
Shape Representations
D.A. Forsyth, UIUC

Key ideas

• There are many representations of 3D shapes
• each is good at some things, bad at others
• one can usually move between representations

• can be hard for some pairs

• Networks can make any of them
• conventional paper:

• I made a network whose input is
• pic, multiple pics, range map

• and whose output is
• some shape representation that hasn’t been tried yet

Point clouds

• Easy to:
• measure
• render (easyish)

• Hard to:
• compute most geometric properties

• (eg volume; recover curvature; find features)
• occlusion

• use near neighbor, etc

• Dubious properties:
• usually either

• massively redundant
• or tricky to work with

Voxels and octrees

• Voxels:
• break space into an even grid; place something in each box
• usually, an indicator function (0-1), but can get more interesting

• Octree:
• slightly more efficient structure
• start with unit box;

• subdivide into 8 children (halving each dimension)
• for each child either

• recur
• put something in child and stop

• savings may not be as big as you think
• function could be represented in a variety of ways

• values in leaves; wavelet-like representation

Tatarchenko et al 17

Polygon soups and meshes

• Collection of polygons (usually triangles)
• Meshes:

• polygons share some edges and vertices
• often, not always, rules about how

• eg in manifold meshes (pl manifolds) disallow some configurations
• some rules make mesh rendering/representation much more efficient

(eg triangle strips)
• two structures:

• combinatorial
• which triangle has which vertex, which edge

• geometric (embedding)
• where the vertices are in 3D

Coros slides

Meshes

• Standard problems with known solutions:
• constructing meshes from: point clouds; implicit surfaces; csg, etc.
• simplifying meshes

• Easy to:
• render (very fast)
• compute normals, local geometric properties
• smooth

• Nasty features:
• not necessarily solid

• tricky to tell if point is inside or out if it is
• surface detail can require fine polygons and still be poorly represented
• can be very large

Implicit surfaces

• Most general form:

• Important cases:
• algebraic surfaces

• f polynomial
• composite surfaces

• eg metaballs; f is a weighted sum of shifted primitives

f(x, y, z; ✓) = 0

Implicit surfaces

• Standard problems with known solutions
• meshing: pass from implicit surface to mesh

• not straightforward, I’ll sketch issues
• rendering: ray trace OR mesh

• Easy (ish)
• meshing; rendering
• forming solids

• Nasty features
• hard to know number of connected components
• can be tricky to fit to data

• easiest: data is well sampled point cloud, fit classifier
• depends on parametrization

Marching cubes (sketch)

• Key ideas:
• for small enough box, replace f with trilinear interpolate across box

• there is mischief in this assumption
• the mesh inside the box now takes a small set of possible patterns

• indexed by the sign on the vertices; at most 256
• symmetry etc. reduces the number of patterns

• current estimate is 33

• Fast, efficient, practical, largely right

Composite surfaces

• Metaballs
• Choice of f matters; want

• cheap to evaluate
• local support
• smooth

• Common choices
• 1/(r^2+e); 1/(r^2)^2; gaussian

• Original metaballs did not have c_i

mX

i=1

cif(x� xi, y � yi, z � zi; ✓i) = t

Figure credit: Wikipedia

Procedural modelling

• Idea:
• make CSG tree out of “program”

Natural problems

• From input create model
• inputs: point cloud, depth map, image, images, etc
• model: in one of these forms

• From format A, create format B
• mostly covered in classical literature

• From 3D rep’n, segment into semantic components
• From 3D rep’n, impute CSG
• From many 3D examples, impute procedural model

Pointnet - a neat trick

• Required: learned feature representation of a point cloud
• Difficulty: point cloud has no order

• you can get the same point cloud in a different order
• could impose order, but…

• Permutation invariants:
• the basis for permutation invariants are the symmetric functions

• mostly, a nuisance to work with

• Idea:
• for any point cloud of n points in d dimensions,

2

4
max(x1,1, x2,1, . . . xn,1)

. . .
max(x1,d, x2,d, . . . xn,d)

3

5 is permutation invariant

Pointnet - a neat trick - II

• So:
• embed points in high dimension (K)
• compute this pooling
• now compute embedding of this feature vector
• the resulting object is permutation invariant

• and “general”
• assume

• f(S) continuous in hausdorff distance on point sets
• hausdorff distance on point sets = max dist to nearest

neighbor
• choose eps, and K big enough
• then there is some g(S) of this form st |f(S)-g(S)|<eps

Formally…

Qi et al 17

Affine transformation
in point space

Affine transformation
in embedding space

Qi et al 17

Qi et al 17

Does this measure local properties?

Qi et al 17

This is a general summarization procedure

• Point clouds aren’t just 3D points
• Examples:

• (x, y, z, r, g, b)
• (x, y, z, feature vector)
• feature vectors of a batch

• useful idea in adversarial learning?
• center positions, params, weights of each metaball

Pointnet++: Further tricks

• Clustering points is permutation invariant
• so one could build clusters from a point cloud, then describe those

Notes and queries

• Claim: the set of points that represent the set is sparse
• At most K points participate, so if true if K<n

• not true otherwise

• Q: Assume we formed

• and y_i close to x_i
• what is gamma(max{h(y_i)}) like?

• likely controlled by learning procedure

CvxNet

• Represent objects as union of convexes
• convexes == polyhedra, with smoothed indicator function

• Important:
• convexes are intersections of half planes, rather than (say) vertices, meshes
• this is a CSG representation

• union of intersections

Convex sets

• A set of points C is convex if

• A hyperplane H is a supporting hyperplane of C if:
• at least one point of C lies on H
• all of C lies on one side of H

• Every point on C has at least one supporting hyperplane
passing through it - but there can be more

• C is the intersection of the half-spaces defined by
supporting hyperplanes

for x1, x2 2 C and 0 t 1, tx1 + (1� t)x2 2 C

Convex sets

• Can write C as

• where pi_i(x)+c_i is the equation of the i’th supporting hyperplane on x
• deliberate vagueness about indexing here

• there may be an infinite set of supporting hyperplanes

• Confine to finite sets of supporting hyperplanes, so

• M a matrix, c a vector

• Such convex sets are not necessarily bounded

C = {x|⇡i(x) + ci � 0}

C = {x|Mx+ c � 0}

A construction….

• Given a set of hyperplanes, how do we know it makes a
convex set?

A construction….

• Assume C is not empty, then it contains some point
• so there is some point x such that

• Notice that any non-negative combination of inequalities
is also valid for every point in the set
• Picture can help here;

• but basically, these inequalities are + at every point in C
• so a non-neg combination is also +

• If C is empty, then some combination of inequalities
should make this obvious

Mx+ c � 0

A construction….

• If C is empty, then some combination of inequalities
should make this obvious
• equivalently, I can derive a contradiction == inequality that can’t be true

for any point

• Now consider:

• this represents a non-negative combination of inequalities, so should be
non-negative for any point in C

• If, in addition, a^T c< 0, we have our contradiction

a such that aTM = 0 and a � 0

Contradiction

• If x is in C, then

• but by hypothesis

• so

aTMx+ aT c � 0

aTMx = 0

aTMx+ aT c = aT c < 0

Farkas’ Lemma

• Either there exists an x such that

• or there exists an a such that

• (This is one of many forms of Farkas’ Lemma; it turns up
all over the place — eg linear programming in dual
constructions; functional analysis as Hahn-Banach thrm)

Mx+ c � 0

a such that aTM = 0 and a � 0 and aT c < 0

Another form of Farkas’ lemma

• Either a point x is in a convex set or there exists a
hyperplane separating x from the convex set
• i.e. such that the hyperplane is + on convex set, and - on point

• Prove as assignment in homework; straightforward

Two natural representations

• C represented by hyperplanes
• finite set, so polyhedron or cone
• may not be bounded
• impressively easy to work with

• C as convex_hull(p_1, … p_k)
• bounded

• Issues:
• passing from one to another can be tricky

• in 2D relatively straightforward
• in 3D do-able
• in ND, hard

Easy constructions

• CvxNet represents a convex as a set of hyperplanes
• fixed number

• To test:
• Point x is inside a set

• Point x is outside a set

• convex_hull(p_1, … p_n) inside a set

min(Mx+ c) � 0

min(Mx+ c) < 0

mini(min(Mpi + c)) � 0

i.e. if every point is in, then hull is in

What CvxNet does…

• We have a set of sample points inside and outside object
• Object is a union of a fixed number of convexes

• some smoothing of the indicator function with sigmoid; largely ignore

• Choose these convexes so that
• every point that should be inside is inside some convex
• every point that should be outside is outside every convex
• every convex accounts for at least one sample point

Deng et al 20

?!?!?!?!?#@%!?!?!?!?

N+Q

• Very neat fitting results
• Some cases will work badly (I’ll draw)
• Samples are a fantastically inefficient geometric rep’n (to

follow)
• Part claim is weird

• why bother? why not use partnet style rep’n on params of convex

• Why not use other CSG constructions?
• this is union of intersections

• but we could do differences - eg rooms

Harder

• A convex set D represented by N, d is outside C
• equivalently, there is no point inside D and C
• equivalently, there exists a such that

• You could write this as a loss
• first term: minimize a^T a
• second term introduce slacks, etc to get hinge loss
• third term introduce slacks, etc. to get hinge loss

aT

M
N

�
= 0 and aT

c
d

�
< 0 and a � 0

Slacks

• We want

• Choose a scale to get (for xi positive)

• Or

• So minimize

aTw < 0

aTw �1 + ⇠

aTw + 1 ⇠

⇠ = max(aTw + 1, 0)

Notice

• This construction doesn’t penalize volume
• so size of loss is not proportional to volume of intersection
• likely quite hard to do

Constructions:

• How do we know two convex sets do not intersect
• FM elimination

