
Basic Ray-Tracing Ideas
-II

D.A. Forsyth, UIUC

• i.e. we can approximate integrals with sums
• example: p(x) uniform, stochastic sampling of pixel

• generically, known as Monte Carlo estimates

Recall: Randomized estimates of integrals

if xi � p(x)
then 1

N

�N
i=1 f(xi)⇥

⇥
f(x)p(x)dx

Weak law of large numbers

Importance weighting

if xi � p(x)
then 1

N

�N
i=1 f(xi)⇥

⇥
f(x)p(x)dx

xi ⇠ p(x)If

Then

Z
f(x)dx ⇡ 1

N

X

i

f(xi)

p(xi)

Randomized estimates and variance

• The estimate is the value of a random variable
• (different random samples -> different estimates)
• whose expected value is the value of the integral
• but whose variance might be very big

• and is usually very hard to know

• Simple reasoning suggests that
• p should be big when f is big, etc.

Z
f(x)dx ⇡ 1

N

X

i

f(xi)

p(xi)

Variance example

Drawing uniform samples will get a poor estimate
-> draw samples mostly at peak and downweight

Algorithmic framework

v =

Z

⇤

Z

D

Z

⌦

Z

T
w(x,�,!, t)L(x,!, t)dtd!dxd� ⇡

X

i2rays
g(ray)L(ray)

Computational problem - what is L(ray)?

Very simple ray-tracing

Point light source

How much light is travelling
down this ray toward camera?

sometimes known as the “eye ray”

Diffuse reflection

• Light leaves the surface evenly in all directions
• cotton cloth, carpets, matte paper, matte paints, etc.
• most “rough” surfaces
• Parameter: Albedo

• percentage of light arriving that leaves
• range 0-1

• practical range is smaller

• Test:
• surface has same apparent brightness when viewed from different dir’ns

Specular surface

• For some surfaces, reflection depends strongly on angle
• mirrors (special case)

• incoming direction, normal and outgoing direction are coplanar
• angle din, normal and angle dout, normal are the same

• more general cases later
• rules:

• din, dout, N coplanar
• angle(din, N)=angle(dout, N)

N
din

dout

Lighting model

• Light arrives at a surface ONLY from a luminaire
• this is an object that “makes light”

• through chemical, mechanical, etc means

• Wild oversimplification, good for us right now
• wait a few slides and it’ll get more complicated

Eye ray strikes diffuse surface

Compute brightness of
diffuse surface at first contact =
Can it see the light sources ?=

 Is there an object in line segment
connecting point to source?

Point light source

Eye ray

Eye ray strikes specular surface

Compute brightness of
specular surface at first contact =

eye ray changes direction, and compute
brightness at the end of that

Point light source

Eye ray

specular
surface

Implied computational problems

• Fast, accurate intersection with complicated models
• Improved rendering

• anti aliasing (= more rays)
• motion blur (= more rays)
• more complex illumination phenomena (= more rays, caching)

Key idea - how bright is this point?

Radiometry

• Questions:
• how “bright” will surfaces be?
• what is “brightness”?

• measuring light
• interactions between light and surfaces

• Core idea - think about light arriving at a surface
• around any point is a hemisphere of directions
• what is important is what a source “looks like” to a receiver

• receiver can’t know anything else about source

r

Solid angle

• By analogy with angle (in radians)
• The solid angle subtended by a patch area dA is given by

• and (in right coords!)

Solid Angle

d! = cos ✓d✓d�

d! =
cos ✓n
r2

dA

θ
φ

dφ

dθ

dA

θn

r

Radiance

• Measure the “amount of light” at a point, in a direction

• Units: watts per square meter per steradian (wm-2sr-1)
• Crucial property:

• In a vacuum, radiance leaving p in the direction of q is the same as
radiance arriving at q from p

• hence the units

Why not watts/square meter?

• Consider sphere radiating 1 W into vacuum
• Radius 1, center at origin
• Vacuum neither creates nor consumes power

• There’s another sphere around it
• Radius R, center at origin
• Area - 4 pi R^2
• It can’t collect more power than first sphere radiates so

• watts/square meter must go down with distance….!!! (ew)

Radiator

Receiver

Radiance is constant along straight lines

d2P1!2 = (Radiance)(foreshortened area of 1)(solid angle of 2 at 1)

= L(x1,x1 ! x2)(cos ✓1dA1)(
cos ✓2
r2

dA2)

d2P1!2 = (Radiance)(foreshortened area of 2)(solid angle of 1 at 2)

= L(x2,x1 ! x2)(cos ✓2dA2)(
cos ✓1
r2

dA1)

Power 1-> 2, leaving 1

Power 1-> 2, arriving at 2

Irradiance

• How much light is arriving at a surface?
• Sensible unit is Irradiance

• Incident power per unit area not foreshortened
• This is a function of incoming angle.

• A surface experiencing radiance L(x,θ,φ) coming in from
dω experiences irradiance

• Crucial property:
Total power arriving at the
surface is given by adding

irradiance over all incoming
angles --- this is why it’s a

natural unit

L(x, ✓,�) cos ✓d!

• Many effects when light strikes a surface -- could be:
• absorbed; transmitted. reflected; scattered

• Assume that
• surfaces don’t fluoresce
• surfaces don’t emit light (i.e. are cool)
• all the light leaving a point is due to that arriving at that point

• Can model this situation with the Bidirectional
Reflectance Distribution Function (BRDF)

• the ratio of the radiance in the outgoing direction to the
incident irradiance

Surfaces and the BRDF

BRDF

• Units: inverse steradians (sr-1)
• Symmetric in incoming and outgoing directions
• Radiance leaving in a particular direction:

• add contributions from every incoming direction

Suppressing Angles - Radiosity

• In many situations, we do not really need angle
coordinates
• e.g. cotton cloth, where the reflected light is not dependent on angle

• Appropriate radiometric unit is radiosity
• total power leaving a point on the surface, per unit area on the surface

(Wm-2)

• Radiosity from radiance?
• sum radiance leaving surface over all exit directions

Exitance

• For some luminaires, generated light independent of angle
• think light box

• Appropriate radiometric unit is exitance
• total power leaving a point on the surface, per unit area on the surface

(Wm-2), created in the surface

Radiosity

• Important relationship:
• radiosity of a surface whose radiance is independent of angle (e.g. that

cotton cloth)

• For some surfaces, the BRDF is independent of direction
• cotton cloth, carpets, matte paper, matte paints, etc.
• radiance leaving the surface is independent of angle
• Lambertian surfaces (same Lambert) or ideal diffuse surfaces
• Use radiosity as a unit to describe light leaving the surface
• percentage of incident light reflected is diffuse reflectance or albedo

• Useful fact:

Lambertian surfaces and albedo

Specular surfaces

• Another important class of surfaces is specular, or mirror-
like.
• radiation arriving along a direction leaves along the specular direction
• reflect about normal
• some fraction is absorbed, some reflected
• on real surfaces, energy usually goes into a lobe of directions
• can write a BRDF, but requires the use of funny functions

Phong’s model

• There are very few cases where the exact shape of the
specular lobe matters.

• Typically:
• very, very small --- mirror
• small -- blurry mirror
• bigger -- see only light sources as “specularities”
• very big -- faint specularities

• Phong’s model
• reflected energy falls off with

Lambertian + specular

• Widespread model
• all surfaces are Lambertian plus specular component

• Advantages
• easy to manipulate
• very often quite close true

• Disadvantages
• some surfaces are not

• e.g. underside of CD’s, feathers of many birds, blue spots on many
marine crustaceans and fish, most rough surfaces, oil films (skin!), wet
surfaces

• Generally, very little advantage in modelling behaviour of light at a surface
in more detail -- it is quite difficult to understand behaviour of L+S
surfaces

The Rendering Equation- 1

• We can now write

Radiance leaving a point in a direction

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Radiance emitted from surface at that point in that direction

BRDF Incoming radiance

Average over hemisphere

Angle between normal
and incoming direction

Radiance is constant along straight lines, so this is what we want to know

The Rendering Equation - II

• This balance works for
• each wavelength,
• at any time, so

• So

Lo(x,!o,�, t) = Le(x,!o,�, t)+R
⌦ ⇢bd(x,!o,!i,�, t)Li(x,!i,�, t) cos ✓id!i

Area sources

• Examples: diffuser boxes, white walls.
• The radiosity at a point due to an area source is obtained

by adding up the contribution over the section of view
hemisphere subtended by the source
• change variables and add up over the source

Radiosity due to an area source

• rho is albedo
• E is exitance
• r(x, u) is distance between points
• u is a coordinate on the source

Question: how to ray-trace this?

• Model:
• all diffuse surfaces
• light only arrives from luminaire

(area source)

• Rendering:
• how bright is the eye ray?

Eye ray

Area Source

Recall

Radiance leaving a point in a direction

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Radiance emitted from surface at that point in that direction
There isn’t any, so zero

BRDF Incoming radiance
This is from area source

Average over hemisphere

Angle between normal
and incoming direction

Radiance along eye ray

Diffuse, so this
is a constant

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Eye ray

Area Source

0

1

N

X

!i2samples of incoming directions

⇢L(x,!i) cos ✓i

But which directions?
and how should we sample them?

Global illumination

• Incoming radiance isn’t
just from luminaires
• the reason you can see

surfaces is they reflect light
• other surfaces don’t

distinguish between
reflected light and generated
light

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Incoming radiance
Point light source

Eye ray

Question: how to ray-trace this?

• Model:
• all diffuse surfaces
• light arrives from any radiating

surface

• Rendering:
• how bright is the eye ray?

Eye ray

Area Source

Recall

Radiance leaving a point in a direction

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Radiance emitted from surface at that point in that direction
There isn’t any, so zero

BRDF Incoming radiance
This is now from any radiator

Average over hemisphere

Angle between normal
and incoming direction

Radiance along eye ray

Diffuse, so this
is a constant

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

0

1

N

X

!i2samples of incoming directions

⇢L(x,!i) cos ✓i

But which directions?
and how should we sample them?

Eye ray

Area Source

Light paths

• Recursively expand, as above
• sample the incoming directions

• what radiance is coming in?
• go to far end - what is emitted+reflected?
• recur

•

Point light source

Eye ray

Light paths - II

• But this is really (suppressing wavelength and time)

v =

Z

⇤

Z

D

Z

⌦

Z

T
w(x,�,!, t)L(x,!, t)dtd!dxd� ⇡

X

i2rays
g(ray)L(ray)

Z

D

Z

⌦
L(x,!)w(x,!)dxd! ⇡ 1

N

X

paths

(contribution of path)

Light paths - III

• Now consider contribution of path
• it doesn’t make a contribution unless there’s

• eye at one end
• luminaire at the other

• We can write

Point light source

Eye ray

L (Something) E

Some light paths are harder than others

• We have already seen how to render
• LDE - (light diffuse eye)

• eye ray to diffuse surface, can it see light?
• LSE - (light specular eye)

• eye ray to specular surface, reflect and hit diffuse, can it see light?
• Actually, can do:

• LDS*E - (light diffuse 0 or more specular bounces eye)

• How about
• LDDE - (light diffuse diffuse eye)

• easy geometry likely high variance
• LS+DE - (light diffuse at least one specular eye)

• rather harder

Eye ray strikes diffuse surface - LDE

Compute brightness of
diffuse surface at first contact =
Can it see the light sources ?=

 Is there an object in line segment
connecting point to source?

Point light source

Eye ray

Eye ray strikes specular surface - LDSE

Compute brightness of
specular surface at first contact =

eye ray changes direction, and compute
brightness at the end of that

Point light source

Eye ray

specular
surface

Diffuse VS Specular (also translucent)

• Diffuse surfaces:
• any incoming direction can cause light to travel down the eye ray

• so you do not know from which directions contributions will arrive
• when an eye ray arrives, it must create multiple query rays

• Specular surfaces:
• only one incoming direction can cause light to travel down the eye ray

• so you do know from which directions contributions will arrive
• when an eye ray arrives, it creates only one query ray

• Translucent surfaces are like specular surfaces:
• different geometry for the query ray

LDD+E - easy geometry, but variance
Point light source

Eye ray

Point light source

Eye ray

Point light source

Eye ray

Point light source

Eye ray

LDD+E - variance control (sketch!)

• In principle, easily sampled recursively
• Preferentially sample paths that make large contributions

• these are paths that connect light, eye, via high albedo surfaces
• “Russian roulette”

• continue path with probability = albedo
• weight by (1/albedo)

• OR Cache results
• propagating a path:

• check: is there something in the cache?
• yes: use it
• no: propagate path and cache results

LS+DE - harder - where is the light?

Mirror

Light source

Di!use surface

Di!use surface

eye ray

LS+DE - harder - where is the light?

Mirror

Light source

Di!use surface

Di!use surface

eye ray

Problem: which direction leaving diffuse surface will hit the light?

Strategies

• Bidirectional ray tracing
• Trace a lot of rays from light through specular surfaces to first diffuse
• Trace a lot of eye rays to first diffuse
• Join paths
• Variance control

• weight paths as if they’d been found in different ways (Veach +Guibas)

• Markov chain monte carlo
• take a path and mutate it; reweight contribution of mutated path

• Caching
• Photon cache - trace many rays from light through specular to diffuse

• cache at diffuse
• query with eye ray

Biased vs unbiased rendering

• Unbiased renderer
• pixel value is value of random variable (different paths=different values)
• E(estimate)=True value
• sometimes essential

• eg estimate the amount of light in a museaum hall

• Biased renderer
• E(estimate)=True value + Bias
• eg Photon map (as above)

• Bias because we do not know how many photons to stick in cache
• Often more realistic

• Crucial point
• Very few people can tell if a render is nearly physically correct

• and no-one can reliably spot exactness

The plenoptic function

• We are repeatedly sampling radiance
• as function of point, direction

• What if we had a function that could report that?

• Plenoptic function
• radiance along a directed line
• space of lines is rather nastier than you might think

The plenoptic function as a cache
Point light source

Eye ray

Point light source

Eye ray

Point light source

Eye ray

Point light source

Eye ray
Point light source

Eye ray

The plenoptic function as a cache
Point light source

Eye ray

The plenoptic function - careful!

• This is a function whose domain is nasty
• all maximal directed line segments (lines) in free space
• the domain can get very complicated

• easy when there aren’t any objects
• otherwise, much harder

• domain is sometimes called a visibility complex

Durand et al 02

Lines in 3D (if it’s empty!)

• Space of lines is 4 dimensional
• can specify a line by:

• where it intersects each of two planes
• some missing lines, some details

• alternative
• directed line
• point on the tangent plane of sphere

Line

Point representing line

uv plane st plane

Lines in 3D with object can be nasty

A
B

C

Durand et al 02

Simplify

• Place an object in a box
• record radiance for each ray leaving box

• Easy to ray trace
• look up eye ray in rays leaving box

• report that value

• Capture is relatively easy

Capturing this representation

• Obtain an awful lot of images from calibrated cameras
• each image is a set of rays leaving the box
• calibration

Levoy and Hanrahan, 96

Rendering

Levoy+Hanrahan, 96

Issue: Sampling and Interpolation

• Almost every eye ray ends up “between” uv, st samples
• we must interpolate (smooth; something)
• Traditional: multilinear interpolation

Interpolation helps, but..

Two plane
representation
and sampling

Levoy+Hanrahan, 96

Revise model

• We need:
• better interpolation
• easier capture
• some way to deal with the awkwardness of line representations

• Ideas:
• move to scattering/volume rendering based representation

• this will make the line representation easier to deal with
• use a multilayer perceptron to represent relevant functions

Scattering

• Fundamental mechanism of light/matter interactions
• Visually important for

• slightly translucent materials (skin, milk, marble, etc.)
• participating media

• In fact, it’s the mechanism underlying reflection

Participating media

• for example,
• smoke,
• wet air (mist, fog)
• dusty air
• air at long scales

• Light leaves/enters a ray travelling through space
• leaves because it is scattered out
• enters because it is scattered in

• New visual effects

Light hits a small box of material

Scattering material

Incoming light

Scattered
out of view

Forward scattered
(what we’re accustomed to)

A ray passing through scattering material

Incoming light

Scattered
out of view

Forward scattered
(what we’re accustomed to)

In scattering
from other elements

Airlight as a scattering effect

Eye

Air

Sunlight

Inscattered
light, mostly
sunlight

Outscattered
light

From Lynch and Livingstone, Color and Light in Nature

From Lynch and Livingstone, Color and Light in Nature

Rendering this

• Ignore in-scattering
• only account for forward scattering

• Assume there is a source at t=T
• of intensity I(T)
• what do we see at t=0?

Eye ray

Box of material
Eye ray

dt

Want I(0)
(at start of eye ray)

t
I(t)

I(t)

I(t� �t) = I(t)� �I

= I(t)� �(t)I(t)

dI

dt
= �(t)I(t)

d log I

dt
= �(t)

I(T) = I(0)e
R T
0 �(t)dt I(0) = I(T)e�

R T
0 �(t)dt

Yields

Mildenhall et al, 20

