Basic Ray-Tracing Ideas

D.A. Forsyth, UIUC

What is rendering?

How cameras work

Cameras

- First photograph due to Niepce
- First on record shown in the book 1822
- Basic abstraction is the pinhole camera
 - lenses required to ensure image is not too dark
 - various other abstractions can be applied

Pinhole cameras

- Abstract camera model box with a small hole in it
- Pinhole cameras work in practice

A photo of the Camera Obscura in San Francisco. This Camera Obscura is located at the Cliff House on the Pacific ocean. Credit to Jacob Appelbaum of <u>http://www.appelbaum.net</u>.

Pixels, time and integration

Slides to accompany Forsyth and Ponce "Computer Vision - A Modern Approach" 2e by D.A. Forsyth

Pinhole too big many directions are averaged, blurring the image

Pinhole too smalldiffraction effects blur the image

Generally, pinhole cameras are *dark*, because a very small set of rays from a particular point hits the screen.

Slides to accompany Forsy

Blurring with large pinholes is an integration effect

we're averaging over many directions, some don't hit the letters, and so average in the background.

$$v = \int_{\Lambda} \int_{D} \int_{\Omega} \int_{T} w(\mathbf{x}, \lambda, \omega, t) L(\mathbf{x}, \omega, t) dt d\omega dx d\lambda$$

Color cameras

• Red, Green, Blue sensors

- each has a different wavelength sensitivity
- typically, some translucent colored material in front of the pixel

Motion Blur

• Another integration effect

T+dt

The reason for lenses

Lenses come with problems

- Spherical aberration
 - Lens is not a perfect thin lens, and point is defocused

Lens systems

Vignetting

Other (possibly annoying) phenomena

• Chromatic aberration

- Light at different wavelengths follows different paths; hence, some wavelengths are defocussed
- Machines: coat the lens
- Humans: live with it
- Scattering at the lens surface
 - Some light entering the lens system is reflected off each surface it encounters (Fresnel's law gives details)
 - Machines: coat the lens, interior
 - Humans: live with it (various scattering phenomena are visible in the human eye)
- Geometric phenomena (Barrel distortion, etc.)

Randomized estimates of integrals

Weak law of large numbers

if
$$x_i \sim p(x)$$

then $\frac{1}{N} \sum_{i=1}^N f(x_i) \to \int f(x) p(x) dx$

- i.e. we can approximate integrals with sums
 - example: p(x) uniform, stochastic sampling of pixel
- generically, known as Monte Carlo estimates

Importance weighting

if
$$x_i \sim p(x)$$

then $\frac{1}{N} \sum_{i=1}^N f(x_i) \to \int f(x) p(x) dx$

If
$$x_i \sim p(x)$$

Then

$$\int f(x)dx \approx \frac{1}{N} \frac{f(x_i)}{p(x_i)}$$

Randomized estimates and variance

$$\int f(x)dx \approx \frac{1}{N} \frac{f(x_i)}{p(x_i)}$$

- The estimate is the value of a random variable
 - (different random samples -> different estimates)
 - whose expected value is the value of the integral
 - but whose variance might be very big
 - and is usually very hard to know
- Simple reasoning suggests that
 - p should be big when f is big, etc.

Variance example

Drawing uniform samples will get a poor estimate -> draw samples mostly at peak and downweight

Algorithmic framework

Computational problem - what is L(ray)?

Very simple ray-tracing

O Point light source

Light at surfaces

- Many effects when light strikes a surface -- could be:
 - absorbed; transmitted; reflected; scattered
 - Simplify
 - Assume that
 - surfaces don't fluoresce
 - surfaces don't emit light (i.e. are cool)
 - all the light leaving a point is due to that arriving at that point
- Two main abstractions
 - Diffuse surface
 - Specular surface

Diffuse reflection

- Light leaves the surface evenly in all directions
 - cotton cloth, carpets, matte paper, matte paints, etc.
 - most "rough" surfaces
 - Parameter: Albedo
 - percentage of light arriving that leaves
 - range 0-1
 - practical range is smaller
- Test:
 - surface has same apparent brightness when viewed from different dir'ns

Specular surface

- For some surfaces, reflection depends strongly on angle
 - mirrors (special case)
 - incoming direction, normal and outgoing direction are coplanar
 - angle din, normal and angle dout, normal are the same
 - more general cases later
 - rules:
 - din, dout, N coplanar
 - angle(din, N)=angle(dout, N)

Lighting model

- Light arrives at a surface ONLY from a luminaire
 - this is an object that "makes light"
 - through chemical, mechanical, etc means
- Wild oversimplification, good for us right now
 - wait a few slides and it'll get more complicated

Eye ray strikes diffuse surface

Eye ray strikes specular surface

O Point light source

Compute brightness of specular surface at first contact = eye ray changes direction, and compute brightness at the end of that

Implied computational problems

- Fast, accurate intersection with complicated models
 - Improved rendering
 - anti aliasing (= more rays)
 - motion blur (= more rays)
 - more complex illumination phenomena (= more rays, caching)

Reminder: Scene Graphs

- Hierarchical representation of all objects in scene
 - familiar from raster graphics, etc

Geometric Primitives

• Primitives we can deal with

- half-space (because we can do plane intersection)
- sphere (because we can do sphere intersection)
- cylinder (easy generalization of sphere)
- convex polyhedron (easy generalization of half-space)
- Others will come as we learn more intersection techniques

Reminder: Scene Graphs

- Hierarchical representation of all objects in scene
 - familiar from raster graphics, etc
- Transformation nodes now:
 - Intersect children with ray
 - transform ray to child's frame
 - i.e. inverted from usual
 - Returned normal must be in world frame
 - i.e. transpose(inverse(T))
 - Maintain inverse(T)

Reminder: Instancing

- Scene graph is a hierarchy
- Not necessarily a tree
- Directed acyclic graph (DAG)
- Nodes may have multiple parents
- Instance
 - Appearance of each node's geometry in scene

Fun with instancing

CSG

• Constructive Solid Geometry

- objects are boolean combinations of primitive volumes
- union, intersection, difference
 - usually regularized

Geometric Primitives

• Primitives we can deal with

- half-space (because we can do plane intersection)
- sphere (because we can do sphere intersection)
- cylinder (easy generalization of sphere)
- convex polyhedron (easy generalization of half-space)
- Others will come as we learn more intersection techniques

Raytracing CSG

- Represent all intersections in a hit record
 - list
- If we know where focal point is (in/out), parity classifies all others

Raytracing CSG

- List of t-values for A, B w/in-out classification
 - A.t_list = $\{0.9, 3.1\} = \{0.9in, 3.1out\}$
 - $B.t_list = \{2.5, 4.5\} = \{2.5in, 4.5out\}$
 - Use dot(r.d,n) to determine in,out
- Merge both lists into a single tordered list
 - { 0.9 Ain Bout, 2.5 Ain Bin, 3.1 Aout Bin,
 - 4.5 Aout Bout }
 - Keep track of A and B in/out classification
- Use Roth table to classify t-values

Regularizing CSG

A	В
---	---

- Primitives can produce non-volumes
 - e.g. A intersect B in pic gives line

$A \cap^* B =$ closure (interior(A) \cap interior(B))

There's a general phenomenon here

• Points that lie on top of one another

- but we may not be able to tell
- Our t-values aren't precisely correct
 - numerical representations aren't precise
 - could be for polynomial surfaces, but this is not worth the effort
- This means
 - intersections aren't precisely where we think they are
 - eg shadow ray eczema
- Tolerable solution
 - regard points that are "very close" as the same point
 - cures shadow ray eczema by ignoring surface as blocker
 - can be used to cure previous problem

Regularizing CSG

- Primitives can produce non-volumes
 - e.g. A intersect B in pic gives line
- Regularize

• eg

 $A \cap^* B = \text{closure}(\text{interior}(A) \cap \text{interior}(B))$

- equivalently
 - require Bin to occur some small distance before Aout to get hit

This makes the line go away. (ex: how do you regularize union, difference?)

Implicit Surfaces

- Surface is:
- points in vector form:
- ray is:
- intersections are:
 - and are obtained by root finding

f(x, y, z) = 0 $f(\mathbf{x}) = 0$ $\mathbf{a} + t\mathbf{v}$ $f(\mathbf{a} + t\mathbf{v}) = 0$

Accurate Intersection: Computing roots

• Options: numerical root finding

- Interval halving
- Newton's method with deflation
- Bracketing with Sturm sequence

Interval halving

- Assume we have two points on ray
 - perhaps generated by some form of spatial subdivision scheme
 - one on positive side, one on negative side of intersection
- Split the interval in half
 - One half has the root (+-)
 - Other doesn't (++, --)
- Keep the one that does, and go again if it is too big

Newton's method

- Estimate is:
- Observe that:

• so update is:

$$t_n$$

$$f(t_n + \Delta t) = f(t_n) + \Delta t \frac{df}{dt} = 0$$

$$\Delta t = -\frac{f(t_n)}{\left(\frac{df}{dt}\right)}$$

Practicalities

- Deflation: if you have found a root, divide the polynomial by (t-root) to reduce degree
- Newton's method can behave badly
 - start in a good place
 - e.g. root from previous ray with this object
- Newton's method not efficient for shadow rays
- Newton's method doesn't guarantee closest root

Sturm sequences

• Build a sequence of polynomials

$$p_0(t) = f(t)$$

$$p_1(t) = \frac{df}{dt}$$

$$\dots$$

$$p_k(t) = -\operatorname{rem}(p_{k-2}, p_{k-1})$$

$$\dots$$

$$p_m$$

$$0$$

• (where rem stands for remainder; f should not have repeated roots)

Sturm sequences

• write
$$\sigma(\xi)$$
 for the number of sign changes in
 $(p_0(\xi), p_1(\xi), p_2(\xi), ..., p_m(\xi))$

• then for a<b, number of real roots in (a, b] is

$$\sigma(a) - \sigma(b)$$

Can bracket root using interval halving, use for shadow rays

Sturm sequences: example

$$p_{0} = t^{3} + 3t^{2} - 1$$

$$p_{1} = 3t^{2} + 6t$$
so $p_{0} = (t/3)p_{1} + (1/3)p_{1} - 2t - 1$

$$p_{2} = 2t + 1$$

$$p_{3} = \text{constant}$$

$$-9/4$$

Ex: how many roots in 0-1 interval? how many roots in 0 - infinity interval? find root in 0-1 interval

Making Ray Tracing Faster

• Coherence

- Image coherence: rays through nearby pixels go through nearby things
- Spatial coherence: similar rays go through similar things
- Temporal coherence: the same ray at the next time goes through similar things

70K triangles

0. We need 70K ray-triangle of the section of the s

Item buffer

• Use conventional z-buffer renderer to render surfaces

- shade with pointer, not illumination
- this gives pointer to closest surface
- not much used now (ex: why?)

Shadow Caching

- Any interloper between surface point **x** and the light source **s** will cast a shadow
 - Doesn't matter how many
 - Doesn't matter which is closest
 - Stop ray intersections once *any* intersection found
- Neighboring shadowed surface points x and x' probably shadowed by the same object
 - Start shadow ray intersection search with object intersected in last shadow search

Bounding Volume

- Ray-bunny intersection takes 70K ray-triangle intersections even if ray misses the bunny
- Place a sphere around bunny
 - Ray *A* misses sphere so ray *A* misses bunny without checking 70K ray-triangle intersections
 - Ray *B* intersects sphere but still misses bunny after checking 70K intersections
 - Ray *C* intersects sphere and intersects bunny
- Can also use axis-aligned bounding box
 - Easier to create for triangle mesh

Bounding Volume Hierarchy

- Associate bounding volume with each node of scene graph
- If ray misses a node's bounding volume, then no need to check any node beneath it
- If ray hits a node's BV, then replace it with its children's BV's (or geometry)
- Breadth first search of tree
 - Maintain heap ordered by ray-BV intersection *t*-values
 - Explore children of node w/least pos. ray-BV *t*-value

Grids

- Encase object in a 3-D grid of cubes
 - each has list of all triangles it intersects
- Rasterize ray to find which cells it intersects
 - 3D Bresenham algorithm
 - All cells that contain any part of ray
- Working from first ray-cell to last...
 - Find least positive intersect of ray with triangles in cell's list
 - If no intersection, move on to next cell

Tagging

- Ray-object intersection test valid for ray with entire object
 - not just portion of object inside current cell
 - Need only intersect object once for each ray
- Tags
 - does not intersect
 - intersection at ...

K-D trees

• Put bounding box around all objects

- split with coordinate plane (x, y, or z) into two boxes
- distribute objects into boxes
 - split each child box recursively until stop
- Questions:
 - how do we compute intersections?
 - easy
 - pass ray into children it intersects
 - intersect with objects in leaf nodes
 - what is a good split?
 - how should we stop splitting?

K-D trees - what is a good split?

• Keep track of intersection costs

- cheap to intersect with nearly empty boxes
- expensive to intersect with a box with lots of stuff
- expensive to look at many small boxes
- Cost of split=
 - Cost of traversal+Cost Left Intersect +Cost Right Intersect
- Need a model for intersect costs

K-D trees - what is a good split?

• Intersect cost model:

- Each box contains voxels on some fine grid
- Filled voxels might be convex
- If they were, probability of intersection would be ratio of surface areas

Expected cost of ray entering box = $\frac{S_y}{S_x}$ Base cost of intersection

K-D trees - what is a good split?

- Expected cost of split =
 - expected cost of LHS box+
 - expected cost of RHS box+
 - cost of traversal
- Notice expression does not depend on probability ray visits parent

K-D trees

- Splits occur only on planes that bound filled voxels
- Search all splits for lowest cost, using model
- Stopping
 - fixed depth
 - threshold number of objects per voxel
 - both
 - adaptive (i.e. make cost estimate for each leaf, split of each leaf)

http://www.flipcode.com/archives/Raytracing_Topics_Techniques-Part_7_Kd-Trees_and_More_Speed.shtml

Key idea - how bright is this point?

Radiometry

• Questions:

- how "bright" will surfaces be?
- what is "brightness"?
 - measuring light
 - interactions between light and surfaces
- Core idea think about light arriving at a surface
 - around any point is a hemisphere of directions
 - what is important is what a source "looks like" to a receiver
 - receiver can't know anything else about source

Solid angle

FIGURE 2.15: A hemisphere on a patch of surface, to show our angular coordinates for computing radiometric quantities. The coordinate axes are there to help you see the drawing as a 3D surface. An infinitesimal patch of surface with area dA which is distance r away is projected onto the unit hemisphere centered at the relevant point; the resulting area is the solid angle of the patch, marked as $d\theta d\phi$. In this case, the patch is small so that the area and hence the solid angle is $(1/r^2)dA\cos\theta_n$, where θ_n is the angle of inclination of the patch.

Solid Angle

- By analogy with angle (in radians)
- The solid angle subtended by a patch area dA is given by

Radiance

- Measure the "amount of light" at a point, in a direction the power (amount of energy per unit time) traveling at some point in a specified direction, per unit area *perpendicular to the direction of travel*, per unit solid angle.
- Units: watts per square meter per steradian (wm-2sr-1)
- Crucial property:
 - In a vacuum, radiance leaving p in the direction of q is the same as radiance arriving at q from p
 - hence the units

Why not watts/square meter?

• Consider sphere radiating 1 W into vacuum

- Radius 1, center at origin
- Vacuum neither creates nor consumes power
- There's another sphere around it
 - Radius R, center at origin
 - Area 4 pi R^2
 - It can't collect more power than first sphere radiates so
 - watts/square meter must go down with distance....!!! (ew)

Radiance is constant along straight lines

Irradiance

- How much light is arriving at a surface?
- Sensible unit is Irradiance
 - Incident power per unit area not foreshortened
 - This is a function of incoming angle.
- A surface experiencing radiance L(x,θ,φ) coming in from dω experiences irradiance

 $L(\mathbf{x}, \theta, \phi) \cos \theta d\omega$

• Crucial property: Total power arriving at the surface is given by adding irradiance over all incoming angles --- this is why it's a natural unit

Surfaces and the BRDF

- Many effects when light strikes a surface -- could be:
 - absorbed; transmitted. reflected; scattered
- Assume that
 - surfaces don't fluoresce
 - surfaces don't emit light (i.e. are cool)
 - all the light leaving a point is due to that arriving at that point
- Can model this situation with the Bidirectional Reflectance Distribution Function (BRDF)
- the ratio of the radiance in the outgoing direction to the incident irradiance

 $\rho_{bd}(\underline{x},\vartheta_o,\varphi_o,\vartheta_i,\varphi_i) =$

 $\frac{L_o(\underline{x}, \vartheta_o, \varphi_o)}{L_i(\underline{x}, \vartheta_i, \varphi_i) \cos \vartheta_i d\omega}$

BRDF

- Units: inverse steradians (sr-1)
- Symmetric in incoming and outgoing directions
- Radiance leaving in a particular direction:
 - add contributions from every incoming direction

$$\int_{\Omega} \rho_{bd} (\underline{x}, \vartheta_o, \varphi_o, \vartheta_i, \varphi_i) L_i (\underline{x}, \vartheta_i, \varphi_i) \cos \vartheta_i d\omega_i$$

Suppressing Angles - Radiosity

- In many situations, we do not really need angle coordinates
 - e.g. cotton cloth, where the reflected light is not dependent on angle
- Appropriate radiometric unit is radiosity
 - total power leaving a point on the surface, per unit area on the surface (Wm-2)
- Radiosity from radiance?
 - sum radiance leaving surface over all exit directions

$$B(\underline{x}) = \int_{\Omega} L_o(\underline{x}, \vartheta, \varphi) \cos \vartheta d\omega$$

Radiosity

- Important relationship:
 - radiosity of a surface whose radiance is independent of angle (e.g. that cotton cloth)

$$B(\underline{x}) = \int_{\Omega} L_o(\underline{x}, \vartheta, \varphi) \cos \vartheta d\omega$$

= $L_o(\underline{x}) \int_{\Omega} \cos \vartheta d\omega$
= $L_o(\underline{x}) \int_{0}^{\pi/22\pi} \int_{0}^{\pi/22\pi} \cos \vartheta \sin \vartheta d\varphi d\vartheta$
= $\pi L_o(\underline{x})$

Lambertian surfaces and albedo

- For some surfaces, the BRDF is independent of direction
 - cotton cloth, carpets, matte paper, matte paints, etc.
 - radiance leaving the surface is independent of angle
 - Lambertian surfaces (same Lambert) or ideal diffuse surfaces
 - Use radiosity as a unit to describe light leaving the surface
 - percentage of incident light reflected is diffuse reflectance or albedo
- Useful fact:

$$\rho_{brdf} = \frac{\rho_d}{\pi}$$

Specular surfaces

- Another important class of surfaces is specular, or mirrorlike.
 - radiation arriving along a direction leaves along the specular direction
 - reflect about normal
 - some fraction is absorbed, some reflected
 - on real surfaces, energy usually goes into a lobe of directions
 - can write a BRDF, but requires the use of funny functions

Phong's model

- There are very few cases where the exact shape of the specular lobe matters.
- Typically:
 - very, very small --- mirror
 - small -- blurry mirror
 - bigger -- see only light sources as "specularities"
 - very big -- faint specularities
- Phong's model
 - reflected energy falls off with

 $\cos^n(\delta \vartheta)$

Lambertian + specular

- Widespread model
 - all surfaces are Lambertian plus specular component
- Advantages
 - easy to manipulate
 - very often quite close true
- Disadvantages
 - some surfaces are not
 - e.g. underside of CD's, feathers of many birds, blue spots on many marine crustaceans and fish, most rough surfaces, oil films (skin!), wet surfaces
 - Generally, very little advantage in modelling behaviour of light at a surface in more detail -- it is quite difficult to understand behaviour of L+S surfaces

- Examples: diffuser boxes, white walls.
- The radiosity at a point due to an area source is obtained by adding up the contribution over the section of view hemisphere subtended by the source
 - change variables and add up over the source

Radiosity due to an area source

- rho is albedo
- E is exitance
- r(x, u) is distance between points
- u is a coordinate on the source

$$B(x) = \rho_d(x) \int_{\Omega} L_i(x, u \to x) \cos \theta_i d\omega$$

= $\rho_d(x) \int_{\Omega} L_e(x, u \to x) \cos \theta_i d\omega$
= $\rho_d(x) \int_{\Omega} \left(\frac{E(u)}{\pi}\right) \cos \theta_i d\omega$
= $\rho_d(x) \int_{source} \left(\frac{E(u)}{\pi}\right) \cos \theta_i \left(\cos \theta_s \frac{dA_u}{r(x, u)^2}\right)$
= $\rho_d(x) \int_{source} E(u) \frac{\cos \theta_i \cos \theta_s}{\pi r(x, u)^2} dA_u$

The Rendering Equation-1

Angle between normal and incoming direction

Radiance leaving a point in a direction

Radiance is constant along straight lines, so this is what we want to know

The Rendering Equation - II

• This balance works for

- each wavelength,
- at any time, so

• So

$$L_o(\mathbf{x}, \omega_o, \lambda, t) = L_e(\mathbf{x}, \omega_o, \lambda, t) + \int_{\Omega} \rho_{bd}(\mathbf{x}, \omega_o, \omega_i, \lambda, t) L_i(\mathbf{x}, \omega_i, \lambda, t) \cos \theta_i d\omega_i$$

Global illumination

$$L_o(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{\Omega} \rho_{bd}(\mathbf{x}, \omega_o, \omega_i) L_i(\mathbf{x}, \omega_i) \cos \theta_i d\omega_i$$

Incoming radiance

- Incoming radiance isn't just from luminaires
 - the reason you can see surfaces is they reflect light
 - other surfaces don't distinguish between reflected light and generated light

Light paths

• Recursively expand, as above

- sample the incoming directions •
 - what radiance is coming in? \bullet
 - go to far end what is emitted+reflected?
 - recur

Light paths - II

$$v = \int_{\Lambda} \int_{D} \int_{\Omega} \int_{T} w(\mathbf{x}, \lambda, \omega, t) L(\mathbf{x}, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(\text{ray}) L(\text{ray}) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega$$

• But this is really (suppressing wavelength and time)

$$\int_{D} \int_{\Omega} L(\mathbf{x}, \omega) w(\mathbf{x}, \omega) dx d\omega \approx \frac{1}{N} \sum_{paths} (\text{contribution of path})$$

Light paths - III

Some light paths are harder than others

- We have already seen how to render
 - LDE (light diffuse eye)
 - eye ray to diffuse surface, can it see light?
 - LSE (light specular eye)
 - eye ray to specular surface, reflect and hit diffuse, can it see light?
 - Actually, can do:
 - LDS*E (light diffuse 0 or more specular bounces eye)
- How about
 - LDDE (light diffuse diffuse eye)
 - easy geometry likely high variance
 - LS+DE (light diffuse at least one specular eye)
 - rather harder

Eye ray strikes diffuse surface - LDE

Eye ray strikes specular surface - LDSE

Compute brightness of specular surface at first contact = eye ray changes direction, and compute brightness at the end of that O Point light source

LDD+E - easy geometry, but variance

LDD+E - variance control (sketch!)

- In principle, easily sampled recursively
- Preferentially sample paths that make large contributions
 - these are paths that connect light, eye, via high albedo surfaces
 - "Russian roulette"
 - continue path with probability = albedo
 - weight by (1/albedo)
- Cache results
 - propagating a path:
 - check: is there something in the cache?
 - yes: use it
 - no: propagate path and cache results

LS+DE - harder - where is the light?

LS+DE - harder - where is the light?

Problem: which direction leaving diffuse surface will hit the light?

Strategies

• Bidirectional ray tracing

- Trace a lot of rays from light through specular surfaces to first diffuse
- Trace a lot of eye rays to first diffuse
- Join paths
- Variance control
 - weight paths as if they'd been found in different ways (Veach +Guibas)
- Markov chain monte carlo
 - take a path and mutate it; reweight contribution of mutated path
- Caching
 - Photon cache trace many rays from light through specular to diffuse
 - cache at diffuse
 - query with eye ray

Biased vs unbiased rendering

• Unbiased renderer

- pixel value is value of random variable (different paths=different values)
- E(estimate)=True value
- sometimes essential
 - eg estimate the amount of light in a museaum hall
- Biased renderer
 - E(estimate)=True value + Bias
 - eg Photon map (as above)
 - Bias because we do not know how many photons to stick in cache
 - Often more realistic
- Crucial point
 - Very few people can tell if a render is nearly physically correct
 - and no-one can reliably spot exactness

The plenoptic function

- We are repeatedly sampling radiance
 - as function of point, direction
- What if we had a function that could report that?
- Plenoptic function
 - radiance along a directed line
 - space of lines is rather nastier than you might think

Lines in 3D (if it's empty!)

• Space of lines is 4 dimensional

- can specify a line by:
 - where it intersects each of two planes
 - some missing lines, some details
- alternative
 - directed line
 - point on the tangent plane of sphere

Lines in 3D with object can be nasty

Simplify

- Place an object in a box
 - record radiance for each ray leaving box
- Easy to ray trace
 - look up eye ray in rays leaving box
 - report that value
- Capture is relatively easy

Capturing this representation

- Obtain an awful lot of images from calibrated cameras
 - each image is a set of rays leaving the box
 - calibration
 - so you can put all rays into one coordinate system
 - construct some form of index
 - or organize rays
- Issue:
 - we don't sample every ray
 - what if eye ray is between samples?
 - multilinear interpolate

Light field object representations