
Basic Ray-Tracing Ideas
-II

D.A. Forsyth, UIUC

Importance weighting

if xi � p(x)
then 1

N

�N
i=1 f(xi)⇥

⇥
f(x)p(x)dx

xi ⇠ p(x)If

Then

Z
f(x)dx ⇡ 1

N

X

i

f(xi)

p(xi)

Area sources

• Examples: diffuser boxes, white walls.
• The radiosity at a point due to an area source is obtained

by adding up the contribution over the section of view
hemisphere subtended by the source
• change variables and add up over the source

Radiosity due to an area source

• rho is albedo
• E is exitance
• r(x, u) is distance between points
• u is a coordinate on the source

Question: how to ray-trace this?

• Model:
• all diffuse surfaces
• light only arrives from luminaire

(area source)

• Rendering:
• how bright is the eye ray?

Eye ray

Area Source

Recall

Radiance leaving a point in a direction

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Radiance emitted from surface at that point in that direction
There isn’t any, so zero

BRDF Incoming radiance
This is from area source

Average over hemisphere

Angle between normal
and incoming direction

Radiance along eye ray

Diffuse, so this
is a constant

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Eye ray

Area Source

0

1

N

X

!i2samples of incoming directions

⇢L(x,!i) cos ✓i

But which directions?
and how should we sample them?

Global illumination

• Incoming radiance isn’t
just from luminaires
• the reason you can see

surfaces is they reflect light
• other surfaces don’t

distinguish between
reflected light and generated
light

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Incoming radiance
Point light source

Eye ray

Question: how to ray-trace this?

• Model:
• all diffuse surfaces
• light arrives from any radiating

surface

• Rendering:
• how bright is the eye ray?

Eye ray

Area Source

Recall

Radiance leaving a point in a direction

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

Radiance emitted from surface at that point in that direction
There isn’t any, so zero

BRDF Incoming radiance
This is now from any radiator

Average over hemisphere

Angle between normal
and incoming direction

Radiance along eye ray

Diffuse, so this
is a constant

Lo(x,!o) = Le(x,!o) +

Z

⌦
⇢bd(x,!o,!i)Li(x,!i) cos ✓id!i

0

1

N

X

!i2samples of incoming directions

⇢L(x,!i) cos ✓i

But which directions?
and how should we sample them?

Eye ray

Area Source

Light paths

• Recursively expand, as above
• sample the incoming directions

• what radiance is coming in?
• go to far end - what is emitted+reflected?
• recur

•

Point light source

Eye ray

Light paths - II

• But this is really (suppressing wavelength and time)

v =

Z

⇤

Z

D

Z

⌦

Z

T
w(x,�,!, t)L(x,!, t)dtd!dxd� ⇡

X

i2rays
g(ray)L(ray)

Z

D

Z

⌦
L(x,!)w(x,!)dxd! ⇡ 1

N

X

paths

(contribution of path)

Light paths - III

• Now consider contribution of path
• it doesn’t make a contribution unless there’s

• eye at one end
• luminaire at the other

• We can write

Point light source

Eye ray

L (Something) E

Some light paths are harder than others

• We have already seen how to render
• LDE - (light diffuse eye)

• eye ray to diffuse surface, can it see light?
• LSE - (light specular eye)

• eye ray to specular surface, reflect and hit diffuse, can it see light?
• Actually, can do:

• LDS*E - (light diffuse 0 or more specular bounces eye)

• How about
• LDDE - (light diffuse diffuse eye)

• easy geometry likely high variance
• LS+DE - (light diffuse at least one specular eye)

• rather harder

Eye ray strikes diffuse surface - LDE

Compute brightness of
diffuse surface at first contact =
Can it see the light sources ?=

 Is there an object in line segment
connecting point to source?

Point light source

Eye ray

Eye ray strikes specular surface - LDSE

Compute brightness of
specular surface at first contact =

eye ray changes direction, and compute
brightness at the end of that

Point light source

Eye ray

specular
surface

Diffuse VS Specular (also translucent)

• Diffuse surfaces:
• any incoming direction can cause light to travel down the eye ray

• so you do not know from which directions contributions will arrive
• when an eye ray arrives, it must create multiple query rays

• Specular surfaces:
• only one incoming direction can cause light to travel down the eye ray

• so you do know from which directions contributions will arrive
• when an eye ray arrives, it creates only one query ray

• Translucent surfaces are like specular surfaces:
• different geometry for the query ray

LDD+E - easy geometry, but variance
Point light source

Eye ray

Point light source

Eye ray

Point light source

Eye ray

Point light source

Eye ray

LDD+E - variance control (sketch!)

• In principle, easily sampled recursively
• Preferentially sample paths that make large contributions

• these are paths that connect light, eye, via high albedo surfaces
• “Russian roulette”

• continue path with probability = albedo
• weight by (1/albedo)

• OR Cache results
• propagating a path:

• check: is there something in the cache?
• yes: use it
• no: propagate path and cache results

LS+DE - harder - where is the light?

Mirror

Light source

Di!use surface

Di!use surface

eye ray

LS+DE - harder - where is the light?

Mirror

Light source

Di!use surface

Di!use surface

eye ray

Problem: which direction leaving diffuse surface will hit the light?

Strategies

• Bidirectional ray tracing
• Trace a lot of rays from light through specular surfaces to first diffuse
• Trace a lot of eye rays to first diffuse
• Join paths
• Variance control

• weight paths as if they’d been found in different ways (Veach +Guibas)

• Markov chain monte carlo
• take a path and mutate it; reweight contribution of mutated path

• Caching
• Photon cache - trace many rays from light through specular to diffuse

• cache at diffuse
• query with eye ray

Biased vs unbiased rendering

• Unbiased renderer
• pixel value is value of random variable (different paths=different values)
• E(estimate)=True value
• sometimes essential

• eg estimate the amount of light in a museaum hall

• Biased renderer
• E(estimate)=True value + Bias
• eg Photon map (as above)

• Bias because we do not know how many photons to stick in cache
• Often more realistic

• Crucial point
• Very few people can tell if a render is nearly physically correct

• and no-one can reliably spot exactness

The plenoptic function

• We are repeatedly sampling radiance
• as function of point, direction

• What if we had a function that could report that?

• Plenoptic function
• radiance along a directed line
• space of lines is rather nastier than you might think

The plenoptic function as a cache
Point light source

Eye ray

Point light source

Eye ray

Point light source

Eye ray

Point light source

Eye ray
Point light source

Eye ray

The plenoptic function as a cache
Point light source

Eye ray

The plenoptic function - careful!

• This is a function whose domain is nasty
• all maximal directed line segments (lines) in free space
• the domain can get very complicated

• easy when there aren’t any objects
• otherwise, much harder

• domain is sometimes called a visibility complex

Durand et al 02

Lines in 3D (if it’s empty!)

• Space of lines is 4 dimensional
• can specify a line by:

• where it intersects each of two planes
• some missing lines, some details

• alternative
• directed line
• point on the tangent plane of sphere

Line

Point representing line

uv plane st plane

Lines in 3D with object can be nasty

A
B

C

Durand et al 02

Simplify

• Place an object in a box
• record radiance for each ray leaving box

• Easy to ray trace
• look up eye ray in rays leaving box

• report that value

• Capture is relatively easy

Capturing this representation

• Obtain an awful lot of images from calibrated cameras
• each image is a set of rays leaving the box
• calibration

Levoy and Hanrahan, 96

Rendering

Levoy+Hanrahan, 96

Issue: Sampling and Interpolation

• Almost every eye ray ends up “between” uv, st samples
• we must interpolate (smooth; something)
• Traditional: multilinear interpolation

Interpolation helps, but..

Two plane
representation
and sampling

Levoy+Hanrahan, 96

Revise model

• We need:
• better interpolation
• easier capture
• some way to deal with the awkwardness of line representations

• Ideas:
• move to scattering/volume rendering based representation

• this will make the line representation easier to deal with
• use a multilayer perceptron to represent relevant functions

Scattering

• Fundamental mechanism of light/matter interactions
• Visually important for

• slightly translucent materials (skin, milk, marble, etc.)
• participating media

• In fact, it’s the mechanism underlying reflection

Participating media

• for example,
• smoke,
• wet air (mist, fog)
• dusty air
• air at long scales

• Light leaves/enters a ray travelling through space
• leaves because it is scattered out
• enters because it is scattered in

• New visual effects

Light hits a small box of material

Scattering material

Incoming light

Scattered
out of view

Forward scattered
(what we’re accustomed to)

A ray passing through scattering material

Incoming light

Scattered
out of view

Forward scattered
(what we’re accustomed to)

In scattering
from other elements

From Lynch and Livingstone, Color and Light in Nature

Airlight as a scattering effect

Eye

Air

Sunlight

Inscattered
light, mostly
sunlight

Outscattered
light

From Lynch and Livingstone, Color and Light in Nature

Absorption

• Ignore in-scattering
• only account for forward scattering

• Assume there is a source at t=T
• of intensity I(T)
• what do we see at t=0?

Eye ray

Box of material
Eye ray

dt

Want I(0)
(at start of eye ray)

t

I(T)

Cross sectional area of “slab” is E
Contains particles, radius r, density rho

Too few to overlap when projected

% light absorbed = (area of projected particles)/
(area of slab)

This is:

(⇢E�s)⇡r2

E
= �(s)�s

I(t)

dI

dt
= �(t)I(t)

d log I

dt
= �(t)

I(T) = I(0)e
R T
0 �(t)dt

I(0) = I(T)e�
R T
0 �(t)dt

Extinction
coefficient

I(t� �t) = I(t)� �(t)I(t)�(t)

Eye is at 0 Intensity at T

More interesting…

• Intensity is “created along the
ray”
• by (say) airlight
• Model - the particles glow with

intensity C(x)

Cross sectional area of “slab” is E
Contains particles, radius r, density rho

Too few to overlap when projected

Light out = Light in -
 Light absorbed+
 Light generated

Light generated: C x (area fraction
 of proj. particles)

which is

C(x(s))
(⇢E�s)⇡r2

E
= C(x(s))�(s)�s

I(t)

I(0) =

Z T

0
c(x(s))�(s)e�

R s
0 �(u)duds

I(t� �t) = I(t)� �(t)I(t)�t+ c(x(t))�(t)�t

Absorption

Generation

I(0) =

Z T

0
c(x(s))�(s)e�

R s
0 �(u)duds

Made at s Absorbed in transit
from s to 0

Accumulate along ray

Yields

Mildenhall et al, 20

Actual rendering…

• Integration problem
• walk back along ray from viewpoint, sampling

• collect color at sample point
• accumulate transmission

• if weight is too small, stop walking

• This could be nasty…
• variety of strategies, depending on what we know about c, sigma, eg

• known in voxels
• cut ray into segments (per voxel), compute integral per segment

• parametric function
• cut ray into uniform segments, one sample per segment

• but the integral is a differentiable function of c, sigma

Eye

σTransmission term (integral)

NERF representations

• Build neural network to predict
• c, sigma as functions of position, direction

• Render this object with a volume renderer
• Learn using images geometrically calibrated to one

another

NERF representations

Mildenhall et al, 20

Integrator

Mildenhall et al, 20

1� e��� ⇡ 1� (1� �� + ...) = ��

Recall:

Generated in interval

Length of interval

Transmission to eye

What works: Radiance, pos’n encoding

Mildenhall et al, 20

Controlling the integrator

Mildenhall et al, 20

Mildenhall et al, 20

Mildenhall et al, 20

Mildenhall et al, 20

Quiz: what could go wrong?

Quiz: what could go wrong?

• A1:
• variance in integral estimate makes learning slow

• symptom is present, diagnosis ?

• A2:
• different c, sigma give the same images

• pretty much guaranteed to be true

• A3:
• good representations may require many views

• see above

• A4:
• for surface objects, c, sigma are very odd functions

• may also contribute to learning problems
• what is prior to be?

NERF - worrying issues

• Is the reconstruction unique?
• Why to worry:

• If not, test image may not be what you want

• Almost certainly not
• example on next slide suggests I can construct a NERF

• large norm
• near zero image

• but this might not be a bad thing…

Constant absorption
Generation zero

Constant absorption
Generation yellow

e��dI d

About

More on uniqueness

• Versions of the NERF repn. are studied in tomography
• Note if sigma is known, mapping from C to I is linear
• If sigma is known constant, then it’s injective

• i.e. an infinite set of images has a unique C
• If sigma isn’t known, and depends on angle, not much is known

• pretty clearly mapping (sigma, c) -> images isn’t injective

I(0) =

Z T

0
c(x(s))�(s)e�

R s
0 �(u)duds

Why this might not be a bad thing

• Don’t need a reconstruction
• need to predict renderings

• Failures of uniqueness as in picture are irrelevant
• basic point is you can’t see them

• It may be possible to fudge localization difficulties
• in a useful way

• Three orthographic cameras
see two points
• Black point correctly localized
• Other is not

• B, R reconstruct purple point
• R, G reconstruct yellow point

• What to do?
• traditional:

• find a point that minimizes
least square reprojection error

• NERF (?):
• put together a density in

triangle that “behaves well”

What is a well behaved density…

• Looks like a point
• ie localized opacity, occlusion
• from each intermediate view

• Could it exist?
• yes

• C and sigma depend on
• position and direction

