Basic Ray-Tracing Ideas -II

D.A. Forsyth, UIUC

Recall: Randomized estimates of integrals

Weak law of large numbers

if
$$x_i \sim p(x)$$

then $\frac{1}{N} \sum_{i=1}^N f(x_i) \to \int f(x) p(x) dx$

- i.e. we can approximate integrals with sums
 - example: p(x) uniform, stochastic sampling of pixel
- generically, known as Monte Carlo estimates

Importance weighting

if
$$x_i \sim p(x)$$

then $\frac{1}{N} \sum_{i=1}^N f(x_i) \to \int f(x) p(x) dx$

If
$$x_i \sim p(x)$$

Then

$$\int f(x)dx \approx \frac{1}{N} \sum_{i} \frac{f(x_i)}{p(x_i)}$$

Randomized estimates and variance

$$\int f(x)dx \approx \frac{1}{N} \sum_{i} \frac{f(x_i)}{p(x_i)}$$

- The estimate is the value of a random variable
 - (different random samples -> different estimates)
 - whose expected value is the value of the integral
 - but whose variance might be very big
 - and is usually very hard to know
- Simple reasoning suggests that
 - p should be big when f is big, etc.

Variance example

Drawing uniform samples will get a poor estimate -> draw samples mostly at peak and downweight

Algorithmic framework

Computational problem - what is L(ray)?

Very simple ray-tracing

O Point light source

Diffuse reflection

- Light leaves the surface evenly in all directions
 - cotton cloth, carpets, matte paper, matte paints, etc.
 - most "rough" surfaces
 - Parameter: Albedo
 - percentage of light arriving that leaves
 - range 0-1
 - practical range is smaller
- Test:
 - surface has same apparent brightness when viewed from different dir'ns

Specular surface

- For some surfaces, reflection depends strongly on angle
 - mirrors (special case)
 - incoming direction, normal and outgoing direction are coplanar
 - angle din, normal and angle dout, normal are the same
 - more general cases later
 - rules:
 - din, dout, N coplanar
 - angle(din, N)=angle(dout, N)

Lighting model

- Light arrives at a surface ONLY from a luminaire
 - this is an object that "makes light"
 - through chemical, mechanical, etc means
- Wild oversimplification, good for us right now
 - wait a few slides and it'll get more complicated

Eye ray strikes diffuse surface

Eye ray strikes specular surface

O Point light source

Compute brightness of specular surface at first contact = eye ray changes direction, and compute brightness at the end of that

Implied computational problems

- Fast, accurate intersection with complicated models
 - Improved rendering
 - anti aliasing (= more rays)
 - motion blur (= more rays)
 - more complex illumination phenomena (= more rays, caching)

Key idea - how bright is this point?

Radiometry

• Questions:

- how "bright" will surfaces be?
- what is "brightness"?
 - measuring light
 - interactions between light and surfaces
- Core idea think about light arriving at a surface
 - around any point is a hemisphere of directions
 - what is important is what a source "looks like" to a receiver
 - receiver can't know anything else about source

Solid angle

FIGURE 2.15: A hemisphere on a patch of surface, to show our angular coordinates for computing radiometric quantities. The coordinate axes are there to help you see the drawing as a 3D surface. An infinitesimal patch of surface with area dA which is distance r away is projected onto the unit hemisphere centered at the relevant point; the resulting area is the solid angle of the patch, marked as $d\theta d\phi$. In this case, the patch is small so that the area and hence the solid angle is $(1/r^2)dA\cos\theta_n$, where θ_n is the angle of inclination of the patch.

Solid Angle

- By analogy with angle (in radians)
- The solid angle subtended by a patch area dA is given by

Radiance

- Measure the "amount of light" at a point, in a direction the power (amount of energy per unit time) traveling at some point in a specified direction, per unit area *perpendicular to the direction of travel*, per unit solid angle.
- Units: watts per square meter per steradian (wm-2sr-1)
- Crucial property:
 - In a vacuum, radiance leaving p in the direction of q is the same as radiance arriving at q from p
 - hence the units

Why not watts/square meter?

• Consider sphere radiating 1 W into vacuum

- Radius 1, center at origin
- Vacuum neither creates nor consumes power
- There's another sphere around it
 - Radius R, center at origin
 - Area 4 pi R^2
 - It can't collect more power than first sphere radiates so
 - watts/square meter must go down with distance....!!! (ew)

Radiance is constant along straight lines

Irradiance

- How much light is arriving at a surface?
- Sensible unit is Irradiance
 - Incident power per unit area not foreshortened
 - This is a function of incoming angle.
- A surface experiencing radiance L(x,θ,φ) coming in from dω experiences irradiance

 $L(\mathbf{x}, \theta, \phi) \cos \theta d\omega$

• Crucial property: Total power arriving at the surface is given by adding irradiance over all incoming angles --- this is why it's a natural unit

Surfaces and the BRDF

- Many effects when light strikes a surface -- could be:
 - absorbed; transmitted. reflected; scattered
- Assume that
 - surfaces don't fluoresce
 - surfaces don't emit light (i.e. are cool)
 - all the light leaving a point is due to that arriving at that point
- Can model this situation with the Bidirectional Reflectance Distribution Function (BRDF)
- the ratio of the radiance in the outgoing direction to the incident irradiance

 $\rho_{bd}(\underline{x},\vartheta_o,\varphi_o,\vartheta_i,\varphi_i) =$

 $\frac{L_o(\underline{x}, \vartheta_o, \varphi_o)}{L_i(\underline{x}, \vartheta_i, \varphi_i) \cos \vartheta_i d\omega}$

BRDF

- Units: inverse steradians (sr-1)
- Symmetric in incoming and outgoing directions
- Radiance leaving in a particular direction:
 - add contributions from every incoming direction

$$\int_{\Omega} \rho_{bd} (\underline{x}, \vartheta_o, \varphi_o, \vartheta_i, \varphi_i) L_i (\underline{x}, \vartheta_i, \varphi_i) \cos \vartheta_i d\omega_i$$

Suppressing Angles - Radiosity

- In many situations, we do not really need angle coordinates
 - e.g. cotton cloth, where the reflected light is not dependent on angle
- Appropriate radiometric unit is radiosity
 - total power leaving a point on the surface, per unit area on the surface (Wm-2)
- Radiosity from radiance?
 - sum radiance leaving surface over all exit directions

$$B(\underline{x}) = \int_{\Omega} L_o(\underline{x}, \vartheta, \varphi) \cos \vartheta d\omega$$

Exitance

- For some luminaires, generated light independent of angle
 - think light box
- Appropriate radiometric unit is exitance
 - total power leaving a point on the surface, per unit area on the surface (Wm-2), created in the surface

Radiosity

- Important relationship:
 - radiosity of a surface whose radiance is independent of angle (e.g. that cotton cloth)

$$B(\underline{x}) = \int_{\Omega} L_o(\underline{x}, \vartheta, \varphi) \cos \vartheta d\omega$$

= $L_o(\underline{x}) \int_{\Omega} \cos \vartheta d\omega$
= $L_o(\underline{x}) \int_{0}^{\pi/22\pi} \int_{0}^{\pi/22\pi} \cos \vartheta \sin \vartheta d\varphi d\vartheta$
= $\pi L_o(\underline{x})$

Lambertian surfaces and albedo

- For some surfaces, the BRDF is independent of direction
 - cotton cloth, carpets, matte paper, matte paints, etc.
 - radiance leaving the surface is independent of angle
 - Lambertian surfaces (same Lambert) or ideal diffuse surfaces
 - Use radiosity as a unit to describe light leaving the surface
 - percentage of incident light reflected is diffuse reflectance or albedo
- Useful fact:

$$\rho_{brdf} = \frac{\rho_d}{\pi}$$

Specular surfaces

- Another important class of surfaces is specular, or mirrorlike.
 - radiation arriving along a direction leaves along the specular direction
 - reflect about normal
 - some fraction is absorbed, some reflected
 - on real surfaces, energy usually goes into a lobe of directions
 - can write a BRDF, but requires the use of funny functions

Phong's model

- There are very few cases where the exact shape of the specular lobe matters.
- Typically:
 - very, very small --- mirror
 - small -- blurry mirror
 - bigger -- see only light sources as "specularities"
 - very big -- faint specularities
- Phong's model
 - reflected energy falls off with

 $\cos^n(\delta \vartheta)$

Lambertian + specular

- Widespread model
 - all surfaces are Lambertian plus specular component
- Advantages
 - easy to manipulate
 - very often quite close true
- Disadvantages
 - some surfaces are not
 - e.g. underside of CD's, feathers of many birds, blue spots on many marine crustaceans and fish, most rough surfaces, oil films (skin!), wet surfaces
 - Generally, very little advantage in modelling behaviour of light at a surface in more detail -- it is quite difficult to understand behaviour of L+S surfaces

The Rendering Equation-1

Angle between normal and incoming direction

Radiance leaving a point in a direction

Radiance is constant along straight lines, so this is what we want to know

The Rendering Equation - II

• This balance works for

- each wavelength,
- at any time, so

• So

$$L_o(\mathbf{x}, \omega_o, \lambda, t) = L_e(\mathbf{x}, \omega_o, \lambda, t) + \int_{\Omega} \rho_{bd}(\mathbf{x}, \omega_o, \omega_i, \lambda, t) L_i(\mathbf{x}, \omega_i, \lambda, t) \cos \theta_i d\omega_i$$

- Examples: diffuser boxes, white walls.
- The radiosity at a point due to an area source is obtained by adding up the contribution over the section of view hemisphere subtended by the source
 - change variables and add up over the source

Radiosity due to an area source

- rho is albedo
- E is exitance
- r(x, u) is distance between points
- u is a coordinate on the source

$$B(x) = \rho_d(x) \int_{\Omega} L_i(x, u \to x) \cos \theta_i d\omega$$

= $\rho_d(x) \int_{\Omega} L_e(x, u \to x) \cos \theta_i d\omega$
= $\rho_d(x) \int_{\Omega} \left(\frac{E(u)}{\pi}\right) \cos \theta_i d\omega$
= $\rho_d(x) \int_{source} \left(\frac{E(u)}{\pi}\right) \cos \theta_i \left(\cos \theta_s \frac{dA_u}{r(x, u)^2}\right)$
= $\rho_d(x) \int_{source} E(u) \frac{\cos \theta_i \cos \theta_s}{\pi r(x, u)^2} dA_u$

Question: how to ray-trace this?

Recall

Global illumination

$$L_o(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{\Omega} \rho_{bd}(\mathbf{x}, \omega_o, \omega_i) L_i(\mathbf{x}, \omega_i) \cos \theta_i d\omega_i$$

- Incoming radiance isn't just from luminaires
 - the reason you can see surfaces is they reflect light
 - other surfaces don't distinguish between reflected light and generated light

Question: how to ray-trace this?

Recall

Light paths

• Recursively expand, as above

- sample the incoming directions •
 - what radiance is coming in? \bullet
 - go to far end what is emitted+reflected?
 - recur

Light paths - II

$$v = \int_{\Lambda} \int_{D} \int_{\Omega} \int_{T} w(\mathbf{x}, \lambda, \omega, t) L(\mathbf{x}, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(\text{ray}) L(\text{ray}) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda \approx \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \lambda, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega, t) L(x, \omega, t) dt d\omega dx d\lambda = \sum_{i \in \text{rays}} g(x, \omega, t) L(x, \omega$$

• But this is really (suppressing wavelength and time)

$$\int_{D} \int_{\Omega} L(\mathbf{x}, \omega) w(\mathbf{x}, \omega) dx d\omega \approx \frac{1}{N} \sum_{paths} (\text{contribution of path})$$

Light paths - III

Some light paths are harder than others

- We have already seen how to render
 - LDE (light diffuse eye)
 - eye ray to diffuse surface, can it see light?
 - LSE (light specular eye)
 - eye ray to specular surface, reflect and hit diffuse, can it see light?
 - Actually, can do:
 - LDS*E (light diffuse 0 or more specular bounces eye)
- How about
 - LDDE (light diffuse diffuse eye)
 - easy geometry likely high variance
 - LS+DE (light diffuse at least one specular eye)
 - rather harder

Eye ray strikes diffuse surface - LDE

Compute brightness of diffuse surface at first contact = Can it see the light sources ?= Is there an object in line segment connecting point to source?

Eye ray strikes specular surface - LDSE

Compute brightness of specular surface at first contact = eye ray changes direction, and compute brightness at the end of that O Point light source

Diffuse VS Specular (also translucent)

- Diffuse surfaces:
 - any incoming direction can cause light to travel down the eye ray
 - so you do not know from which directions contributions will arrive
 - when an eye ray arrives, it must create multiple query rays
- Specular surfaces:
 - only one incoming direction can cause light to travel down the eye ray
 - so you do know from which directions contributions will arrive
 - when an eye ray arrives, it creates only one query ray
- Translucent surfaces are like specular surfaces:
 - different geometry for the query ray

LDD+E - easy geometry, but variance

LDD+E - variance control (sketch!)

- In principle, easily sampled recursively
- Preferentially sample paths that make large contributions
 - these are paths that connect light, eye, via high albedo surfaces
 - "Russian roulette"
 - continue path with probability = albedo
 - weight by (1/albedo)
- OR Cache results
 - propagating a path:
 - check: is there something in the cache?
 - yes: use it
 - no: propagate path and cache results

LS+DE - harder - where is the light?

LS+DE - harder - where is the light?

Problem: which direction leaving diffuse surface will hit the light?

Strategies

• Bidirectional ray tracing

- Trace a lot of rays from light through specular surfaces to first diffuse
- Trace a lot of eye rays to first diffuse
- Join paths
- Variance control
 - weight paths as if they'd been found in different ways (Veach +Guibas)
- Markov chain monte carlo
 - take a path and mutate it; reweight contribution of mutated path
- Caching
 - Photon cache trace many rays from light through specular to diffuse
 - cache at diffuse
 - query with eye ray

Biased vs unbiased rendering

• Unbiased renderer

- pixel value is value of random variable (different paths=different values)
- E(estimate)=True value
- sometimes essential
 - eg estimate the amount of light in a museaum hall
- Biased renderer
 - E(estimate)=True value + Bias
 - eg Photon map (as above)
 - Bias because we do not know how many photons to stick in cache
 - Often more realistic
- Crucial point
 - Very few people can tell if a render is nearly physically correct
 - and no-one can reliably spot exactness

The plenoptic function

- We are repeatedly sampling radiance
 - as function of point, direction
- What if we had a function that could report that?
- Plenoptic function
 - radiance along a directed line
 - space of lines is rather nastier than you might think

The plenoptic function as a cache

The plenoptic function - careful!

• This is a function whose domain is nasty

- all maximal directed line segments (lines) in free space
- the domain can get very complicated
 - easy when there aren't any objects
 - otherwise, much harder
- domain is sometimes called a visibility complex

Fig. 1. Maximal free segment. (a) All the rays collinear to r whose origin is between the two spheres "see" point B. (b) These rays are grouped into a maximal free segment S. Two other maximal free segments S and S'' are collinear to S.

Durand et al 02

Lines in 3D (if it's empty!)

• Space of lines is 4 dimensional

- can specify a line by:
 - where it intersects each of two planes
 - some missing lines, some details
- alternative
 - directed line
 - point on the tangent plane of sphere

Lines in 3D with object can be nasty

Fig. 1. Maximal free segment. (a) All the rays collinear to r whose origin is between the two spheres "see" point B. (b) These rays are grouped into a maximal free segment S. Two other maximal free segments S and S'' are collinear to S.

Durand et al 02

Simplify

- Place an object in a box
 - record radiance for each ray leaving box
- Easy to ray trace
 - look up eye ray in rays leaving box
 - report that value
- Capture is relatively easy

Capturing this representation

- Obtain an awful lot of images from calibrated cameras
 - each image is a set of rays leaving the box
 - calibration

Figure 10: Object and lighting support. Objects are mounted on a Bogen fluid-head tripod, which we manually rotate to four orientations spaced 90 degrees apart. Illumination is provided by two 600W Lowell Omni spotlights attached to a ceilingmounted rotating hub that is aligned with the rotation axis of the tripod. A stationary 6' \mathbf{x} 6' diffuser panel is hung between the spotlights and the gantry, and the entire apparatus is enclosed in black velvet to eliminate stray light.

Levoy and Hanrahan, 96

Rendering

Figure 12: The process of resampling a light slab during display.

Levoy+Hanrahan, 96

Issue: Sampling and Interpolation

Figure 12: The process of resampling a light slab during display.

- Almost every eye ray ends up "between" uv, st samples
 - we must interpolate (smooth; something)
 - Traditional: multilinear interpolation

Interpolation helps, but..

Figure 13: The effects of interpolation during slice extraction. (a) No interpolation. (b) Linear interpolation in uv only. (c) Quadra-linear interpolation in uvst.

Figure 3: Using line space to visualize ray coverage. (a) shows a single

Revise model

• We need:

- better interpolation
- easier capture
- some way to deal with the awkwardness of line representations
- Ideas:
 - move to scattering/volume rendering based representation
 - this will make the line representation easier to deal with
 - use a multilayer perceptron to represent relevant functions
Scattering

- Fundamental mechanism of light/matter interactions
- Visually important for
 - slightly translucent materials (skin, milk, marble, etc.)
 - participating media
- In fact, it's the mechanism underlying reflection

Participating media

• for example,

- smoke,
- wet air (mist, fog)
- dusty air
- air at long scales
- Light leaves/enters a ray travelling through space
 - leaves because it is scattered out
 - enters because it is scattered in
- New visual effects

Light hits a small box of material

A ray passing through scattering material

Airlight as a scattering effect

From Lynch and Livingstone, Color and Light in Nature

From Lynch and Livingstone, Color and Light in Nature

Rendering this

• Ignore in-scattering

- only account for forward scattering
- Assume there is a source at t=T
 - of intensity I(T)
 - what do we see at t=0?

$$\frac{dI}{dt} = \sigma(t)I(t)$$
$$\frac{d\log I}{dt} = \sigma(t)$$

$$I(T) = I(0)e^{\int_0^T \sigma(t)dt} \qquad I(0) = I(T)e^{-\int_0^T \sigma(t)dt}$$

Yields

The volume density $\sigma(\mathbf{x})$ can be interpreted as the differential probability of a ray terminating at an infinitesimal particle at location \mathbf{x} . The expected color $C(\mathbf{r})$ of camera ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$ with near and far bounds t_n and t_f is:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right).$$
(1)

Mildenhall et al, 20