learning

V (x1, y1; ✓) + E(y1, y2; ✓) + V (x2, y2; ✓) + E(y2, y3; ✓) + . . .



This yields

• The cost function has the form

• Choose theta so that for all training pairs x*, y*

• Note
• this isn’t one inequality - it’s one inequality per possible y!
• also, likely not feasible
• also, doesn’t prefer y’s that are “close” to y*

H(x, y; ✓) = ✓TG(x, y)

✓TG(x⇤, y⇤)  ✓TG(x⇤, y)



So rearrange inequalities

• Force G(x*, y) to grow:

• Rearrange, slack variable, and deal with many y:

✓TG(x⇤, y⇤) + ✏D(y, y⇤)  ✓TG(x⇤, y)

⇠ = (max(0,
max
y

✓T (G(x⇤, y⇤)�G(x⇤, y)) + ✏D(y, y⇤)



And now solve optimization problem

⇠i = (max(0,
max
y

✓T (G(x⇤
i, y

⇤
i)�G(x⇤

i, y)) + ✏D(y, y⇤i)

1

2
✓T ✓ +

X

i

⇠i

Don’t choose large theta - this helps generalization



Which is much nastier than it looks

⇠i = (max(0,
max
y

✓T (G(x⇤
i, y

⇤
i)�G(x⇤

i, y)) + ✏D(y, y⇤i)

1

2
✓T ✓ +

X

i

⇠i

Don’t choose large theta - this helps generalization

To take a step, we’ll need to know the sequence that maximizes this



Strategy

• Subgradient descent
• slacks aren’t differentiable, but it doesn’t really matter (piecewise linear)
• when you know the maximising y, the slacks are linear in theta

• Repeat
• pass through data, computing maximizing y

• can be brutally expensive
• this gives slacks as linear function of theta
• differentiate, take a gradient step



LEARCH=IRL via structured prediction

• Adopt dual representation of policies in MDP
• Then it all boils down to what we’ve seen


