Neural Rendering

D.A. Forsyth



Neural vs Differentiable Rendering

® Differentiable rendering

® make (relatively conventional) renderer differentiable

® ysually to support inference (shape from single image, etc.)
® Neural rendering

® use neural networks at various points in the rendering process
® Jots of methods
® 1o real consensus on what a neural rendering process looks like



Some topics...

Reduce rendering noise
® in MCMC rendering

® in image based rendering

® in performance capture

Realistic images from approximations

Generate novel views
® from multiview input

Exaggerate effects
® cg motion fields

Reshade and relight



Reducing noise: MCMC rendering

® [ssue:

® physically accurate rendering requires tracing very large numbers of
complex paths; the resulting estimates can have quite high noise

® Reducing noise by tracing “more paths” is impractical (1/sqrt(N))

Filter noisy pixels:

. > jen(i) di.5C
2 jen(y did

Kalantari et al 15



Cross-bilateral filter
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Natural attack
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Figure 4: Our approach combines a standard MLP (Fig. 3) with
a matching filter. The local mean primary features (illustrated by
a stack of images) contain color, position, and additional features
such as world positions, shading normals, etc. A set of secondary
features {x1,--- ,xn}i (see Sec. 3.3) are extracted from the mean
primary features in a local neighborhood of each pixel. The MLP
takes the secondary features and outputs the parameters of the filter.
The filter then takes the block of mean primary features and outputs
a filtered pixel. During training, we minimize the error between the
filtered pixel and the ground truth. Once trained, the network can
generate appropriate filter parameters for an arbitrary test image.

Kalantari et al 15



Ours Input MC NLM RPF SBF RD WLR Ours Ground truth

4spp(408s) 4spp(486s) 4spp(4112s) 4spp(1594s) 4spp(58.3s) 4spp(47.2s) 4spp(489s)
RelMSE: 776.48x102 8.82x10-2 325x10 10.63x102 4.71x102 2.76x10 2.05x102
SSIM: 0540 0.788 0.925 0.869 0.895 0.906 0.939
Figure 2: Comparison between our approach and several state-of-the-art algorithms on the KITCHEN scene rendered at 4 spp. Note that
the ground truth image is still noisy even at 32K spp. Non-local means filtering (NLM) [Rousselle et al. 2012] is a color-based method which
cannot keep geometry or texture detail. Random parameter filtering (RPF) [Sen and Darabi 2012], SURE-based filtering (SBF) [Li et al.
2012], robust denoising (RD) [Rousselle et al. 2013], and weighted local regression (WLR) [Moon et al. 2014] use additional scene features
(e.g., world positions) to keep the details. However, they often do not weight the importance of each feature optimally, resulting in under/over
blurred regions or splotches in the final result. Our approach preserves scene detail and generates a higher-quality, noise-free result faster
than most other methods. The relative mean squared error (RelMSE) and structural similarity (SSIM) index are listed below each image.
Larger SSIM values indicate better perceptual quality. Full images are available in the supplementary materials. Scene credit: Jo Ann Ellion.

Kalantari et al 15



Spikes...

Before removing spikes  Full approach Ground truth

Figure 5: The image on the left shows the result of our approach
before spike removal on an inset of the KITCHEN scene. In our
method, we remove high magnitude spikes in the filtered image as a
post-process to produce the result shown in the middle. The ground
truth image is shown on the right for comparison.

Kalantari et al 15



See also

Alla Chaitanya, 17 (same problem, different architecture)

Our reconstruction result Reference

GRIDS

PILLARS

Fig. 10. Closeups for shadow filtering for 1 spp input (MC), axis-aligned filter (AAF), A-Trous wavelet filter (EAW), SURE-based filter (SBF), and our result.



Some topics...

Reduce rendering noise
® in MCMC rendering

® in image based rendering

® in performance capture

Realistic images from approximations

Generate novel views
® from multiview input

Exaggerate effects
® cg motion fields

Reshade and relight



Noise management in IBR

® (You could see NeRF as an extreme case of this)

® Image based rendering
® From several images of a scene, produce a rendering at new viewpoint
® Typically, using some form of approximate geometric representation
® Simplest cases
® SFM yields cameras, blend on a common plane (Phototourism,
Snavely et al 06)
® https:// www.youtube.com/watch?v=mTBPGuPLISY
® blend can look poor, texture slides
® SFM yields points->parametric model, texture from image, render
(Facade, Debevec 1996, 1997)
® many things remain hard to model
® ecrrors in recovered model lead to texture problems




https://www.pauldebevec.com/Campanile/#movie



https://www.pauldebevec.com/Campanile/#movie












IBR as blending

The novel view is a blend;
blend is driven by relief from reconstruction,
normals, etc. Strategy: build the best blender.

(a) Real surface Reconstruction

Hedman, 18



On-line Deep Blending Pipeline

Novel Voxel Global Mesh Render
Vlewpomt Grld + 4 Mosaics

InsideOut Tiled

N-View Selection Blend Weights

Per-image Depth
Mesh Rendering

Warped Views
Blended RG B_Output

Per-pixel View
Prioritization

4 \V/iew Mosaics
Hedman, 18



Third-ranked Mosaic ‘

11 4

S\

Deep-Blending Output

Fig. 10. Our network takes as input ranked mosaics generated from a set of
warped candidate views. For each pixel, the candidates are ranked based on
Het‘i’f@ﬂneiéected blending contribution, and 4 color-image mosaics are formed

from the top 4 rankings. Example mosaics are shown in the first two rows.
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Off-line Scene Preprocessing

StM Local Depth Global
Registration Maps Mesh
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Hedman, 18



Hedman, 18

Off-line CNN Training

Left-out Image Other Views

Deep Blending

\

Predicted Blended
RGB Output
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Training

® [ osses:
® per frame perceptual loss

L(In.Ig) = |IN — Ig|+
IVGG16 ety 12(IN) — VGG16/epy 12(IR) |+
|VGG16relu22(IN ) - VGG16relu22(IR)|

® two frame temporal consistency
® helps prevent oscillation, flicker, etc

Lr(IN,Ir) = LIy Ir) +0.33 % LU\, Wr(IY)),



Notes and Queries

® This mostly cleans up a very good IBR representation
® notice how much preprocessing and detail before learning

® You should likely think of IBR repn as latent variables

® (Q: can one learn them? Why?

® There is no adversarial loss
® (: Why? (authors say might create temporal coherence problems)



View dependent appearance effects

® Specular effects, gloss, etc. depend on viewing direction
® Blending multiple views will blur the effect or remove it
® Strategy:

® sclect triangle from image mesh per view (Debevec, 98) rather than
blending









View dependent appearance effects

® Specular effects, gloss, etc. depend on viewing direction
® Blending multiple views will blur the effect or remove it

Reconstructed Debevec et al.
Geometry B PR A

Ours

Figure 14: Image synthesis on real data: we show a comparison to the IBR technique of Debevec

et al. (1998). From left to right: reconstructed geometry of the object, result of IBR, our result, and
the ground truth. Thies et al 20



Idea: predict these separately

Estimated Novel View Image ‘ Ground Truth

Figure 1: Overview of our image-guided rendering approach: based on the nearest neighbor views,
we predict the corresponding view-dependent effects using our EffectsNet architecture. The view-
dependent effects are subtracted from the original images to get the diffuse images that can be re-
projected into the target image space. In the target image space we estimate the new view-dependent
effect and add them to the warped images. An encoder-decoder network is used to blend the warped
images to obtain the final output image. During training, we enforce that the output image matches

the corresponding ground truth image.
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Re-projected Diffuse Reference Images

Thies et al 20



We propose a learning-based image-guided rendering approach that enables novel view synthesis for
arbitrary objects. Input to our approach is a set of N images Z = {Z; }1"_, of an object with constant
illumination. In a preprocess, we obtain camera pose estimates and a coarse proxy geometry using
the COLMAP structure-from-motion approach (Schonberger & Frahm (2016); Schonberger et al.
(2016)). We use the reconstruction and the camera poses to render synthetic depth maps Dj. for
all input images 7. to obtain the training corpus 7 = {(Zy,Di)}}_,, see Fig. 8. Based on this
input, our learning-based approach generates novel views based on the stages that are depicted in
Fig. 1. First, we employ a coverage-based look-up to select a small number n < N of fixed
views from a subset of the training corpus. In our experiments, we are using a number of n = 20
frames, which we call reference images. Per target view, we select K = 4 nearest views from
these reference images. Our EffectsNet predicts the view-dependent effects for these views and,
thus, the corresponding view-independent components can be obtained via subtraction (Sec. 5). The
view-independent component is explicitly warped to the target view using geometry-guided cross-
projection (Sec. 6). Next, the view-dependent effects of the target view are predicted and added on
top of the warped views. Finally, our CompositionNet is used to optimally combine all warped views
to generate the final output (Sec. 6). In the following, we discuss details, show how our approach
can be trained based on our training corpus (Sec. 4), and extensively evaluate our proposed approach
(see Sec. 7 and the appendix).

Thies et al 20



View-dependent View-dependent Diffuse Images
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Figure 2: EffectsNet is trained in a self-supervised fashion. In a Siamese scheme, two random
images from the training set are chosen and fed into the network to predict the view-dependent
effects based on the current view and the respective depth map. After re-projecting the source image
to the target image space we compute the diffuse color via subtraction. We optimize the network by
minimizing the difference between the two diffuse images in the valid region.
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Flgure 1: Overview of our image-guided rendering approach: based on the nearest neighbor views,
we predict the corresponding view-dependent effects using our EffectsNet architecture. The view-
dependent effects are subtracted from the original images to get the diffuse images that can be re-
projected into the target image space. In the target image space we estimate the new view-dependent
effect and add them to the warped images. An encoder-decoder network is used to blend the warped
images to obtain the final output image. During training, we enforce that the output image matches

the corresponding ground truth image. ThieS et al 20



Original Image View-dependent Effects Diffuse Image

Figure 4: Prediction and removal of view-dependent effects of a highly specular real object.

Thies et al 20



InsideOut DeepBlending Ours Ground Truth
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Figure 6: Comparison to the IBR method InsideOut of Hedman et al. (2016) and the learned IBR
blending method DeepBlending of Hedman et al. (2018). To better show the difference in shading,
we computed the quotient of the resulting image and the ground truth. A perfect reconstruction
would result in a quotient of 1. As can be seen our approach leads to a more uniform error, while
the methods of Hedman et al. show shading errors due to the view-dependent effects.
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Thies et al 20



Notes and Queries

® Key idea
® scparate diffuse view prediction and view dependent components
® notice how much preprocessing and detail before learning
® multiple registered pix and depth maps

® There 1s an adversarial loss
® [ ocal PatchGAN loss
® f{rom pix2pix (Isola, 16)
([ qV
® useful trick









Performance capture (rough summary)

® Use multiple synchronized cameras to
® come up with a surface like representation of performer(s)
® that is photorealistic
® to re-render from different views
® to augment

e History
® rough outlines clear since mid 90s

® details fantastically important
® quality is hard to get



Performance capture (rough summary)

Kanade et al 97

View Depth map (stereo, I think)




Performance capture (rough summary)

Depth discontinuities create _ ,
meshing problems Crop at discontinuities ~ Fill holes with other
viewpoints

Kanade et al 97
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Ball approaches

Time

L

Ball soars high and away |

Figure 8. A baseball bat
swing from the
baseball’s point of view.




Quiz: what could go wrong



Quiz: what could go wrong?

Flicker at boundaries
® scgmentation not coherent over time

Segmentation errors lead to poor appearance
Motion blur errors

Matting errors

Resolution problems

Texture at boundaries



Performance capture (rough summary)

Depth discontinuities create _ ,
meshing problems Crop at discontinuities ~ Fill holes with other
viewpoints

Kanade et al 97



__i’( wla [a |2

Ball approaches

Time

Ball soars high and away |

Figure 8. A baseball bat |

swing from the
baseball’s point of view. Kanade et al 97



Kanade et al 97



Kanade et al 97



Fixes

Cameras:
® more, faster, higher resolution, better synchronized

Reconstruction algorithmes:
® high resolution multiview stereo reconstructions

Body models:

® skinned parametric body/hand/face models



Jooetal 18



Face Model

(e) Body Model Aligned
with Face and Hands

(c) Hand (d) Body Model

(f) Frank Model

Figure 2: Part models and the Frank model. (a) The body
model [34]; (b) the face model [15]; and (c) a hand rig. In
(a-c), the red dots have corresponding 3D keypoints recon-
structed by detectors; (d) Body only model; (e) Face and
hand models substitute the corresponding parts of the body
model. Alignments are ensured by I's; and (f) The blending
matrix C 1s applied to produce a seamless mesh.

Jooetal 18



Issues (later...)

Construct parametric surface deformation model from data
® for body, hand, head+face (body - SMPL, widely used)

Skinning

® [ink joint parameters of model to surface for control

Blending
® Attach hand, head+face to body



Fitting

Recover point cloud

Recover 3D joint (keypoint) positions
® human pose recovery (qv)

Fit parametric model to point cloud using
® Kkeypoint positions

® [CP for points to surface

® Minimize seams between hand/body, head/body

® prior

Refine parametric model to better encode sequences



Relightables - extreme capture

e (Capture with

® [2MP active IR depth sensors (specialized)
® Fast HR RGB cameras
® (Controllable relighting during capture Guo et al, 2019

Capture System with Performer } Relightable Volumetric Videos
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Fig. 8. The Relightables Pipeline (Part 1). First, raw images are used to reconstructed a high quality 3D model.

Depth maps come both from
active and from passive sensors

Essential: can’t green-screen
because we’re actively relighting;
CREF here leads to other small but

important improvements

Standard procedure

Guo et al 19



VS

Common UV atlas

T

Gives texture coordinatef,s
for each triangle in mesh

Mesh Simplified Mesh
Reconstruction Time

Fig. 9. The Relightables Pipeline (Part 2). This mesh then gets downsampled, tracked over time and parameterized.

Simplified by another

standard procedure Guo et al 19
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Fig. 10. The Relightables Pipeline (Part 3). Finally reflectance maps are inferred from two gradient illumination conditions.

Because we know triangle normals, and
we see under multiple illuminations,
can recover (a) albedo and (b) gloss terms. Guoetal 19
Q: can we also refine normals, triangles, etc?



Base mesh

J.8.8,
dd

Sk triangles 25k triangles 100k triangles

Photometric normals

Fig. 17. A comparison of different decimated meshes (base mesh and photo-
metric normals visualization) using 5k, 25k, and 100k triangles respectively.

® General point
® for rendering purposes, normals do not need to be geometric
® ic the normal at each mesh vertex
® does not have to be estimated from the mesh
® could be estimated photometrically (essentially, photometric stereo)
® photometric normals are often (usually) better

Guoetal 19
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Fig. 20. Left: HDRI relighting of diffuse color and geometry such as in Collet
et al. [2015]. Right: our solution using geometry, albedo, photometric normal,
and material maps as input. Note the increased sharpness and amount of

details with the proposed system. Guo et al 19



There are problems 1n all systems...

Low Resolution Texture Coarse Geometry Incomplete Data
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Fig. 2. Limitations of state of the art, real-time performance capture systems.
Left: low resolution textures where the final rendering does not resemble
a high quality picture of the subject. Middle: coarse geometry leads to
overly smooth surfaces where important details such as glasses are lost.
This also limits the quality of the final texture. Right: incomplete data in
the reconstruction creates holes in the final output.

Martin-Brualla et al, 18



Idea: learned beauty-renderer

® During capture, have witness cameras

® Train a beauty renderer to
® accept predicted frames
® produce good looking frames
® using witness cameras

Input: . "

10.

L e
* g

1 l l"

4

=) Conv2d + RelU
= Bilinear Up + ConvZd + Rell)

)

2x super-resolution layer
(optional)
color mask =) Concat

Fig. 5. LookinGood’s fully convolutional deep architecture. We train the model for both left and right view that simulate a VR or AR headset. The architecture
takes as input a low resolution image and produces a high quality rendering together with a foreground segmentation mask.

Martin-Brualla et al, 18



Input Image Prediction Groundtruth
o

Full Body (Multi View)

Fig. 7. Generalization on new sequences. We show here some results on

known participant but unseen sequences. Notice how the method is able to

in-paint missing areas correctly in the single camera case (top rows). Full

body results show an improved quality and robustness to imprecision in the

groundtruth mask (third row, right). The method also recovers from color Martin-Brualla et al, 18
and geometry inconsistencies (forth row, left).



Input View

Predicted View

Fig. 8. Viewpoint Robustness. Notice how the neural re-rendering generalizes well w.r.t. to viewpoint changes, despite no training data was acquired for those
particular views.

Martin-Brualla et al, 18



Notes and queries

® What are the losses?

® natural
® in paper - look them up!
® adversarial loss is part of this

® (General points:
® Beauty renderers are probably an excellent idea
® (: conditioning to get best balance between quality/efficiency?
® A:?
® (Q: should this be a general part of any future “realistic” rendering system?
® i.c.learned beauty renderer from rough to final
® A: likely yes, only issue is pragmatics



Some topics...

Reduce rendering noise

® in MCMC rendering

® in image based rendering

® in performance capture - TBA!

Realistic images from approximations

Generate novel views
® from multiview input

Exaggerate effects
® cg motion fields

Reshade and relight



Some topics...

Reduce rendering noise

® in MCMC rendering

® in image based rendering

® in performance capture

Realistic images from approximations
® texture synthesis history

Generate novel views

® from multiview input

Exaggerate effects
® ¢g motion fields

Reshade and relight



Realistic images from approximations

® Jdea:

® f{rom approximate image
® ¢g semantic segmenter map
® produce “realistic” image

® [n what way realistic?
® Fools adversary
® (Obtain strong LPIPS score
® compare deep features of local patches to those of real images (Zhang et. al)
® ctc

® Why?
Rendering model for backgrounds, scenes, etc.

® (Controllable to some degree
® Possible source of training data?
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Texture scandals!!




Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had
digitally altered a photo that appeared in a national cable television
commercial. In the photo, a handful of soldiers were multiplied
many times.

This section
shows a
sampling

of the
duplication
of soldiers.

Original photograph




Two crucial algorithmic points

® Nearest neighbors
® again and again and again

® Dynamic programming
® likely new; we’ll use this again, too



Texture Synthesis

Efros & Leung ICCV99



How to paint this pixel?
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Neighborhood size

Efros & Leung ICCV99
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block

Input texture

Random placement Neighboring blocks
of blocks constrained by overlap

Efros & Freeman SIGGRAPHO1

Bl B2

Minimal error
boundary cut



Minimal error boundary

overlapping blocks vertical boundary

overlap error min. error boundary

Efros & Freeman SIGGRAPHO1



II li Bl B2 Bl B2

Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut

Efros & Freeman SIGGRAPHO1



Efros & Freeman SIGGRAPHO1



&v %qw&&%%%

3 Aﬂ\%

Pl ot

A AR A

P A A F
)

-

Efros & Freeman SIGGRAPHO1



Texture Transfer

® Take the texture from on object and paint it on another object

Decomposing shape and texture
Very challenging
Walk around
Add some constraint to the search

Efros & Freeman SIGGRAPHO1
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Destination
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Texture Transfer

Efros & Freeman SIGGRAPHO1
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Image Analogies

unfiltered target image unfiltered training imge

filtered [Aaroct in):l;{k'

filtered trai

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Training

Unfiltered source (A) FiItered é(n)urc‘e (A"

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Hertzman. Jacobs. Oliver. Curless. and Salesin. SIGGRAPHO1



Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1




Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



[Learn to Blur

Unfiltered target (B3) Filtered target (B’)

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Texture by Numbers

Unfiltered source (A) Filtered source (A")

Unfiltered (B) Filtered (B")

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Colorization

Unfiltered target (B) Filtered target (B’)

Hertzman, Jacobs, Oliver, Curless, and Salesin, SIGGRAPHO1



Super-resolution

Hertzman. Jacobs. Oliver. Curless. and Salesin. SIGGRAPHO1



Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1



Training
1mages

Hertzman. Jacobs. OQliver. Curless. and Salesin. SIGGRAPHO1
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Realistic images from approximations

Pix2Pix
® (Isolaetal 16)
® train with pairs of input, output, CGAN

CycleGAN
(Isola et al 17)
® train with populations, consistency losses

CG2Real
® (Bietal 19)
® fix some instabilities causing problems with cyclegan for graphics -> realistic

SPADE
® (Parketal 19)
® f{ix problems with pix2pix and label maps

SinGAN

® the price of not knowing history



Labels to Street Scene

Input e .. output Labels to Facade
| Day to Night

Input
BW to Color

output

Isolaetal, 16 (MUST READ)




Compare to ground truth

>

Adversary tries to distinguish
between generated and real pairs

Isolaet al, 16 (MUST READ




Encoder-decoder U-Net

€T —>

V
W
V
V
=
&
Vv
A4
v

Vv

Figure 3: Two choices for the architecture of the generator. The

“U-Net” [50] 1s an encoder-decoder with skip connections be-
tween mirrored layers in the encoder and decoder stacks.

Isolaetal, 16 (MUST READ)



1 D

AI:H:M]ﬂ real

Figure 2: Training a conditional GAN to map edges—photo. The
discriminator, D), learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,

both the generator and discriminator observe the input edge map.
Isolaet al, 16 (MUST READ)



) Ground_ truth

j Xl
- e
— 2=

Figure 4: Different losses induce different quality of results. Each column shows results trained under a different loss. Please see
https://phillipi.github.io/pix2pix/ for additional examples.

Isolaetal, 16 (MUST READ)




Networks really like to smooth

L14+cGAN

Encoder-decoder

U-Net

Figure 5: Adding skip connections to an encoder-decoder to create
a “U-Net” results in much higher quality results.

Isolaetal, 16 (MUST READ)






Patch size matters

L1 1x1 16x16 70%70 286286

Figure 6: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become
blurry and desaturated under L1. The 1x1 PixelGAN encourages greater color diversity but has no effect on spatial statistics. The 16x16
PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70x70 PatchGAN forces
outputs that are sharp, even if incorrect, in both the spatial and spectral (colorfulness) dimensions. The full 286 x286 ImageGAN produces
results that are visually similar to the 70 x70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 3). Please
see https://phillipi.github.io/pix2pix/ for additional examples.

Isolaetal, 16 (MUST READ)
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Useful tricks

Discriminator should be spectrally normalized

Good 1dea for many activities to have a local discriminator
easily done - PatchGAN
benefits
® realism at short scales likely imposes image realism
® casier faster training
cautions
® does not always apply

D should have LeakyRelLU
G - ReLU

Variety of losses
hinge loss is quite good



Combinations known to work

Spectral normalization, together with hinge or softplus loss
BigGAN,

Non saturating loss together with gradient penalty

can clip gradient, can normalize
StyleGAN, clip OK

Generally, UNet discriminator is helpful
with skips
with both kinds of loss

For wasserstein, sliced wasserstein,

Schwing’s students have a ton of knowledge
Ishan Deshpande
good for missing modes?



Issues

® What if you don’t have pairs?
CycleGAN, next
® (CG2Real, next
® Story for semantic labels 1s weird

® why pass label map through encoder?
® SPADE, next



Realistic images from approximations

Pix2Pix
(Isola et al 16)
® train with pairs of input, output, CGAN

CycleGAN
(Isola et al 17)
® train with populations, consistency losses

CG2Real
® (Bietal 19)
® fix some instabilities causing problems with cyclegan for graphics -> realistic

SPADE
® (Parketal 19)
® f{ix problems with pix2pix and label maps

SinGAN

® the price of not knowing history



What if you don’t have pairs?

Paired Unpaired

~—
¢ o0 . 3

Figure 2: Paired training data (left) consists of training ex-
amples {x;, y; z 1» Where the correspondence between x;
and y; exists [22]. We instead consider meaired training
data (right), consisting of a source set {.L (€ X)
and a target set {y] T, (y; €Y), with no 1nf0rmat10n pro-

vided as to which x; matches which y;. Zhou et al. 17



Learn paired mappings

® G:X->Y,H: Y>X
® G(x_i) should be “like a y” (Adversary)
H(y_1) should be “like an x” (Adversary)
Cycles work:
® G(H(y_1)) should be about y_i
® H(G(x_1)) should be about x_i

This 1sn’t innocent, or natural

Zhou et al, 17



This works

Monet Z_. Photos

Summer _ Winter

zebia —) horse

H : B
= T : N, . v R - H
g - N = . v [P - — |
-, . . USRS s =N e LR .
- : sl 22 e v :
: : s 0 i :
H " AN | ¥ .l .
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1

horse — zebra

Photograph Monet

Van Gogh
Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses

from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles

Uklyo-e

Zhou et al, 17



But there are i1ssues...

Output

Does not like to “destroy” information

Zhou et al, 17



Realistic images from approximations

Pix2Pix
(Isola et al 16)
® train with pairs of input, output, CGAN

CycleGAN
(Isola et al 17)
® train with populations, consistency losses

CG2Real

® (Bietal 19)
® fix some instabilities causing problems with cyclegan for graphics -> realistic

SPADE
® (Parketal 19)
® f{ix problems pix2pix has with label maps

SinGAN

® the price of not knowing history



Goal: OpenGL to “Realistic”

® Value:
® control of rendering in traditional fashion
® eg use existing assets, etc.
® but get better images
® possibly faster, too



(¢) Our predicted real image (a)

Figure 1: Our two-stage adversarial framework translates an
OpenGL rendering (a) to a realistic image (¢). Compared to
single-stage prediction with CycleGAN (b), our result has
more realistic illumination and better preserves texture de-
tails, as shown in the insets. (Best viewed in digital).

Bietal 19



Likely complication - asymmetry

® OpenGL shading -> Physical shading
® hard, requires long scale information
® BUT can make paired data easily with physically accurate renderer

® OpenGL albedo -> realistic albedo
likely much easier, requires short scale information
® BUT no paired data
® Strategy:

® handle albedo and shading separately
® shading paired, albedo unpaired



Albedo A,

(a) OpenGL to PBR

OpenGL to PBR

Bietal 19



(a) OpenGL to PBR (b) PBR to Real

Whole thing Bietal 19



(c) p2pHD-OpenGL (d) p2pHD-S+A+N (e) Our result

Figure 7: OpenGL to PBR comparison. A PBR renderer
like Mitsuba needs around 20 mins. to render a noise-free
image as in (b). In comparison our network can generate
a high quality result in 0.03 secs. (e). Compared to the
pix2pix-HD framework that directly predicts the output im-
ages using OpenGL (c) or auxiliary buffers (d), with incon-
sistent shading such as abrupt highlights on the cabinet, our
method generates images with much higher visual realism.

Bietal 19



Notes and queries

® Notice a tension between realism and control here
® Procedure offers very good control of surface attributes
® you do this with OpenGL textures
® but surface attributes aren’t spectacularly realistic
® (following slides)
e [SSUE
® Making realistic surfaces may involve loss of control
® How do we manage and balance?

® Physically based shading is all very well

® Dbut it isn’t the key to realism



Relief - intrinsic, because
small local shadows do not
move with illumination
(at least Koenderink+Van Doorn, 77)

A e

seed Wordpress.com



Relief - intrinsic, because
small local shadows do not

move with illumination
(at least Koenderink+Van Doorn, 77)




Fur - intrinsic, because
small local shadows do not
move with illumination
(at least Koenderink+Van Doorn, 77)




Relief - intrinsic (at least at this scale),
because small local shadows do not
move with illumination
(at least Koenderink+Van Doorn, 77)
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79?7 - intrinsic, because
mostly not a property of viewing
circumstances (?)



Iridescence
creating intrinsic gloss effects
intrinsic because the color effects will be
there for almost all illumination



77?7 - intrinsic, the specularities
move but are always there




77?7 - intrinsic, the specularities
move but are always there




SPADE - Images from label maps

Semantic Manipulation Using Segmentation Map

sodeur] oA Suisn vonendruepy o1l18

<€

Figure 1: Our model allows user control over both semantic and style as synthesizing an image. The semantic (e.g., the
existence of a tree) is controlled via a label map (the top row), while the style is controlled via the reference style image (the
leftmost column). Please visit our website for interactive image synthesis demos.



Question time

® (Can pix2pix do this?

® (an cyclegan do this?



Pix2Pix HD - improving pix2pix

® pix2pix doesn’t like high resolution

® training tends to be unstable
® Fixl

® wrap an HR generator around an LR generator

G G,

Residual blocks

D

Residual blocks

1

) 2x downsampling

Gy

Figure 3: Network architecture of our generator. We first train a residual network GGy on lower resolution images. Then, an-
other residual network G5, is appended to Gy and the two networks are trained jointly on high resolution images. Specifically,
the input to the residual blocks in G is the element-wise sum of the feature map from G» and the last feature map from G.

Wang et al 18



Pix2Pix HD - improving pix2pix

pix2pix doesn’t like
high resolution

training tends to be
unstable

Fix 2
match feature statistics in

discriminator layers with
extra loss

Improved adversarial loss We improve the GAN loss in
Eq. (2) by incorporating a feature matching loss based on
the discriminator. This loss stabilizes the training as the
generator has to produce natural statistics at multiple scales.
Specifically, we extract features from multiple layers of the
discriminator and learn to match these intermediate repre-
sentations from the real and the synthesized image. For ease
of presentation, we denote the ith-layer feature extractor of

discriminator Dy, as D,(:) (from input to the zth layer of Dy,).
The feature matching loss Ly (G, Dy) is then calculated
as:

1
N;

11D} (s,x) — D} (s, G(s))|]1],

(4)
where T’ is the total number of layers and IN; denotes the
number of elements in each layer. Our GAN discriminator

T
Lem(G, D) = B ) Y
i=1

Wang et al 18



Pix2Pix HD - improving pix2pix

® pix2pix localization from label maps can be poor
® Dbecause label maps don’t delineate individual objects well

® Fix

® use instance maps

_

(a) Semantic labels | (b) Boundary map

Figure 4: Using instance maps: (a) a typical semantic la-
bel map. Note that all connected cars have the same label,
which makes it hard to tell them apart. (b) The extracted
instance boundary map. With this information, separating

different objects becomes much easier.
Wang et al 18



Images from label maps - Control

® General problem
® Examples:
® [abel is sky, but what kind of sky? cloudy? overcast? etc
® [abel is car, but in what way is car 1 different from car 27 etc
® Underlying issue:
® label map has less information than image, so generator must create
® possible solutions:
® supply random numbers (but what about control)
® supply input from some other feature process



Control 1n pix2pixHD

Image generation (18
network G 1 M

Instance-wise average pooling

Feature encoder network E

Figure 6: Using instance-wise features in addition to labels
for generating images.

Wang et al 18



Evaluation

® pix2pix HD
® check - when you apply a semantic segmenter to output, do you get input?
® This is clearly not enough
® Human study
® tough to iterate

® (Generators in general
® Are generated images “like” real images?
e FID:
® compute an embedding of generated/real images
® compare embeddings
® Inception score
® compare label predictions for some classifier for generated/real images
e BOTH ARE HELPFUL, BUT DUBIOUS
® among other things, they’re biased!



Bias in FID

2.1. Fréchet Inception Distance

To compute Fréchet Inception Distance, we pass gener-
ated and true data through an ImageNet [V] pretrained In-
ception V3 [16] model to obtain visually relevant features.
Let (M, Ct) and (M, C,) represent the mean and covari-
ance of the true and generated features respectively, then

compute .. .
P This 1s an estimate of the

FID = ||]\/[t _ A/[g”% 4 TT(Ct 4 Cg _ Q(Ct Cg)%) (1) | squared difference of

R first and second moments
FID seems$ to correspond well with human judgement of

image quajity and diversity [3%].

Embedding

l

M t ~ Et (g (X) ) So this term estimates the difference in means

Chong et al 20



Bias in FID

Remember, the average of a set of points in an embedding space is an estimate
of an integral

%Zg(Xi) ~ E,(g(x)) = /g(x)p(x)dx

The mean and covariance used in estimating FIDy are
Monte Carlo estimates of integrals (the relevant expecta-
tions). The terms M; and C}; computed on true images are
not random, as proper comparisons fix the set of true im-
ages used. However, the terms M, and C, are random — if
one uses different samples to evaluate these terms, one gets
different values. A Monte Carlo (MC) estimate of an inte-
gral [ h(z)p(z)dz whose true value is I (h), made using N

[ID samples, yields =1 + &, where

E[¢] = 0 and var(§) = % (3)

where C(h) > 0is [(h(z) — I(h))*p(z)dz [0]. Note the
value of C 1s usually very hard to estimate directly, but C'
is non-negative and depends strongly on the function being

integrated. A key algorithmic question is to identify pro- Chong et al 20



Bias in FID

Now consider some function G of a Monte Carlo integral
I(h), where G is sufficiently smooth. We have

G"(I)

G(I) =G +8) = G(I) +£G (I) + =5 + 0(&?)
®)

so that
]E[G(f)] = G(I) + % +O(1/N?) 6)

where K = C’(h)GT(I) and £ is bias.

Consider an estimate of FID, estimated with NV samples.
The terms M, and C, are estimated with an MC integra-
tor, so the estimate must have a bias of <& + O(1/N?).
Note that Cr must depend on the generator g (section 2.3).

Chong et al 20



Pix2PixHD can map labels to images

ix2pixHD [ 48 : : : :
Label But notice a certain squashiness in “stuff”.

Two 1ssues here:

- “stuff” is missing information as
well, like instances

pix2pixHD [-=

= normalization in the network makes
this worse

Park et al 19



Normalization can suppress detail

Encoder-decoder U-Net

Isolaetal, 16 (MUST READ)

_ T

Figure 3: Two choices for the architecture of the generator. The
“U-Net” [50] is an encoder-decoder with skip connections be-
tween mirrored layers in the encoder and decoder stacks.

® Simple example:

input yix2pixHD  SPADE instance norm in layers

single label in input

sky

instance norm makes input O
® we’ve lost everything!

Figure 3: Comparing results given uniform segmentation
maps: while the SPADE generator produces plausible tex-
tures, the pix2pixHD generator [ =] produces two identical
outputs due to the loss of the semantic information after the
normalization layer.

Park et al 19



Pix2PixHD 1s weirdly inefficient

Encoder-decoder U-Net

v

—

y
Isolaetal, 16 (MUST READ)

T —

Figure 3: Two choices for the architecture of the generator. The
“U-Net” [50] is an encoder-decoder with skip connections be-
tween mirrored layers in the encoder and decoder stacks.

® [ong scale embedding of a label map doesn’t make sense
® and is expensive



Vo
N—®~

element-wise

Figure 2: In the SPADE, the mask is first projected onto an
embedding space and then convolved to produce the modu-
lation parameters «y and 3. Unlike prior conditional normal-
ization methods, v and 3 are not vectors, but tensors with
spatial dimensions. The produced « and 3 are multiplied
and added to the normalized activation element-wise.

Park et al 19
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Figure 4: In the SPADE generator, each normalization layer uses the segmentation mask to modulate the layer activations.
(left) Structure of one residual block with the SPADE. (right) The generator contains a series of the SPADE residual blocks
with upsampling layers. Our architecture achieves better performance with a smaller number of parameters by removing the
downsampling layers of leading image-to-image translation networks such as the pix2pixHD model [4Z].

Park et al 19
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Figure 9: Our model attains multimodal synthesis capability when trained with the image encoder. During deployment,
by using different random noise, our model synthesizes outputs with diverse appearances but all having the same semantic
layouts depicted in the input mask. For reference, the ground truth image is shown inside the input segmentation mask.

Park et al 19



Control

SPADE offers

segment label based generation
variability

But how do we control?
Very little seems known

Some strategies:
create appearance abstractions (time of day, etc) and use rejection sampling
generate conditioned on appearance abstractions
require pictures be “like this” (but how? and what this?
Important obstacle
object appearance is fantastically complex in detail

and there isn’t a good “vocabulary” for describing it




Some topics...

Reduce rendering noise
® in MCMC rendering

® in image based rendering

® in performance capture

Realistic images from approximations

Generate novel views
® from multiview input

Reshade and relight
Exaggerate effects

® ¢g motion fields



We’ve seen a bunch of this

® NeRF
e [BR
® One more 1dea - PixelNeRF



PixelNeRF

® Key Problem with NeRF (that isn’t integration related!)
® No sharing - each NeRF is its own thing
® This is genuinely weird
® 3D models of things should be “like one another”
® cg densities should be locally either low or high
® ¢g some spatial densities should be more common than others
® Rendering and model building are profoundly integrated
® but why?



This mapping is independent
. of image, viewpoint
PixelNeRF ge. view
This mapping is independent
of image, viewpoint

Input View W \ _ f Volume Rendering

3 , ,
\\/ Z:L‘X d q “ .-g.t- “2

CNN Encoder Target View Rendering Loss

Figure 2: Proposed architecture in the single-view case. For a query point x along a target camera ray with view direction d, a
corresponding image feature is extracted from the feature volume W via projection and interpolation. This feature is then passed into the
NeRF network f along with the spatial coordinates. The output RGB and density value is volume-rendered and compared with the target
pixel value. The coordinates x and d are in the camera coordinate system of the input view.

Yu et al 20



PixelNeRF - a second view

Volume Rendering

f
so-[[[[]-» - Do

o W) O

\\/ A q “ W-c ‘ )

CNN Encoder Target View Rendering Loss

Input View

Figure 2: Proposed architecture in the single-view case. For a query point x along a target camera ray with view direction d, a
corresponding image feature is extracted from the feature volume W via projection and interpolation. This feature is then passed into the
NeRF network f along with the spatial coordinates. The output RGB and density value is volume-rendered and compared with the target
pixel value. The coordinates x and d are in the camera coordinate system of the input view.

Yu et al 20



PixelNeRF

Input: 3 views of held-out scene Novel views NeRF

"ok v Pk
P/

g I
N
7 5 L .
i | b

Figure 9: Wide baseline novel-view synthesis on a real image dataset. We train our model to distinct scenes in the DTU MVS
dataset [12]. Perhaps surprisingly, even in this case, our model is able to infer novel views with reasonable quality for held-out scenes
without further test-time optimization, all from only three views. Note the train/test sets share no overlapping scenes.

Yu et al 20



Still missing some features ....

® Something like an image prior is missing
® |ocal constraint on reconstruction fields
® (Q: how to supply?
® Something like adversarial training 1s missing

® rendering too slow
® (Q: how to supply?



Some topics...

Reduce rendering noise
® in MCMC rendering

® in image based rendering

® in performance capture

Realistic images from approximations

Generate novel views
® from multiview input

Reshade and relight
Exaggerate effects

® ¢g motion fields



