Reshading and relighting

D.A. Forsyth



Goals and representations

® Generate a relighted/reshaded image
® (Goal cases:
® Change lighting on a fixed scene
® [Insert an object into a scene and relight
® Data cases:
® Comprehensive scene/object data
® Minimal scene/object data

Ramamoorthi + Hanrahan 01



Basic machinery

® (1: Can one infer illumination from reflected light?
® Al: Not much for diffuse surfaces (Ramamoorthi+Hanrahan, 01)

® A?2: [llumination and BRDF under some conditions if all reflected
directions are observed (R+H, 04)

® [ight transport

® A representation of a scene in terms of what it does to light

Ramamoorthi + Hanrahan 01



[1lumination from reflected light

® Assume
® illumination depends only on angle
® gsurface 1s diffuse, convex
® can measure radiosity at all points on surface

I1lumination (what we want,
l doesn’t depend on x)

E(x) = J L(x, 0, ¢/)cos 0] d()’,
0’

Radiosity (what we observe) —> B(x) = PE (X),
T Known

But actually.....

E(n)=J L(6;, ¢;)cos 6 d()'.
0’

Ramamoorthi + Hanrahan 01



[1lumination from reflected light - 11

® Angles in integral are in the local frame of the point
® So

E(n) = / Rotation(fixed illumination field)dS?2

® Where

® the rotation is given by n,
® the integral is over the hemisphere

® Notice analogy with filtering

Ramamoorthi + Hanrahan 01



[1lumination from reflected light - 111

® Our problem:

E(n) = / Rotation(fixed illumination field)dS2

Linear, rotation invariant operator, takes illumination field and makes E

® Filtering

G(u) = / H(x —u)l(x)dx
Linear, translation invariant operator, takes I and makes G

Ramamoorthi + Hanrahan 01



[1lumination from reflected light - 111

e Filtering
Linear, translation invariant operator, takes I and makes G

® often convenient to represent in a different basis
® Fourier transform - filtering (convolution)-> multiplication

® Our problem:

Linear, rotation invariant operator, takes illumination field and makes E

® actually is a form of convolution
® basis is spherical harmonics
® (analogous with fourier series, sphere i1s compact)
® in this basis, our operation is apply a KNOWN linear operator

Ramamoorthi + Hanrahan 01



[1lumination from reflected light - IV

® Spherical harmonics
® multiple definitions
® my favorite is
® monomials restricted to the sphere factored by terms that vanish
® sometimes normalized, etc.
® cgo
® 1,Xx,v,z,x"2,Xxy,xz,y\, yz, zN\2
® on surface of sphere
® but note on surface of sphere, xA2+y A +zA2=1
® 5o there are actually only 9 basis functions
® degree == order in some notations (paper)

Ramamoorthi + Hanrahan 01



Key points

® You can’t get odd degree SH’s greater than one
® You can’t really get more than the first 9 SH’s

1.2

Lambertian BRDF coefficient

0 2 4 6 8 10 12 14 16 18 20
n
Fig. 3. The solid curve is a plot of A, versus n. It can be seen

that odd terms with n > 1 have A, = 0. Also, as n increases,
the coefficients rapidly decay.

Ramamoorthi + Hanrahan 01



I1lumination and BRDF from reflection

® Assume:

® you can measure illumination along each direction at each point

® object has unknown BRDF

® object is immersed in angular illumination field
® You can:

® recover both BRDF coefficients and illumination field

® ecssentially, expand in spherical harmonics, and jockey terms

® Important, but difficult to use

® see assumptions

Ramamoorthi+Hanrahan 04



Light transport operators

® Think of a scene as an operator that maps
® [nput illumination to camera intensities
® This is linear
® Q: why?
® (Can we:
® measure it?
® interpolate it?
® Brute force measurement 1s hard
® but do-able;
® stick in tons of projectors, tons of cameras

® record mapping from projector to camera
® done






Light transport operators

for analysis we assume square T' with one-one correspondence between the C
camera pixels and P projector pixels i.e. C' = P. We present our idea on a 1-D
projector and camera and extension to 2-D is straightforward. Under projector

lighting 1, the camera image by is given by

bi(c) = ) T(c,p)lk(p). (1)

Reddy et al 12

Spatially varying illumination

Diffuse scene

Camera

Projector

local inter-

reflections

e direct transport - q
— near-range transport - [g-W/2 , q+W/2]

——far-range transport - [0,P-1]



Light transport operators

e BUT

® the operator has a lot of structure
] cg
® decompose into
® direct transport
® “diagonal” in appropriate repn
® near range transport Spatially varying illumination
diffuse inter-

® few non-zero “off-diagonal” Diffuse scene

® far range transport

® Jow rank, smallish Camera

® (Consequence
® reduced measurement by a factor of 15

Projector

local inter-

Reddy et al 12 reflections
e direct transport - q
— near-range transport - [g-W/2 , q+W/2]

—far-range transport - [0,P-1]



Reshading cases

® Inserting a CG object
® we know shape+material of the thing to be inserted
® Big issue:
® what illumination field to recover, and how to recover it?
® (ut-and-paste
® we know very little about the thing to be inserted
® Big issue:
® how to fake convincing illumination field
® (Object recovery
® we see multiple images and want a reshadable representation
® Big issue:
® how to recover transport operator efficiently



Inserting objects

® Debevec 98:

® [mage scene with HDR measurement object (reflective sphere)
® Use sphere intensities to recover environment map
® Render CG object using environment map, composite in



Inserting Computer Graphics
Input image Estimate geometry ~ Estimate materials

Using above, with manual help Standard methg S (Land 71)

Estimate lighting Compose & render Final composite

-

Area light

Markup, for the moment Secret sauce: Physical renderer =~ Compositing by standard

Secret sauce: Consistency method Debevec 98
Secret sauce: Shafts Karsch ea 11
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Results

Karschea 11



Results
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Making 1t automatic

® Depth map by matching to RGBD images

® and various clever tricks to make the map render well, etc.

® [llumination by matching to images with known illum.
® and various clever tricks to slide sources around, etc.

- Depth
IIlpllt _ Depth -
- inference | ‘ I
(Sec 4)
‘ B LT —
Light inference & n

optimization (Sec 5)

Intrinsic
- decomposition
| (Sec 4) |
Karsch ea 14; cf Satkin+Hebert, 12, 13 Reflectance




Lighting by Matching

® What about invisible sources?
® [ighting can be divided into:

® sources:
® high intensity luminaires
® other stuff that is lower intensity

® visibility:
® can be seen
® can’t be seen

® Strategy:
® Visible luminaires are easy
® [nvisible luminaires by matching
® (: what about invisible, low intensity sources?
® A:ignore

Karsch ea 14



Lighting by Matching

Visible source

detection Rendered scene Rendered scene
3 | (optimized t intensities)  j(without intensity optimization)

' Light intensity |
| optimization

‘ J Ollt-Of-.VICV\{ } ST TS, .aa 5 light sources; 12 light soin;ées;
‘ source estimation 200 samples per-pixel _ _ ‘ :_200 samples per-pixel

Sampled IBLs -
Auto-rank dataset IBLs | » | Choose top &
< f | (compare sampled IBLs and IBLs for
RV Q‘ ‘ mput image features) - e relichtin
uumal e ghting

A lel A LEA R ™ "!

Karschea 14



{ | Queue 9 Network i Log
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Tone Mapping

Kernel Linear
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Karschea 14



You can fool people

Real

Synthetic




Indoor lighting from LDR 1mage

® Representation
® Panorama
® cvery surface is lit by gathering from one panorama
® 5o panorama includes luminaires as well as reflectors
® needs to be HDR - but image is LDR
® cquivalent to position independent lighting, as above

Fig. 1. Given a single LDR image of an indoor scene, our method automatically predicts HDR lighting (insets, tone-mapped for visualization). Our method
learns a direct mapping from image appearance to scene lighting from large amounts of real image data; it does not require any additional scene information,
and can even recover light sources that are not visible in the photograph, as shown in these examples. Using our lighting estimates, virtual objects can be
realistically relit and composited into photographs.

Gardneretal 17



Gathering from a panorama needs care

photo)

Original

(red outline

2=
<8
=
S
g
52
[=%

Original warped

Photo extracted from . Bunny models
.. HDR panoramas treated as light sources L
the original panorama relit with the panoramas

Fig. 6. The importance of light locality for indoor scenes. Left, a photo for
which we want to estimate the lighting conditions. The photo was cropped
from the “original” panorama (top row, middle). Treating this panorama as
the light source for the photo is wrong; its center of projection is in front
of the scene in the photo, and relighting a virtual bunny (top row, right)
makes it appear to be backlit. The correct HDR panorama, captured with a
light probe at the position of the cropped photo, is shown in the middle row,
and captures the location of the lights on top of the scene. We introduce
a warping operator that can be estimated with no scene information, and
distorts the original panorama to approximate the location of the light
sources on the top (bottom row). Relighting an object with the warped
panorama yields results that are much closer to the ground truth.

Gardneretal 17



HDR panorama from LDR image

Single LDR image o LDR panorama
’ u‘ 2 from SUN360 database
o s i} 89 Input crop
{ ‘ 2
y 5 Light detector (sec. 4)
L2 ight detector (sec.
g g & spherical warp (sec. 5) X 96’000
CNN  Doe=l z g3
5 ©
: 5
HDR environment map i
= % HDR panorama
8- E from new HDR database
&0 Input crop
g€ 3
L> 5 .s; Spherical warp (sec. 5) X 14,000
v 1 =
Ly .E g Target light (log)-intensity
2~ AR @ 1Ny = E Target RGB panora
-, £ =
Relit virtual object ©5 N\

Fig. 3. Overview of the paper. Our method automatically predicts the HDR lighting conditions from a single photograph (left). To do so, it relies on a deep
CNN that is trained in two stages. First, we rely on a database of LDR panoramas [Xiao et al. 2012]. To compensate for the low dynamic range, light sources are
detected and the panoramas are warped to generate target light masks, which, combined with crops extracted from the panoramas, can be used to train the
CNN to predict light directions. Second, the network is fine-tuned on a novel dataset of HDR panoramas, which allows it to learn to predict light intensities

Gardneretal 17



Learned light detector 1s better...

10}

0.8 -

e
o

Precision

o
'S

0.2

0.0 H i H i
0.0 0.2 0.4 0.6 08 10

Recall

=== Spotlights / Lamps Detector = Karsch et al.
=== Windows / Reflections Deteclor === Baseline detector

Fig. 4. Precision-recall curves for the light detector on the test set for our
detectors and the one of Karsch et al. [2014]. In blue, the curve for the
spotlights and lamps detection, and in green, the curve for the windows and
light reflections. In red, the result for [Karsch et al. 2014]. In cyan, the curve
for a baseline detector relying solely on the intensity of a pixel. Note that
because of the inherent uncertainty of the importance of a light (including
reflections) relative to the others (even for a human annotator), a perfect
match between human and algorithm predictions is highly unlikely.

Gardneretal 17



This works....

(a) Input photo (b) Relit by our estimate (c) Input photo (d) Relit by our estimate

Fig. 16. Object relighting on a variety of generic stock photos downloaded from the Internet. In all cases, light estimation is performed completely automatically
by our HDR network, the output of which is directly used by the rendering engine to relight the virtual objects.
Gardner et al 17



Evaluating realism 1s *REALLY HARD*

Nt ] .\,u. ' et .‘u' _'

Fig. 18. For each row, the virtual objects in the image are either lit by the
ground truth or by the output of our HDR network. Can you guess which is
which? Answers below.

Gardner et al 17



Evaluating realism 1s *REALLY HARD*

Fig. 18. For each row, the virtual objects in the image are either lit by the
ground truth or by the output of our HDR network. Can you guess which is
which? Answers below.

First row: left is GT, second row: right is GT. Did you get it right?

Gardner et al 17



Notes and queries

® Note:
® there’s a tension here w/ R+H

® what is being inferred appears in considerable detail
® note material parameters are NOT inferred

® Q: why does this work? and why does Karsch 14 work?

® (: why use loss against ground truth panoramas?
® rather than (say) illumination prediction on inserted objects?



Improvements

® Necural Illumination

® Panorama depends on position
® intermediate predictions



Neural Illumination

o (@) Pnor Work
r B N N B N N N N B BN BB BB NN BN BN BN | == ‘: D e e e e e em Em e e e e e e e ]
pooee=E  TTEOCSESY 1
! - (b) Our Network Architecture !
> | Differentiable D G R D G :
— D |:] >| warping sec 5.2 \ - \ :
Geometry Estimation Cosine (normal) LDR completion LDR to HDR |
Network sec.5.1 L1 loss (plane offset) Network sec.5.3 i Network sec.5.4 IlDimlo‘Ssse conv Joss

Warped LDR observation LDR completion HDR illumination esttmation

Figure 2. Neural Illumination. In contrast to prior work (a) [7] that directly trains a single network to learn the mapping from input
images to output illumination maps, our network (b) decomposes the problem into three sub-modules: first the network takes a single LDR
RGB image as input and estimate the 3D geometry of the observed scene. This geometry is used to warp pixels from the input image
onto a spherical projection centered around an input locale. The warped image is then fed into LDR completion network to predict color
information for the pixels in the unobserved regions. Finally, the completed image is passed through the LDR2HDR network to infer the
HDR image. The entire network is differentiable and is trained with supervision end-to-end as well as for each intermediate sub-module.

Song+Funkhouser, 19



Neural Illumination

oundtruth

Figure 3. Spatially varying illumination. By using the 3D ge-
ometry, we can generate ground truth illumination for any target
locale. As a result, our model is also able to infer spatially varying
illumination conditioned on the target pixel location.

Song+Funkhouser, 19



Neural Illumination

Furniture ‘

Floor

(a) Target locales (b) Resample“nearby” panoramas (c) Observations (&) Combined pano as illumination groundtruth

Figure 4. Ground truth illumination map generation. We generate reconstructions of over 90 different building-scale indoor scenes
using HDR RGB-D images from the Matterport3D dataset [2]. From these reconstructions, we sample target locales (a) on supporting
surfaces (floors and flat horizontal surfaces on furniture). For each locale, we use HDR and 3D geometric information from nearby RGB-D

images to generate ground truth panoramic illumination maps.

Song+Funkhouser, 19



Notes and queries

e All N+Q for Gardner apply

® Also, (ukase) this sort of thing has to stop

® (data collection exposes fundamentally absurd way of thinking about vision






Alternative spatially varying

Figure 1. Indoor lighting is spatially-varying. Methods that estimate
global lighting [%] (left) do not account for local lighting effects
resulting in inconsistent renders when lighting virtual objects. In
contrast, our method (right) produces spatially-varying lighting
from a single RGB image, resulting in much more realistic results.

Garon et al 19



Figure 2. Example synthetic light probes sampled in our dataset.

Locations on the image are randomly sampled (left). For each
location, light probes (right, top) and their corresponding depth
maps (right, bottom) are rendered into cube maps.

Garon et al 19



Adversarial smoother - important, and interesting

Coordinate mask Discriminator

Real or
Global Fcl [Fc||Fc Synthetic?
1 ‘: GRL Lighting SH
: DenseNet 121 36x3
| (3 blocks) : f' LR )
: X :
3x341x256 e ’
—»zi—>»FC —{
o~ \ Axdx4

Depth SH
DenseNet 121
(3 blocks)

-

1024x9x9

3x150%150

______________________________________________

Figure 3. The architecture of our neural network. In blue, the global path where the full image is processed, and in red, the local path where
a patch of the image centered at the coordinate where we want to estimate the light probe is provided. In both paths, three pre-trained blocks
of DenseNet [15] and two Fire modules [ | 6] trained from scratch are used to obtain the local and global features. The features are combined
with two fully connected layers to output the RGB spherical harmonics coefficients of the lighting and spherical harmonics coefficients
of the depth. A decoder is jointly trained to regress the albedo and the shading of the local patch. We apply domain adaptation [7] with a
discriminator (yellow) and an adversarial loss on the latent vector to generalize to real images.

Garon et al 19



Albedo 1s accounted for

[P

Floure 4. Quahtatlve examples of robustness to albedo changes.
Our network adapts to the changes in albedo in the scene, and does
not strictly rely on average patch brightness to estimate ambient
lighting. We demonstrate three estimations: (1) a reference patch,
(2) a patch that has similar brightness as the reference, but different
lighting; and (3) a patch that has similar lighting as the reference,
but different brightness. Notice how our network adapts to these
changes and predicts coherent lighting estimates.

Garon et al 19



Better than spatially varying SH

(a) Barron and Malik [ ] (b) Ours

Figure 6. Qualitative comparison to Barron and Malik [ ] on the
NYU-v2 dataset [27]. While their approach yields spatially-varying
SH lighting, it typically produces conservative estimates that do
not capture the spatial variation in lighting accurately. In contrast,
our method requires only RGB input, runs in real-time, and yields
more realistic lighting estimates.

Garon et al 19



Notes and queries

e All NQ for Song above apply
® Adversarial smoother is interesting

® (: why not directly score relights with adversary?



Taken to extremes...

Low res estimates

High res estimates

(1) LightNet, (7 Renderer
"I BSNet, [ | MGNet,

Figure 7. Pur network design cgnsists of a cascade, with one encoder-decoder for material and geometry prediction and another one for
spatially-vfarying lighting, along|with a physically-based differentiable rendering layer and a bilateral solver for refinement.

Three estimated
segmentation
maps
(object, area
source, envmap)

Estimates of albedo
normal, roughness,
depth

Lietal, 20



Works very well

Input [Barron et al. 2013] [Gardner et al. 2017] Ours

Figure 14. Object insertion examples and comparisons. Our proposed method estimates shape (depth and surface normals), spatially-varyin,
complex reflectance (based on a micro-facet SVBRDF model) and spatially-varying lighting from a single image of an indoor scene. Givel
these estimates, we can insert virtual 3D objects into these images and produce photo-realistic results where the objects look like they trul
belong in the scene. Note the shading and specular highlights on the inserted spheres, the realistic shadows cast on the ground, the reflection
from the ground onto the spheres and adaptation of the appearance of the spheres to the local shadows and shading in the scene. We als:
compare with previous works of Barron et al. [6] and Gardner et al. [20)] on real images. Note that in the results of [ 2], the shadows of sonw
objects might be truncated by the plane we segment from the scene. Lietal, 20



Training

® Q: how did they train this?



Naughty...!

Lietal, 20



Notes and queries

Sample from prior

See also
® Srinivasan et al 20

® global spatial coherence of illumination, stereo input
® Senguptaetal 19

® alternative inverse renderer



Cut-and-paste

® Very little 1s known

e Hard:
® we don’t have surface/material models of the thing being inserted
) Q;
® How should it interact with inferred light field?
® Do we need an inferred light field?

® Promising:
® cut-and-paste is a super rendering paradigm
® casy to control
® casy for use
® [F we could do it



Inserting Image fragments, V1

® Algorithm
® build a dictionary of image fragments, ideally tagged
® for these fragments, estimate height using ground plane
® artist chooses image
® gsystem estimates horizon, ground plane
® this gives foreshortening
® artist searches with tag, chooses fragment
® places on image

Lalonde et al, 07









[1lumination 1ssues: good match




Illumination 1ssues: bad match




Inserting Image fragments, V1

® Algorithm
® build a dictionary of image fragments, ideally tagged
® for these fragments, estimate height using ground plane
® artist chooses image
® gsystem estimates horizon, ground plane
® this gives foreshortening
® artist searches with tag, chooses fragment
® places on image

® (: what if the light 1s wrong?

® A:don’t use that fragment

Lalonde et al, 07



Inserting Image fragments, V2

® Problem: need the shape to get shadows, shading
® current technology cannot do this for complex surfaces

® Resolution:

® People are very bad at shadow consistency

® Weak shape approximations are good enough IF
® you carefully preserve surface material properties

® Decompose object shading into
® Smooth component (from weak shape approximation)
® Faster components

® f{rom materials



Weak shape approximations

® Simple shape from contour

® with small modifications to ensure crease at contour, planar contour
® flip+glue to provide a back

(a) normal (b) 3D shape (c) view2 (d) view3
Liao et al 2015, 2019



Fast components are residuals

coarse shape coarse shading

detail 1 detail 2
Detail 1= Image-Shade(coarse shape, estimated light)

new shading

Detail 2= Shading detail(Image-Shade(coarse shape, estimated light))

Liao et al 2015, 2019



Placing and rendering objects

albedo

1 -l detail
# composition

Model

Liao et al 2015, 2019



Shape by Barron & Malik

(c) Result of B & M (d) Our result

Liao et al 2015,2019



Visual comparisons

Barron and Malik

B -
R

Liao et al 2015, 2019



Image based reshading for scenes

® [ssues:

® how to decompose images
® how to generate multiple diverse shading fields from one image of a scene






Intrinsic 1images

® (Originally) Maps of an image that explain pixel values
® [ntrinsic properties:
® independent of viewing; “object” or “world” properties
® [Extrinsic properties:
® depend on viewing circumstances

® (Later) Albedo/Shading maps
® [=AXxS
® Albedo (A) is a natural intrinsic
® Shading (S) is a natural extrinsic



No ground truth decompositions

® And there never will be
® rendering is do-able (but hard)
® modelling is hopeless

® (: how do you train an image decomposition method
when you don’t know the right answer?

® Retinex provides clues - spatial statistics are the key



Albedo/shading and Retinex

® Spatial reasoning, Land (59, 59, 77); Land +McCann 71:

® Surface color changes either quickly or not at all
® [ight color changes slowly
® Retinex
® Jarge family of algorithms
® quite hard to know what Retinex does (Brainard+Wandell, 86)




Computer vision versions of Retinex

-] - | »
=

Thresholded d_l:])_)g(_p‘
1y |
Horn, 73; 74 l
Brelstaff+Blake, 87;
multiple variants Integrate

this to get

.
li%lhme_ss,
which is
logp + constant




Real data 1s hard to collect

® spraypaint, multiple images, etc...

Images from dataset of Gosse et al. 09




Retinex 1s really quite good

Implementation of Retinex Ground truth

due to Kevin Karsch images from dataset of Gosse et al. 09




Human judgements are easier

() Code (Github repository) ® Pre-computed decompositions (release 0, 4.5M)

Intrinsic Images in the Wild & Publications v i Browse + Q Search Logi
MTurk Tasks Bell, Bala, Snavely, 2014

We include previews of our instructions, tutorials, and tasks that were shown to online workers.

Flag transparent/mirror points Compare surface reflectance

Preview: Intructions Tutorial Task Preview: Intructions Tutorial Task

Instructions: Click on all points that are on a fransparent or mirres surface. {image 1 of 5) x ‘ ’mmmh-nmwmun

‘ Highlight paints (H) H Instructons {0 Bock 3 m
Zoom Out (2

@ Reset all points H @ Zoom in " Jl About the some (5) J Cenfidence:

-

@

> 4L




This gives an evaluation task

e WHDR=Weighted Human Disagreement Ratio

® compute lightness from intrinsic image representation at points

® predict
® A lighter than B
® B lighter than A
® [ightness match

® compute weighted estimate of accuracy
® weights low where human judgements are uncertain, high otherwise

® There are 1ssues, but allows evaluation
® and competition



Modern strategies - Optimization

® Apply the priors that
® albedo is piecewise constant
® there are “few” albedo values
® albedo and shading explain image

® Solve
® cg Bell 14, Nestmeyer 17, B1 15



Modern strategies - Regression

® Regression of ground truth against image

® use training set from WHDR data (Narihira et al 2015)
® and perhaps rendered data

® surprisingly, rendered data is very helpful
® [ietal 18;Bietal 18; Fanetal 18; etc

® Surprising because
® Albedo in renderings isn’t like albedo in the world
® [llumination in renderings *really* isn’t like illumination in the world



Recent history

Method Source | Training uses | Training uses | Flattening | Test WHDR
[TW labels C
Shi et al. "17 [26] [27] N Y N 444
Zhou et al "15 [28] [27] Y N Y 19.95
Narihira et al [29] ibid N N N 18.1
Bi et al "18 [27] ibid N Y Y 17.18
Zhou et al "15 [30] ibid Y N Y 157
Li and Snavely 18 [31] ibid Y Y Y 14.8
Fan et al 18 [32] ibid Y N Y 14.45
*Zhao et al. "12 [14] [29] N N N 26.4
Shen and Yeo "11 [23] [29] N N N 26.1
Yu and Smith "19 [33] ibid N N N 21.4 (a)
Retinex (rescaled; color/gray) [29] N N N 19.5*/18.69*
Bell et al "14 [34] [29] N N Y 18.6
Liu et al "20 [35] ibid N Y+ N 18.69
Bi et al "15 [36] ibi N N Y 18.1
Bi et al 15 [36 N N Y 17.69

Summary comparison to recent high performing supervised (above) and unsupervised (below) methods, all evaluated on the standard IIW test set;
sources indicated. We distinguish between training with lIW and threshold selection using lIW. WHDR values computed for Retinex use the most
favorable scaling, using the rescaling experiments of [29]. For our method, we report the held-out threshold value of WHDR. We report two figures
for [36], because we found two distinct figures in the literature. Key: * - method usss IIW training data to set scale or threshold ONLY. + - [35] build
models of albedo and shading from CGI, but does not use them for direct supervision. a - [33] use patches of registered images from MegaDepth.



WHDR 1s tricky - I

From Fan 18
Methods WHDR (mean)
Baseline (const shading) 51.37
Baseline (const reflectance) 36.54
Shen er al. 2011 [17] 36.90
Retinex (color) [ 1] 26.89
Retinex (gray) [ 1] 26.84
Garces et al. 2012 [Y] 25.46
Zhao et al. 2012 [20] 23.20
L, flattening [*] 20.94
Bell er al. 2014 [] 20.64
Zhou et al. 20152 1] 19.95
Nestmeyer ef al. 2017 (CNN) [16] 19.49
Zoran et al. 2015% |22 17.85
Nestmeyer er al. 2017 [16] 17.69
Bieral 2015([7] 17.67
Ours w/o D-Filter 15.40
Ours w/o joint training 14.52
Ours 14.45

Table 1. Quantitative results on the IIW benchmark. All the results
are evaluated on the test split of [15], except for the one marked
with * which is evaluated on their own test split and is not directly
comparable with other methods.

WHDR (%) | Error Rate (%)
Ours (HSC) 20.9 24.5
Ours (CNN) 18.3 22.3
Ours (CNN-ImageNet) 18.1 22.0
CRF [4] (rescaled) 18.6 22.3
Retinex-Color [10] (rescaled) 19.5 23.3
Retinex-Gray [10] (rescaled) 19.8 23.8
Shen and Yeo [22] (rescaled) 23.2 26.1
Zhao et al. [26] (rescaled) 22.8 26.4
CRF [4] 20.6 25.6
Retinex-Color [10] 26.9 32.4
Retinex-Gray [10] 26.8 32.3
Shen and Yeo [22] 32.5 35.1
Zhao et al. [26] 23.8 28.2

Table 1. Intrinsic Images in the Wild benchmark results. For
each algorithm, we display the weighted human disagreement rate
(WHDR, lower is better), as well as the error rate on classify-
ing the sign of lightness change between pairs of points labeled
in the ground-truth. We include our own re-evaluation of com-
peting methods, which closely matches the performance reported
in [4]. In addition, we report performance of a rescaled version of
competing methods, which specifically optimizes their output for
the pairwise classification task. Our algorithm is on par with the
CRF approach developed by [4] for state-of-the-art performance.
We refer the reader to [4] for comparison to an expanded set of
prior work.

Narihira et al 15



WHDR 1s tricky - 11

® Predict by
® f(ml,m2)>t -> 1islighter
® -t<f(ml, m2)<t ->same
® f(ml,m2)<-t ->2islighter
® [ssues:
® choice of f
® ml-m2
® Jog(ml/m2)-1
® choice of m
® lightness potential
® predicted albedo
® choice of threshold
® interacts with scale



Input Bietal [3] Nestmeyereral [10] Ours

Fan 18 - current SOTA WHDR of 14.45%



WHDR is tricky - IV

Bi et al, 2018 - this image WHDR 6.61%

Shading

Reflectance

WHDR: 75.70% WHDR: 36.03% WHDR: 11.48%
Shietal.[2017] Narihira et al. [2015] Zhou et al. [2015]

® Note:

® odd colors
® “colored paper” effect
® “indecision”

Shading

Reflectance

WHDR: 7.35% WHDR: 6.61%
Nestmeyeretal.[2017]  Bj et al 2018



One approach (locall)

Skip connections
—>
Albedo
Image
8 —>
Shading
Skip connections




Training - 1

Our albedo paradigm uses a surface color model and
a spatial model. The qualitative properties it is intended
to capture are: albedoes are piecewise constant; the color
distribution should reflect likely surface colors; there should
be a profusion of edges with no strong orientation bias;
there should be at least some vertices with degree greater
than three. Surface color is modelled by drawing color
samples uniformly and at random from the IIW training
set. These must be adjusted for presumed illumination. We
do so by assuming the range of illumination intensity is
approximately the same as the range of lightnesses, and so
dividing by the square root of intensity.

DAF 20




Training - 11

Local
Adversary




Inference

® Network is trained on 128 x 128 tiles of image

® We want equivariance properties from albedo, shading
® cg translate, rotate, scale image
® albedo for translated (etc) image should be translated albedo
® shading for translated (etc) image should be translated shading

® This doesn’t come naturally



Equivariance must be imposed

BR Rescale Flip

TL Model 1 Model 0




Imposing equivariance

® Translation:
® cover image with many, shifted, overlapping tiles
® for each, recover albedo, shading
® albedo at pixel is weighted average of all overlapping tiles

® Scale:

® rescale image up, down
® for each, recover albedo/shading using translation averaging
® then rescale back

® average results

® Rotation
® average estimates from above over 8 flips



Averaging very strongly suppresses error

BR Rescale Flip

BBAF

Model 1 Model 0




Results

Method Source | Training uses | Training uses | Flattening | Test WHDR
[TW labels C

Shi et al. "17 [26] [27] N Y N 444
Zhou et al "15 [28] [27] Y N Y 19.95
Narihira et al [29] ibid N N N 18.1
Bi et al "18 [27] ibid N Y Y 17.18
Zhou et al "15 [30] ibid Y N Y 157
Li and Snavely 18 [31] ibid Y Y Y 14.8
Fan et al 18 [32] ibid Y N Y 14.45
*Zhao et al. "12 [14] [29] N N N 26.4
Shen and Yeo "11 [23] [29] N N N 26.1

Yu and Smith "19 [33] ibid N N N 21.4 (a)

Retinex (rescaled; color/gray) [29] N N N 19.5*/18.69*

Bell et al "14 [34] [29] N N Y 18.6
Liu et al "20 [35] ibid N Y+ N 18.69
Bi et al "15 [36] ibid N N Y 18.1
Bi et al "15 [36] [27] N N Y 17.69

Our BBA N N N 17.04*

Our BBAF N N N 17.11*

TABLE 1

Summary comparison to recent high performing supervised (above) and unsupervised (below) methods, all evaluated on the standard IIW test set;
sources indicated. We distinguish between training with lIW and threshold selection using lIW. WHDR values computed for Retinex use the most
favorable scaling, using the rescaling experiments of [29]. For our method, we report the held-out threshold value of WHDR. We report two figures
for [36], because we found two distinct figures in the literature. Key: * - method usss IIW training data to set scale or threshold ONLY. + - [35] build
models of albedo and shading from CGI, but does not use them for direct supervision. a - [33] use patches of registered images from MegaDepth.



Indoor shadow Backscatter Folds Dark shadow

Albedo

Fig. 2. Qualitative examples, from our best model (BBAF), showing (L to R): suppression of indoor shadows; suppression of backscatter from shiny
bathroom fittings; suppression of fast shading effects from clothing folds; correctly handled dark shadow (couch back).



Bi et al, 2018 - this image WHDR 6.61%

Shading

Reflectance

WHDR: 75.70% WHDR: 36.03% WHDR: 11.48%

Shi et al. [2017] Narihira et al. [2015] Zhou et al. [2015]

Shading

Reflectance

WHDR: 7.35% WHDR: 6.61%

Image Albedo Shading Ours Nestmeyeretal.2017]  Bi et al 2018

Fig. 6. Qualitative comparison to [27], [26], [48], [45] and [62], using parts of Figure 1 of [27]. As [27] remark, the methods of [26] and [48] are trained
on rendered data alone, and face difficulties due to the difference between rendered data and real images. As [27] remark, the methods of [48] and
[45] face difficulties due to the deep shadows in the scene. The albedo produced by our method does not show the “colored paper” effect seen in
other methods and does not produce odd colors; this is an advantage (text). Our method reports albedo and shading up to image boundaries, that
of [27] appears not to (the crop of the figures is as in the original paper; for our method, we show the whole image).



Smoothing 1s important

1o
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Base .1 Base .165 NoSmo.l  NoSmo .165 Nolnt .1 Nolnt .165 Ma01 1 Ma01l .165 BBAT 1 BBAT .165 BBAF .1 BBAF .165

Fig. 8. Smoothing, averaging and postprocessing are important. Without adversarial smoothing (NoSmo), performance is comparable to Retinex.
Aaversarial smoothing alone (Nolnt) is surprisingly well behaved. Averaging makes a very significant difference (compare blue/black bars and
purple/green bars) and averaging over a larger number of tiles is better (cf. BBA and Base). Discrete image averaging results in improvements (cf.
BBA and BBAF), and is clearly better than discrete tile averaging (cf. BBAF and BBAT). Key: Fixed thresholds: shown in boxplots of WHDR values
for 50 simulated test sets for the two fixed thresholds, and green bars are the value for the standard test set. Oracle thresholds: heavy black bar.
Held out threshold: heavy red bar. Oracle threshold without smoothing: heavy blue dashed bar. Fixed threshold without smoothing: heavy purple
bar. Boxplots: horizontal bar = median; notch = fraction of interquartile range outside which a difference in medians is significant; bottom and top of
the box = 25 and 75 percentiles resp.; whiskers extend to the most extreme data points that are not outliers; outliers — greater than 1.5 times the
interquartile range outside top and bottom — are '+'. Best viewed in color.



Paradigms beat graphics

20— é é— — Retinex-tolor
__ ::_—:::_:::_::%::::::é:: = N e
e GO =

| | | | | | | | | | | |
Base .l Base.165 Dark.l Dark 165 AIbF.1 AIbF.165 ShaF.1 ShaF.165 CGI.1 CGI.165 CGIT.1 CGIT .165 CGITD .1CGITD .165 BBAF .1 BBAF .165

Fig. 9. Varying the details of the paradigm has some effect; a Dark shading paradigm creates notable difficulties, but varying the size of shading
(ShaF) and albedo (ShaF) fragments seems to have only minor effects. Using tiles excerpted from CGlntrinsics [47] leads to significant fall off in
performance (CGI - tiles extracted from CGlintrinsics at original scale; CGIT — extracted from images shrunk so that tiles contain more detaile;
CGITD - dependency between shading and albedo preserved). Graphical conventions as in Figure 5. Best viewed in color.



Scale matters

I | | | | I | I E
-T

1
Retinex Color

S Liu 2020
- == —%
16— —
lp ‘I] | 2? E l 2P ‘E] l 4§ @ | 128 I:I |
SD 1 SD 165 BBAF 1 BBAF .165 ID 1 ID 165 MD 1 MD .165 BD 1 BD .165

Fig. 10. Varying the scale of the discriminator has an important effect on performance. SD the discriminator sees 10 x 10 patches; BBAF as in other
figures our best model, 22 x 22; 1D 29 x 29; MD 48 x 48; and BD 128 x 128. The scale of ID was chosen by interpolating oracle WHDR for the
others, then choosing the scale that produced the best predicted WHDR. The red boxes show the scale of the discriminator patches with respect to
the tile (black boxes) for each model. Graphical conventions as in Figure 5. Best viewed in color.



Indecisiveness remains (aargh!)

Fig. 13. Our method suffers indecisiveness, as do others; this is a persis-
tent problem in intrinsic image methods. Figures show a decomposition
of an outdoor image, using our method. Note the pronounced shadow
leaves effects in both albedo and shading fields; versions of this effect
for other methods can be seen in Figure 6. Best viewed in color.



Other Possible Intrinsics

Surface relief and material properties
® and perhaps many of them

Surface mechanical properties
Surface glossiness
Texture flow



Learning Conditional Models

® [carn P(YIX) from examples
® P(YIX) is wildly multimodal
® usually, Y is strongly variable and has high spatial correlations

® Model problems:
e SPADE:
® X is semantic labels, Y is image
® (olorization
® X isagrey level image, Y a color field
® Reshading
® X is an albedo image of a scene, Y a shading field
® Motion
® X isimage, Y is optic flow



Spatial correlations are a real problem

(a) Sampling per-pixel distribution of [30] (b) Ground truth

Figure 2: Zhang et al. [30] predict a per-pixel probability
distribution over colors. First three images are diverse col-
orizations obtained by sampling the per-pixel distributions
independently. The last image is the ground-truth color im-
age. These images demonstrate the speckled noise and lack
of spatial co-ordination resulting from independent sam-

pling of pixel colors.
Deshpande et al 17



Learning Conditional Models

® [carn P(YIX) from examples
® (Y, X) pairs
® cases:
® many pairs share an X: easy, very uncommon
® pairs have different X’s: very hard, confusing, common

Easy “~ Nasty
o
o |
[ |
° o
o v ®
o o
o o
o o
o ¢ O
[
>




Quick and dirty background: VAE




Quick and dirty background: VAE

l / )
Decoder




Conditioning a VAE (CVAE)

Image Tower
14 Layers

Decoder Tower
5 Layers

Random Samples
z~N(0,1)

(a) Testing Architecture

Decoder Tower Buclidean'Loss
5 Layers Y =Y'||

A A

Encoder KL-Divergence Loss
Tower Q(z|X,Y) KL(Q(z|X,Y)|IN(0,1))

Al averc

(b) Training Architecture

Fig. 2. Overview of the architecture. During training, the inputs to the network include
both the image and the ground truth trajectories. A variational autoencoder encodes
the joint image and trajectory space, while the decoder produces trajectories depending
both on the image information as well as output from the encoder. During test time, the
only inputs to the decoder are the image and latent variables sampled from a normal

distribution.

Walker et al 16



Procedure

Want a model of P(YIX)

® but must smooth
® Jearn c(X) (a code)
® such that “similar” images have “similar” codes
® and build model of P(Ylc(X))
Draw samples by
® y=F(z; ¢(X))
The loss you use is very important

Walker et al use (essentially)
® - conditional log-likelihood of Y_i | X_i1



Prediction 1

Prediction 2

Motion prediction

Walker et al 16



Prediction 1

Prediction 2

Motion prediction

Walker et al 16



Giant 1ssue: code collapse

® Draw samples by
® y=F(z; c(X))
® But how was c¢(X) chosen?

® [magine a hostile player chose c(X) malignantly
® We could get very odd p(YIX)



Code collapse - 1




Code collapse - 11




Giant 1ssue - how do we evaluate?

® Model is trained so that Y_1 | X_1 has high log-likelihood
® 900d loss (=high likelihood) on held out Y, X pairs is a good sign
e BUT
® we want to be sure that
® the model gives diverse Y for a given X_i
® and these are all right
® high likelihood on held out Y, X pairs might come from code collapse



Containing this problem

® Build codes for Y and for X

® that can be decoded to produce output/input
® then build explicit models of P(c(Y)lc(X))

Luetal ,ND



Diverse colorization

Training Procedure

Step 1
Color Image ] Color Image

(C) (C)

P
*GMM

Grey Image
(G)

Grey Image
(G)

Testing Procedure

Sampling

Diverse
Colorizations

Figure 1: Step 1, we learn a low-dimensional embedding z for a color field C. Step 2, we train a multi-modal conditional
model P(z|G) that generates the low-dimensional embedding from grey-level features G. At test time, we can sample the
conditional model {zx }._; ~ P(z|G) and use the VAE decoder to generate the corresponding diverse color fields {C }_, .

Deshpande et al 17



Colorization
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Evaluation

Method LFW Church ImageNet-Val
Eob. Var. Eob. Var. Eob. Var.
CVAE | 031 | 1.0x107% | 029 | 22x10~* | .037 | 25 x 10~
cGAN | 047 | 84x107% | 048 | 6.2x 107 | .048 | 8.88 x 10~¢

Ours |.030 | 1.1x10°%| 036 | 31x10% | .043 | 6.8 x10°¢
OS‘]'GT 031 | 44x10-* | 036 | 29x10-* | .041 | 6.0 x 10~4

Table 3: For every dataset, we obtain high variance (proxy
measure for diversity) and often low error-of-best per pixel
(Eob.) to the ground-truth using our method. This shows
our methods generate color fields closer to the ground-truth
with more diversity compared to the baseline.

Deshpande et al 17



Evaluation by joint distribution

® Assume X 1~ P(X)

® write Y_j (X_1) for a sample drawn from model conditioned on X_i
® then IF model is correct

® (Y_j(X_i), X_i) ~ P(Y, X)=P(YIX)P(X)

® we can evaluate this using FID

® Check
¢ FID[{(Y_j(X_1), X_1)},{(Y_i, X_1)}]
e AND
® Y_jfarfromY_i



This suggests a training strategy....

® We train a CGAN to produce Ys from Xs, requiring
® the Y’s are “like” real Y’s
® jic.P_m(Y) closeto P(Y)
® the (X, Y) pairs are “like” real pairs
® iec.P_m(Y, X) close to P(Y, X)

® We already have X_i ~ P(X)
® this, together with conditions above is necessary, but not sufficient
® for P_m(YIX) to be right



Albedo

—>

What if...?

Real
shading
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Shading
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Evaluating reshading...



A possible alternative to NERF...

From NOPC (next)

® pinch the idea of feature enhanced point clouds

From point-based DR (after that)

® make features differentiable

Cut-and-shut with
® image norms

® adversary

Avoids clunky bits

® of NeRF - volume rendering
® of PixeINeRF - no world coord representation



NOPC - neural opacity point clouds

® Aim:
® recover and represent fuzzy objects

target view

Fig. 1. Our Neural Opacity Point Cloud (NOPC) renderer produces photorealistic, free viewpoint rendering of fuzzy objects from a sparsely sampled
images (Fig. 3). By rendering high quality RGB and alpha at an arbitrary viewpoint, NOPC can insert fuzzy virtual objects into real environment.

Wang et al 20



NOPC - representation

Key idea: an entirely conventional point based renderer renders FEATURES attached to points
Then a network adjusts this rendered feature map into an image

®.

point cloud P : 3

RGB branch output RGB target RGB

feature map M

Alpha branch

: virtual cameras
rendering network output Alpha target Alpha

Fig. 2. Our NOPC framework: From a 3D point cloud P, we first learn its corresponding cloud F. To render virtual new view V, we project P and F
onto V to form a view-dependent feature map M. Our multiple-branch Encoder-Decoder network maps M to an RGB image and an alpha matte at
V. The network can be trained using the ground truth RGB images and alpha mattes in an end-to-end manner in Section 3.

Wang et al 20



Idea: attach to differentiable PBR

ﬁ View direction
Annotated points i
(o) (o)
© i i i 2D feat o
Differentiable point based eature map U Net
° renderer o Image
o o)

° \ 0
You could now use losses on images, etc.
to shape features on the point cloud



Differentiable Point Based Rendering

Fig. 2. Illustration of forward splatting using EWA [Zwicker et al. 2001].
A point in space pg is rendered as an anisotropic ellipse centered at the
projection point xg . The final pixel value I at a pixel x in the image (shown
on the right) is the normalized sum of all such ellipses overlapping at x.

® Needs some adaptation

® Surface = point cloud

® cach point is a flat circle
centered at point location, with
normal

® project these
® colored ellipses
® our case: featured
ellipses
® render=weighted sum of
overlapping ellipses

Yifan et al 19



You can clearly render feature maps...

Fig. 3. Examples of images rendered using DSS. From left to right, we
render the normals, inverse depth values and diffuse shading with three
RGB-colored sun light sources.

Yifan et al 19



Render

® (ircles on tangent plane around p

1

gpk.Vk (p) = 1
2|V |2

® Project to ellipse in image, low pass filter

Fig. 2. lllustration of forward splatting using EWA [Zwicker et al. 2001].

A point in space pg is rendered as an anisotropic ellipse centered at the
projection point X . The final pixel value Iy at a pixel x in the image (shown
on the right) is the normalized sum of all such ellipses overlapping at x.

1

(PP V(P . _ o2

pr (x) = ngkvkj};ﬂ (x —xg).

k

|

Jacobian of projection to image

|

From low pass filter



Render - 11

® (Occlusion
® keep the 5 points closest to pixel

e Weighting (0, if 3x" (JViJT+1)x> C,
pr (x) =40,  if pg is occluded,

pr, otherwise.

® Final render This is whatever is living in point
(color; feature vector; etc)

Yot pr (%) Wy

I[x =
Yo Pk (%)




Differentiating

® Two hard bits:

® occlusion
® weight truncation

® “Smooth” by

® averaging left and right differences
® odd, but seems to work



Differentiating - 1D example

move toward : , { F! —— move toward
* Caec[f Ay
pixel intensity at x . 1 - | ?& ]mk.o Ark pixel intensity at x
[ R ! S T S ¥
| |p$'°l T ﬁx 1 T Pk
— i
: move a
move away } ’ = ' = { way
O '° - I o
pixel intensity at x f Pk ok o pixel intensity at x
e
! Pk,0 dx
(a) The ellipse centered at pg. g is not visible at x. (b) The ellipse centered at py. o is visible at x.

Fig. 4. An illustration of the artificial gradient in two 1D scenarios: the ellipse centered at py. o is invisible (Fig. 4a) and visible (Fig. 4b) at pixel x. &y 1. is the
pixel intensity I, as a function of point position pg, gy is the coordinates of the pixel x back-projected to world coordinates. Notice the ellipse has constant
pixel intensity after normalization (Eq. (6)). We appraximate the discontinuous &, . as a linear function defined by the change of pixel intensity Alx and the
movement of the Ap;. during a visibility switch. As p; moves toward (Ap;) or away (Ap; ) from the pixel, we obtain two different gradient values. We define

the final gradient as their sum.



Idea: attach to differentiable PBR

ﬁ

Annotated points

o

(o]

e

View direction

!

Differentiable point based
renderer

o

2D feature map
o

o

(0]

You could now use losses on images, etc.
to shape features on the point cloud

But where does the point cloud come from?

U Net

Image



What about ...

Latent

. Decoder Fixed size
variable

point set




Advantages

No volume rendering

Could use an adversarial loss
® perhaps locally?

Perhaps could build an “objectGAN™?
Perhaps could build a “conditional object GAN"?

® which is roughly what this is



