Neural Rendering

D.A. Forsyth



Neural vs Differentiable Rendering

® Differentiable rendering

® make (relatively conventional) renderer differentiable

® ysually to support inference (shape from single image, etc.)
® Neural rendering

® use neural networks at various points in the rendering process
® Jots of methods
® 1o real consensus on what a neural rendering process looks like



Some topics...

Reduce rendering noise
® in MCMC rendering

® in image based rendering

® in performance capture

Realistic images from approximations

Generate novel views
® from multiview input

Exaggerate effects
® cg motion fields

Reshade and relight



Reducing noise: MCMC rendering

® [ssue:

® physically accurate rendering requires tracing very large numbers of
complex paths; the resulting estimates can have quite high noise

® Reducing noise by tracing “more paths” is impractical (1/sqrt(N))

Filter noisy pixels:
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Kalantari et al 15



Cross-bilateral filter
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Natural attack
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Figure 4: Our approach combines a standard MLP (Fig. 3) with
a matching filter. The local mean primary features (illustrated by
a stack of images) contain color, position, and additional features
such as world positions, shading normals, etc. A set of secondary
features {x1,--- ,xn}i (see Sec. 3.3) are extracted from the mean
primary features in a local neighborhood of each pixel. The MLP
takes the secondary features and outputs the parameters of the filter.
The filter then takes the block of mean primary features and outputs
a filtered pixel. During training, we minimize the error between the
filtered pixel and the ground truth. Once trained, the network can
generate appropriate filter parameters for an arbitrary test image.

Kalantari et al 15



Ours Input MC NLM RPF SBF RD WLR Ours Ground truth

4spp(408s) 4spp(486s) 4spp(4112s) 4spp(1594s) 4spp(58.3s) 4spp(47.2s) 4spp(489s)
RelMSE: 776.48x102 8.82x10-2 325x10 10.63x102 4.71x102 2.76x10 2.05x102
SSIM: 0540 0.788 0.925 0.869 0.895 0.906 0.939
Figure 2: Comparison between our approach and several state-of-the-art algorithms on the KITCHEN scene rendered at 4 spp. Note that
the ground truth image is still noisy even at 32K spp. Non-local means filtering (NLM) [Rousselle et al. 2012] is a color-based method which
cannot keep geometry or texture detail. Random parameter filtering (RPF) [Sen and Darabi 2012], SURE-based filtering (SBF) [Li et al.
2012], robust denoising (RD) [Rousselle et al. 2013], and weighted local regression (WLR) [Moon et al. 2014] use additional scene features
(e.g., world positions) to keep the details. However, they often do not weight the importance of each feature optimally, resulting in under/over
blurred regions or splotches in the final result. Our approach preserves scene detail and generates a higher-quality, noise-free result faster
than most other methods. The relative mean squared error (RelMSE) and structural similarity (SSIM) index are listed below each image.
Larger SSIM values indicate better perceptual quality. Full images are available in the supplementary materials. Scene credit: Jo Ann Ellion.

Kalantari et al 15



Spikes...

Before removing spikes  Full approach Ground truth

Figure 5: The image on the left shows the result of our approach
before spike removal on an inset of the KITCHEN scene. In our
method, we remove high magnitude spikes in the filtered image as a
post-process to produce the result shown in the middle. The ground
truth image is shown on the right for comparison.

Kalantari et al 15



See also

Alla Chaitanya, 17 (same problem, different architecture)

Our reconstruction result Reference

GRIDS

PILLARS

Fig. 10. Closeups for shadow filtering for 1 spp input (MC), axis-aligned filter (AAF), A-Trous wavelet filter (EAW), SURE-based filter (SBF), and our result.



Some topics...

Reduce rendering noise
® in MCMC rendering

® in image based rendering

® in performance capture

Realistic images from approximations

Generate novel views
® from multiview input

Exaggerate effects
® cg motion fields

Reshade and relight



Noise management in IBR

® (You could see NeRF as an extreme case of this)

® Image based rendering
® From several images of a scene, produce a rendering at new viewpoint
® Typically, using some form of approximate geometric representation
® Simplest cases
® SFM yields cameras, blend on a common plane (Phototourism,
Snavely et al 06)
® https:// www.youtube.com/watch?v=mTBPGuPLISY
® blend can look poor, texture slides
® SFM yields points->parametric model, texture from image, render
(Facade, Debevec 1996, 1997)
® many things remain hard to model
® ecrrors in recovered model lead to texture problems




https://www.pauldebevec.com/Campanile/#movie



https://www.pauldebevec.com/Campanile/#movie



IBR as blending

The novel view is a blend;
blend is driven by relief from reconstruction,
normals, etc. Strategy: build the best blender.

(a) Real surface Reconstruction

Hedman, 18



On-line Deep Blending Pipeline

Novel Voxel Global Mesh Render
Vlewpomt Grld + 4 Mosaics

InsideOut Tiled

N-View Selection Blend Weights

Per-image Depth
Mesh Rendering

Warped Views
Blended RG B_Output

Per-pixel View
Prioritization

4 \V/iew Mosaics
Hedman, 18



i

Top-ranked Mosaic

Reference Image Deep-Blending Output

Fig. 10. Our network takes as input ranked mosaics generated from a set of
warped candidate views. For each pixel, the candidates are ranked based on
their expected blending contribution, and 4 color-image mosaics are formed
from the top 4 rankings. Example mosaics are shown in the first two rows.
The top right halves show the color mosaic, while the bottom left halves

Hedman, 18 show colormaps of the selection, with each input shown in a different color.
Weighted blending outputs from our network (bottom right) are trained by
minimizing their difference with real images (bottom left). Our network also
blends an RGB view of the global mesh (not shown).



Off-line Scene Preprocessing
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Hedman, 18



Hedman, 18

Off-line CNN Training
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Training

® [ osses:
® per frame perceptual loss

L(In.Ig) = |IN — Ig|+
IVGG16 ety 12(IN) — VGG16/epy 12(IR) |+
|VGG16relu22(IN ) - VGG16relu22(IR)|

® two frame temporal consistency
® helps prevent oscillation, flicker, etc

Lr(IN,Ir) = LIy Ir) +0.33 % LU\, Wr(IY)),



Notes and Queries

® This mostly cleans up a very good IBR representation
® notice how much preprocessing and detail before learning

® You should likely think of IBR repn as latent variables

® (Q: can one learn them? Why?

® There is no adversarial loss
® (: Why? (authors say might create temporal coherence problems)



View dependent appearance effects

® Specular effects, gloss, etc. depend on viewing direction
® Blending multiple views will blur the effect or remove it
® Strategy:

® sclect triangle from image mesh per view (Debevec, 98) rather than
blending



View dependent appearance effects

® Specular effects, gloss, etc. depend on viewing direction
® Blending multiple views will blur the effect or remove it

Reconstructed Debevec et al.
Geometry B PR A

Ours

Figure 14: Image synthesis on real data: we show a comparison to the IBR technique of Debevec

et al. (1998). From left to right: reconstructed geometry of the object, result of IBR, our result, and
the ground truth. Thies et al 20



Idea: predict these separately

Estimated Novel View Image ‘ Ground Truth

Figure 1: Overview of our image-guided rendering approach: based on the nearest neighbor views,
we predict the corresponding view-dependent effects using our EffectsNet architecture. The view-
dependent effects are subtracted from the original images to get the diffuse images that can be re-
projected into the target image space. In the target image space we estimate the new view-dependent
effect and add them to the warped images. An encoder-decoder network is used to blend the warped
images to obtain the final output image. During training, we enforce that the output image matches

the corresponding ground truth image.
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Thies et al 20



We propose a learning-based image-guided rendering approach that enables novel view synthesis for
arbitrary objects. Input to our approach is a set of N images Z = {Z; }1"_, of an object with constant
illumination. In a preprocess, we obtain camera pose estimates and a coarse proxy geometry using
the COLMAP structure-from-motion approach (Schonberger & Frahm (2016); Schonberger et al.
(2016)). We use the reconstruction and the camera poses to render synthetic depth maps Dj. for
all input images 7. to obtain the training corpus 7 = {(Zy,Di)}}_,, see Fig. 8. Based on this
input, our learning-based approach generates novel views based on the stages that are depicted in
Fig. 1. First, we employ a coverage-based look-up to select a small number n < N of fixed
views from a subset of the training corpus. In our experiments, we are using a number of n = 20
frames, which we call reference images. Per target view, we select K = 4 nearest views from
these reference images. Our EffectsNet predicts the view-dependent effects for these views and,
thus, the corresponding view-independent components can be obtained via subtraction (Sec. 5). The
view-independent component is explicitly warped to the target view using geometry-guided cross-
projection (Sec. 6). Next, the view-dependent effects of the target view are predicted and added on
top of the warped views. Finally, our CompositionNet is used to optimally combine all warped views
to generate the final output (Sec. 6). In the following, we discuss details, show how our approach
can be trained based on our training corpus (Sec. 4), and extensively evaluate our proposed approach
(see Sec. 7 and the appendix).

Thies et al 20



View-dependent View-dependent Diffuse Images
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Figure 2: EffectsNet is trained in a self-supervised fashion. In a Siamese scheme, two random
images from the training set are chosen and fed into the network to predict the view-dependent
effects based on the current view and the respective depth map. After re-projecting the source image
to the target image space we compute the diffuse color via subtraction. We optimize the network by
minimizing the difference between the two diffuse images in the valid region.
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Flgure 1: Overview of our image-guided rendering approach: based on the nearest neighbor views,
we predict the corresponding view-dependent effects using our EffectsNet architecture. The view-
dependent effects are subtracted from the original images to get the diffuse images that can be re-
projected into the target image space. In the target image space we estimate the new view-dependent
effect and add them to the warped images. An encoder-decoder network is used to blend the warped
images to obtain the final output image. During training, we enforce that the output image matches

the corresponding ground truth image. ThieS et al 20



Original Image View-dependent Effects Diffuse Image

Figure 4: Prediction and removal of view-dependent effects of a highly specular real object.

Thies et al 20



InsideOut DeepBlending Ours Ground Truth
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Figure 6: Comparison to the IBR method InsideOut of Hedman et al. (2016) and the learned IBR
blending method DeepBlending of Hedman et al. (2018). To better show the difference in shading,
we computed the quotient of the resulting image and the ground truth. A perfect reconstruction
would result in a quotient of 1. As can be seen our approach leads to a more uniform error, while
the methods of Hedman et al. show shading errors due to the view-dependent effects.
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Idea: predict these separately
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Figure 1: Overview of our image-guided rendering approach: based on the nearest neighbor views,
we predict the corresponding view-dependent effects using our EffectsNet architecture. The view-
dependent effects are subtracted from the original images to get the diffuse images that can be re-
projected into the target image space. In the target image space we estimate the new view-dependent
effect and add them to the warped images. An encoder-decoder network is used to blend the warped
images to obtain the final output image. During training, we enforce that the output image matches
the corresponding ground truth image.



Notes and Queries

e Key idea
® separate diffuse view prediction and view dependent components
® notice how much preprocessing and detail before learning
® multiple registered pix and depth maps

® There is an adversarial loss
® ] ocal PatchGAN loss
® from pix2pix (Isola, 16)
® useful trick



Performance capture (rough summary)

® Use multiple synchronized cameras to
® come up with a surface like representation of performer(s)
® that is photorealistic
® to re-render from different views
® to augment

e History
® rough outlines clear since mid 90s

® details fantastically important
® quality is hard to get



Performance capture (rough summary)

Kanade et al 97

View Depth map (stereo, I think)




Performance capture (rough summary)

Depth discontinuities create _ ,
meshing problems Crop at discontinuities ~ Fill holes with other
viewpoints

Kanade et al 97
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Ball approaches

Time

L

Ball soars high and away |

Figure 8. A baseball bat
swing from the
baseball’s point of view.




Quiz: what could go wrong



Quiz: what could go wrong?

Flicker at boundaries
® scgmentation not coherent over time

Segmentation errors lead to poor appearance
Motion blur errors

Matting errors

Resolution problems

Texture at boundaries



Performance capture (rough summary)

Depth discontinuities create _ ,
meshing problems Crop at discontinuities ~ Fill holes with other
viewpoints

Kanade et al 97
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Figure 8. A baseball bat |

swing from the
baseball’s point of view. Kanade et al 97



Kanade et al 97



Kanade et al 97



Fixes

Cameras:
® more, faster, higher resolution, better synchronized

Reconstruction algorithmes:
® high resolution multiview stereo reconstructions

Body models:

® skinned parametric body/hand/face models



Jooetal 18



Face Model

(e) Body Model Aligned
with Face and Hands

(c) Hand (d) Body Model

(f) Frank Model

Figure 2: Part models and the Frank model. (a) The body
model [34]; (b) the face model [15]; and (c) a hand rig. In
(a-c), the red dots have corresponding 3D keypoints recon-
structed by detectors; (d) Body only model; (e) Face and
hand models substitute the corresponding parts of the body
model. Alignments are ensured by I's; and (f) The blending
matrix C 1s applied to produce a seamless mesh.

Jooetal 18



Issues (later...)

Construct parametric surface deformation model from data
® for body, hand, head+face (body - SMPL, widely used)

Skinning

® [ink joint parameters of model to surface for control

Blending
® Attach hand, head+face to body



Fitting

Recover point cloud

Recover 3D joint (keypoint) positions
® human pose recovery (qv)

Fit parametric model to point cloud using
® Kkeypoint positions

® [CP for points to surface

® Minimize seams between hand/body, head/body

® prior

Refine parametric model to better encode sequences



Relightables - extreme capture

e (Capture with

® [2MP active IR depth sensors (specialized)
® Fast HR RGB cameras
® (Controllable relighting during capture Guo et al, 2019

Capture System with Performer } Relightable Volumetric Videos
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Fig. 8. The Relightables Pipeline (Part 1). First, raw images are used to reconstructed a high quality 3D model.

Depth maps come both from
active and from passive sensors

Essential: can’t green-screen
because we’re actively relighting;
CREF here leads to other small but

important improvements

Standard procedure

Guo et al 19



VS

Common UV atlas

T

Gives texture coordinatef,s
for each triangle in mesh

Mesh Simplified Mesh
Reconstruction Time

Fig. 9. The Relightables Pipeline (Part 2). This mesh then gets downsampled, tracked over time and parameterized.

Simplified by another

standard procedure Guo et al 19
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Fig. 10. The Relightables Pipeline (Part 3). Finally reflectance maps are inferred from two gradient illumination conditions.

Because we know triangle normals, and
we see under multiple illuminations,
can recover (a) albedo and (b) gloss terms. Guoetal 19
Q: can we also refine normals, triangles, etc?



Base mesh

J.8.8,
dd

Sk triangles 25k triangles 100k triangles

Photometric normals

Fig. 17. A comparison of different decimated meshes (base mesh and photo-
metric normals visualization) using 5k, 25k, and 100k triangles respectively.

® General point
® for rendering purposes, normals do not need to be geometric
® ic the normal at each mesh vertex
® does not have to be estimated from the mesh
® could be estimated photometrically (essentially, photometric stereo)
® photometric normals are often (usually) better

Guoetal 19
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Fig. 20. Left: HDRI relighting of diffuse color and geometry such as in Collet
et al. [2015]. Right: our solution using geometry, albedo, photometric normal,
and material maps as input. Note the increased sharpness and amount of

details with the proposed system. Guo et al 19



There are problems 1n all systems...

Low Resolution Texture Coarse Geometry Incomplete Data
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Fig. 2. Limitations of state of the art, real-time performance capture systems.
Left: low resolution textures where the final rendering does not resemble
a high quality picture of the subject. Middle: coarse geometry leads to
overly smooth surfaces where important details such as glasses are lost.
This also limits the quality of the final texture. Right: incomplete data in
the reconstruction creates holes in the final output.

Martin-Brualla et al, 18



Idea: learned beauty-renderer

® During capture, have witness cameras

® Train a beauty renderer to
® accept predicted frames
® produce good looking frames
® using witness cameras

Input: . "

10.

L e
* g

1 l l"

4

=) Conv2d + RelU
= Bilinear Up + ConvZd + Rell)

)

2x super-resolution layer
(optional)
color mask =) Concat

Fig. 5. LookinGood’s fully convolutional deep architecture. We train the model for both left and right view that simulate a VR or AR headset. The architecture
takes as input a low resolution image and produces a high quality rendering together with a foreground segmentation mask.

Martin-Brualla et al, 18



Input Image Prediction Groundtruth
o

Full Body (Multi View)

Fig. 7. Generalization on new sequences. We show here some results on

known participant but unseen sequences. Notice how the method is able to

in-paint missing areas correctly in the single camera case (top rows). Full

body results show an improved quality and robustness to imprecision in the

groundtruth mask (third row, right). The method also recovers from color Martin-Brualla et al, 18
and geometry inconsistencies (forth row, left).



Input View

Predicted View

Fig. 8. Viewpoint Robustness. Notice how the neural re-rendering generalizes well w.r.t. to viewpoint changes, despite no training data was acquired for those
particular views.

Martin-Brualla et al, 18



Notes and queries

® What are the losses?

® natural
® in paper - look them up!
® adversarial loss is part of this

® (General points:
® Beauty renderers are probably an excellent idea
® (: conditioning to get best balance between quality/efficiency?
® A:?
® (Q: should this be a general part of any future “realistic” rendering system?
® i.c.learned beauty renderer from rough to final
® A: likely yes, only issue is pragmatics



Some topics...

Reduce rendering noise

® in MCMC rendering

® in image based rendering

® in performance capture - TBA!

Realistic images from approximations

Generate novel views
® from multiview input

Exaggerate effects
® cg motion fields

Reshade and relight



Some topics...

Reduce rendering noise

® in MCMC rendering

® in image based rendering

® in performance capture

Realistic images from approximations
® texture synthesis history

Generate novel views

® from multiview input

Exaggerate effects
® ¢g motion fields

Reshade and relight
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Texture scandals!!




Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had
digitally altered a photo that appeared in a national cable television
commercial. In the photo, a handful of soldiers were multiplied
many times.

This section
shows a
sampling

of the
duplication
of soldiers.

Original photograph




Two crucial algorithmic points

® Nearest neighbors
® again and again and again

® Dynamic programming
® likely new; we’ll use this again, too



Texture Synthesis

Efros & Leung ICCV99



How to paint this pixel?
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Neighborhood size

Efros & Leung ICCV99
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block

Input texture

Random placement Neighboring blocks
of blocks constrained by overlap

Efros & Freeman SIGGRAPHO1

Bl B2

Minimal error
boundary cut



Minimal error boundary

overlapping blocks vertical boundary

overlap error min. error boundary

Efros & Freeman SIGGRAPHO1



II li Bl B2 Bl B2

Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut

Efros & Freeman SIGGRAPHO1
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Texture Transfer

® Take the texture from on object and paint it on another object

Decomposing shape and texture
Very challenging
Walk around
Add some constraint to the search

Efros & Freeman SIGGRAPHO1
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Texture Transfer

Efros & Freeman SIGGRAPHO1
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Image Analogies

unfiltered target image unfiltered training imge

filtered [Aaroct in):l;{k'

filtered trai

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Training

Unfiltered source (A) FiItered é(n)urc‘e (A"

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1
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Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



[Learn to Blur

Unfiltered target (B3) Filtered target (B’)

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Texture by Numbers

Unfiltered source (A) Filtered source (A")

Unfiltered (B) Filtered (B")

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Colorization

Unfiltered target (B) Filtered target (B’)

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Super-resolution

Hertzman. Jacobs. Oliver. Curless. and Salesin. SIGGRAPHO1



Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Training
1mages

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1
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