
Basic Ray-Tracing Ideas
D.A. Forsyth, UIUC

What is rendering?

How cameras work

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

Cameras

• First photograph due to Niepce

• First on record shown in the book - 1822

• Basic abstraction is the pinhole camera

• lenses required to ensure image is not too dark

• various other abstractions can be applied

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

Pinhole cameras

• Abstract camera model - box with a small hole in it

• Pinhole cameras work in practice

A photo of the Camera Obscura in San Francisco. This Camera Obscura is
located at the Cliff House on the Pacific ocean. Credit to Jacob Appelbaum of
http://www.appelbaum.net.

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

Pixels, time and integration

• For every practical camera

• pinhole opens, is open for some

time, closes

• Each pixel is a light sensor

• typically, linear

• typically, average all incoming light

• over all positions, directions,
wavelengths, times at pixel

• perhaps weighted

wavelength

position
angle Incoming radiance

Sensitivity

v =

Z

⇤

Z

D

Z

⌦

Z

T
w(x,�,!, t)L(x,!, t)dtd!dxd�

time

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

Pinhole too big -

 many directions are

 averaged, blurring the

 image

Pinhole too small-

 diffraction effects blur

 the image

Generally, pinhole

cameras are dark, because

a very small set of rays

from a particular point

hits the screen.

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

v =

Z

⇤

Z

D

Z

⌦

Z

T
w(x,�,!, t)L(x,!, t)dtd!dxd�

Blurring with large pinholes is an integration effect

we’re averaging over many directions,

some don’t hit the letters,

and so average in the background.

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

Color cameras

• Red, Green, Blue sensors

• each has a different wavelength sensitivity

• typically, some translucent colored material in front of the pixel

v =

Z

⇤

Z

D

Z

⌦

Z

T
w(x,�,!, t)L(x,!, t)dtd!dxd�

Motion Blur

• Another integration effect

T

T+dt

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

The reason for lenses

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

Lenses come with problems

• Spherical aberration

• Lens is not a perfect thin lens, and point is defocused

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

Lens systems

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

Vignetting

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

Other (possibly annoying) phenomena

• Chromatic aberration

• Light at different wavelengths follows different paths; hence, some

wavelengths are defocussed

• Machines: coat the lens

• Humans: live with it

• Scattering at the lens surface

• Some light entering the lens system is reflected off each surface it

encounters (Fresnel’s law gives details)

• Machines: coat the lens, interior

• Humans: live with it (various scattering phenomena are visible in the

human eye)

• Geometric phenomena (Barrel distortion, etc.)

• i.e. we can approximate integrals with sums

• example: p(x) uniform, stochastic sampling of pixel

• generically, known as Monte Carlo estimates

Randomized estimates of integrals

if xi � p(x)
then 1

N

�N
i=1 f(xi)⇥

⇥
f(x)p(x)dx

Weak law of large numbers

Importance weighting

if xi � p(x)
then 1

N

�N
i=1 f(xi)⇥

⇥
f(x)p(x)dx

Z
f(x)dx ⇡ 1

N

f(xi)

p(xi)

xi ⇠ p(x)If

Then

Randomized estimates and variance

• The estimate is the value of a random variable

• (different random samples -> different estimates)

• whose expected value is the value of the integral

• but whose variance might be very big

• and is usually very hard to know

• Simple reasoning suggests that

• p should be big when f is big, etc.

Z
f(x)dx ⇡ 1

N

f(xi)

p(xi)

Variance example

Drawing uniform samples will get a poor estimate

-> draw samples mostly at peak and downweight

Algorithmic framework

v =

Z

⇤

Z

D

Z

⌦

Z

T
w(x,�,!, t)L(x,!, t)dtd!dxd� ⇡

X

i2rays
g(ray)L(ray)

Computational problem - what is L(ray)?

Very simple ray-tracing

Point light source

How much light is travelling

down this ray toward camera?

sometimes known as the “eye ray”

Light at surfaces

• Many effects when light strikes a surface -- could be:

• absorbed; transmitted; reflected; scattered

• Simplify

• Assume that

• surfaces don’t fluoresce

• surfaces don’t emit light (i.e. are cool)

• all the light leaving a point is due to that arriving at that point

• Two main abstractions

• Diffuse surface

• Specular surface

Diffuse reflection

• Light leaves the surface evenly in all directions

• cotton cloth, carpets, matte paper, matte paints, etc.

• most “rough” surfaces

• Parameter: Albedo

• percentage of light arriving that leaves

• range 0-1

• practical range is smaller

• Test:

• surface has same apparent brightness when viewed from different dir’ns

Specular surface

• For some surfaces, reflection depends strongly on angle

• mirrors (special case)

• incoming direction, normal and outgoing direction are coplanar

• angle din, normal and angle dout, normal are the same

• more general cases later

• rules:

• din, dout, N coplanar

• angle(din, N)=angle(dout, N)

N
din

dout

Lighting model

• Light arrives at a surface ONLY from a luminaire

• this is an object that “makes light”

• through chemical, mechanical, etc means

• Wild oversimplification, good for us right now

• wait a few slides and it’ll get more complicated

Eye ray strikes diffuse surface

Compute brightness of

diffuse surface at first contact =

Can it see the light sources ?=

 Is there an object in line segment

connecting point to source?

Point light source

Eye ray

Eye ray strikes specular surface

Compute brightness of

specular surface at first contact =

eye ray changes direction, and compute

brightness at the end of that

Point light source

Eye ray

specular
surface

Implied computational problems

• Fast, accurate intersection with complicated models

• Improved rendering

• anti aliasing (= more rays)

• motion blur (= more rays)

• more complex illumination phenomena (= more rays, caching)

Reminder: Scene Graphs

• Hierarchical representation of all
objects in scene

• familiar from raster graphics, etc

Scale 2,2,2 
Xlate 2,0,0

Xlate 2,2,0 
Scale .5,1,.5

Xlate -2,0,0 Xlate 2,0,0

Geometric Primitives

• Primitives we can deal with

• half-space (because we can do plane intersection)

• sphere (because we can do sphere intersection)

• cylinder (easy generalization of sphere)

• convex polyhedron (easy generalization of half-space)

• Others will come as we learn more intersection techniques

Reminder: Scene Graphs

• Hierarchical representation of all
objects in scene

• familiar from raster graphics, etc

• Transformation nodes now:

• Intersect children with ray

• transform ray to child’s frame

• i.e. inverted from usual

• Returned normal must be in world frame

• i.e. transpose(inverse(T))

• Maintain inverse(T)

Scale 2,2,2 
Xlate 2,0,0

Xlate 2,2,0 
Scale .5,1,.5

Xlate -2,0,0 Xlate 2,0,0

Reminder: Instancing

• Scene graph is a hierarchy

• Not necessarily a tree

• Directed acyclic graph (DAG)

• Nodes may have multiple

parents

• Instance

• Appearance of each node’s geometry
in scene

Scale 2,2,2 
Xlate 2,0,0

Xlate -1,0,0 Xlate 1,0,0

Scale .5,1,.5

Xlate 2,2,0

Fun with instancing

Image 
courtesy 
John 
Amanatides

CSG

• Constructive Solid Geometry

• objects are boolean combinations of

primitive volumes

• union, intersection, difference

• usually regularized
A

B

A∪B A∩B A–B

B–A

Geometric Primitives

• Primitives we can deal with

• half-space (because we can do plane intersection)

• sphere (because we can do sphere intersection)

• cylinder (easy generalization of sphere)

• convex polyhedron (easy generalization of half-space)

• Others will come as we learn more intersection techniques

Raytracing CSG

• Represent all intersections in a
hit record

• list

• If we know where focal point
is (in/out), parity classifies all
others

in

out

in

out

in
out

in

out

Raytracing CSG

• List of t-values for A, B w/in-out
classification

• A.t_list = {0.9, 3.1} = {0.9in, 3.1out}

• B.t_list = {2.5, 4.5} = {2.5in, 4.5out}

• Use dot(r.d,n) to determine in,out

• Merge both lists into a single t-
ordered list

• {	 0.9	 Ain	 Bout, 

2.5	 Ain	 Bin, 
3.1	 Aout	 Bin, 
4.5	 Aout	 Bout }

• Keep track of A and B in/out
classification

• Use Roth table to classify t-values

Roth Table

Op	 A	 B	 Res

+	 in	 in	 in

	 in	 out	 in

	 out	 in	 in

	 out	 out	 out

*	 in	 in	 in

	 in	 out	 out

	 out	 in	 out

	 out	 out	 out

–	 in	 in 	 out

	 in	 out	 in

	 out	 in	 out

	 out	 out	 out

A   B 
A.t0 A.t1B.t0 B.t1

  

0.9 2.5 3.1 4.5

• Primitives can produce non-volumes

• e.g. A intersect B in pic gives line

Regularizing CSG

A B

A �� B = closure (interior(A) � interior(B))

There’s a general phenomenon here

• Points that lie on top of one another

• but we may not be able to tell

• Our t-values aren’t precisely correct

• numerical representations aren’t precise

• could be for polynomial surfaces, but this is not worth the effort

• This means

• intersections aren’t precisely where we think they are

• eg shadow ray eczema

• Tolerable solution

• regard points that are “very close” as the same point

• cures shadow ray eczema by ignoring surface as blocker

• can be used to cure previous problem

• Primitives can produce non-volumes

• e.g. A intersect B in pic gives line

• Regularize

• eg

• equivalently

• require Bin to occur some small distance before Aout to get hit

Regularizing CSG
A B

This makes the line go away. (ex: how do you regularize union, difference?)

A \⇤ B = closure (interior(A) \ interior(B))

• Surface is:

• points in vector form:

• ray is:

• intersections are:

• and are obtained by root finding

Implicit Surfaces

f(x, y, z) = 0

f(x) = 0

a + tv

f(a + tv) = 0

Accurate Intersection: Computing roots

• Options: numerical root finding

• Interval halving

• Newton’s method with deflation

• Bracketing with Sturm sequence

Interval halving

• Assume we have two points on ray

• perhaps generated by some form of spatial subdivision scheme

• one on positive side, one on negative side of intersection

• Split the interval in half

• One half has the root (+-)

• Other doesn’t (++, --)

• Keep the one that does, and go again if it is too big

Newton’s method

• Estimate is:

• Observe that:

• so update is:

•

tn

f(tn + �t) = f(tn) + �t
df

dt
= 0

�t = �f(tn)�
df
dt

⇥

Practicalities

• Deflation: if you have found a root, divide the polynomial
by (t-root) to reduce degree

• Newton’s method can behave badly

• start in a good place

• e.g. root from previous ray with this object

• Newton’s method not efficient for shadow rays

• Newton’s method doesn’t guarantee closest root

Sturm sequences

• Build a sequence of polynomials

• (where rem stands for remainder; f should not have repeated roots)

p0(t) = f(t)
p1(t) = df

dt
. . .

pk(t) = �rem(pk�2, pk�1)
. . .
pm

0

• write for the number of sign changes in

• then for a<b, number of real roots in (a, b] is

Sturm sequences

⇥(�)

(p0(�), p1(�), p2(�), ..., pm(�))

�(a)� �(b)

Can bracket root using interval halving, use for shadow rays

Sturm sequences: example

p0 = t3 + 3t2 � 1
p1 = 3t2 + 6t so p0 = (t/3)p1 + (1/3)p1 � 2t� 1
p2 = 2t + 1

p3 = constant

Ex: how many roots in 0-1 interval?

 how many roots in 0 - infinity interval?

find root in 0-1 interval

-9/4

Making Ray Tracing Faster

• Coherence

• Image coherence: rays through

nearby pixels go through nearby
things

• Spatial coherence: similar rays go
through similar things

• Temporal coherence: the same ray
at the next time goes through
similar things

Stanford Bunny 
~70K triangles

Do we need 70K ray-triangle 
intersections for each ray?

Item buffer

• Use conventional z-buffer renderer to render surfaces

• shade with pointer, not illumination

• this gives pointer to closest surface

• not much used now (ex: why?)

Shadow Caching

• Any interloper between surface
point x and the light source s will
cast a shadow

• Doesn’t matter how many

• Doesn’t matter which is closest

• Stop ray intersections once any

intersection found

• Neighboring shadowed surface
points x and x’ probably
shadowed by the same object

• Start shadow ray intersection search with

object intersected in last shadow search

x x’

A

B

C

s

Bounding Volume

• Ray-bunny intersection takes 70K
ray-triangle intersections even if
ray misses the bunny

• Place a sphere around bunny

• Ray A misses sphere so ray A misses

bunny without checking 70K ray-triangle
intersections

• Ray B intersects sphere but still misses
bunny after checking 70K intersections

• Ray C intersects sphere and intersects
bunny

• Can also use axis-aligned
bounding box

• Easier to create for triangle mesh

A

B
C

Bounding Volume Hierarchy

• Associate bounding volume with each node of scene graph

• If ray misses a node’s bounding volume, then no need to

check any node beneath it

• If ray hits a node’s BV, then replace it with its children’s

BV’s (or geometry)

• Breadth first search of tree

• Maintain heap ordered by ray-BV intersection t-values

• Explore children of node 

w/least pos. ray-BV t-value

A

B
C

Bunny BV

Body BVHead BV

L.EarFace R.EarBV BV BV

Grids

• Encase object in a 3-D grid of cubes

• each has list of all triangles it intersects

• Rasterize ray to find which cells it
intersects

• 3D Bresenham algorithm

• All cells that contain any part of ray

• Working from first ray-cell to last…

• Find least positive intersect of ray with triangles in

cell’s list

• If no intersection, move on to next cell

• Ray-object intersection test
valid for ray with entire object

• not just portion of object

inside current cell

• Need only intersect object

once for each ray

• Tags

• does not intersect

• intersection at ...

Tagging

#1

#2A

C

B

r
D

K-D trees

• Put bounding box around all objects

• split with coordinate plane (x, y, or z) into two boxes

• distribute objects into boxes

• split each child box recursively until stop

• Questions:

• how do we compute intersections?

• easy

• pass ray into children it intersects

• intersect with objects in leaf nodes

• what is a good split?

• how should we stop splitting?

K-D trees - what is a good split?

• Keep track of intersection costs

• cheap to intersect with nearly empty boxes

• expensive to intersect with a box with lots of stuff

• expensive to look at many small boxes

• Cost of split=

• Cost of traversal+Cost Left Intersect +Cost Right Intersect

• Need a model for intersect costs

• Intersect cost model:

• Each box contains voxels on some fine grid

• Filled voxels might be convex

• If they were, probability of intersection would be ratio of surface areas

K-D trees - what is a good split?

Expected cost of ray entering box =
Sy

Sx
Base cost of intersection

K-D trees - what is a good split?

• Expected cost of split =

• expected cost of LHS box+

• expected cost of RHS box+

• cost of traversal

• Notice expression does not depend on probability ray
visits parent

K-D trees

• Splits occur only on planes that bound filled voxels

• Search all splits for lowest cost, using model

• Stopping

• fixed depth

• threshold number of objects per voxel

• both

• adaptive (i.e. make cost estimate for each leaf, split of each leaf)

http://www.flipcode.com/archives/Raytracing_Topics_Techniques-Part_7_Kd-
Trees_and_More_Speed.shtml

Key idea - how bright is this point?

Radiometry

• Questions:

• how “bright” will surfaces be?

• what is “brightness”?

• measuring light

• interactions between light and surfaces

• Core idea - think about light arriving at a surface

• around any point is a hemisphere of directions

• what is important is what a source “looks like” to a receiver

• receiver can’t know anything else about source

r

Solid angle

• By analogy with angle (in radians)

• The solid angle subtended by a patch area dA is given by

• and (in right coords!)

Solid Angle

d! = cos ✓d✓d�

d! =
cos ✓n
r2

dA

θ
φ

dφ

dθ

dA

θn

r

Radiance

• Measure the “amount of light” at a point, in a direction

• Units: watts per square meter per steradian (wm-2sr-1)

• Crucial property:

• In a vacuum, radiance leaving p in the direction of q is the same as
radiance arriving at q from p

• hence the units

Why not watts/square meter?

• Consider sphere radiating 1 W into vacuum

• Radius 1, center at origin

• Vacuum neither creates nor consumes power

• There’s another sphere around it

• Radius R, center at origin

• Area - 4 pi R^2

• It can’t collect more power than first sphere radiates so

• watts/square meter must go down with distance….!!! (ew)

Radiator

Receiver

Radiance is constant along straight lines

d2P1!2 = (Radiance)(foreshortened area of 1)(solid angle of 2 at 1)

= L(x1,x1 ! x2)(cos ✓1dA1)(
cos ✓2
r2

dA2)

d2P1!2 = (Radiance)(foreshortened area of 2)(solid angle of 1 at 2)

= L(x2,x1 ! x2)(cos ✓2dA2)(
cos ✓1
r2

dA1)

Power 1-> 2, leaving 1

Power 1-> 2, arriving at 2

Irradiance

• How much light is arriving at a surface?

• Sensible unit is Irradiance

• Incident power per unit area not foreshortened

• This is a function of incoming angle.

• A surface experiencing radiance L(x,θ,φ) coming in from
dω experiences irradiance

• Crucial property:
Total power arriving at the
surface is given by adding

irradiance over all incoming
angles --- this is why it’s a

natural unit

L(x, ✓,�) cos ✓d!

• Many effects when light strikes a surface -- could be:

• absorbed; transmitted. reflected; scattered

• Assume that

• surfaces don’t fluoresce

• surfaces don’t emit light (i.e. are cool)

• all the light leaving a point is due to that arriving at that point

• Can model this situation with the Bidirectional
Reflectance Distribution Function (BRDF)

• the ratio of the radiance in the outgoing direction to the
incident irradiance

Surfaces and the BRDF

BRDF

• Units: inverse steradians (sr-1)

• Symmetric in incoming and outgoing directions

• Radiance leaving in a particular direction:

• add contributions from every incoming direction

Suppressing Angles - Radiosity

• In many situations, we do not really need angle
coordinates

• e.g. cotton cloth, where the reflected light is not dependent on angle

• Appropriate radiometric unit is radiosity

• total power leaving a point on the surface, per unit area on the surface

(Wm-2)

• Radiosity from radiance?

• sum radiance leaving surface over all exit directions

Radiosity

• Important relationship:

• radiosity of a surface whose radiance is independent of angle (e.g. that

cotton cloth)

• For some surfaces, the BRDF is independent of direction

• cotton cloth, carpets, matte paper, matte paints, etc.

• radiance leaving the surface is independent of angle

• Lambertian surfaces (same Lambert) or ideal diffuse surfaces

• Use radiosity as a unit to describe light leaving the surface

• percentage of incident light reflected is diffuse reflectance or albedo

• Useful fact:

Lambertian surfaces and albedo

Specular surfaces

• Another important class of surfaces is specular, or mirror-
like.

• radiation arriving along a direction leaves along the specular direction

• reflect about normal

• some fraction is absorbed, some reflected

• on real surfaces, energy usually goes into a lobe of directions

• can write a BRDF, but requires the use of funny functions

Phong’s model

• There are very few cases where the exact shape of the
specular lobe matters.

• Typically:

• very, very small --- mirror

• small -- blurry mirror

• bigger -- see only light sources as “specularities”

• very big -- faint specularities

• Phong’s model

• reflected energy falls off with

Lambertian + specular

• Widespread model

• all surfaces are Lambertian plus specular component

• Advantages

• easy to manipulate

• very often quite close true

• Disadvantages

• some surfaces are not

• e.g. underside of CD’s, feathers of many birds, blue spots on many
marine crustaceans and fish, most rough surfaces, oil films (skin!), wet
surfaces

• Generally, very little advantage in modelling behaviour of light at a surface
in more detail -- it is quite difficult to understand behaviour of L+S
surfaces

Area sources

• Examples: diffuser boxes, white walls.

• The radiosity at a point due to an area source is obtained

by adding up the contribution over the section of view
hemisphere subtended by the source

• change variables and add up over the source

Radiosity due to an area source

• rho is albedo

• E is exitance

• r(x, u) is distance between points

• u is a coordinate on the source

The Rendering Equation- 1

• We can now write

Radiance leaving a point in a direction

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Radiance emitted from surface at that point in that direction

BRDF Incoming radiance

Average over hemisphere

Angle between normal

and incoming direction

Radiance is constant along straight lines, so this is what we want to know

The Rendering Equation - II

• This balance works for

• each wavelength,

• at any time, so

• So

Lo(x,!o,�, t) = Le(x,!o,�, t)+R
⌦ ⇢bd(x,!o,!i,�, t)Li(x,!i,�, t) cos ✓id!i

Global illumination

• Incoming radiance isn’t
just from luminaires

• the reason you can see

surfaces is they reflect light

• other surfaces don’t

distinguish between
reflected light and generated
light

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Incoming radiance

Point light source

Eye ray

Light paths

• Recursively expand, as above

• sample the incoming directions

• what radiance is coming in?

• go to far end - what is emitted+reflected?

• recur

•

Point light source

Eye ray

Light paths - II

• But this is really (suppressing wavelength and time)

v =

Z

⇤

Z

D

Z

⌦

Z

T
w(x,�,!, t)L(x,!, t)dtd!dxd� ⇡

X

i2rays
g(ray)L(ray)

Z

D

Z

⌦
L(x,!)w(x,!)dxd! ⇡ 1

N

X

paths

(contribution of path)

Light paths - III

• Now consider contribution of path

• it doesn’t make a contribution unless there’s

• eye at one end

• luminaire at the other

• We can write

Point light source

Eye ray

L (Something) E

Some light paths are harder than others

• We have already seen how to render

• LDE - (light diffuse eye)

• eye ray to diffuse surface, can it see light?

• LSE - (light specular eye)

• eye ray to specular surface, reflect and hit diffuse, can it see light?

• Actually, can do:

• LDS*E - (light diffuse 0 or more specular bounces eye)

• How about

• LDDE - (light diffuse diffuse eye)

• easy geometry likely high variance

• LS+DE - (light diffuse at least one specular eye)

• rather harder

Eye ray strikes diffuse surface - LDE

Compute brightness of

diffuse surface at first contact =

Can it see the light sources ?=

 Is there an object in line segment

connecting point to source?

Point light source

Eye ray

Eye ray strikes specular surface - LDSE

Compute brightness of

specular surface at first contact =

eye ray changes direction, and compute

brightness at the end of that

Point light source

Eye ray

specular
surface

LDD+E - easy geometry, but variance
Point light source

Eye ray

Point light source

Eye ray

Point light source

Eye ray

Point light source

Eye ray

LDD+E - variance control (sketch!)

• In principle, easily sampled recursively

• Preferentially sample paths that make large contributions

• these are paths that connect light, eye, via high albedo surfaces

• “Russian roulette”

• continue path with probability = albedo

• weight by (1/albedo)

• Cache results

• propagating a path:

• check: is there something in the cache?

• yes: use it

• no: propagate path and cache results

LS+DE - harder - where is the light?

Mirror

Light source

Di!use surface

Di!use surface

eye ray

LS+DE - harder - where is the light?

Mirror

Light source

Di!use surface

Di!use surface

eye ray

Problem: which direction leaving diffuse surface will hit the light?

Strategies

• Bidirectional ray tracing

• Trace a lot of rays from light through specular surfaces to first diffuse

• Trace a lot of eye rays to first diffuse

• Join paths

• Variance control

• weight paths as if they’d been found in different ways (Veach +Guibas)

• Markov chain monte carlo

• take a path and mutate it; reweight contribution of mutated path

• Caching

• Photon cache - trace many rays from light through specular to diffuse

• cache at diffuse

• query with eye ray

Biased vs unbiased rendering

• Unbiased renderer

• pixel value is value of random variable (different paths=different values)

• E(estimate)=True value

• sometimes essential

• eg estimate the amount of light in a museaum hall

• Biased renderer

• E(estimate)=True value + Bias

• eg Photon map (as above)

• Bias because we do not know how many photons to stick in cache

• Often more realistic

• Crucial point

• Very few people can tell if a render is nearly physically correct

• and no-one can reliably spot exactness

The plenoptic function

• We are repeatedly sampling radiance

• as function of point, direction

• What if we had a function that could report that?

• Plenoptic function

• radiance along a directed line

• space of lines is rather nastier than you might think

Lines in 3D (if it’s empty!)

• Space of lines is 4 dimensional

• can specify a line by:

• where it intersects each of two planes

• some missing lines, some details

• alternative

• directed line

• point on the tangent plane of sphere

Line

Point representing line

Lines in 3D with object can be nasty

A
B

C

Simplify

• Place an object in a box

• record radiance for each ray leaving box

• Easy to ray trace

• look up eye ray in rays leaving box

• report that value

• Capture is relatively easy

Capturing this representation

• Obtain an awful lot of images from calibrated cameras

• each image is a set of rays leaving the box

• calibration

• so you can put all rays into one coordinate system

• construct some form of index

• or organize rays

• Issue:

• we don’t sample every ray

• what if eye ray is between samples?

• multilinear interpolate

Light field object representations

