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Key ideas

• There are many representations of 3D shapes
• each is good at some things, bad at others
• one can usually move between representations

• can be hard for some pairs

• Networks can make any of them
• conventional paper:

• I made a network whose input is 
• pic, multiple pics, range map

• and whose output is
• some shape representation that hasn’t been tried yet



Point clouds

• Easy to:
• measure
• render (easyish)

• Hard to:
• compute most geometric properties 

• (eg volume; recover curvature; find features)
• occlusion

• use near neighbor, etc

• Dubious properties:
• usually either

• massively redundant
• or tricky to work with



Voxels and octrees

• Voxels:  
• break space into an even grid; place something in each box
• usually, an indicator function (0-1), but can get more interesting

• Octree:
• slightly more efficient structure
• start with unit box;  

• subdivide into 8 children (halving each dimension)
• for each child either 

• recur
• put something in child and stop

• savings may not be as big as you think
• function could be represented in a variety of ways

• values in leaves; wavelet-like representation
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Polygon soups and meshes

• Collection of polygons (usually triangles) 
• Meshes:

• polygons share some edges and vertices
• often, not always, rules about how

• eg  in manifold meshes (pl manifolds) disallow some configurations
• some rules make mesh rendering/representation much more efficient 

(eg triangle strips)
• two structures:

• combinatorial
• which triangle has which vertex, which edge

• geometric (embedding)
• where the vertices are in 3D



Coros slides



Meshes

• Standard problems with known solutions:
• constructing meshes from: point clouds; implicit surfaces; csg, etc.
• simplifying meshes

• Easy to:
• render (very fast)
• compute normals, local geometric properties
• smooth

• Nasty features:
• not necessarily solid

• tricky to tell if point is inside or out if it is 
• surface detail can require fine polygons and still be poorly represented
• can be very large



Implicit surfaces 

• Most general form:

• Important cases:
• algebraic surfaces 

• f polynomial
• composite surfaces 

• eg metaballs; f is a weighted sum of shifted primitives

f(x, y, z; ✓) = 0



Implicit surfaces

• Standard problems with known solutions
• meshing: pass from implicit surface to mesh

• not straightforward, I’ll sketch issues
• rendering:  ray trace OR mesh

• Easy (ish)
• meshing; rendering
• forming solids

• Nasty features
• hard to know number of connected components
• can be tricky to fit to data

• easiest:  data is well sampled point cloud, fit classifier 
• depends on parametrization



Marching cubes (sketch)

• Key ideas:
• for small enough box, replace f with trilinear interpolate across box

• there is mischief in this assumption
• the mesh inside the box now takes a small set of possible patterns

• indexed by the sign on the vertices; at most 256
• symmetry etc. reduces the number of patterns

• current estimate is 33

• Fast, efficient, practical, largely right



Composite surfaces

• Metaballs
• Choice of f matters; want

• cheap to evaluate
• local support
• smooth

• Common choices
• 1/(r^2+e);  1/(r^2)^2; gaussian

• Original metaballs did not have c_i

mX

i=1

cif(x� xi, y � yi, z � zi; ✓i) = t



Figure credit:  Wikipedia













Procedural modelling

• Idea:
• make CSG tree out of “program”























Natural problems

• From input create model
• inputs: point cloud, depth map, image, images, etc
• model: in one of these forms

• From format A, create format B
• mostly covered in classical literature

• From 3D rep’n, segment into semantic components
• From 3D rep’n, impute CSG
• From many 3D examples, impute procedural model



Pointnet - a neat trick

• Required:  learned feature representation of a point cloud
• Difficulty: point cloud has no order

• you can get the same point cloud in a different order
• could impose order, but…

• Permutation invariants:
• the basis for permutation invariants are the symmetric functions

• mostly, a nuisance to work with

• Idea:
• for any point cloud of n points in d dimensions, 

2

4
max(x1,1, x2,1, . . . xn,1)

. . .
max(x1,d, x2,d, . . . xn,d)

3

5 is permutation invariant



Pointnet - a neat trick - II

• So:
• embed points in high dimension (K)
• compute this pooling
• now compute embedding of this feature vector
• the resulting object is permutation invariant

• and “general”  
• assume 

• f(S) continuous in hausdorff distance on point sets
• hausdorff distance on point sets = max dist to nearest 

neighbor
• choose eps, and K big enough
• then there is some g(S) of this form st |f(S)-g(S)|<eps



Formally…
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Affine transformation
in point space

Affine transformation
in embedding space
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Does this measure local properties?
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This is a general summarization procedure

• Point clouds aren’t just 3D points
• Examples:

• (x, y, z, r, g, b)
• (x, y, z, feature vector)
• feature vectors of a batch

• useful idea in adversarial learning?
• center positions, params, weights of each metaball



Pointnet++:  Further tricks

• Clustering points is permutation invariant
• so one could build clusters from a point cloud, then describe those



Notes and queries

• Claim: the set of points that represent the set is sparse
• At most K points participate, so if true if K<n

• not true otherwise

• Q: Assume we formed

• and y_i close to x_i
• what is gamma(max{h(y_i)}) like?

• likely controlled by learning procedure



CvxNet

• Represent objects as union of convexes
• convexes == polyhedra, with smoothed indicator function

• Important:  
• convexes are intersections of half planes, rather than (say) vertices, meshes
• this is a CSG representation

• union of intersections





Convex sets

• A set of points C is convex if

• A hyperplane H is a supporting hyperplane of C if:
• at least one point of C lies on H
• all of C lies on one side of H

• Every point on C has at least one supporting hyperplane 
passing through it - but there can be more

• C is the intersection of the half-spaces defined by 
supporting hyperplanes

for x1, x2 2 C and 0  t  1, tx1 + (1� t)x2 2 C



Convex sets

• Can write C as

• where pi_i(x)+c_i is the equation of the i’th supporting hyperplane on x
• deliberate vagueness about indexing here 

• there may be an infinite set of supporting hyperplanes

• Confine to finite sets of supporting hyperplanes, so

• M a matrix, c a vector

• Such convex sets are not necessarily bounded

C = {x|⇡i(x) + ci � 0}

C = {x|Mx+ c � 0}



A construction….

• Given a set of hyperplanes, how do we know it makes a 
convex set?



A construction….

• Assume C is not empty, then it contains some point 
• so there is some point x such that

• Notice that any non-negative combination of inequalities 
is also valid for every point in the set
• Picture can help here; 

• but basically, these inequalities are + at every point in C
• so a non-neg combination is also +

• If C is empty, then some combination of inequalities 
should make this obvious

Mx+ c � 0



A construction….

• If C is empty, then some combination of inequalities 
should make this obvious
• equivalently, I can derive a contradiction == inequality that can’t be true 

for any point

• Now consider:

• this represents a non-negative combination of inequalities, so should be 
non-negative for any point in C

• If, in addition, a^T c< 0, we have our contradiction

a such that aTM = 0 and a � 0



Contradiction

• If x is in C, then

• but by hypothesis

• so

aTMx+ aT c � 0

aTMx = 0

aTMx+ aT c = aT c < 0



Farkas’ Lemma 

• Either there exists an x such that

• or there exists an a such that

• (This is one of many forms of Farkas’ Lemma; it turns up 
all over the place — eg linear programming in dual 
constructions; functional analysis as Hahn-Banach thrm)

Mx+ c � 0

a such that aTM = 0 and a � 0 and aT c < 0



Another form of Farkas’ lemma

• Either a point x is in a convex set or there exists a 
hyperplane separating x from the convex set
• i.e. such that the hyperplane is + on convex set, and - on point

• Prove as assignment in homework; straightforward



Two natural representations

• C represented by hyperplanes
• finite set, so polyhedron or cone
• may not be bounded
• impressively easy to work with

• C as convex_hull(p_1, … p_k)
• bounded

• Issues:
• passing from one to another can be tricky

• in 2D relatively straightforward
• in 3D do-able
• in ND, hard



Easy constructions

• CvxNet represents a convex as a set of hyperplanes
• fixed number

• To test:
• Point x is inside a set

• Point x is outside a set

• convex_hull(p_1, … p_n) inside a set

min(Mx+ c) � 0

min(Mx+ c) < 0

mini(min(Mpi + c)) � 0

i.e. if every point is in, then hull is in



What CvxNet does…

• We have a set of sample points inside and outside object
• Object is a union of a fixed number of convexes

• some smoothing of the indicator function with sigmoid; largely ignore

• Choose these convexes so that
• every point that should be inside is inside some convex
• every point that should be outside is outside every convex
• every convex accounts for at least one sample point
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N+Q

• Very neat fitting results
• Some cases will work badly (I’ll draw)
• Samples are a fantastically inefficient geometric rep’n (to 

follow)
• Part claim is weird

• why bother? why not use partnet style rep’n on params of convex

• Why not use other CSG constructions?
• this is union of intersections

• but we could do differences - eg rooms



Harder

• A convex set D represented by N, d is outside C
• equivalently, there is no point inside D and C
• equivalently, there exists a such that

• You could write this as a loss
• first term: minimize a^T a
• second term introduce slacks, etc to get hinge loss
• third term introduce slacks, etc. to get hinge loss

aT


M
N

�
= 0 and aT


c
d

�
< 0 and a � 0



Slacks

• We want

• Choose a scale to get (for xi positive)

• Or

• So minimize

aTw < 0

aTw  �1 + ⇠

aTw + 1  ⇠

⇠ = max(aTw + 1, 0)



Notice

• This construction doesn’t penalize volume 
• so size of loss is not proportional to volume of intersection
• likely quite hard to do



Constructions:

• How do we know two convex sets do not intersect
• FM elimination 


