
Heading into NERF
D.A. Forsyth, UIUC



Lines in 3D (if it’s empty!)

• Space of lines is 4 dimensional
• can specify a line by: 

• where it intersects each of two planes
• some missing lines, some details

• alternative
• directed line
• point on the tangent plane of sphere

Line

Point representing line

uv plane st plane



Lines in 3D with object can be nasty

A
B

C

Durand et al 02



Simplify

• Place an object in a box
• record radiance for each ray leaving box

• Easy to ray trace
• look up eye ray in rays leaving box

• report that value

• Capture is relatively easy



Capturing this representation

• Obtain an awful lot of images from calibrated cameras
• each image is a set of rays leaving the box
• calibration



Levoy and Hanrahan, 96



Rendering

Levoy+Hanrahan, 96



Issue: Sampling and Interpolation

• Almost every eye ray ends up “between” uv, st samples
• we must interpolate (smooth; something)
• Traditional:  multilinear interpolation



Interpolation helps, but..



Two plane 
representation 
and sampling

Levoy+Hanrahan, 96



Revise model

• We need:
• better interpolation
• easier capture
• some way to deal with the awkwardness of line representations

• Ideas:
• move to scattering/volume rendering based representation

• this will make the line representation easier to deal with
• use a multilayer perceptron to represent relevant functions



Scattering

• Fundamental mechanism of light/matter interactions
• Visually important for 

• slightly translucent materials (skin, milk, marble, etc.)
• participating media

• In fact, it’s the mechanism underlying reflection



Participating media

• for example, 
• smoke, 
• wet air (mist, fog)
• dusty air
• air at long scales

• Light leaves/enters a ray travelling through space
• leaves because it is scattered out
• enters because it is scattered in

• New visual effects



Light hits a small box of material

Scattering material

Incoming light

Scattered 
out of view

Forward scattered
(what we’re accustomed to)



A ray passing through scattering material

Incoming light

Scattered 
out of view

Forward scattered
(what we’re accustomed to)

In scattering 
from other elements



From Lynch and Livingstone, Color and Light in Nature



Airlight as a scattering effect

Eye

Air

Sunlight

Inscattered
light, mostly
sunlight

Outscattered
light



From Lynch and Livingstone, Color and Light in Nature





Absorption

• Ignore in-scattering
• only account for forward scattering

• Assume there is a source at t=T
• of intensity I(T)
• what do we see at t=0?

Eye ray 

Box of material
Eye ray

dt

Want I(0) 
(at start of eye ray)

t

I(T )



Cross sectional area of “slab” is E
Contains particles, radius r, density rho

Too few to overlap when projected

% light absorbed = (area of projected particles)/
(area of slab)

This is:  

(⇢E�s)⇡r2

E
= �(s)�s



I(t)

dI

dt
= �(t)I(t)

d log I

dt
= �(t)

I(T ) = I(0)e
R T
0 �(t)dt

I(0) = I(T )e�
R T
0 �(t)dt

Extinction
coefficient

I(t� �t) = I(t)� �(t)I(t)�(t)

Eye is at 0 Intensity at T



More interesting…

• Intensity is “created along the 
ray”
• by (say) airlight
• Model - the particles glow with 

intensity C(x)

Cross sectional area of “slab” is E
Contains particles, radius r, density rho

Too few to overlap when projected

Light out = Light in - 
                              Light absorbed+
                             Light generated

Light generated: C x (area fraction
                                    of proj. particles)

which is 

C(x(s))
(⇢E�s)⇡r2

E
= C(x(s))�(s)�s



I(t)

I(0) =

Z T

0
c(x(s))�(s)e�

R s
0 �(u)duds

I(t� �t) = I(t)� �(t)I(t)�t+ c(x(t))�(t)�t

Absorption

Generation



I(0) =

Z T

0
c(x(s))�(s)e�

R s
0 �(u)duds

Made at s Absorbed in transit
from s to 0

Accumulate along ray



Yields

Mildenhall et al, 20



Actual rendering…

• Integration problem
• walk back along ray from viewpoint, sampling

• collect color at sample point
•  accumulate transmission

• if weight is too small, stop walking

• This could be nasty…
• variety of strategies, depending on what we know about c, sigma, eg

• known in voxels
• cut ray into segments (per voxel), compute integral per segment

• parametric function
• cut ray into uniform segments, one sample per segment

• but the integral is a differentiable function of c, sigma



NERF representations

• Build neural network to predict
• c, sigma as functions of position, direction, parameters

• Render this object with a volume renderer
• to make images

• Learn this object by
• adjusting parameters (gradient descent etc)

• so that images it produces, with renderer are the same as
• known images 
• geometrically calibrated to one another



 Positional encoding

x, y, z, u, v, w
Positional
encoding
(not learned)

Multilayer
perceptron σ,c

components of unit
vector (direction)

position



NERF representations

Mildenhall et al, 20



Integrator

eye ray



Integrator

Mildenhall et al, 20

1� e��� ⇡ 1� (1� �� + ...) = ��

Recall:

Generated in interval

Length of interval

Transmission to eye



What works: Radiance, pos’n encoding

Mildenhall et al, 20



Integration is hard

Eye

σTransmission term (integral)



Controlling the integrator

Mildenhall et al, 20



Mildenhall et al, 20



Mildenhall et al, 20



Mildenhall et al, 20



Correction

• sigma is NOT a function of angle
• I may have implied it was; wrong

• doesn’t seem to affect conclusions



Quiz:  what could go wrong?



Quiz:  what could go wrong?

• A1:
• variance in integral estimate makes learning, rendering slow

• symptom is present, diagnosis ?

• A2:
• different c, sigma give the same images

• pretty much guaranteed to be true

• A3:
• good representations may require many views

• see above

• A4:
• for surface objects, c, sigma are very odd functions

• may also contribute to learning problems
• what is prior to be?



Quiz:  what could go wrong?

• A5:
• sampler is inefficient

• pretty much guaranteed
• why not make a more efficient sampler using nerf-style repn?

• A6:
• noise model could do with improvement
• current:

• predict example images without error
• required:

• predict new images well
• don’t know new images, but could use various image priors?





NeRF - sampler inefficiency and noise

• Samples do not know where the density is
• sampler variance will be penalized by loss

• if the sampler has high variance, it reports the wrong value often,
•  and so gets gradient

• importance process helps, but…
• reducing sampler variance biases the representation

• the sampler doesn’t change, but the function does..
• because that’s how we learn the function



NeRF representations are likely 
oversmoothed

Eye

σTransmission term (integral)



Importance sampler variance

• Assume we draw

• and form

• I is a random variable, and

xi ⇠ p(x)

I =
1

N

X

i

f(xi)

p(xi)

E [I] = µ =

Z
f(x)dx

Var(I) = E
⇥
I2
⇤
� E [I]2 =

1

N

✓Z
(f(x)� µp(x))2

p(x)
dx

◆



NeRF - sampler inefficiency and noise

• In our case, p is (essentially) uniform
• so a low variance sampler will want  f to be close to mean

• while keeping mean fixed (so integral along ray is right)

• NeRF wants to smooth sigma!

• Notice this might not be visible in training images
• it’ll smooth in directions along training rays

Z
(f(x)� µ)2 dx



Voxel based fix

Liu et al 21 (web page)



Liu et al 21 (web page)



Liu et al 21 (web page)



Liu et al 21 (web page)



Q: why should we have to use voxels?

• Disadvantage of voxels
• inefficient importance sampler
• building an exterior voxel representation is easy

• building an interior voxel representation is hard

• Alternative strategy
• learn a sampler at the same time as you learn NeRF repn
• penalize with image prior on (otherwise unknown) novel views





NeRF - improving positional encoding

• General phenomenon
• Neural networks tend to learn 

• low spatial frequency representations fast
• and high spatial frequency representations slowly

• Often, this doesn’t manifest in any important way 
• because the inputs are very high dimensional

• But for low dimensional inputs, this is an issue
• eg  learn image value as  f(x, y)
• eg learn density, color as f(x, y, z, angles)



Spatial frequencies - II

• Exercise:
• (a)  fit image as f(x, y) using MLP

• what does it look like?

• There is a simple geometric fix
• embed x, y in much higher dimensional space
• fit a low spatial frequency function *in this space*

• can have high spatial frequencies in lower dimensional space





Q: what is a good embedding?

Tancik et al, 20 (web page)



Tancik et al, 20 (web page)



What follows…

• For any low-D NN predictor 
• you should do something like this
• Inc.

• image modelling
• NeRF style rep’ns
• 3D surface modelling (occupancy)

• Q: does this make CVXNet better?
• etc

• (Maybe)
• you can get improvements by doing this to AE, VAE codes (?)

• or improve learning



NERF - uniqueness

• Is the reconstruction unique?
• Why to worry:  

• If not, test image may not be what you want

• Almost certainly not
• example on next slide suggests I can construct a NERF

• large norm
• near zero image

• but this might not be a bad thing…



Constant absorption
Generation zero

Constant absorption
Generation yellow

e��dI d

About



Tomography (rapid summary!)

• Pass x-rays through the body in many different directions
• record result

• Reconstruct 3D density from x-rays
• absorption only - no local generation of light

•



I(t)

dI

dt
= �(t)I(t)

d log I

dt
= �(t)

I(T ) = I(0)e
R T
0 �(t)dt

I(0) = I(T )e�
R T
0 �(t)dt

Extinction
coefficient

I(t� �t) = I(t)� �(t)I(t)�(t)

Eye is at 0 Intensity at T



“Image”

Object

Parallel X-rays



The x-ray image

• We have, for one pixel
I(0) = I(T )e�

R T
0 �(t)dt

Eye is at 0 Intensity of x-ray source

� log
I(0)

I(T )
=

Z T

0
�(t(x))dt

Observe

Want



2D example

• Lines (rays) encoded by angle, distance to origin
• Sinogram

• plot of density observed as a function of angle, distance to origin

Object
Sinogram



Tomography

• Q: Can you get object from sinogram?
• yes

• (sketch follows)
• important limits from sampling issues

• Q: Is it unique?
• i.e. is mapping from object to sinogram injective?
• yes

• important limits from sampling issues
• some noise

• Q: what role do deep networks have here?
• A: largely worked out (see papers)

• helpful, but should be constrained by sampling theory, etc
• or else they make fake structures



Roughly why you can reconstruct - I

Project down y

d(x) =

Z 1

�1
�(x, y)dy

Observe Want



Roughly why you can reconstruct - II

d(x) =

Z 1

�1
�(x, y)dy

Fourier transform of d (which we can compute)

F {d} (!x) =
1p
2⇡

Z 1

�1

Z 1

�1
�(x, y)dy

�
e�j!xxdx

F {d} (!x) = F {�} (!x, 0)

F {�} (!x,!y) =
1p
2⇡

Z 1

�1

Z 1

�1
�(x, y)e�j(!xx+!yy)dxdy



Roughly why you can reconstruct - III

• Strategy:
• collect many different directions (= slices)
• this yields an approximation to FT of sigma
• invert FT - you now have sigma

• Issues:
• sampling

• we don’t see FT of d exactly, just samples
•  we don’t see FT of sigma exactly, only samples of slices

F {d} (!x) = F {�} (!x, 0)

Fourier transform of d is a “slice” of Fourier transform of sigma

Each different projection direction yields a different “slice”



Various features + complications

• Features
• uniqueness of FT yields uniqueness of reconstruction

• Complications
• it’s a nuisance to take x-rays orthographically

• rather use a point source (= perspective; = fan beam)
• mild mathematical complications follow
• practical complications follow - more samples, etc.

• This *ISN’T* the NeRF reconstruction problem
• no internal source

• SPECT - single photon emission computed tomography
• swallow some radiating material, then get imaged!



Current rough state of math

• Versions of the NERF repn. are studied in tomography
• Note if sigma is known, mapping from C to I is linear
• If sigma is known constant, then it’s injective

• i.e. an infinite set of images has a unique C
• If sigma isn’t known, and depends on angle, not much is known

• pretty clearly mapping (sigma, c) -> images isn’t injective

I(0) =

Z T

0
c(x(s))�(s)e�

R s
0 �(u)duds



RFF can be used for tomography

Reed Shepard phantom

Sinogram, 21 angles, 513 dists



Reed Shepard phantom

Sinogram, 21 angles, 513 dists



Procedure

• Learn RFF density rep’n so that
• its sinogram = ground truth sinogram

• gradient descent
• in these pix

• 512 samples along ray
• stratified uniform sampler, as in NeRF paper



GT sinogram, 21 angles, 513 dists

Predicted sinogram, 21 angles, 513 dists



Reed Shepard phantom

Reconstruction (by DAF, eeew!)



Possible NeRF insights…

• A poor density can give quite good images
• which we kind of guessed

• Sampling procedure causes NeRF rep’n to be smoothed
• which we kind of guessed

• Focus on error in projected images
• rather than repn



Why this might not be a bad thing

• Don’t need a reconstruction 
• need to predict renderings

• Failures of uniqueness as in picture are irrelevant
• basic point is you can’t see them

• It may be possible to fudge localization difficulties
• in a useful way 



• Three orthographic cameras 
see two points
• Black point correctly localized
• Other is not

• B, R reconstruct purple point
• R, G reconstruct yellow point

• What to do?
• traditional:  

• find a point that minimizes 
least square reprojection error

• NERF (?):
• put together a density in 

triangle that “behaves well”



What is a well behaved density…

• Looks like a point
• ie localized opacity, occlusion
• from each intermediate view

• Could it exist?
• yes 

• sigma depends on position
• make a “smear” of sigma

• C on pos’n, direction


