Heading into NERF

D.A. Forsyth, UIUC



Lines in 3D (if 1t’s empty!)

® Space of lines 1s 4 dimensional
® can specify a line by:
® where it intersects each of two planes
® some missing lines, some details
® alternative

D

® directed line
® point on the tangent plane of sphere

uv plane

()

st plane




Lines in 3D with object can be nasty
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Fig. 1. Maximal free segment. (a) All the rays collinear to 7 whose origin is between the two spheres “see”
point B. (b) These rays are grouped into a maximal free segment S. Two other maximal free segments S and S”
are collinear to S.
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Simplify

Place an object in a box
® record radiance for each ray leaving box

Easy to ray trace
® ]ook up eye ray in rays leaving box
® report that value

Capture is relatively easy

L



Capturing this representation

® (Obtain an awful lot of images from calibrated cameras
® cach image is a set of rays leaving the box
® calibration
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rotating hub

S //> lights

vertical’

object platform

rotating tripod

Figure 10: Object and lighting support. Objects are mounted
on a Bogen fluid-head tripod, which we manually rotate to four
orientations spaced 90 degrees apart. Illumination 1s provided
by two 600W Lowell Ommi spotlights attached to a ceiling-
mounted rotating hub that is aligned with the rotation axis of the
tripod. A stationary 6" x 6" diffuser panel 1s hung between the
spotlights and the gantry, and the entire apparatus 1s enclosed in
black velvet to eliminate stray light.

Levoy and Hanrahan, 96



Rendering
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Figure 12: The process of resampling a light slab during
display.

Levoy+Hanrahan, 96



Issue: Sampling and Interpolation
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Figure 12: The process of resampling a light slab during
display.

® Almost every eye ray ends up “between” uv, st samples
® we must interpolate (smooth; something)
® Traditional: multilinear interpolation



Interpolation helps, but..
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Figure 13: The effects of interpolation during slice extraction. (a)

No interpolation. (b) Linear interpolation in uv only. (¢) Quadra-
linear interpolation in uvst.
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Figure 3: Using line space to visualize ray coverage. (a) shows a single



Revise model

® We need:

® better interpolation
® casier capture
® some way to deal with the awkwardness of line representations

® Jdeas:

® move to scattering/volume rendering based representation
® this will make the line representation easier to deal with
® use a multilayer perceptron to represent relevant functions



Scattering

Fundamental mechanism of light/matter interactions

Visually important for

® slightly translucent materials (skin, milk, marble, etc.)
® participating media

In fact, 1t’s the mechanism underlying reflection



Participating media

® for example,
® smoke,
® wet air (mist, fog)
® dusty air
® air at long scales
® [ight leaves/enters a ray travelling through space

® Jeaves because it is scattered out
® ecnters because it 1s scattered in

® New visual effects



Light hits a small box of material

Scattering material

o Forward scattered
Incoming light (what we’re accustomed to)
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Scattered
out of view



A ray passing through scattering material

In scattering
from other elements

o Forward scattered
Incoming light (what we’re accustomed to)

> >

Scattered
out of view



From Lynch and Livingstone, Color and Light in Nature




Airlight as a scattering effect

Air

Sunlight

Inscattered
light, mostly
sunlight

Outscattered
light

Y

Eye



From Lynch and Livingstone, Color and Light in Nature



HENRIK WANN JENSEN - 2000




Absorption

Box of material

Eye ray Eye ray

I(T) -

A
°

Want 1(0)
(at start of eye ray)

dt

® [gnore in-scattering
® only account for forward scattering

® Assume there is a source at t=T
® of intensity I(T)
® what do we see at t=0?



Cross sectional area of “slab” is E
Contains particles, radius r, density rho

Too few to overlap when projected

% light absorbed = (area of projected particles)/
(area of slab)

This 1s:

(pEAs)mr?

7 = o(s)As
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More 1nteresting...

Cross sectional area of “slab” is E

Ce e Contains particles, radius r, density tho
® Intensity is “created along the

ray” Too few to overlap when projected
® by (say) airlight

® Model - the particles glow with Light out = Light in -

intensity C(x) L%ght absorbed+
Light generated
As
° Light generated: C x (area fraction
D of proj. particles)
E||° <
(@) ° . .
50 which 1s
(©)
e
2
pEAs)mr
C(X(s))( ) = C'(x(s))o(s)As



I(t)

I(t — &) = I(t) — () ()5t + c(x(t))o (1)t

T

Absorption

Generation
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Yields

The volume density o(x) can be interpreted as the differential probability of a
ray terminating at an infinitesimal particle at location x. The expected color
C'(r) of camera ray r(¢) = o + td with near and far bounds ¢,, and ¢, is:

C(r) = /t f T(t)o(r(t))c(r(t),d)dt, where T(t) = exp(—/t O‘(I‘(S))d8> . (1)

n n

Mildenhall et al, 20



Actual rendering. ..

Integration problem
® walk back along ray from viewpoint, sampling
® collect color at sample point
® accumulate transmission
® if weight is too small, stop walking

This could be nasty...
® variety of strategies, depending on what we know about c, sigma, eg
® known in voxels
® cut ray into segments (per voxel), compute integral per segment
® parametric function
® cut ray into uniform segments, one sample per segment

but the integral 1s a differentiable function of ¢, sigma



NEREF representations

Build neural network to predict
® c,sigma as functions of position, direction, parameters

Render this object with a volume renderer
® to make images

Learn this object by
® adjusting parameters (gradient descent etc)
® 5o that images it produces, with renderer are the same as
® known images
® ocometrically calibrated to one another



Positional encoding

position

1 Positional Multilayer

X, ¥:Z,uv,w |encoding |__5 perceptron | —>» o:¢
(not learned)

components of unit
vector (direction)

We leverage these findings in the context of neural scene representations, and
show that reformulating Fig as a composition of two functions Fg = F( o v, one
learned and one not, significantly improves performance (see Fig. 4 and Table 2).
Here v is a mapping from R into a higher dimensional space R?*, and Fj is still
simply a regular MLP. Formally, the encoding function we use is:

v(p) = (sin(207rp), cos(207rp), e sin(QL_lwp), cos(QL_lwp) ) : (4)

This function «(-) is applied separately to each of the three coordinate values
in x (which are normalized to lie in [—1,1]) and to the three components of the



NEREF representations

9D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
x.z00)—> — (RGB
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Fig.2: An overview of our neural radiance field scene representation and differ-
entiable rendering procedure. We synthesize images by sampling 5D coordinates
(location and viewing direction) along camera rays (a), feeding those locations
into an MLP to produce a color and volume density (b), and using volume ren-
dering techniques to composite these values into an image (c). This rendering
function is differentiable, so we can optimize our scene representation by mini-
mizing the residual between synthesized and ground truth observed images (d).
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Mildenhall et al, 20



Integrator

We numerically estimate this continuous integral using quadrature. Deter-
ministic quadrature, which is typically used for rendering discretized voxel grids,
would effectively limit our representation’s resolution because the MLP would
only be queried at a fixed discrete set of locations. Instead, we use a stratified
sampling approach where we partition [¢,,t7] into N evenly-spaced bins and
then draw one sample uniformly at random from within each bin:

1

N(tf —tn)| - (2)

1 — 1
ti Uty + —(tr —t,), tn
+ N(f ), tn +

eye ray




Integrator

Length of interval

A N l i—1
C(r) = Z 1i;(1 — exp(—0;0;))c;, where 1; = exp| — Z 00,
i=1

1=1 4

Generated in interval

Transmission to eye

Recall:

l—e°~1—(1—06+..)=06

Mildenhall et al, 20



What works: Radiance, pos’n encoding

TN = B

N\ NN

by

Ground Trutil | Complete Model rNo View Dependence No Positional Encoding

Fig. 4: Here we visualize how our full model benefits from representing view-
dependent emitted radiance and from passing our input coordinates through
a high-frequency positional encoding. Removing view dependence prevents the
model from recreating the specular reflection on the bulldozer tread. Removing
the positional encoding drastically decreases the model’s ability to represent high
frequency geometry and texture, resulting in an oversmoothed appearance.

Mildenhall et al, 20



Integration 1s hard

Transmission term (integral)

Eye



Controlling the integrator

Our rendering strategy of densely evaluating the neural radiance field network
at N query points along each camera ray is inefficient: free space and occluded
regions that do not contribute to the rendered image are still sampled repeat-
edly. We draw inspiration from early work in volume rendering [20] and propose
a hierarchical representation that increases rendering efficiency by allocating
samples proportionally to their expected effect on the final rendering.

Instead of just using a single network to represent the scene, we simultane-
ously optimize two networks: one “coarse” and one “fine”. We first sample a set
of N. locations using stratified sampling, and evaluate the “coarse” network at
these locations as described in Eqns. 2 and 3. Given the output of this “coarse”
network, we then produce a more informed sampling of points along each ray
where samples are biased towards the relevant parts of the volume. To do this,
we first rewrite the alpha composited color from the coarse network C.(r) in

Eqgn. 3 as a weighted sum of all sampled colors ¢; along the TAY: )\ rildenhall et al, 20



Ground Truth NeRF (ours) LLFF [28] SRN [42] NV [24]
Mildenhall et al, 20



Materials

Ground Truth NeRF (ours) LLFF [28] SRN [42] NV [24]

Mildenhall et al, 20



Ground Truth NeRF (ours) LLFF [28] SRN [42]

Mildenhall et al, 20



Correction

® sigma is NOT a function of angle
® [ may have implied it was; wrong

® doesn’t seem to affect conclusions



Quiz: what could go wrong?



Quiz: what could go wrong?

Al:

® variance in integral estimate makes learning, rendering slow
® symptom is present, diagnosis ?

A2:

® different c, sigma give the same images
® pretty much guaranteed to be true

A3:

® ¢00d representations may require many views
® sce above

A4

® for surface objects, c, sigma are very odd functions
® may also contribute to learning problems
® what is prior to be?



Quiz: what could go wrong?

® AS5S:

® sampler is inefficient
® pretty much guaranteed
® why not make a more efficient sampler using nerf-style repn?

® AOG:

® noise model could do with improvement
® current:
® predict example images without error
® required:
® predict new images well
® don’t know new images, but could use various image priors?






NeRF - sampler inetficiency and noise

® Samples do not know where the density 1s

® sampler variance will be penalized by loss

® if the sampler has high variance, it reports the wrong value often,
® and so gets gradient

® importance process helps, but...

® reducing sampler variance biases the representation
® the sampler doesn’t change, but the function does..
® because that’s how we learn the function



NeRF representations are likely
oversmoothed

Transmission term (integral)

Eye



Importance sampler variance

® Assume we draw x; ~ p(x)
1 X
e and form I = N Z iéCE;

® [ is arandom variable, and




NeRF - sampler inetficiency and noise

® In our case, p 1s (essentially) uniform
® 50 a low variance sampler will want f to be close to mean

[ (@) = w? da

® while keeping mean fixed (so integral along ray is right)

® NecRF wants to smooth sigma!

® Notice this might not be visible in training images
® it’ll smooth in directions along training rays



Voxel based fix

(b)

Figure 1: Illustrations of (a) uniform sampling; (b) importance sampling based on the results in (a);
(¢) the proposed sampling approach based on sparse voxels.

Liu et al 21 (web page)



Ours Ground Truth

NeRF

Liu et al 21 (web page)



NeRF Ours Ground Truth

Liu et al 21 (web page)
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Q: why should we have to use voxels?

® Disadvantage of voxels

® inefficient importance sampler
® building an exterior voxel representation is easy
® building an interior voxel representation is hard

® Alternative strategy

® Jearn a sampler at the same time as you learn NeRF repn
® penalize with image prior on (otherwise unknown) novel views






NeRF - improving positional encoding

® General phenomenon
® Neural networks tend to learn
® Jow spatial frequency representations fast
® and high spatial frequency representations slowly
e Often, this doesn’t manifest in any important way
® because the inputs are very high dimensional

® But for low dimensional inputs, this is an 1ssue

® cg learn image value as f(x,y)
® cg learn density, color as {(X, y, z, angles)



Spatial frequencies - 11

® Exercise:
® (a) fit image as f(x,y) using MLP
® what does it look like?
® There 1s a simple geometric fix

® embed X, y in much higher dimensional space
® f{it a low spatial frequency function *in this space*
® can have high spatial frequencies in lower dimensional space






Q: what 1s a good embedding?

Gaussian: (v) = [cos(2nBv), sin(27er)]T, where each entry in B € R™*¢ is sampled from
N(0,0?), and o is chosen for each task and dataset with a hyperparameter sweep. In the absence of
any strong prior on the frequency spectrum of the signal, we use an isotropic Gaussian distribution.

Our experiments show that all of the Fourier feature mappings improve the performance of coordinate-
based MLPs over using no mapping and that the Gaussian RFF mapping performs best.

Tancik et al, 20 (web page)
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With Fourier features

(a) Coordinate-based MLP (b) Image regression  (c) 3D shape regression  (d) MRI reconstruction  (e) Inverse rendering

(z,y) — RGB (z,y,z) — occupancy (x,y,z) — density  (z,y,z) — RGB, density

Figure 1: Fourier features improve the results of coordinate-based MLPs for a variety of high-
frequency low-dimensional regression tasks, both with direct (b, ¢) and indirect (d, e) supervision.
We visualize an example MLP (a) for an image regression task (b), where the input to the network is a
pixel coordinate and the output is that pixel’s color. Passing coordinates directly into the network (top)
produces blurry images, whereas preprocessing the input with a Fourier feature mapping (bottom)
enables the MLP to represent higher frequency details.

Tancik et al, 20 (web page)



What follows...

® For any low-D NN predictor

® you should do something like this

® Inc.
® image modelling
® NeRF style rep’ns
® 3D surface modelling (occupancy)

® (Q: does this make CVXNet better?

® ctc

® (Maybe)
® you can get improvements by doing this to AE, VAE codes (?)
® or improve learning



NERF - uniqueness

® [s the reconstruction unique?
® Why to worry:
® [f not, test image may not be what you want
® Almost certainly not

® cxample on next slide suggests I can construct a NERF
® Jarge norm
® near zero image

® but this might not be a bad thing...



Constant absorption
Generation zero

About
—od T

S

Constant absorption
Generation yellow



Tomography (rapid summary!)

Pass x-rays through the body in many different directions
® record result

Reconstruct 3D density from x-rays
® absorption only - no local generation of light



dl
o =01
dlog I

i oW

Extinction
coefficient

1(0) = I(T)e Jo o)t

]

Eyeis at0 Intensity at T



CCImage7,

Parallel X-rays




The x-ray 1image

® We have, for one pixel

1(0) = I(T)e~ Jo @t

I

Eyeis at0 Intensity of x-ray source

~log 1{((;)) _ /O o ((x) ) dt

L

Observe




2D example

® Lines (rays) encoded by angle, distance to origin

® Sinogram

® plot of density observed as a function of angle, distance to origin

Object

20

40

60

80

100

120

140

160

Sinogram

Sinogram of Phantom

Angle of Projection {degrees)

Projection Displacement




Tomography

® (: Can you get object from sinogram?
® yes
® (sketch follows)
® important limits from sampling issues
® (Q: Is it unique?
® i.e.is mapping from object to sinogram injective?
® vyes
® important limits from sampling issues
® some noise

® (Q: what role do deep networks have here?
® A: largely worked out (see papers)

® helpful, but should be constrained by sampling theory, etc
® or else they make fake structures



Roughly why you can reconstruct - 1

Project downy

Observe Want




Roughly why you can reconstruct - 11

i) = [ otw )y

Fourier transform of d (which we can compute)

Fld} ) == [ { [ xy)dy} gt

1 .
F {0} (waiy) = = [ o,

Fidy (we) = F{o} (ws,0)



Roughly why you can reconstruct - 111

Fd} (wz) = F 10} (e, 0)
Fourier transform of d 1s a “slice” of Fourier transform of sigma

Each different projection direction yields a different “slice”

® Strategy:
® collect many different directions (= slices)
® this yields an approximation to FT of sigma
® invert FT - you now have sigma

® [ssues:
® sampling
® we don’t see FT of d exactly, just samples
® we don’t see FT of sigma exactly, only samples of slices



Various features + complications

® Features
® uniqueness of FT yields uniqueness of reconstruction

e Complications
® it’s a nuisance to take x-rays orthographically
® rather use a point source (= perspective; = fan beam)
® mild mathematical complications follow
® practical complications follow - more samples, etc.

® This *ISN’T* the NeRF reconstruction problem

® 1o internal source
® SPECT - single photon emission computed tomography
® swallow some radiating material, then get imaged!



Current rough state of math

® Versions of the NERF repn. are studied in tomography
® Note if sigma is known, mapping from C to I is linear
® [f sigma is known constant, then it’s injective
® i.c.an infinite set of images has a unique C
® [f sigma isn’t known, and depends on angle, not much is known
® pretty clearly mapping (sigma, c) -> images isn’t injective

[(O):/O c(x(s))o(s)e™ Jo olwdugy



RFF can be used for tomography

Sinogram, 21 angles, 513 dists

Reed Shepard phantom




Reed Shepard phantom

Sinogram, 21 angles, 513 dists




Procedure

® [.carn RFF density rep’n so that
® its sinogram = ground truth sinogram
® gradient descent
® in these pix
® 512 samples along ray
® stratified uniform sampler, as in NeRF paper



GT sinogram, 21 angles, 513 dists

Predicted sinogram, 21 angles, 513 dists




Reconstruction (by DAF, eecew!)

Reed Shepard phantom



Possible NeRF insights...

A poor density can give quite good 1images
® which we kind of guessed

Sampling procedure causes NeRF rep’n to be smoothed
® which we kind of guessed

Focus on error in projected images
® rather than repn



Why this might not be a bad thing

Don’t need a reconstruction
® need to predict renderings

Failures of uniqueness as in picture are irrelevant
® basic point is you can’t see them

It may be possible to fudge localization difficulties
® in a useful way



o
d

® Three orthographic cameras

see two points

® Black point correctly localized
® OQther is not
® B, R reconstruct purple point

® R, G reconstruct yellow point
® What to do?
® traditional:
® find a point that minimizes
least square reprojection error
® NERF (7):
® put together a density in
triangle that “behaves well”



What 1s a well behaved density...

?

P2

® [.ooks like a point

® e localized opacity, occlusion
® f{rom each intermediate view

® Could it exist?
® vyes
® sigma depends on position
® make a “smear” of sigma
® C on pos’n, direction



