Basic Ray-Tracing Ideas -II

D.A. Forsyth, UIUC

Recall: Randomized estimates of integrals

Weak law of large numbers

$$
\begin{aligned}
& \text { if } \quad x_{i} \sim p(x) \\
& \text { then } \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \rightarrow \int f(x) p(x) d x
\end{aligned}
$$

- i.e. we can approximate integrals with sums
- example: $p(x)$ uniform, stochastic sampling of pixel
- generically, known as Monte Carlo estimates

Importance weighting

$$
\begin{array}{lc}
\text { if } & x_{i} \sim p(x) \\
\text { then } & \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \rightarrow \int f(x) p(x) d x
\end{array}
$$

If

$$
x_{i} \sim p(x)
$$

Then

$$
\int f(x) d x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

Randomized estimates and variance

$$
\int f(x) d x \approx \frac{1}{N} \sum_{i} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

- The estimate is the value of a random variable
- (different random samples -> different estimates)
- whose expected value is the value of the integral
- but whose variance might be very big
- and is usually very hard to know
- Simple reasoning suggests that
- p should be big when f is big, etc.

Variance example

Drawing uniform samples will get a poor estimate -> draw samples mostly at peak and downweight

Algorithmic framework

$$
v=\int_{\Lambda} \int_{D} \int_{\Omega} \int_{T} w(\mathbf{x}, \lambda, \omega, t) L(\mathbf{x}, \omega, t) d t d \omega d x d \lambda \approx \sum_{i \in \mathrm{rays}} g(\text { ray }) L(\text { ray })
$$

Computational problem - what is L (ray)?

Very simple ray-tracing

Point light source

How much light is travelling down this ray toward camera?
sometimes known as the "eye ray"

Diffuse reflection

- Light leaves the surface evenly in all directions
- cotton cloth, carpets, matte paper, matte paints, etc.
- most "rough" surfaces
- Parameter: Albedo
- percentage of light arriving that leaves
- range 0-1
- practical range is smaller
- Test:
- surface has same apparent brightness when viewed from different dir'ns

Specular surface

- For some surfaces, reflection depends strongly on angle
- mirrors (special case)
- incoming direction, normal and outgoing direction are coplanar
- angle din, normal and angle dout, normal are the same
- more general cases later
- rules:
- din, dout, N coplanar
- angle(din, N)=angle(dout, N)

Lighting model

- Light arrives at a surface ONLY from a luminaire
- this is an object that "makes light"
- through chemical, mechanical, etc means
- Wild oversimplification, good for us right now
- wait a few slides and it'll get more complicated

Eye ray strikes diffuse surface

Compute brightness of
Point light source
diffuse surface at first contact $=$
Can it see the light sources ?=
Is there an object in line segment connecting point to source?

Eye ray strikes specular surface

Compute brightness of
Point light source
specular surface at first contact $=$ eye ray changes direction, and compute
brightness at the end of that

Implied computational problems

- Fast, accurate intersection with complicated models
- Improved rendering
- anti aliasing (= more rays)
- motion blur (= more rays)
- more complex illumination phenomena (= more rays, caching)

Key idea - how bright is this point?

Radiometry

- Questions:
- how "bright" will surfaces be?
- what is "brightness"?
- measuring light
- interactions between light and surfaces
- Core idea - think about light arriving at a surface
- around any point is a hemisphere of directions
- what is important is what a source "looks like" to a receiver
- receiver can't know anything else about source

0

Solid angle

FIGURE 2.15: A hemisphere on a patch of surface, to show our angular coordinates for computing radiometric quantities. The coordinate axes are there to help you see the drawing as a 3D surface. An infinitesimal patch of surface with area $d A$ which is distance r away is projected onto the unit hemisphere centered at the relevant point; the resulting area is the solid angle of the patch, marked as $d \theta d \phi$. In this case, the patch is small so that the area and hence the solid angle is $\left(1 / r^{2}\right) d A \cos \theta_{n}$, where θ_{n} is the angle of inclination of the patch.

Solid Angle

- By analogy with angle (in radians)
- The solid angle subtended by a patch area dA is given by

$$
d \omega=\frac{\cos \theta_{n}}{r^{2}} d A
$$

- and (in right coords!)

$$
d \omega=\cos \theta d \theta d \phi
$$

Radiance

- Measure the "amount of light" at a point, in a direction the power (amount of energy per unit time) traveling at some point in a specified direction, per unit area perpendicular to the direction of travel, per unit solid angle.
- Units: watts per square meter per steradian (wm-2sr-1)
- Crucial property:
- In a vacuum, radiance leaving p in the direction of q is the same as radiance arriving at q from p
- hence the units

Why not watts/square meter?

- Consider sphere radiating 1 W into vacuum
- Radius 1, center at origin
- Vacuum neither creates nor consumes power
- There's another sphere around it
- Radius R, center at origin
- Area - 4 pi R^2
- It can't collect more power than first sphere radiates so
- watts/square meter must go down with distance....!!! (ew)

Radiance is constant along straight lines

Irradiance

- How much light is arriving at a surface?
- Sensible unit is Irradiance
- Incident power per unit area not foreshortened
- This is a function of incoming angle.
- A surface experiencing radiance $\mathrm{L}(\mathrm{x}, \theta, \phi)$ coming in from $\mathrm{d} \omega$ experiences irradiance

$$
L(\mathbf{x}, \theta, \phi) \cos \theta d \omega
$$

- Crucial property:

Total power arriving at the surface is given by adding irradiance over all incoming angles --- this is why it's a natural unit

Surfaces and the BRDF

- Many effects when light strikes a surface -- could be:
- absorbed; transmitted. reflected; scattered
- Assume that
- surfaces don't fluoresce
- surfaces don't emit light (i.e. are cool)
- all the light leaving a point is due to that arriving at that point
- Can model this situation with the Bidirectional Reflectance Distribution Function (BRDF)
- the ratio of the radiance in the outgoing direction to the incident irradiance

$$
\begin{aligned}
\rho_{b d}\left(\underline{x}, \vartheta_{o}, \varphi_{o}, \vartheta_{i}, \varphi_{i},\right)= & \\
& \frac{L_{o}\left(\underline{x}, \vartheta_{o}, \varphi_{o}\right)}{L_{i}\left(\underline{x}, \vartheta_{i}, \varphi_{i}\right) \cos \vartheta_{i} d \omega}
\end{aligned}
$$

BRDF

- Units: inverse steradians (sr-1)
- Symmetric in incoming and outgoing directions
- Radiance leaving in a particular direction:
- add contributions from every incoming direction
$\int_{\Omega} \rho_{b d}\left(\underline{x}, \boldsymbol{\vartheta}_{o}, \varphi_{o}, \boldsymbol{\vartheta}_{i}, \varphi_{i}\right) L_{i}\left(\underline{x}, \boldsymbol{\vartheta}_{i}, \varphi_{i}\right) \cos \boldsymbol{\vartheta}_{i} d \omega_{i}$

Suppressing Angles - Radiosity

- In many situations, we do not really need angle coordinates
- e.g. cotton cloth, where the reflected light is not dependent on angle
- Appropriate radiometric unit is radiosity
- total power leaving a point on the surface, per unit area on the surface (Wm-2)
- Radiosity from radiance?
- sum radiance leaving surface over all exit directions

$$
B(\underline{x})=\int_{\Omega} L_{o}(\underline{x}, \vartheta, \varphi) \cos \vartheta d \omega
$$

Exitance

- For some luminaires, generated light independent of angle
- think light box
- Appropriate radiometric unit is exitance
- total power leaving a point on the surface, per unit area on the surface (Wm-2), created in the surface

Radiosity

- Important relationship:
- radiosity of a surface whose radiance is independent of angle (e.g. that cotton cloth)

$$
\begin{aligned}
B(\underline{x}) & =\int_{\Omega} L_{o}(\underline{x}, \vartheta, \varphi) \cos \vartheta d \omega \\
& =L_{o}(\underline{x}) \int_{\Omega} \cos \vartheta d \omega \\
& =L_{o}(\underline{x}) \int_{0}^{\pi / 2} \int_{0}^{2 \pi} \cos \vartheta \sin \vartheta d \varphi d \vartheta \\
& =\pi L_{o}(\underline{x})
\end{aligned}
$$

Lambertian surfaces and albedo

- For some surfaces, the BRDF is independent of direction
- cotton cloth, carpets, matte paper, matte paints, etc.
- radiance leaving the surface is independent of angle
- Lambertian surfaces (same Lambert) or ideal diffuse surfaces
- Use radiosity as a unit to describe light leaving the surface
- percentage of incident light reflected is diffuse reflectance or albedo
- Useful fact:

$$
\rho_{b r d f}=\frac{\rho_{d}}{\pi}
$$

Specular surfaces

- Another important class of surfaces is specular, or mirrorlike.
- radiation arriving along a direction leaves along the specular direction
- reflect about normal
- some fraction is absorbed, some reflected
- on real surfaces, energy usually goes into a lobe of directions
- can write a BRDF, but requires the use of funny functions

Phong's model

- There are very few cases where the exact shape of the specular lobe matters.
- Typically:
- very, very small --- mirror
- small -- blurry mirror
- bigger -- see only light sources as "specularities"
- very big -- faint specularities
- Phong's model
- reflected energy falls off with

$$
\cos ^{n}(\delta \vartheta)
$$

Lambertian + specular

- Widespread model
- all surfaces are Lambertian plus specular component
- Advantages
- easy to manipulate
- very often quite close true
- Disadvantages
- some surfaces are not
- e.g. underside of CD's, feathers of many birds, blue spots on many marine crustaceans and fish, most rough surfaces, oil films (skin!), wet surfaces
- Generally, very little advantage in modelling behaviour of light at a surface in more detail -- it is quite difficult to understand behaviour of $\mathrm{L}+\mathrm{S}$ surfaces

The Rendering Equation- 1

- We can now write

Angle between normal and incoming direction

$$
\begin{gathered}
L_{o}\left(\mathbf{x}, \omega_{o}\right)=L_{e}\left(\mathbf{x}, \omega_{o}\right)+\int_{\Omega} \rho_{b d}\left(\mathbf{x}, \omega_{o}, \omega_{i}\right) L_{i}\left(\mathbf{x}, \omega_{i}\right) \cos \theta_{i} d \omega_{i} \\
\left\lvert\, \begin{array}{l}
\mid \\
\text { BRDF }
\end{array}\right. \\
\end{gathered}
$$

Average over hemisphere
Radiance emitted from surface at that point in that direction

Radiance leaving a point in a direction

Radiance is constant along straight lines, so this is what we want to know

The Rendering Equation - II

- This balance works for
- each wavelength,
- at any time, so
- So

$$
\begin{aligned}
L_{o}\left(\mathbf{x}, \omega_{o}, \lambda, t\right)= & L_{e}\left(\mathbf{x}, \omega_{o}, \lambda, t\right)+ \\
& \int_{\Omega} \rho_{b d}\left(\mathbf{x}, \omega_{o}, \omega_{i}, \lambda, t\right) L_{i}\left(\mathbf{x}, \omega_{i}, \lambda, t\right) \cos \theta_{i} d \omega_{i}
\end{aligned}
$$

Area sources

- Examples: diffuser boxes, white walls.
- The radiosity at a point due to an area source is obtained by adding up the contribution over the section of view hemisphere subtended by the source
- change variables and add up over the source

Radiosity due to an area source

$$
\begin{aligned}
B(x) & =\rho_{d}(x) \int_{\Omega} L_{i}(x, u \rightarrow x) \cos \theta_{i} d \omega \\
& =\rho_{d}(x) \int_{\Omega} L_{e}(x, u \rightarrow x) \cos \theta_{i} d \omega \\
& =\rho_{d}(x) \int_{\Omega}\left(\frac{E(u)}{\pi}\right) \cos \theta_{i} d \omega \\
& =\rho_{d}(x) \int_{\text {source }}\left(\frac{E(u)}{\pi}\right) \cos \theta_{i}\left(\cos \theta_{s} \frac{d A_{u}}{r(x, u)^{2}}\right) \\
& =\rho_{d}(x) \int_{\text {source }} E(u) \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r(x, u)^{2}} d A_{u}
\end{aligned}
$$

Question: how to ray-trace this?

- Model:
- all diffuse surfaces
- light only arrives from luminaire (area source)
- Rendering:
- how bright is the eye ray?

Recall

Diffuse, so this

Radiance emitted from surface at that point in that direction

There isn't any, so zero

Radiance leaving a point in a direction

$$
\begin{aligned}
& L_{o}\left(\mathbf{x}, \omega_{o}\right)=L_{e}\left(\mathbf{x}, \omega_{o}\right)+\int_{\Omega} \rho_{b d}\left(\mathbf{x}, \omega_{o}, \omega_{i}\right) L_{i}\left(\mathbf{x}, \omega_{i}\right) \cos \theta_{i} d \omega_{i} \\
& \frac{1}{N} \sum_{\omega_{i} \in \text { samples of incoming directions }} \rho L\left(\mathbf{x}, \omega_{i}\right) \cos \theta_{i}
\end{aligned}
$$

But which directions? and how should we sample them?

Global illumination

$$
L_{o}\left(\mathbf{x}, \omega_{o}\right)=L_{e}\left(\mathbf{x}, \omega_{o}\right)+\int_{\Omega} \rho_{b d}\left(\mathbf{x}, \omega_{o}, \omega_{i}\right) L_{i}\left(\mathbf{x}, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

- Incoming radiance isn't just from luminaires
- the reason you can see surfaces is they reflect light
- other surfaces don't distinguish between reflected light and generated light
Incoming radiance

Question: how to ray-trace this?

- Model:
- all diffuse surfaces
- light arrives from any radiating surface
- Rendering:
- how bright is the eye ray?

Recall

Diffuse, so this

Radiance emitted from surface at that point in that direction

There isn't any, so zero

Radiance leaving a point in a direction

$$
\begin{aligned}
& L_{o}\left(\mathbf{x}, \omega_{o}\right)=L_{e}\left(\mathbf{x}, \omega_{o}\right)+\int_{\Omega} \rho_{b d}\left(\mathbf{x}, \omega_{o}, \omega_{i}\right) L_{i}\left(\mathbf{x}, \omega_{i}\right) \cos \theta_{i} d \omega_{i} \\
& \frac{1}{N} \sum_{\omega_{i} \in \text { samples of incoming directions }} \rho L\left(\mathbf{x}, \omega_{i}\right) \cos \theta_{i}
\end{aligned}
$$

But which directions?
and how should we sample them?

Light paths

- Recursively expand, as above
- sample the incoming directions
- what radiance is coming in?
- go to far end - what is emitted+reflected?
- recur

Light paths - II

$$
v=\int_{\Lambda} \int_{D} \int_{\Omega} \int_{T} w(\mathbf{x}, \lambda, \omega, t) L(\mathbf{x}, \omega, t) d t d \omega d x d \lambda \approx \sum_{i \in \mathrm{rays}} g(\text { ray }) L(\text { ray }
$$

- But this is really (suppressing wavelength and time)

$$
\int_{D} \int_{\Omega} L(\mathbf{x}, \omega) w(\mathbf{x}, \omega) d x d \omega \approx \frac{1}{N} \sum_{\text {paths }}(\text { contribution of path })
$$

Light paths - III

- Now consider contribution of path
- it doesn't make a contribution unless there's
- eye at one end
- luminaire at the other
- We can write

L (Something) E

Some light paths are harder than others

- We have already seen how to render
- LDE - (light diffuse eye)
- eye ray to diffuse surface, can it see light?
- LSE - (light specular eye)
- eye ray to specular surface, reflect and hit diffuse, can it see light?
- Actually, can do:
- LDS*E - (light diffuse 0 or more specular bounces eye)
- How about
- LDDE - (light diffuse diffuse eye)
- easy geometry likely high variance
- LS+DE - (light diffuse at least one specular eye)
- rather harder

Eye ray strikes diffuse surface - LDE

Compute brightness of diffuse surface at first contact $=$ Can it see the light sources ?= Is there an object in line segment connecting point to source?

Eye ray strikes specular surface - LDSE

Compute brightness of
Point light source specular surface at first contact $=$ eye ray changes direction, and compute
brightness at the end of that

Diffuse VS Specular (also translucent)

- Diffuse surfaces:
- any incoming direction can cause light to travel down the eye ray
- so you do not know from which directions contributions will arrive
- when an eye ray arrives, it must create multiple query rays
- Specular surfaces:
- only one incoming direction can cause light to travel down the eye ray
- so you do know from which directions contributions will arrive
- when an eye ray arrives, it creates only one query ray
- Translucent surfaces are like specular surfaces:
- different geometry for the query ray

LDD+E - easy geometry, but variance

LDD+E - variance control (sketch!)

- In principle, easily sampled recursively
- Preferentially sample paths that make large contributions
- these are paths that connect light, eye, via high albedo surfaces
- "Russian roulette"
- continue path with probability $=$ albedo
- weight by (1/albedo)
- OR Cache results
- propagating a path:
- check: is there something in the cache?
- yes: use it
- no: propagate path and cache results

LS +DE - harder - where is the light?

Light source

LS+DE - harder - where is the light?

Problem: which direction leaving diffuse surface will hit the light?

Strategies

- Bidirectional ray tracing
- Trace a lot of rays from light through specular surfaces to first diffuse
- Trace a lot of eye rays to first diffuse
- Join paths
- Variance control
- weight paths as if they'd been found in different ways (Veach +Guibas)
- Markov chain monte carlo
- take a path and mutate it; reweight contribution of mutated path
- Caching
- Photon cache - trace many rays from light through specular to diffuse
- cache at diffuse
- query with eye ray

Biased vs unbiased rendering

- Unbiased renderer
- pixel value is value of random variable (different paths=different values)
- $\mathrm{E}($ estimate $)=$ True value
- sometimes essential
- eg estimate the amount of light in a museaum hall
- Biased renderer
- $\mathrm{E}($ estimate $)=$ True value + Bias
- eg Photon map (as above)
- Bias because we do not know how many photons to stick in cache
- Often more realistic
- Crucial point
- Very few people can tell if a render is nearly physically correct
- and no-one can reliably spot exactness

The plenoptic function

- We are repeatedly sampling radiance
- as function of point, direction
- What if we had a function that could report that?
- Plenoptic function
- radiance along a directed line
- space of lines is rather nastier than you might think

The plenoptic function as a cache

The plenoptic function as a cache

The plenoptic function - careful!

- This is a function whose domain is nasty
- all maximal directed line segments (lines) in free space
- the domain can get very complicated
- easy when there aren't any objects
- otherwise, much harder
- domain is sometimes called a visibility complex

Fig. 1. Maximal free segment. (a) All the rays collinear to r whose origin is between the two spheres "see" point B. (b) These rays are grouped into a maximal free segment S. Two other maximal free segments $\$$ and $S^{\prime \prime}$ are collinear to S.

Durand et al 02

Lines in 3D (if it's empty!)

- Space of lines is 4 dimensional
- can specify a line by:
- where it intersects each of two planes
- some missing lines, some details
- alternative
- directed line
- point on the tangent plane of sphere
\qquad

Lines in 3D with object can be nasty

Fig. 1. Maximal free segment. (a) All the rays collinear to r whose origin is between the two spheres "see" point B. (b) These rays are grouped into a maximal free segment S. Two other maximal free segments S and $S^{\prime \prime}$ are collinear to S.

Simplify

- Place an object in a box
- record radiance for each ray leaving box
- Easy to ray trace
- look up eye ray in rays leaving box
- report that value
- Capture is relatively easy

Capturing this representation

- Obtain an awful lot of images from calibrated cameras
- each image is a set of rays leaving the box
- calibration

Figure 10: Object and lighting support. Objects are mounted on a Bogen fluid-head tripod, which we manually rotate to four orientations spaced 90 degrees apart. Illumination is provided by two 600W Lowell Omni spotlights attached to a ceilingmounted rotating hub that is aligned with the rotation axis of the tripod. A stationary $6^{\prime} \times 6^{\prime}$ diffuser panel is hung between the spotlights and the gantry, and the entire apparatus is enclosed in black velvet to eliminate stray light.

Levoy and Hanrahan, 96

Rendering

Figure 12: The process of resampling a light slab during display.

Issue: Sampling and Interpolation

Figure 12: The process of resampling a light slab during display.

- Almost every eye ray ends up "between" uv, st samples
- we must interpolate (smooth; something)
- Traditional: multilinear interpolation

Interpolation helps, but..

Figure 13: The effects of interpolation during slice extraction. (a) No interpolation. (b) Linear interpolation in uv only. (c) Quadralinear interpolation in uvst.

Figure 3: Using line space to visualize ray coverage. (a) shows a single

Revise model

- We need:
- better interpolation
- easier capture
- some way to deal with the awkwardness of line representations
- Ideas:
- move to scattering/volume rendering based representation
- this will make the line representation easier to deal with
- use a multilayer perceptron to represent relevant functions

Scattering

- Fundamental mechanism of light/matter interactions
- Visually important for
- slightly translucent materials (skin, milk, marble, etc.)
- participating media
- In fact, it's the mechanism underlying reflection

Participating media

- for example,
- smoke,
- wet air (mist, fog)
- dusty air
- air at long scales
- Light leaves/enters a ray travelling through space
- leaves because it is scattered out
- enters because it is scattered in
- New visual effects

Light hits a small box of material

A ray passing through scattering material

Airlight as a scattering effect

From Lynch and Livingstone, Color and Light in Nature

From Lynch and Livingstone, Color and Light in Nature

Rendering this

- Ignore in-scattering
- only account for forward scattering
- Assume there is a source at $\mathrm{t}=\mathrm{T}$
- of intensity I(T)
- what do we see at $\mathrm{t}=0$?

$$
\begin{aligned}
& I(t-\delta t)= \\
& I(t)-\delta I \\
& = \\
& I(t)-\sigma(t) I(t) \\
& \frac{d I}{d t}=\sigma(t) I(t) \\
& \frac{d \log I}{d t}=\sigma(t) \\
& I(T)=I(0) e^{\int_{0}^{T} \sigma(t) d t} \\
& I(0)=I(T) e^{-\int_{0}^{T} \sigma(t) d t}
\end{aligned}
$$

Yields

The volume density $\sigma(\mathbf{x})$ can be interpreted as the differential probability of a ray terminating at an infinitesimal particle at location \mathbf{x}. The expected color $C(\mathbf{r})$ of camera ray $\mathbf{r}(t)=\mathbf{o}+t \mathbf{d}$ with near and far bounds t_{n} and t_{f} is:

$$
\begin{equation*}
C(\mathbf{r})=\int_{t_{n}}^{t_{f}} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) d t, \text { where } T(t)=\exp \left(-\int_{t_{n}}^{t} \sigma(\mathbf{r}(s)) d s\right) \tag{1}
\end{equation*}
$$

Mildenhall et al, 20

