
Contents

I Classification 9

1 Learning to Classify 10

1.1 Classification: The Big Ideas . 11
1.1.1 The Error Rate, and Other Summaries of Performance 11
1.1.2 More Detailed Evaluation . 12
1.1.3 Overfitting and Cross-Validation 13

1.2 Classifying with Nearest Neighbors 14
1.2.1 Practical Considerations for Nearest Neighbors 15

1.3 Naive Bayes . 17
1.3.1 Cross-Validation to Choose a Model 20
1.3.2 Missing Data . 20

1.4 You should . 22
1.4.1 remember these definitions: 22
1.4.2 remember these terms: . 22
1.4.3 remember these facts: . 26
1.4.4 use these procedures: . 26
1.4.5 be able to: . 26

2 SVM’s and Random Forests 29

2.1 The Support Vector Machine . 29
2.1.1 The Hinge Loss . 30
2.1.2 Regularization . 31
2.1.3 Finding a Classifier with Stochastic Gradient Descent 32
2.1.4 Searching for λ . 35
2.1.5 Example: Training an SVM with Stochastic Gradient Descent 36
2.1.6 Multi-Class Classification with SVMs 40

2.2 Classifying with Random Forests . 41
2.2.1 Building a Decision Tree . 42
2.2.2 Choosing a Split with Information Gain 44
2.2.3 Forests . 48
2.2.4 Building and Evaluating a Decision Forest 48
2.2.5 Classifying Data Items with a Decision Forest 49

2.3 You should . 53
2.3.1 remember these definitions: 53
2.3.2 remember these terms: . 53
2.3.3 remember these facts: . 53
2.3.4 use these procedures: . 53
2.3.5 be able to: . 54

1

2

II High Dimensional Data 59

3 High-dimensional Data 60

3.1 Summaries and Simple Plots . 60
3.1.1 The Mean . 61
3.1.2 Stem Plots and Scatterplot Matrices 62
3.1.3 Covariance . 63
3.1.4 The Covariance Matrix . 65

3.2 Using Mean and Covariance to Understand High Dimensional Data . 68
3.2.1 Mean and Covariance under Affine Transformations 69
3.2.2 Eigenvectors and Diagonalization 71
3.2.3 Diagonalizing Covariance by Rotating Blobs 72

3.3 The Curse of Dimension . 73
3.3.1 The Curse: Data isn’t Where You Think it is 73
3.3.2 Minor Banes of Dimension . 74

3.4 The Multivariate Normal Distribution 76
3.4.1 Affine Transformations and Gaussians 77
3.4.2 Plotting a 2D Gaussian: Covariance Ellipses 77
3.4.3 Descriptive Statistics and Expectations 78

3.5 You should . 81
3.5.1 remember these definitions: 81
3.5.2 remember these terms: . 81
3.5.3 remember these facts: . 81
3.5.4 remember these procedures: 81

4 Principal Component Analysis 85

4.1 Representing Data on Principal Components 85
4.1.1 Approximating Blobs . 85
4.1.2 Example: Transforming the Height-Weight Blob 86
4.1.3 Representing Data on Principal Components 88
4.1.4 The Error in a Low Dimensional Representation 90
4.1.5 Extracting a Few Principal Components with NIPALS 91
4.1.6 Principal Components and Missing Values 93
4.1.7 PCA as Smoothing . 95

4.2 Example: Representing Colors with Principal Components 97
4.3 Example: Representing Faces with Principal Components 101
4.4 You should . 103

4.4.1 remember these definitions: 103
4.4.2 remember these terms: . 103
4.4.3 remember these facts: . 103
4.4.4 remember these procedures: 103
4.4.5 be able to: . 103

5 Low Rank Approximations 108

5.1 The Singular Value Decomposition 108
5.1.1 SVD and PCA . 110
5.1.2 SVD and Low Rank Approximations 111

3

5.1.3 Smoothing with the SVD . 111
5.2 Multi-Dimensional Scaling . 112

5.2.1 Choosing Low D Points using High D Distances 113
5.2.2 Using a Low Rank Approximation to Factor 114
5.2.3 Example: Mapping with Multidimensional Scaling 116

5.3 Example: Text Models and Latent Semantic Analysis 117
5.3.1 The Cosine Distance . 118
5.3.2 Smoothing Word Counts . 119
5.3.3 Mapping NIPS Documents 120
5.3.4 Obtaining the Meaning of Words 121
5.3.5 Mapping NIPS Words . 124
5.3.6 TF-IDF . 125

5.4 You should . 127
5.4.1 remember these definitions: 127
5.4.2 remember these terms: . 127
5.4.3 remember these facts: . 127
5.4.4 remember these procedures: 127
5.4.5 be able to: . 127

6 Canonical Correlation Analysis 131

6.1 Canonical Correlation Analysis . 131
6.2 Example: CCA of Words and Pictures 134
6.3 Example: CCA of Albedo and Shading 137

6.3.1 Are Correlations Significant? 139
6.4 You should . 141

6.4.1 remember these definitions: 141
6.4.2 remember these terms: . 141
6.4.3 remember these facts: . 141
6.4.4 remember these procedures: 141
6.4.5 be able to: . 141

III Clustering 144

7 Clustering: Models of High Dimensional Data 145

7.1 Agglomerative and Divisive Clustering 145
7.1.1 Clustering and Distance . 146

7.2 The K-Means Algorithm and Variants 150
7.2.1 How to choose K . 152
7.2.2 Soft Assignment . 153
7.2.3 Efficient Clustering and Hierarchical K Means 156
7.2.4 K-Mediods . 156
7.2.5 Example: Groceries in Portugal 157
7.2.6 General Comments on K-Means 160

7.3 Describing Repetition with Vector Quantization 161
7.3.1 Vector Quantization . 162
7.3.2 Example: Activity from Accelerometer Data 164

4

7.4 You should . 167
7.4.1 remember these definitions: 167
7.4.2 remember these terms: . 167
7.4.3 remember these facts: . 167
7.4.4 remember these procedures: 167

8 Clustering using Probability Models 172

8.1 Mixture Models and Clustering . 172
8.1.1 A Finite Mixture of Blobs . 173
8.1.2 Topics and Topic Models . 174

8.2 The EM Algorithm . 176
8.2.1 Example: Mixture of Normals: The E-step 178
8.2.2 Example: Mixture of Normals: The M-step 180
8.2.3 Example: Topic Model: The E-Step 181
8.2.4 Example: Topic Model: The M-step 181
8.2.5 EM in Practice . 182

8.3 You should . 184
8.3.1 remember: . 184

IV Regression 186

9 Regression 187

9.1 Overview . 187
9.1.1 Regression to Spot Trends . 189

9.2 Linear Regression and Least Squares 191
9.2.1 Linear Regression . 191
9.2.2 Choosing β . 192
9.2.3 Residuals . 194
9.2.4 R-squared . 195
9.2.5 Transforming Variables . 197
9.2.6 Can you Trust Your Regression? 199

9.3 Problem Data Points . 201
9.3.1 Problem Data Points have Significant Impact 202
9.3.2 The Hat Matrix and Leverage 204
9.3.3 Cook’s Distance . 205
9.3.4 Standardized Residuals . 206

9.4 Many Explanatory Variables . 208
9.4.1 Functions of One Explanatory Variable 209
9.4.2 Regularizing Linear Regressions 210
9.4.3 Example: Weight against Body Measurements 214

9.5 You should . 218
9.5.1 remember these definitions: 218
9.5.2 remember these terms: . 218
9.5.3 remember these facts: . 218
9.5.4 remember these procedures: 219

5

10 Regression: Choosing and Managing Models 229

10.1 Model Selection: Which Model is Best? 229
10.1.1 Bias and Variance . 229
10.1.2 Choosing a Model using Penalties: AIC and BIC 231
10.1.3 Choosing a Model using Cross-Validation 233
10.1.4 A Search Process: Forward and Backward Stagewise Regression233
10.1.5 Significance: What Variables are Important? 234

10.2 Robust Regression . 235
10.2.1 M-Estimators and Iteratively Reweighted Least Squares . . . 236
10.2.2 Scale for M-Estimators . 238

10.3 Generalized Linear Models . 239
10.3.1 Logistic Regression . 239
10.3.2 Multiclass Logistic Regression 241
10.3.3 Regressing Count Data . 241
10.3.4 Deviance . 242

10.4 L1 Regularization and Sparse Models 243
10.4.1 Dropping Variables with L1 Regularization 243
10.4.2 Wide Datasets . 249
10.4.3 Using Sparsity Penalties with Other Models 252

10.5 You should . 254
10.5.1 remember these definitions: 254
10.5.2 remember these terms: . 254
10.5.3 remember these facts: . 255
10.5.4 remember these procedures: 255

V Graphical Models 256

11 Markov Chains 257

11.1 Markov Chains . 257
11.1.1 Transition Probability Matrices 261
11.1.2 Stationary Distributions . 263
11.1.3 Example: Markov Chain Models of Text 265

11.2 Estimating Properties of Markov Chains 268
11.2.1 Simulation . 268
11.2.2 Simulation Results as Random Variables 270
11.2.3 Simulating Markov Chains 272

11.3 Example: Ranking the Web by Simulating a Markov Chain 275
11.4 You should . 276

11.4.1 remember these definitions: 276
11.4.2 remember these terms: . 276
11.4.3 remember these facts: . 277
11.4.4 be able to: . 277

12 Hidden Markov Models 280

12.1 Hidden Markov Models and Dynamic Programming 280
12.1.1 Hidden Markov Models . 280

6

12.1.2 Picturing Inference with a Trellis 281
12.1.3 Dynamic Programming for HMM’s: Formalities 284
12.1.4 Example: Simple Communication Errors 285

12.2 Learning an HMM with EM . 287
12.3 You should . 292

12.3.1 remember these definitions: 292
12.3.2 remember these terms: . 292
12.3.3 remember these facts: . 292
12.3.4 be able to: . 292

13 Discriminative Learning for Sequence Models 293

13.1 Graphical Models . 293
13.1.1 Graphical Models that allow Easy Inference 295

13.2 Conditional Random Field Models for Sequences 297
13.2.1 MEMM’s and Label Bias . 298
13.2.2 Conditional Random Field Models 299

13.3 Discriminative Learning of CRFs . 300
13.3.1 Representing the Model . 300
13.3.2 Setting Up the Learning Problem 302
13.3.3 Evaluating the Gradient . 303

13.4 You should . 306
13.4.1 remember these definitions: 306
13.4.2 remember these terms: . 306
13.4.3 remember these facts: . 306
13.4.4 remember these procedures: 306

14 Mean Field Inference 307

14.1 Useful but Intractable Examples . 307
14.1.1 Boltzmann Machines . 307
14.1.2 Denoising Binary Images with Boltzmann Machines 308
14.1.3 MAP Inference for Boltzmann Machines is Hard 309
14.1.4 A Discrete Markov Random Field 309
14.1.5 Denoising and Segmenting with Discrete MRF’s 310
14.1.6 MAP Inference in Discrete MRF’s can be Hard 313

14.2 Variational Inference . 314
14.2.1 The KL Divergence: Measuring the Closeness of Probability Distributions314
14.2.2 The Variational Free Energy 315

14.3 Example: Variational Inference for Boltzmann Machines 316

VI Deep Networks 319

15 Classification with Neural Networks 320

15.1 Units and Classification . 320
15.1.1 Building a Classifier out of Units: The Cost Function 320
15.1.2 Building a Classifier out of Units: Strategy 321
15.1.3 Building a Classifier out of Units: Training 322

7

15.2 Layers and Networks . 325
15.2.1 Notation . 326
15.2.2 Training, Gradients and Backpropagation 327
15.2.3 Training Multiple Layers . 331
15.2.4 Gradient Scaling Tricks . 332
15.2.5 Dropout . 335
15.2.6 It’s Still Difficult.. 337

15.3 Convolutional Neural Networks . 337
15.3.1 Images and Convolutional Layers 338
15.3.2 Convolutional Layers upon Convolutional Layers 340
15.3.3 Pooling . 340

15.4 Example: Building an Image Classifier 341
15.4.1 An Image Classification Architecture 342
15.4.2 Useful Tricks - 1: Preprocessing Data 342
15.4.3 Useful Tricks - 2: Enhancing Training Data 344
15.4.4 Useful Tricks - 3: Batch Normalization 345
15.4.5 Useful Tricks - 4: Residual Networks 346

15.5 Adversarial Examples . 348

16 More Neural Networks 352

16.1 Learning to Map . 352
16.1.1 Sammon Mapping . 353
16.1.2 T-SNE . 353

16.2 Encoders, decoders and auto-encoders 355
16.2.1 Auto-encoder Problems . 357
16.2.2 The denoising auto-encoder 357
16.2.3 Stacking Denoising Auto-encoders 358
16.2.4 Current practice with autoencoders 359
16.2.5 Classification using an Auto-encoder 360

16.3 Making Images from Scratch with Variational Auto-encoders 361
16.3.1 Auto-Encoding and Latent Variable Models 361
16.3.2 Building a Model . 364
16.3.3 Turning the VFE into a Loss 364
16.3.4 Some Caveats . 366

16.4 Generative Adversarial Networks (GANs) 367
16.4.1 Using a Discriminator . 367
16.4.2 Comparing Distributions . 368

VII Boosting 372

17 Boosting 373

17.1 Greedy and Stagewise Methods . 373
17.1.1 Example: Greedy Stagewise Linear Regression 373
17.1.2 Regression Trees . 375
17.1.3 Greedy Stagewise Regression with Trees 376

17.2 Boosting a Classifier . 380

8

17.2.1 The Loss . 380
17.2.2 Recipe: Stagewise Reduction of Loss 382
17.2.3 Weak Learners and Decision Stumps 384
17.2.4 Gradient Boost with Decision Stumps 386
17.2.5 Gradient Boost with other Predictors 387
17.2.6 Example: Is a Prescriber an Opiate Prescriber? 389

VIII Theory 392

18 A Little Learning Theory 393

18.1 Held-out Loss Predicts Test Loss . 393
18.1.1 Sample Means and Expectations 393
18.1.2 Using Chebyshev’s Inequality 395
18.1.3 A Generalization Bound . 395

18.2 Test and Training Error for a Classifier from a Finite Family 396
18.2.1 Hoeffding’s Inequality . 397
18.2.2 Test from Training for a Finite Family of Predictors 398
18.2.3 Number of Examples Required 399

18.3 An Infinite Collection of Predictors 400
18.3.1 Predictors and Binary Functions 401
18.3.2 Symmetrization . 404
18.3.3 Bounding the Generalization Error 405

18.4 An Infinite Collection of Predictors: Most Proofs 408
18.4.1 Hoeffding’s Inequality . 408
18.4.2 Predictors and Binary Functions 411
18.4.3 Symmetrization . 411

18.5 You should . 412
18.5.1 remember these definitions: 412
18.5.2 remember these terms: . 412
18.5.3 remember these facts: . 412
18.5.4 use these procedures: . 412
18.5.5 be able to: . 412

P A R T O N E

CLASSIFICATION

9

C H A P T E R 1

Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class
label for them. Classifiers are immensely useful, and find wide application, because
many problems are naturally classification problems. For example, if you wish
to determine whether to place an advert on a web-page or not, you would use a
classifier (i.e. look at the page, and say yes or no according to some rule). As
another example, if you have a program that you found for free on the web, you
would use a classifier to decide whether it was safe to run it (i.e. look at the
program, and say yes or no according to some rule). As yet another example,
credit card companies must decide whether a transaction is good or fraudulent.

All these examples are two class classifiers, but in many cases it is natural
to have more classes. You can think of sorting laundry as applying a multi-class
classifier. You can think of doctors as complex multi-class classifiers: a doctor
accepts a set of features (your complaints, answers to questions, and so on) and
then produces a response which we can describe as a class. The grading procedure
for any class is a multi-class classifier: it accepts a set of features — performance
in tests, homeworks, and so on — and produces a class label (the letter grade).

A classifier is usually trained by obtaining a set of labelled training exam-
ples and then searching for a classifier that optimizes some cost function which is
evaluated on the training data. What makes training classifiers interesting is that
performance on training data doesn’t really matter. What matters is performance
on run-time data, which may be extremely hard to evaluate because one often does
not know the correct answer for that data. For example, we wish to classify credit-
card transactions as safe or fraudulent. We could obtain a set of transactions with
true labels, and train with those. But what we care about is new transactions,
where it would be very difficult to know whether the classifier’s answers are right.
To be able to do anything at all, the set of labelled examples must be representative
of future examples in some strong way. We will always assume that the labelled
examples are an IID sample from the set of all possible examples, though we never
use the assumption explicitly.

Definition: 1.1 Classifier

A classifier is a procedure that accepts a set of features and produces
a label. Classifiers are trained on labelled examples, but the goal is
to get a classifier that performs well on data which is not seen at the
time of training. Training a classifier requires labelled data that is
representative of future data.

10

Section 1.1 Classification: The Big Ideas 11

1.1 CLASSIFICATION: THE BIG IDEAS

We will write the training dataset (xi, yi). For the i’th example, xi represents the
values taken by a collection of features. In the simplest case, xi would be a vector
of real numbers. In some cases, xi could contain categorical data or even unknown
values. Although xi isn’t guaranteed to be a vector, it’s usually referred to as a
feature vector. The yi are labels giving the type of the object that generated the
example. We must use these labelled examples to come up with a classifier.

1.1.1 The Error Rate, and Other Summaries of Performance

We can summarize the performance of any particular classifier using the error or
total error rate (the percentage of classification attempts that gave the wrong
answer) and the accuracy (the percentage of classification attempts that give the
right answer). For most practical cases, even the best choice of classifier will make
mistakes. For example, an alien tries to classify humans into male and female, using
only height as a feature. Whatever the alien’s classifier does with that feature, it
will make mistakes. This is because the classifier must choose, for each value of
height, whether to label the humans with that height male or female. But for the
vast majority of heights, there are some males and some females with that height,
and so the alien’s classifier must make some mistakes.

As the example suggests, a particular feature vector x may appear with dif-
ferent labels (so the alien will see six foot males and six foot females, quite possibly
in the training dataset and certainly in future data). Labels appear with some
probability conditioned on the observations, P (y|x). If there are parts of the fea-
ture space where P (x) is relatively large (so we expect to see observations of that
form) and where P (y|x) has relatively large values for more than one label, even
the best possible classifier will have a high error rate. If we knew P (y|x) (which is
seldom the case), we could identify the classifier with the smallest error rate and
compute its error rate. The minimum expected error rate obtained with the best
possible classifier applied to a particular problem is known as the Bayes risk for
that problem. In most cases, it is hard to know what the Bayes risk is, because to
compute it requires knowing P (y|x), which isn’t usually known.

The error rate of a classifier is not that meaningful on its own, because we don’t
usually know the Bayes risk for a problem. It is more helpful to compare a particular
classifier with some natural alternatives, sometimes called baselines. The choice
of baseline for a particular problem is almost always a matter of application logic.
The simplest general baseline is a know-nothing strategy. Imagine classifying the
data without using the feature vector at all — how well does this strategy do? If
each of the C classes occurs with the same frequency, then it’s enough to label
the data by choosing a label uniformly and at random, and the error rate for this
strategy is 1− 1/C. If one class is more common than the others, the lowest error
rate is obtained by labelling everything with that class. This comparison is often
known as comparing to chance.

It is very common to deal with data where there are only two labels. You
should keep in mind this means the highest possible error rate is 50% — if you have

Section 1.1 Classification: The Big Ideas 12

a classifier with a higher error rate, you can improve it by switching the outputs. If
one class is much more common than the other, training becomes more complicated
because the best strategy – labelling everything with the common class – becomes
hard to beat.

1.1.2 More Detailed Evaluation

The error rate is a fairly crude summary of the classifier’s behavior. For a two-
class classifier and a 0-1 loss function, one can report the false positive rate

(the percentage of negative test data that was classified positive) and the false

negative rate (the percentage of positive test data that was classified negative).
Note that it is important to provide both, because a classifier with a low false
positive rate tends to have a high false negative rate, and vice versa. As a result, you
should be suspicious of reports that give one number but not the other. Alternative
numbers that are reported sometimes include the sensitivity (the percentage of
true positives that are classified positive) and the specificity (the percentage of
true negatives that are classified negative).

Predict

T
ru
e

0 1 2 3 4 Class error
0 151 7 2 3 1 7.9%
1 32 5 9 9 0 91%
2 10 9 7 9 1 81%
3 6 13 9 5 2 86%
4 2 3 2 6 0 100%

TABLE 1.1: The class confusion matrix for a multiclass classifier. This is a table
of cells, where the i, j’th cell contains the count of cases where the true label was
i and the predicted label was j (some people show the fraction of cases rather than
the count). Further details about the dataset and this example appear in worked
example 2.1.

The false positive and false negative rates of a two-class classifier can be gen-
eralized to evaluate a multi-class classifier, yielding the class confusion matrix.
This is a table of cells, where the i, j’th cell contains the count of cases where the
true label was i and the predicted label was j (some people show the fraction of
cases rather than the count). Table 1.1 gives an example. This is a class confusion
matrix from a classifier built on a dataset where one tries to predict the degree of
heart disease from a collection of physiological and physical measurements. There
are five classes (0 . . . 4). The i, j’th cell of the table shows the number of data
points of true class i that were classified to have class j. As I find it hard to recall
whether rows or columns represent true or predicted classes, I have marked this
on the table. For each row, there is a class error rate, which is the percentage
of data points of that class that were misclassified. The first thing to look at in a
table like this is the diagonal; if the largest values appear there, then the classifier
is working well. This clearly isn’t what is happening for table 1.1. Instead, you can
see that the method is very good at telling whether a data point is in class 0 or

Section 1.1 Classification: The Big Ideas 13

not (the class error rate is rather small), but cannot distinguish between the other
classes. This is a strong hint that the data can’t be used to draw the distinctions
that we want. It might be a lot better to work with a different set of classes.

1.1.3 Overfitting and Cross-Validation

Choosing and evaluating a classifier takes some care. The goal is to get a classifier
that works well on future data for which we might never know the true label, using
a training set of labelled examples. This isn’t necessarily easy. For example, think
about the (silly) classifier that takes any data point and, if it is the same as a point
in the training set, emits the class of that point; otherwise, it chooses randomly
between the classes.

The training error of a classifier is the error rate on examples used to train
the classifier. In contrast, the test error is error on examples not used to train
the classifier. Classifiers that have small training error might not have small test
error, because the classification procedure is chosen to do well on the training data.
This effect is sometimes called overfitting. Other names include selection bias,
because the training data has been selected and so isn’t exactly like the test data,
and generalizing badly, because the classifier must generalize from the training
data to the test data. The effect occurs because the classifier has been chosen
to perform well on the training dataset. An efficient training procedure is quite
likely to find special properties of the training dataset that aren’t representative of
the test dataset, because the training dataset is not the same as the test dataset.
The training dataset is typically a sample of all the data one might like to have
classified, and so is quite likely a lot smaller than the test dataset. Because it is a
sample, it may have quirks that don’t appear in the test dataset. One consequence
of overfitting is that classifiers should always be evaluated on data that was not
used in training.

Now assume that we want to estimate the error rate of the classifier on test
data. We cannot estimate the error rate of the classifier using data that was used
to train the classifier, because the classifier has been trained to do well on that
data, which will mean our error rate estimate will be too low. An alternative is
to separate out some training data to form a validation set (confusingly, this
is sometimes called a test set), then train the classifier on the rest of the data,
and evaluate on the validation set. The error estimate on the validation set is the
value of a random variable, because the validation set is a sample of all possible
data you might classify. But this error estimate is unbiased, meaning that the
expected value of the error estimate is the true value of the error. You can see this
by thinking about the error estimate as a sample mean and applying the ideas of
Chapter ??.

However, separating out some training data presents the difficulty that the
classifier will not be the best possible, because we left out some training data when
we trained it. This issue can become a significant nuisance when we are trying
to tell which of a set of classifiers to use — did the classifier perform poorly on
validation data because it is not suited to the problem representation or because it
was trained on too little data?

We can resolve this problem with cross-validation, which involves repeat-

Section 1.2 Classifying with Nearest Neighbors 14

edly: splitting data into training and validation sets uniformly and at random,
training a classifier on the training set, evaluating it on the validation set, and
then averaging the error over all splits. Each different split is usually called a
fold. This procedure yields an estimate of the likely future performance of a classi-
fier, at the expense of substantial computation. A common form of this algorithm
uses a single data item to form a validation set. This is known as leave-one-out
cross-validation.

Remember this: Classifiers usually perform better on training data
than on test data, because the classifier was chosen to do well on the training
data. This effect is known as overfitting. To get an accurate estimate of
future performance, classifiers should always be evaluated on data that was
not used in training.

1.2 CLASSIFYING WITH NEAREST NEIGHBORS

Assume we have a labelled dataset consisting of N pairs (xi, yi). Here xi is the i’th
feature vector, and yi is the i’th class label. We wish to predict the label y for any
new example x; this is often known as a query example or query. Here is a really
effective strategy: Find the labelled example xc that is closest to x, and report the
class of that example.

How well can we expect this strategy to work? A precise analysis would take
us way out of our way, but simple reasoning is informative. Assume there are two
classes, 1 and −1 (the reasoning will work for more, but the description is slightly
more involved). We expect that, if u and v are sufficiently close, then p(y|u) is
similar to p(y|v). This means that if a labelled example xi is close to x, then p(y|x)
is similar to p(y|xi). Furthermore, we expect that queries are “like” the labelled
dataset, in the sense that points that are common (resp. rare) in the labelled data
will appear often (resp. seldom) in the queries.

Now imagine the query comes from a location where p(y = 1|x) is large.
The closest labelled example xc should be nearby (because queries are “like” the
labelled data) and should be labelled with 1 (because nearby examples have similar
label probabilities). So the method should produce the right answer with high
probability.

Alternatively, imagine the query comes from a location where p(y = 1|x) is
about the same as p(y = −1|x). The closest labelled example xc should be nearby
(because queries are “like” the labelled data). But think about a set of examples
that are about as close. The labels in this set should vary significantly (because
p(y = 1|x) is about the same as p(y = −1|x). This means that, if the query is
labelled 1 (resp. −1), a small change in the query will cause it to be labelled −1
(resp. 1). In these regions the classifier will tend to make mistakes more often, as
it should. Using a great deal more of this kind of reasoning, nearest neighbors can
be shown to produce an error that is no worse than twice the best error rate, if the

Section 1.2 Classifying with Nearest Neighbors 15

method has enough examples. There is no prospect of seeing enough examples in
practice for this result to apply.

One important generalization is to find the k nearest neighbors, then choose
a label from those. A (k, l) nearest neighbor classifier finds the k example points
closest to the point being considered, and classifies this point with the class that has
the highest number of votes, as long as this class has more than l votes (otherwise,
the point is classified as unknown). In practice, one seldom uses more than three
nearest neighbors.

1.2.1 Practical Considerations for Nearest Neighbors

One practical difficulty in using nearest neighbor classifiers is you need a lot of
labelled examples for the method to work. For some problems, this means you
can’t use the method. A second practical difficulty is you need to use a sensible
choice of distance. For features that are obviously of the same type, such as lengths,
the usual metric may be good enough. But what if one feature is a length, one is
a color, and one is an angle? It is almost always a good idea to scale each feature
independently so that the variance of each feature is the same, or at least consistent;
this prevents features with very large scales dominating those with very small scales.
Another possibility is to transform the features so that the covariance matrix is the
identity (this is sometimes known as whitening; the method follows from the ideas
of Chapter 3). This can be hard to do if the dimension is so large that the covariance
matrix is hard to estimate.

A third practical difficulty is you need to be able to find the nearest neighbors
for your query point. This is surprisingly difficult to do faster than simply checking
the distance to each training example separately. If your intuition tells you to use
a tree and the difficulty will go away, your intuition isn’t right. It turns out that
nearest neighbors in high dimensions is one of those problems that is a lot harder
than it seems, because high dimensional spaces are quite hard to reason about
informally. There’s a long history of methods that appear to be efficient but, once
carefully investigated, turn out to be bad.

Fortunately, it is usually enough to use an approximate nearest neighbor.
This is an example that is, with high probability, almost as close to the query point
as the nearest neighbor is. Obtaining an approximate nearest neighbor is very much
easier than obtaining a nearest neighbor. We can’t go into the details here, but
there are several distinct methods for finding approximate nearest neighbors. Each
involves a series of tuning constants and so on, and, on different datasets, different
methods and different choices of tuning constant produce the best results. If you
want to use a nearest neighbor classifier on a lot of run-time data, it is usually worth
a careful search over methods and tuning constants to find an algorithm that yields
a very fast response to a query. It is known how to do this search, and there is
excellent software available (FLANN, http://www.cs.ubc.ca/∼mariusm/index.php/
FLANN/FLANN, by Marius Muja and David G. Lowe).

It is straightforward to use cross-validation to estimate the error rate of a near-
est neighbor classifier. Split the labelled training data into two pieces, a (typically
large) training set and a (typically small) validation set. Now take each element of
the validation set and label it with the label of the closest element of the training

http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

Section 1.2 Classifying with Nearest Neighbors 16

set. Compute the fraction of these attempts that produce an error (the true label
and predicted labels differ). Now repeat this for a different split, and average the
errors over splits. With care, the code you’ll write is shorter than this description.

Worked example 1.1 Classifying using nearest neighbors

Build a nearest neighbor classifier to classify the MNIST digit data. This
dataset is very widely used to check simple methods. It was originally con-
structed by Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. It has
been extensively studied. You can find this dataset in several places. The orig-
inal dataset is at http://yann.lecun.com/exdb/mnist/. The version I used was
used for a Kaggle competition (so I didn’t have to decompress Lecun’s original
format). I found it at http://www.kaggle.com/c/digit-recognizer.

Solution: I used R for this problem. As you’d expect, R has nearest neighbor
code that seems quite good (I haven’t had any real problems with it, at least).
There isn’t really all that much to say about the code. I used the R FNN
package. I trained on 1000 of the 42000 examples in the Kaggle version, and
I tested on the next 200 examples. For this (rather small) case, I found the
following class confusion matrix:

Predict

T
ru
e

0 1 2 3 4 5 6 7 8 9
0 12 0 0 0 0 0 0 0 0 0
1 0 20 4 1 0 1 0 2 2 1
2 0 0 20 1 0 0 0 0 0 0
3 0 0 0 12 0 0 0 0 4 0
4 0 0 0 0 18 0 0 0 1 1
5 0 0 0 0 0 19 0 0 1 0
6 1 0 0 0 0 0 18 0 0 0
7 0 0 1 0 0 0 0 19 0 2
8 0 0 1 0 0 0 0 0 16 0
9 0 0 0 2 3 1 0 1 1 14

There are no class error rates here, because I couldn’t recall the magic line of
R to get them. However, you can see the classifier works rather well for this
case. MNIST is comprehensively explored in the exercises.

http://yann.lecun.com/exdb/mnist/
http://www.kaggle.com/c/digit-recognizer

Section 1.3 Naive Bayes 17

Remember this: Nearest neighbors has good properties. With enough
training data and a low enough dimension, the error rate is guaranteed to be
no more than twice the best error rate. The method is wonderfully flexible
about the labels the classifier predicts. Nothing changes when you go from
a two-class classifier to a multi-class classifier.
There are important difficulties. You need a large training dataset. If you
don’t have a reliable measure of how far apart two things are, you shouldn’t
be doing nearest neighbors. And you need to be able to query a large dataset
of examples to find the nearest neighbor of a point.

1.3 NAIVE BAYES

One straightforward source of a classifier is a probability model. For the moment,
assume we know p(y|x) for our data. Assume also that all errors in classification
are equally important. Then the following rule produces smallest possible expected
classification error rate:

For a test example x, report the class y that has the highest value of
(p(y|x)). If the largest value is achieved by more than one class, choose
randomly from that set of classes.

Usually, we do not have p(y|x). If we have p(x|y) (often called either a
likelihood or class conditional probability, compare Section ??), and p(y)
(often called a prior, compare Section ??) then we can use Bayes’ rule to form

p(y|x) = p(x|y)p(y)
p(x)

(the posterior, compare Section ??). This isn’t much help in this form, but write
x(j) for the j’th component of x. Now assume that features are conditionally
independent conditioned on the class of the data item. Our assumption is

p(x|y) =
∏

j

p(x(j)|y).

It is very seldom the case that this assumption is true, but it turns out to be fruitful
to pretend that it is. This assumption means that

p(y|x) =
p(x|y)p(y)

p(x)

=

(

∏

j p(x
(j)|y)

)

p(y)

p(x)

∝





∏

j

p(x(j)|y)



 p(y).

Section 1.3 Naive Bayes 18

Now to make a decision, we need to choose the class that has the largest value
of p(y|x). In turn, this means we need only know the posterior values up to scale
at x, so we don’t need to estimate p(x). In the case of where all errors have the
same cost, this yields the rule

choose y such that
[(

∏

j p(x
(j)|y)

)

p(y)
]

is largest.

This rule suffers from a practical problem. You can’t actually multiply a large
number of probabilities and expect to get an answer that a floating point system
thinks is different from zero. Instead, you should add the log probabilities. Notice
that the logarithm function has one nice property: it is monotonic, meaning that
a > b is equivalent to log a > log b. This means the following, more practical, rule
is equivalent:

choose y such that
[(

∑

j log p(x
(j)|y)

)

+ log p(y)
]

is largest.

To use this rule, we need models for p(y) and for p(x(j)|y) for each j. The usual
way to find a model of p(y) is to count the number of training examples in each
class, then divide by the number of classes.

It turns out that simple parametric models work really well for p(x(j)|y). For
example, one could use a normal distribution for each x(j) in turn, for each possible
value of y, using the training data. The parameters of this normal distribution are
chosen using maximum likelihood. The logic of the measurements might suggest
other distributions, too. If one of the x(j)’s was a count, we might fit a Poisson
distribution (again, using maximum likelihood). If it was a 0-1 variable, we might
fit a Bernoulli distribution. If it was a discrete variable, then we might use a
multinomial model. Even if the x(j) is continuous, we can use a multinomial model
by quantizing to some fixed set of values; this can be quite effective.

A naive bayes classifier that has poorly fitting models for each feature could
classify data very well. This (reliably confusing property) occurs because classifi-
cation doesn’t require a good model of p(x|y), or even of p(y|x). All that needs
to happen is that, at any x, the score for the right class is higher than the score
for all other classes. Figure 1.1 shows an example where a normal model of the
class-conditional histograms is poor, but the normal model will result in a good
naive bayes classifier. This works because a data item from (say) class one will
reliably have a larger probability under the normal model for class one than it will
for class two.

Section 1.3 Naive Bayes 19

Class 1 Class 2

FIGURE 1.1: The figure shows class conditional histograms of a feature x for two
different classes. The histograms have been normalized so that the counts sum
to one, so you can think of them as probability distributions. It should be fairly
obvious that a normal model (superimposed) doesn’t describe these histograms well.
However, the normal model will result in a good naive bayes classifier.

Worked example 1.2 Classifying breast tissue samples

The “breast tissue” dataset at https://archive.ics.uci.edu/ml/datasets/
Breast+Tissue contains measurements of a variety of properties of six differ-
ent classes of breast tissue. Build and evaluate a naive bayes classifier to
distinguish between the classes automatically from the measurements.

Solution: I used R for this example, because I could then use packages easily.
The main difficulty here is finding appropriate packages, understanding their
documentation, and checking they’re right (unless you want to write the source
yourself, which really isn’t all that hard). I used the R package caret to do
train-test splits, cross-validation, etc. on the naive bayes classifier in the R
package klaR. I separated out a test set randomly (approx 20% of the cases
for each class, chosen at random), then trained with cross-validation on the
remainder. I used a normal model for each feature. The class-confusion matrix
on the test set was:

Predict

T
ru
e

adi car con fad gla mas
adi 2 0 0 0 0 0
car 0 3 0 0 0 1
con 2 0 2 0 0 0
fad 0 0 0 0 1 0
gla 0 0 0 0 2 1
mas 0 1 0 3 0 1

which is fairly good. The accuracy is 52%. In the training data, the classes are
nearly balanced and there are six classes, meaning that chance is about 17%.
These numbers, and the class-confusion matrix, will vary with test-train split.
I have not averaged over splits, which would give a somewhat more accurate
estimate of accuracy.

https://archive.ics.uci.edu/ml/datasets/Breast+Tissue
https://archive.ics.uci.edu/ml/datasets/Breast+Tissue

Section 1.3 Naive Bayes 20

1.3.1 Cross-Validation to Choose a Model

Naive bayes presents us with a new problem. We can choose from several different
types of model for p(x(j)|y) (eg normal models vs. Poisson models), and we need to
know which one produces the best classifier. We also need to know how well that
classifier will work. It is natural to use cross-validation to estimate how well each
type of model works. You can’t just look at every type of model for every variable,
because that would yield too many models. Instead, choose M types of model
that seem plausible (for example, by looking at histograms of feature components
conditioned on class and using your judgement). Now compute a cross-validated
error for each of M types of model, and choose the type of model with lowest cross-
validated error. Computing the cross-validated error involves repeatedly splitting
the training set into two pieces, fitting the model on one and computing the error on
the other, then averaging the errors. Notice this means the model you fit to each
fold will have slightly different parameter values, because each fold has slightly
different has slightly different training data.

However, once we have chosen the type of model, we have two problems. First,
we do not know the correct values for the parameters of the best type of model. For
each fold in the cross-validation, we estimated slightly different parameters because
we trained on slightly different data, and we don’t know which estimate is right.
Second, we do not have a good estimate of how well the best model works. This is
because we chose the type of model with the smallest error estimate, which is likely
smaller than the true error estimate for that type of model.

This problem is easily dealt with if you have a reasonably sized dataset. Split
the labelled dataset into two pieces. One (call it the training set) is used for
training and for choosing a model type, the other (call it the test set) is used only
for evaluating the final model. Now for each type of model, compute the cross-
validated error on the training set.

Now use the cross-validated error to choose the type of model. Very often
this just means you choose the type that produces the lowest cross-validated error,
but there might be cases where two types produce about the same error and one is
a lot faster to evaluate, etc. Take the entire training set, and use this to estimate
the parameters for that type of model. This estimate should be (a little) better
than any of the estimates produced in the cross-validation, because it uses (slightly)
more data. Finally, evaluate the resulting model on the test set.

This procedure is rather harder to describe than to do (there’s a pretty natural
set of nested loops here). There are some strong advantages. First, the estimate
of how well a particular model type works is unbiased, because we evaluated on
data not used on training. Second, once you have chosen a type of model, the
parameter estimate you make is the best you can because you used all the training
set to obtain it. Finally, your estimate of how well that particular model works is
unbiased, too, because you obtained it using data that wasn’t used to train or to
select a model.

1.3.2 Missing Data

Missing data occurs when some values in the training data are unknown. This can
happen in a variety of ways. Someone didn’t record the value; someone recorded

Section 1.3 Naive Bayes 21

it incorrectly, and you know the value is wrong but you don’t know what the right
one is; the dataset was damaged in storage or transmission; instruments failed;
and so on. This is quite typical of data where the feature values are obtained by
measuring effects in the real world. It’s much less common where the feature values
are computed from signals – for example, when one tries to classify digital images,
or sound recordings.

Missing data can be a serious nuisance in classification problems, because
many methods cannot handle incomplete feature vectors. For example, nearest
neighbors has no real way of proceeding if some components of the feature vector
are unknown. If there are relatively few incomplete feature vectors, one could just
drop them from the dataset and proceed, but this should strike you as inefficient.

Naive bayes is rather good at handling data where there are many incomplete
feature vectors in quite a simple way. For example, assume for some i, we wish to
fit p(xi|y) with a normal distribution. We need to estimate the mean and standard
deviation of that normal distribution (which we do with maximum likelihood, as
one should). If not every example has a known value of xi, this really doesn’t
matter; we simply omit the unknown number from the estimate. Write xi,j for the
value of xi for the j’th example. To estimate the mean, we form

∑

j∈cases with known values xi,j

number of cases with known values

and so on.
Dealing with missing data during classification is easy, too. We need to look

for the y that produces the largest value of
∑

i log p(xi|y). We can’t evaluate p(xi|y)
if the value of that feature is missing - but it is missing for each class. We can just
leave that term out of the sum, and proceed. This procedure is fine if data is
missing as a result of “noise” (meaning that the missing terms are independent of
class). If the missing terms depend on the class, there is much more we could do
— for example, we might build a model of the class-conditional density of missing
terms.

Notice that if some values of a discrete feature xi don’t appear for some class,
you could end up with a model of p(xi|y) that had zeros for some values. This almost
inevitably leads to serious trouble, because it means your model states you cannot
ever observe that value for a data item of that class. This isn’t a safe property:
it is hardly ever the case that not observing something means you cannot observe
it. A simple, but useful, fix is to add one to all small counts. More sophisticated
methods are available, but well beyond our scope.

Remember this: Naive bayes classifiers are straightforward to build,
and very effective. Dealing with missing data is easy. Experience has shown
they are particularly effective at high dimensional data. A straightforward
variant of cross-validation helps select which particular model to use.

Section 1.4 You should 22

1.4 YOU SHOULD

1.4.1 remember these definitions:

Classifier . 10
Bernoulli random variable . 240
Poisson distribution . 242
Chebyshev’s inequality . 395
Hoeffding’s inequality for Bernoulli random variables 397
The VC dimension . 403
Markov’s inequality . 408

1.4.2 remember these terms:

classifier . 10
feature vector . 11
error . 11
total error rate . 11
accuracy . 11
Bayes risk . 11
baselines . 11
comparing to chance . 11
false positive rate . 12
false negative rate . 12
sensitivity . 12
specificity . 12
class confusion matrix . 12
class error rate . 12
training error . 13
test error . 13
overfitting . 13
selection bias . 13
generalizing badly . 13
validation set . 13
unbiased . 13
cross-validation . 13
fold . 14
leave-one-out cross-validation . 14
whitening . 15
approximate nearest neighbor . 15
likelihood . 17
class conditional probability . 17
prior . 17
posterior . 17
irreducible error . 229
bias . 229
variance . 229
AIC . 231

Section 1.4 You should 23

BIC . 232
forward stagewise regression . 234
Backward stagewise regression . 234
robust regression . 236
Huber loss . 236
scale . 236
inlier . 236
iteratively reweighted least squares 238
MAD . 239
median absolute deviation . 239
Huber’s proposal 2 . 239
link function . 239
logit function . 240
logistic regression . 240
intensity . 242
deviance . 242
sparse models . 243
error cost . 243
L2 regularized error . 243
lasso . 246
elastic net . 247
Markov chain . 257
transition probabilities . 257
biased random walk . 257
absorbing state . 259
recurrent . 259
stochastic matrices . 261
irreducible . 263
stationary distribution . 263
unigrams . 266
unigram models . 266
bigrams . 266
bigram models . 266
trigrams . 266
trigram models . 266
n-grams . 266
n-gram models . 266
smoothing . 267
raw Google matrix . 275
emission distribution . 280
hidden Markov model . 280
phonemes . 281
trellis . 282
dynamic programming . 282
Viterbi algorithm . 282
cost to go function . 284
forward variable . 289

Section 1.4 You should 24

backward variable . 289
graphical models . 293
unary terms . 294
vertex terms . 294
binary terms . 294
edge terms . 294
chain graph . 295
cost-to-go function . 295
generative . 297
discriminative . 297
maximum entropy markov models 298
MEMM . 298
label bias problem . 299
conditional random field . 300
loss augmented constraint violation 304
Hamming distance . 304
Boltzmann machine . 307
energy . 308
max-cut . 309
Markov random field . 309
discrete Markov random field . 310
one-hot vectors . 310
variational inference . 314
KL-divergence . 314
Kullback-Leibler divergence . 314
variational free energy . 316
mean field method . 318
unit . 320
weights . 320
bias . 320
RELU . 320
neurons . 320
softmax function . 320
one hot . 321
minibatch training . 322
Jacobian . 323
learning rate . 324
steplength . 324
dead units . 325
layers . 325
neural network . 325
hidden layers . 325
fully connected . 326
backpropagation . 330
learning rate . 331
fan in . 331
decay rate . 335

Section 1.4 You should 25

dropout . 336
blocks . 339
slices . 339
convolution kernel . 339
convolution . 339
stride . 339
convolutional layer . 340
block . 340
max pooling . 340
image classification . 341
object detection . 342
whitened data . 344
batch normalization layer . 345
residual layer . 346
Sammon mapping . 353
perplexity . 355
encoder . 355
overcomplete . 355
decoder . 355
auto-encoder . 355
denoising auto-encoder . 357
hourglass network . 359
inpainting autoencoder . 360
edge points . 361
latent variable model . 362
latent variables . 362
generator . 367
generative adversarial networks . 367
GAN . 367
discriminator . 367
optimal transportation theory . 370
Monge-Kantorovich theory . 370
boosting . 373
predictor . 373
greedy stagewise linear regression . 374
greedy stagewise regression . 377
predictor . 380
loss . 381
empirical loss . 381
pointwise loss . 382
gradient boost . 383
weak learner . 384
decision stump . 385
exponential loss . 386
union bound . 399
growth function . 401
shattering number . 401

Section 1.4 You should 26

VC dimension . 403
Chernoff’s method . 409

1.4.3 remember these facts:

Do not evaluate a classifier on training data. 14
Good and bad properties of nearest neighbors. 17
Naive bayes is simple, and good for high dimensional data 21
Markov chains . 261
Transition probability matrices . 263
Many Markov chains have stationary distributions 264
The properties of simulations . 272
Whitening a dataset . 344
Expressions for mean and variance of an expectation estimated from samples394
Held-out error predicts test error, from Chebyshev 395
Held-out error predicts test error, usual version, from Chebyshev . . 396
Held-out error predicts test error, usual version, from Hoeffding . . . 398
Training error predicts test error for a finite set of predictors, from Hoeffding399
The number of examples required to bound the probability that at least one predictor is bad.400
VC dimension of linear classifiers . 404
The growth number of a family of finite VC dimension 404
The variation of sample means yields a bound 405
The largest variation of sample means yields a bound 405
Generalization bound in terms of VC dimension 406

1.4.4 use these procedures:

Fitting Hidden Markov Models with EM 291
Computing the Forward Variable for Fitting an HMM 291
Computing the Backward Variable for Fitting an HMM 292
Updating Parameters for Fitting an HMM 292
Greedy stagewise linear regression 375
Greedy stagewise regression with regression trees 378
Gradient boost . 384
Learning a decision stump . 385

1.4.5 be able to:

• build a nearest neighbors classifier using your preferred software package, and
produce a cross-validated estimate of its error rate or its accuracy;

• build a naive bayes classifier using your preferred software package, and pro-
duce a cross-validated estimate of its error rate or its accuracy;

Section 1.4 You should 27

PROGRAMMING EXERCISES

1.1. The UC Irvine machine learning data repository hosts a famous collection of
data on whether a patient has diabetes (the Pima Indians dataset), originally
owned by the National Institute of Diabetes and Digestive and Kidney Diseases
and donated by Vincent Sigillito. This can be found at http://archive.ics.uci.
edu/ml/datasets/Pima+Indians+Diabetes. This data has a set of attributes of
patients, and a categorical variable telling whether the patient is diabetic or
not. This is an exercise oriented to users of R, because you can use some
packages to help.
(a) Build a simple naive Bayes classifier to classify this data set. You should

hold out 20% of the data for evaluation, and use the other 80% for training.
You should use a normal distribution to model each of the class-conditional
distributions. You should write this classifier yourself.

(b) Now use the caret and klaR packages to build a naive bayes classifier
for this data. The caret package does cross-validation (look at train)
and can be used to hold out data. The klaR package can estimate class-
conditional densities using a density estimation procedure that I will de-
scribe much later in the course. Use the cross-validation mechanisms in
caret to estimate the accuracy of your classifier.

(c) Now install SVMLight, which you can find at http://svmlight.joachims.
org, via the interface in klaR (look for svmlight in the manual) to train
and evaluate an SVM to classify this data. You don’t need to understand
much about SVM’s to do this — we’ll do that in following exercises. You
should hold out 20% of the data for evaluation, and use the other 80% for
training.

1.2. The UC Irvine machine learning data repository hosts a collection of data
on student performance in Portugal, donated by Paulo Cortez, University of
Minho, in Portugal. You can find this data at https://archive.ics.uci.edu/ml/
datasets/Student+Performance. It is described in P. Cortez and A. Silva. “Us-
ing Data Mining to Predict Secondary School Student Performance,” In A.
Brito and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology
Conference (FUBUTEC 2008) pp. 5-12, Porto, Portugal, April, 2008,
There are two datasets (for grades in mathematics and for grades in Por-
tugese). There are 30 attributes each for 649 students, and 3 values that can
be predicted (G1, G2 and G3). Of these, ignore G1 and G2.
(a) Use the mathematics dataset. Take the G3 attribute, and quantize this

into two classes, G3 > 12 and G3 ≤ 12. Build and evaluate a naive
bayes classifier that predicts G3 from all attributes except G1 and G2.
You should build this classifier from scratch (i.e. DON’T use the pack-
ages described in the code snippets). For binary attributes, you should
use a binomial model. For the attributes described as “numeric”, which
take a small set of values, you should use a multinomial model. For the
attributes described as “nominal”, which take a small set of values, you
should again use a multinomial model. Ignore the “absence” attribute.
Estimate accuracy by cross-validation. You should use at least 10 folds,
excluding 15% of the data at random to serve as test data, and average
the accuracy over those folds. Report the mean and standard deviation
of the accuracy over the folds.

(b) Now revise your classifier of the previous part so that, for the attributes
described as “numeric”, which take a small set of values, you use a multi-
nomial model. For the attributes described as “nominal”, which take a

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://svmlight.joachims.org
http://svmlight.joachims.org
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance

Section 1.4 You should 28

small set of values, you should still use a multinomial model. Ignore the
“absence” attribute. Estimate accuracy by cross-validation. You should
use at least 10 folds, excluding 15% of the data at random to serve as test
data, and average the accuracy over those folds. Report the mean and
standard deviation of the accuracy over the folds.

(c) Which classifier do you believe is more accurate and why?
1.3. The UC Irvine machine learning data repository hosts a collection of data on

heart disease. The data was collected and supplied by Andras Janosi, M.D., of
the Hungarian Institute of Cardiology, Budapest; William Steinbrunn, M.D.,
of the University Hospital, Zurich, Switzerland; Matthias Pfisterer, M.D., of
the University Hospital, Basel, Switzerland; and Robert Detrano, M.D., Ph.D.,
of the V.A. Medical Center, Long Beach and Cleveland Clinic Foundation. You
can find this data at https://archive.ics.uci.edu/ml/datasets/Heart+Disease.
Use the processed Cleveland dataset, where there are a total of 303 instances
with 14 attributes each. The irrelevant attributes described in the text have
been removed in these. The 14’th attribute is the disease diagnosis. There are
records with missing attributes, and you should drop these.
(a) Take the disease attribute, and quantize this into two classes, num = 0

and num > 0. Build and evaluate a naive bayes classifier that predicts
the class from all other attributes Estimate accuracy by cross-validation.
You should use at least 10 folds, excluding 15% of the data at random to
serve as test data, and average the accuracy over those folds. Report the
mean and standard deviation of the accuracy over the folds.

(b) Now revise your classifier to predict each of the possible values of the
disease attribute (0-4 as I recall). Estimate accuracy by cross-validation.
You should use at least 10 folds, excluding 15% of the data at random to
serve as test data, and average the accuracy over those folds. Report the
mean and standard deviation of the accuracy over the folds.

1.4. The UC Irvine machine learning data repository hosts a collection of data
on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and
William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an
id number, 10 continuous variables, and a class (benign or malignant). There
are 569 examples. Separate this dataset randomly into 100 validation, 100
test, and 369 training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you don’t
really need one), but your own code. You should ignore the id number, and use
the continuous variables as a feature vector. You should scale these variables
so each has unit variance. You should search for an appropriate value of the
regularization constant, trying at least the values λ = [1e− 3, 1e− 2, 1e− 1, 1].
Use the validation set for this search.
You should use at least 50 epochs of at least 100 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 10 steps. You should produce:
(a) A plot of the accuracy every 10 steps, for each value of the regularization

constant.
(b) Your estimate of the best value of the regularization constant, together

with a brief description of why you believe that is a good value.
(c) Your estimate of the accuracy of the best classifier on held out data

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

C H A P T E R 2

SVM’s and Random Forests

2.1 THE SUPPORT VECTOR MACHINE

Assume we have a labelled dataset consisting of N pairs (xi, yi). Here xi is the
i’th feature vector, and yi is the i’th class label. We will assume that there are two
classes, and that yi is either 1 or −1. We wish to predict the sign of y for any point
x. We will use a linear classifier, so that for a new data item x, we will predict

sign
(

aTx+ b
)

and the particular classifier we use is given by our choice of a and b.
You should think of a and b as representing a hyperplane, given by the points

where aTx + b = 0. Notice that the magnitude of aTx + b grows as the point x

moves further away from the hyperplane. This hyperplane separates the positive
data from the negative data, and is an example of a decision boundary. When
a point crosses the decision boundary, the label predicted for that point changes.
All classifiers have decision boundaries. Searching for the decision boundary that
yields the best behavior is a fruitful strategy for building classifiers.

Example: 2.1 A linear model with a single feature

Assume we use a linear model with one feature. For an example with
feature value x, predicts sign (ax+ b). Equivalently, the model tests x
against the threshold −b/a.

Example: 2.2 A linear model with two features

Assume we use a linear model with two features. For an example with
feature vector x, the model predicts sign

(

aTx+ b
)

. The sign changes
along the line aTx+b = 0. You should check that this is, indeed, a line.
On one side of this line, the model makes positive predictions; on the
other, negative. Which side is which can be swapped by multiplying a

and b by −1.

This family of classifiers may look bad to you, and it is easy to come up with
examples that it misclassifies badly. In fact, the family is extremely strong. First,
it is easy to estimate the best choice of rule for very large datasets. Second, linear

29

Section 2.1 The Support Vector Machine 30

classifiers have a long history of working very well in practice on real data. Third,
linear classifiers are fast to evaluate.

In practice, examples that are classified badly by the linear rule usually are
classified badly because there are too few features. Remember the case of the
alien who classified humans into male and female by looking at their heights; if
that alien had looked at their chromosomes as well as height, the error rate would
have been smaller. In practical examples, experience shows that the error rate of
a poorly performing linear classifier can usually be improved by adding features to
the vector x.

We will choose a and b by choosing values that minimize a cost function. The
cost function must achieve two goals. First, the cost function needs a term that
ensures each training example should be on the right side of the decision boundary
(or, at least, not be too far on the wrong side). Second, the cost function needs a
term that should penalize errors on query examples. The appropriate cost function
has the form:

Training error cost + λ penalty term

where λ is an unknown weight that balances these two goals. We will eventually
set the value of λ by a search process.

2.1.1 The Hinge Loss

Write
γi = aTxi + b

for the value that the linear function takes on example i. Write C(γi, yi) for a
function that compares γi with yi. The training error cost will be of the form

(1/N)

N
∑

i=1

C(γi, yi).

A good choice of C should have some important properties.

• If γi and yi have different signs, then C should be large, because the classifier
will make the wrong prediction for this training example. Furthermore, if γi
and yi have different signs and γi has large magnitude, then the classifier will
very likely make the wrong prediction for test examples that are close to xi.
This is because the magnitude of (aTx+ b) grows as x gets further from the
decision boundary. So C should get larger as the magnitude of γi gets larger
in this case.

• If γi and yi have the same signs, but γi has small magnitude, then the clas-
sifier will classify xi correctly, but might not classify points that are nearby
correctly. This is because a small magnitude of γi means that xi is close to
the decision boundary, so there will be points nearby that are on the other
side of the decision boundary. We want to discourage this, so C should not
be zero in this case.

• Finally, if γi and yi have the same signs and γi has large magnitude, then C
can be zero because xi is on the right side of the decision boundary and so
are all the points near to xi.

Section 2.1 The Support Vector Machine 31

−4 −2 0 2 4
0

1

2

3

4

5
Hinge loss for a single example

with y=1

L
o
ss

γ

FIGURE 2.1: The hinge loss, plotted for the case yi = 1. The horizontal variable is
the γi = aTxi + b of the text. Notice that giving a strong negative response to this
positive example causes a loss that grows linearly as the magnitude of the response
grows. Notice also that giving an insufficiently positive response also causes a loss.
Giving a strongly positive response is free.

The hinge loss, which takes the form

C(yi, γi) = max(0, 1− yiγi),

has these properties.

• If γi and yi have different signs, then C will be large. Furthermore, the cost
grows linearly as xi moves further away from the boundary on the wrong side.

• If γi and yi have the same sign, but yiγi < 1 (which means that xi is close to
the decision boundary), there is some cost, which gets larger as xi gets closer
to the boundary.

• If yiγi > 1 (so the classifier predicts the sign correctly and xi is far from the
boundary) there is no cost.

A classifier trained to minimize this loss is encouraged to (a) make strong positive
(or negative) predictions for positive (or negative) examples and (b) for examples
it gets wrong, make predictions with the smallest magnitude that it can. A linear
classifier trained with the hinge loss is known as a support vector machine or
SVM.

2.1.2 Regularization

The penalty term is needed, because the hinge loss has one odd property. Assume
that the pair a, b correctly classifies all training examples, so that yi(a

Txi+ b) > 0.
Then we can always ensure that the hinge loss for the dataset is zero, by scaling a

and b, because you can choose a scale so that yj(a
Txj + b) > 1 for every example

index j. This scale hasn’t changed the result of the classification rule on the training

Section 2.1 The Support Vector Machine 32

data. Now if a and b result in a hinge loss of zero, then so do 2a and 2b. This should
worry you, because it means we can’t choose the classifier parameters uniquely.

Now think about future examples. We don’t know what their feature values
will be, and we don’t know their labels. But we do know that the hinge loss for an
example with feature vector x and unknown label y will be max(0, 1−y

[

aTx+ b
]

).
Now imagine the hinge loss for this example isn’t zero. If the example is classified
correctly, then it is close to the decision boundary. We expect that there are fewer
of these examples than examples that are far from the decision boundary and on the
wrong side, so we concentrate on examples that are misclassified. For misclassified
examples, if ||a|| is small, then at least the hinge loss will be small. By this argument,
we would like to achieve a small value of the hinge loss on the training examples
using a a that has small length.

We can do so by adding a penalty term to the hinge loss to favor solutions
where ||a|| is small. To obtain a a of small length, it is enough to ensure that
(1/2)aTa is small (the factor of 1/2 makes the gradient cleaner). This penalty term
will ensure that there is a unique choice of classifier parameters in the case the hinge
loss is zero. Experience (and some theory we can’t go into here) shows that having a
small ||a|| helps even if there is no pair that classifies all training examples correctly.
Doing so improves the error on future examples. Adding a penalty term to improve
the solution of a learning problem is sometimes referred to as regularization. The
penalty term is often referred to as a regularizer, because it tends to discourage
solutions that are large (and so have possible high loss on future test data) but are
not strongly supported by the training data. The parameter λ is often referred to
as the regularization parameter.

Using the hinge loss to form the training cost, and regularizing with a penalty
term (1/2)aTa means our cost function is:

S(a, b;λ) =

[

(1/N)

N
∑

i=1

max(0, 1− yi
(

aTxi + b
)

)

]

+ λ

(

aTa

2

)

.

There are now two problems to solve. First, assume we know λ; we will need to
find a and b that minimize S(a, b;λ). Second, we have no theory that tells us how
to choose λ, so we will need to search for a good value.

2.1.3 Finding a Classifier with Stochastic Gradient Descent

The usual recipes for finding a minimum are ineffective for our cost function. First,
write u = [a, b] for the vector obtained by stacking the vector a together with b. We
have a function g(u), and we wish to obtain a value of u that achieves the minimum
for that function. Sometimes we can solve a problem like this by constructing the
gradient and finding a value of u the makes the gradient zero, but not this time
(try it; the max creates problems). We must use a numerical method.

Typical numerical methods take a point u(n), update it to u(n+1), then check
to see whether the result is a minimum. This process is started from a start point.
The choice of start point may or may not matter for general problems, but for our
problem a random start point is fine. The update is usually obtained by computing a
direction p(n) such that for small values of η, g(u(n)+ηp(n)) is smaller than g(u(n)).

Section 2.1 The Support Vector Machine 33

Such a direction is known as a descent direction. We must then determine how
far to go along the descent direction, a process known as line search.

Obtaining a descent direction: One method to choose a descent direction
is gradient descent, which uses the negative gradient of the function. Recall our
notation that

u =









u1

u2

. . .
ud









and that

∇g =











∂g
∂u1
∂g
∂u2

. . .
∂g
∂ud











.

We can write a Taylor series expansion for the function g(u(n) + ηp(n)). We have
that

g(u(n) + ηp(n)) = g(u(n)) + η
[

(∇g)Tp(n)
]

+O(η2)

This means that we can expect that if

p(n) = −∇g(u(n)),

we expect that, at least for small values of h, g(u(n) + ηp(n)) will be less than
g(u(n)). This works (as long as g is differentiable, and quite often when it isn’t)
because g must go down for at least small steps in this direction.

But recall that our cost function is a sum of a penalty term and one error cost
per example. This means the cost function looks like

g(u) =

[

(1/N)

N
∑

i=1

gi(u)

]

+ g0(u),

as a function of u. Gradient descent would require us to form

−∇g(u) = −
([

(1/N)
N
∑

i=1

∇gi(u)

]

+∇g0(u)

)

and then take a small step in this direction. But if N is large, this is unattractive,
as we might have to sum a lot of terms. This happens a lot in building classifiers,
where you might quite reasonably expect to deal with millions (billions; perhaps
trillions) of examples. Touching each example at each step really is impractical.

Stochastic gradient descent is an algorithm that replaces the exact gra-
dient with an approximation that has a random error, but is simple and quick to
compute. The term

(
1

N
)

N
∑

i=1

∇gi(u).

Section 2.1 The Support Vector Machine 34

is a population mean, and we know how to deal with those. We can estimate this
term by drawing a random sample (a batch) of Nb (the batch size) examples,
with replacement, from the population of N examples, then computing the mean
for that sample. We approximate the population mean by

(
1

Nb
)
∑

j∈batch

∇gj(u).

The batch size is usually determined using considerations of computer architecture
(how many examples fit neatly into cache?) or of database design (how many
examples are recovered in one disk cycle?). One common choice is Nb = 1, which
is the same as choosing one example uniformly and at random. We form

p
(n)
Nb

= −







(1/Nb)
∑

j∈batch

∇gi(u)



+∇g0(u)





and then take a small step along p
(n)
Nb

. Our new point becomes

u(n+1) = u(n) + ηp
(n)
Nb

,

where η is called the steplength (or sometimes step size or learning rate, even
though it isn’t the size or the length of the step we take, or a rate!).

Because the expected value of the sample mean is the population mean, if
we take many small steps along pNb

, they should average out to a step backwards
along the gradient. This approach is known as stochastic gradient descent because
we’re not going along the gradient, but along a random vector which is the gradient
only in expectation. It isn’t obvious that stochastic gradient descent is a good idea.
Although each step is easy to take, we may need to take more steps. The question
is then whether we gain in the increased speed of the step what we lose by having
to take more steps. Not much is known theoretically, but in practice the approach
is hugely successful for training classifiers.

Choosing a steplength: Choosing a steplength η takes some work. We
can’t search for the step that gives us the best value of g, because we don’t want to
evaluate the function g (doing so involves looking at each of the gi terms). Instead,
we use an η that is large at the start — so that the method can explore large
changes in the values of the classifier parameters — and small steps later — so that
it settles down. The choice of how η gets smaller is often known as a steplength

schedule.
Here are useful examples of steplength schedules. Often, you can tell how

many steps are required to have seen the whole dataset; this is called an epoch. A
common steplength schedule sets the steplength in the e’th epoch to be

η(e) =
m

e+ n
,

wherem and n are constants chosen by experiment with small subsets of the dataset.
When there are a lot of examples, an epoch is a long time to fix the steplength, and

Section 2.1 The Support Vector Machine 35

this approach can reduce the steplength too slowly. Instead, you can divide training
into what I shall call seasons (blocks of a fixed number of iterations, smaller than
epochs), and make the steplength a function of the season number.

There is no good test for whether stochastic gradient descent has converged
to the right answer, because natural tests involve evaluating the gradient and the
function, and doing so is expensive. More usual is to plot the error as a function
of iteration on the validation set, and interrupt or stop training when the error
has reached an acceptable level. The error (resp. accuracy) should vary randomly
(because the steps are taken in directions that only approximate the gradient) but
should decrease (resp. increase) overall as training proceeds (because the steps do
approximate the gradient). Figures 2.2 and 2.3 show examples of these curves,
which are sometimes known as learning curves.

2.1.4 Searching for λ

We do not know a good value for λ. We will obtain a value by choosing a set of
different values, fitting an SVM using each value, and taking the λ value that will
yield the best SVM. Experience has shown that the performance of a method is
not profoundly sensitive to the value of λ, so that we can look at values spaced
quite far apart. It is usual to take some small number (say, 1e− 4), then multiply
by powers of 10 (or 3, if you’re feeling fussy and have a fast computer). So, for
example, we might look at λ ∈ {1e− 4, 1e− 3, 1e− 2, 1e− 1}. We know how to fit
an SVM to a particular value of λ (Section 2.1.3). The problem is to choose the
value that yields the best SVM, and to use that to get the best classifier.

We have seen a version of this problem before (Section 1.3.1). There, we
chose from several different types of model to obtain the best naive bayes classifier.
The recipe from that section is easily adapted to the current problem. We regard
each different λ value as representing a different model. We split the data into two
pieces: one is a training set, used for fitting and choosing models; the other is a
test set, used for evaluating the final chosen model.

Now for each value of λ, compute the cross-validated error of an SVM using
that λ on the training set. Do this by repeatedly splitting the training set into
two pieces (training and validation); fitting the SVM with that λ to the training
piece using stochastic gradient descent; evaluating the error on the validation piece;
and averaging these errors. Now use the cross-validated error to choose the best
λ value. Very often this just means you choose the value that produces the lowest
cross-validated error, but there might be cases where two values produce about the
same error and one is preferred for some other reason. Notice that you can compute
the standard deviation of the cross-validated error as well as the mean, so you can
tell whether differences between cross-validated errors are significant.

Now take the entire training set, and use this to fit an SVM for the chosen λ
value. This should be (a little) better than any of the SVMs obtained in the cross-
validation, because it uses (slightly) more data. Finally, evaluate the resulting SVM
on the test set.

This procedure is rather harder to describe than to do (there’s a pretty natural
set of nested loops here). There are some strong advantages. First, the estimate of
how well a particular SVM type works is unbiased, because we evaluated on data

Section 2.1 The Support Vector Machine 36

not used on training. Second, once you have chosen the cross-validation parameter,
the SVM you fit is the best you can fit because you used all the training set to obtain
it. Finally, your estimate of how well that particular SVM works is unbiased, too,
because you obtained it using data that wasn’t used to train or to select a model.

2.1.5 Example: Training an SVM with Stochastic Gradient Descent

I have summarized the SVM training procedure in a set of boxes, below. You should
be aware that the recipe there admits many useful variations, though. One useful
practical trick is to rescale the feature vector components so each has unit variance.
This doesn’t change anything conceptual as the best choice of decision boundary
for rescaled data is easily derived from the best choice for unscaled, and vice versa.
Rescaling very often makes stochastic gradient descent perform better because the
method takes steps that are even in each component.

It is quite usual to use packages to fit SVM’s, and good packages may use a
variety of tricks which we can’t go into to make training more efficient. Nonetheless,
you should have a grasp of the overall process, because it follows a pattern that
is useful for training other models (among other things, most deep networks are
trained using this pattern).

Procedure: 2.1 Training an SVM: Overall

Start with a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label, either 1 or −1.
Optionally, rescale the xi so that each component has unit variance.
Choose a set of possible values of the regularization weight λ. Separate
the dataset into two sets: test and training. Reserve the test set. For
each value of the regularization weight, use the training set to estimate
the accuracy of an SVM with that λ value, using cross-validation as in
procedure 2.2 and stochastic gradient descent. Use this information to
choose λ0, the best value of λ (usually, the one that yields the highest
accuracy). Now use the training set to fit the best SVM using λ0 as
the regularization constant. Finally, use the test set to compute the
accuracy or error rate of that SVM, and report that

To train an SVM

Procedure: 2.2 Training an SVM: estimating the accuracy

Repeatedly: split the training dataset into two components (training
and validation), at random; use the training component to train an
SVM; and compute the accuracy on the validation component. Now
average the resulting accuracy values.

To estimate accuracy of an SVM with known λ

Section 2.1 The Support Vector Machine 37

Procedure: 2.3 Training an SVM: stochastic gradient descent

Obtain u = (a, b) by stochastic gradient descent on the cost function

g(u) =

[

(1/N)

N
∑

i=1

gi(u)

]

+ g0(u)

where g0(u) = λ(aT a)/2 and gi(u) = max(0, 1− yi
(

aTxi + b
)

).
Do so by first choosing a fixed number of items per batch Nb, the
number of steps per season Ns, and the number of steps k to take
before evaluating the model (this is usually a lot smaller than Ns).
Choose a random start point. Now iterate:

• Update the stepsize. In the s’th season, the step size is typically
η(s) = m

s+n for constants m and n chosen by small-scale experi-
ments.

• Split the training dataset into a training part and a validation
part. This split changes each season. Use the validation set to
get an unbiased estimate of error during that season’s training.

• Now, until the end of the season (i.e. until you have taken Ns

steps):

– Take k steps. Each step is taken by selecting a batch of Nb

data items uniformly and at random from the training part
for that season. Write D for this set. Now compute

p(n) = − 1

Nb

(

∑

i∈D
∇gi(u

(n))

)

− λu(n),

and update the model by computing

u(n+1) = u(n) + ηp(n)

– Evaluate the current model u(n) by computing the accuracy
on the validation part for that season. Plot the accuracy as
a function of step number.

There are two ways to stop. You can choose a fixed number of seasons
(or of epochs) and stop when that is done. Alternatively, you can watch
the error plot and stop when the error reaches some level or meets some
criterion.

To fit an SVM with stochastic gradient descent
Here is an example in some detail. I downloaded the dataset at http://archive.

ics.uci.edu/ml/datasets/Adult. This dataset apparently contains 48, 842 data items,

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult

Section 2.1 The Support Vector Machine 38

but I worked with only the first 32, 000. Each consists of a set of numeric and cat-
egorical features describing a person, together with whether their annual income is
larger than or smaller than 50K$. I ignored the categorical features to prepare these
figures. This isn’t wise if you want a good classifier, but it’s fine for an example.
I used these features to predict whether income is over or under 50K$. I split the
data into 5, 000 test examples, and 27,000 training examples. It’s important to
do so at random. There are 6 numerical features. I subtracted the mean (which
doesn’t usually make much difference) and rescaled each so that the variance was
1 (which is often very important).

Setting up stochastic gradient descent: We have estimates a(n) and b(n)

of the classifier parameters, and we want to improve the estimates. I used a batch
size of Nb = 1. Pick the r’th example at random. The gradient is

∇
(

max(0, 1− yr
(

aTxr + b
)

) +
λ

2
aTa

)

.

Assume that yk
(

aTxr + b
)

> 1. In this case, the classifier predicts a score with
the right sign, and a magnitude that is greater than one. Then the first term is
zero, and the gradient of the second term is easy. Now if yk

(

aTxr + b
)

< 1, we

can ignore the max, and the first term is 1 − yr
(

aTxr + b
)

; the gradient is again

easy. If yr
(

aTxr + b
)

= 1, there are two distinct values we could choose for the
gradient, because the max term isn’t differentiable. It does not matter which value
we choose because this situation hardly ever happens. We choose a steplength η,
and update our estimates using this gradient. This yields:

a(n+1) = a(n) − η

{

λa if yk
(

aTxk + b
)

≥ 1
λa− ykx otherwise

and

b(n+1) = b(n) − η

{

0 if yk
(

aTxk + b
)

≥ 1
−yk otherwise

.

Training: I used two different training regimes. In the first training regime,
there were 100 seasons. In each season, I applied 426 steps. For each step, I selected
one data item uniformly at random (sampling with replacement), then stepped
down the gradient. This means the method sees a total of 42, 600 data items. This
means that there is a high probability it has touched each data item once (27, 000
isn’t enough, because we are sampling with replacement, so some items get seen
more than once). I chose 5 different values for the regularization parameter and
trained with a steplength of 1/(0.01 ∗ s + 50), where s is the season. At the end
of each season, I computed aTa and the accuracy (fraction of examples correctly
classified) of the current classifier on the held out test examples. Figure 2.2 shows
the results. You should notice that the accuracy changes slightly each season; that
for larger regularizer values aTa is smaller; and that the accuracy settles down to
about 0.8 very quickly.

In the second training regime, there were 100 seasons. In each season, I applied
50 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees a
total of 5,000 data items, and about 3,000 unique data items — it hasn’t seen the

Section 2.1 The Support Vector Machine 39

0 50 100
0

1

2

3

4

5

6

Epoch

S
iz

e
of

 w

1e−7
1e−5
1e−3
1e−1
1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epoch

H
el

d
ou

t e
rr

or

FIGURE 2.2: On the left, the magnitude of the weight vector a at the end of each
season for the first training regime described in the text. On the right, the accu-
racy on held out data at the end of each season. Notice how different choices of
regularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

whole training set. I chose 5 different values for the regularization parameter and
trained with a steplength of 1/(0.01 ∗ s + 50), where s is the season. At the end
of each season, I computed aTa and the accuracy (fraction of examples correctly
classified) of the current classifier on the held out test examples. Figure 2.3 shows
the results.

This is an easy classification example. Points worth noting are

• the accuracy makes large changes early, then settles down to make slight
changes each season;

• quite large changes in regularization constant have small effects on the out-
come, but there is a best choice;

• for larger values of the regularization constant, aTa is smaller;

• there isn’t much difference between the two training regimes;

• and the method doesn’t need to see all the training data to produce a classifier
that is about as good as it would be if the method had seen all training data.

All of these points are relatively typical of SVM’s trained using stochastic gradient
descent with very large datasets.

Section 2.1 The Support Vector Machine 40

0 50 100
0

1

2

3

4

5

6

Epoch

S
iz

e
of

 w

1e−7
1e−5
1e−3
1e−1
1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epoch

H
el

d
ou

t e
rr

or

FIGURE 2.3: On the left, the magnitude of the weight vector a at the end of each
season for the second training regime described in the text. On the right, the
accuracy on held out data at the end of each season. Notice how different choices
of regularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

Remember this: Linear SVM’s are a go-to classifier. When you have
a binary classification problem, the first step should be to try a linear SVM.
Training with stochastic gradient descent is straightforward, and extremely
effective. Finding an appropriate value of the regularization constant re-
quires an easy search. There is an immense quantity of good software
available.

2.1.6 Multi-Class Classification with SVMs

I have shown how one trains a linear SVM to make a binary prediction (i.e. predict
one of two outcomes). But what if there are three, or more, labels? In principle,
you could write a binary code for each label, then use a different SVM to predict
each bit of the code. It turns out that this doesn’t work terribly well, because an
error by one of the SVM’s is usually catastrophic.

There are two methods that are widely used. In the all-vs-all approach, we
train a binary classifier for each pair of classes. To classify an example, we present it
to each of these classifiers. Each classifier decides which of two classes the example
belongs to, then records a vote for that class. The example gets the class label with
the most votes. This approach is simple, but scales very badly with the number of
classes (you have to build O(N2) different SVM’s for N classes).

In the one-vs-all approach, we build a binary classifier for each class. This

Section 2.2 Classifying with Random Forests 41

classifier must distinguish its class from all the other classes. We then take the class
with the largest classifier score. One can think up quite good reasons this approach
shouldn’t work. For one thing, the classifier isn’t told that you intend to use the
score to tell similarity between classes. In practice, the approach works rather well
and is quite widely used. This approach scales a bit better with the number of
classes (O(N)).

Remember this: It is straightforward to build a multi-class classifier
out of binary classifiers. Any decent SVM package will do this for you.

2.2 CLASSIFYING WITH RANDOM FORESTS

I described a classifier as a rule that takes a feature, and produces a class. One way
to build such a rule is with a sequence of simple tests, where each test is allowed
to use the results of all previous tests. This class of rule can be drawn as a tree
(Figure ??), where each node represents a test, and the edges represent the possible
outcomes of the test. To classify a test item with such a tree, you present it to
the first node; the outcome of the test determines which node it goes to next; and
so on, until the example arrives at a leaf. When it does arrive at a leaf, we label
the test item with the most common label in the leaf. This object is known as a
decision tree. Notice one attractive feature of this decision tree: it deals with
multiple class labels quite easily, because you just label the test item with the most
common label in the leaf that it arrives at when you pass it down the tree.

Figure 2.5 shows a simple 2D dataset with four classes, next to a decision
tree that will correctly classify at least the training data. Actually classifying data
with a tree like this is straightforward. We take the data item, and pass it down
the tree. Notice it can’t go both left and right, because of the way the tests work.
This means each data item arrives at a single leaf. We take the most common
label at the leaf, and give that to the test item. In turn, this means we can build
a geometric structure on the feature space that corresponds to the decision tree.
I have illustrated that structure in figure 2.5, where the first decision splits the
feature space in half (which is why the term split is used so often), and then the
next decisions split each of those halves into two.

The important question is how to get the tree from data. It turns out that
the best approach for building a tree incorporates a great deal of randomness. As
a result, we will get a different tree each time we train a tree on a dataset. None of
the individual trees will be particularly good (they are often referred to as “weak
learners”). The natural thing to do is to produce many such trees (a decision

forest), and allow each to vote; the class that gets the most votes, wins. This
strategy is extremely effective.

Section 2.2 Classifying with Random Forests 42

cat

dogtoddler

chair leg

boxsofa

moves

bites

furry

big

cardboard

FIGURE 2.4: This — the household robot’s guide to obstacles — is a typical decision
tree. I have labelled only one of the outgoing branches, because the other is the
negation. So if the obstacle moves, bites, but isn’t furry, then it’s a toddler. In
general, an item is passed down the tree until it hits a leaf. It is then labelled with
the leaf ’s label.

2.2.1 Building a Decision Tree

There are many algorithms for building decision trees. We will use an approach
chosen for simplicity and effectiveness; be aware there are others. We will always
use a binary tree, because it’s easier to describe and because that’s usual (it doesn’t
change anything important, though). Each node has a decision function, which
takes data items and returns either 1 or -1.

We train the tree by thinking about its effect on the training data. We pass
the whole pool of training data into the root. Any node splits its incoming data
into two pools, left (all the data that the decision function labels 1) and right (ditto,
-1). Finally, each leaf contains a pool of data, which it can’t split because it is a
leaf.

Training the tree uses a straightforward algorithm. First, we choose a class of
decision functions to use at each node. It turns out that a very effective algorithm
is to choose a single feature at random, then test whether its value is larger than, or
smaller than a threshold. For this approach to work, one needs to be quite careful
about the choice of threshold, which is what we describe in the next section. Some
minor adjustments, described below, are required if the feature chosen isn’t ordinal.
Surprisingly, being clever about the choice of feature doesn’t seem add a great deal
of value. We won’t spend more time on other kinds of decision function, though
there are lots.

Now assume we use a decision function as described, and we know how to
choose a threshold. We start with the root node, then recursively either split the
pool of data at that node, passing the left pool left and the right pool right, or stop
splitting and return. Splitting involves choosing a decision function from the class
to give the “best” split for a leaf. The main questions are how to choose the best

Section 2.2 Classifying with Random Forests 43

−5 0 5
−5

0

5

y>.32

x>1.06x>-0.58

*.o+

FIGURE 2.5: A straightforward decision tree, illustrated in two ways. On the left,
I have given the rules at each split; on the right, I have shown the data points in
two dimensions, and the structure that the tree produces in the feature space.

split (next section), and when to stop.
Stopping is relatively straightforward. Quite simple strategies for stopping

are very good. It is hard to choose a decision function with very little data, so we
must stop splitting when there is too little data at a node. We can tell this is the
case by testing the amount of data against a threshold, chosen by experiment. If all
the data at a node belongs to a single class, there is no point in splitting. Finally,
constructing a tree that is too deep tends to result in generalization problems, so
we usually allow no more than a fixed depth D of splits. Choosing the best splitting
threshold is more complicated.

Figure 2.6 shows two possible splits of a pool of training data. One is quite
obviously a lot better than the other. In the good case, the split separates the pool
into positives and negatives. In the bad case, each side of the split has the same
number of positives and negatives. We cannot usually produce splits as good as
the good case here. What we are looking for is a split that will make the proper
label more certain.

Figure 2.7 shows a more subtle case to illustrate this. The splits in this figure
are obtained by testing the horizontal feature against a threshold. In one case,
the left and the right pools contain about the same fraction of positive (’x’) and
negative (’o’) examples. In the other, the left pool is all positive, and the right pool
is mostly negative. This is the better choice of threshold. If we were to label any
item on the left side positive and any item on the right side negative, the error rate
would be fairly small. If you count, the best error rate for the informative split is
20% on the training data, and for the uninformative split it is 40% on the training
data.

But we need some way to score the splits, so we can tell which threshold is
best. Notice that, in the uninformative case, knowing that a data item is on the
left (or the right) does not tell me much more about the data than I already knew.

Section 2.2 Classifying with Random Forests 44

o
o

o
o

o
o

o
o

o

o

Informative split
x

x

x

x
x

x
x

x
x

x

o
o

o
o

o
o

o
o

o

o

Less informative split

x
x

x

x
x

x
x

x
x

x

FIGURE 2.6: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’x’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’o’s, and all the points on the
right are ’x’s. This is an excellent choice of split — once we have arrived in a leaf,
everything has the same label. Compare this with the less informative split. We
started with a node that was half ’x’ and half ’o’, and now have two nodes each of
which is half ’x’ and half ’o’ — this isn’t an improvement, because we do not know
more about the label as a result of the split.

We have that p(1|left pool, uninformative) = 2/3 ≈ 3/5 = p(1|parent pool) and
p(1|right pool, uninformative) = 1/2 ≈ 3/5 = p(1|parent pool). For the informa-
tive pool, knowing a data item is on the left classifies it completely, and knowing
that it is on the right allows us to classify it an error rate of 1/3. The informative
split means that my uncertainty about what class the data item belongs to is signif-
icantly reduced if I know whether it goes left or right. To choose a good threshold,
we need to keep track of how informative the split is.

2.2.2 Choosing a Split with Information Gain

Write P for the set of all data at the node. Write Pl for the left pool, and Pr for
the right pool. The entropy of a pool C scores how many bits would be required to
represent the class of an item in that pool, on average. Write n(i; C) for the number
of items of class i in the pool, and N(C) for the number of items in the pool. Then
the entropy H(C) of the pool C is

−
∑

i

n(i; C)
N(C) log2

n(i; C)
N(C .

It is straightforward that H(P) bits are required to classify an item in the parent
pool P . For an item in the left pool, we need H(Pl) bits; for an item in the right
pool, we need H(Pr) bits. If we split the parent pool, we expect to encounter items
in the left pool with probability

N(Pl)

N(P)

Section 2.2 Classifying with Random Forests 45

o
o

o
o

o
o

o
o

o
o

o
o

Less informative splitInformative split
x

x
x

x

x
x

x

x
x

x
x

x

o
o

o
o

o
o

o
o

o
o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

x
x

x
x

x
x

x

x
x

x
x

x

o
o

o
o

o
o

o
o

o
o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

o
o

o
o

o
o

o
o

o
o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

x
x

x
x

x
x

x

x
x

x
x

x

FIGURE 2.7: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’x’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’x’s, and two-thirds of the points
on the right are ’o’s. This means that knowing which side of the split a point lies
would give us a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are ’x’s and about half on the right are ’x’s
— knowing which side of the split a point lies is much less useful in deciding what
the label is.

and items in the right pool with probability

N(Pr)

N(P)
.

This means that, on average, we must supply

N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

bits to classify data items if we split the parent pool. Now a good split is one that
results in left and right pools that are informative. In turn, we should need fewer
bits to classify once we have split than we need before the split. You can see the
difference

I(Pl,Pr;P) = H(P)−
(

N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

)

as the information gain caused by the split. This is the average number of bits
that you don’t have to supply if you know which side of the split an example lies.
Better splits have larger information gain.

Recall that our decision function is to choose a feature at random, then test
its value against a threshold. Any data point where the value is larger goes to the
left pool; where the value is smaller goes to the right. This may sound much too
simple to work, but it is actually effective and popular. Assume that we are at
a node, which we will label k. We have the pool of training examples that have
reached that node. The i’th example has a feature vector xi, and each of these
feature vectors is a d dimensional vector.

Section 2.2 Classifying with Random Forests 46

ooo
o

x
x

x

x

t t t t t t t

ooo
o

x
x

x

x

t t t t t t t

o

o

oo

o

o

o

oo

o

o

o

oo

o

x

x
x

x x

x

x
x

x x

x

x
x

x x

x

x
x

x x

FIGURE 2.8: We search for a good splitting threshold by looking at values of the
chosen component that yield different splits. On the left, I show a small dataset
and its projection onto the chosen splitting component (the horizontal axis). For the
8 data points here, there are only 7 threshold values that produce interesting splits,
and these are shown as ’t’s on the axis. On the right, I show a larger dataset; in
this case, I have projected only a subset of the data, which results in a small set of
thresholds to search.

We choose an integer j in the range 1 . . . d uniformly and at random. We will

split on this feature, and we store j in the node. Recall we write x
(j)
i for the value

of the j’th component of the i’th feature vector. We will choose a threshold tk,

and split by testing the sign of x
(j)
i − tk. Choosing the value of tk is easy. Assume

there are Nk examples in the pool. Then there are Nk − 1 possible values of tk
that lead to different splits. To see this, sort the Nk examples by x(j), then choose
values of tk halfway between example values (Figure 2.8). For each of these values,
we compute the information gain of the split. We then keep the threshold with the
best information gain.

We can elaborate this procedure in a useful way, by choosing m features at
random, finding the best split for each, then keeping the feature and threshold
value that is best. It is important that m is a lot smaller than the total number of
features — a usual root of thumb is that m is about the square root of the total
number of features. It is usual to choose a single m, and choose that for all the
splits.

Now assume we happen to have chosen to work with a feature that isn’t
ordinal, and so can’t be tested against a threshold. A natural, and effective, strategy
is as follows. We can split such a feature into two pools by flipping an unbiased
coin for each value — if the coin comes up H , any data point with that value goes
left, and if it comes up T , any data point with that value goes right. We chose this
split at random, so it might not be any good. We can come up with a good split by
repeating this procedure F times, computing the information gain for each split,
then keeping the one that has the best information gain. We choose F in advance,
and it usually depends on the number of values the categorical variable can take.

We now have a relatively straightforward blueprint for an algorithm, which I
have put in a box. It’s a blueprint, because there are a variety of ways in which it

Section 2.2 Classifying with Random Forests 47

can be revised and changed.

Procedure: 2.4 Building a decision tree: overall

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Call this dataset
a pool. Now recursively apply the following procedure:

• If the pool is too small, or if all items in the pool have the same
label, or if the depth of the recursion has reached a limit, stop.

• Otherwise, search the features for a good split that divides the
pool into two, then apply this procedure to each child.

We search for a good split by the following procedure:

• Choose a subset of the feature components at random. Typically,
one uses a subset whose size is about the square root of the feature
dimension.

• For each component of this subset, search for a good split. If
the component is ordinal, do so using the procedure of box 2.5,
otherwise use the procedure of box 2.6.

Overall approach to build a decision tree

Procedure: 2.5 Splitting an ordinal feature

We search for a good split on a given ordinal feature by the following
procedure:

• Select a set of possible values for the threshold.

• For each value split the dataset (every data item with a value of
the component below the threshold goes left, others go right), and
compue the information gain for the split.

Keep the threshold that has the largest information gain.
A good set of possible values for the threshold will contain values that
separate the data “reasonably”. If the pool of data is small, you can
project the data onto the feature component (i.e. look at the values of
that component alone), then choose the N − 1 distinct values that lie
between two data points. If it is big, you can randomly select a subset
of the data, then project that subset on the feature component and
choose from the values between data points.

To split an ordinal feature in a decision tree

Section 2.2 Classifying with Random Forests 48

Procedure: 2.6 Splitting a non-ordinal feature

Split the values this feature takes into sets pools by flipping an unbiased
coin for each value — if the coin comes up H , any data point with that
value goes left, and if it comes up T , any data point with that value goes
right. Repeating this procedure F times, computing the information
gain for each split, then keep the split that has the best information
gain. We choose F in advance, and it usually depends on the number
of values the categorical variable can take.

To split a non-ordinal feature in a decision tree

2.2.3 Forests

A single decision tree tends to yield poor classifications. One reason is because the
tree is not chosen to give the best classification of its training data. We used a
random selection of splitting variables at each node, so the tree can’t be the “best
possible”. Obtaining the best possible tree presents significant technical difficulties.
It turns out that the tree that gives the best possible results on the training data
can perform rather poorly on test data. The training data is a small subset of
possible examples, and so must differ from the test data. The best possible tree on
the training data might have a large number of small leaves, built using carefully
chosen splits. But the choices that are best for training data might not be best for
test data.

Rather than build the best possible tree, we have built a tree efficiently, but
with number of random choices. If we were to rebuild the tree, we would obtain
a different result. This suggests the following extremely effective strategy: build
many trees, and classify by merging their results.

2.2.4 Building and Evaluating a Decision Forest

There are two important strategies for building and evaluating decision forests. I
am not aware of evidence strongly favoring one over the other, but different software
packages use different strategies, and you should be aware of the options. In one
strategy, we separate labelled data into a training and a test set. We then build
multiple decision trees, training each using the whole training set. Finally, we
evaluate the forest on the test set. In this approach, the forest has not seen some
fraction of the available labelled data, because we used it to test. However, each
tree has seen every training data item.

Section 2.2 Classifying with Random Forests 49

Procedure: 2.7 Building a decision forest

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Separate the dataset
into a test set and a training set. Train multiple distinct decision trees
on the training set, recalling that the use of a random set of components
to find a good split means you will obtain a distinct tree each time.

In the other strategy, sometimes called bagging, each time we train a tree we
randomly subsample the labelled data with replacement, to yield a training set the
same size as the original set of labelled data. Notice that there will be duplicates
in this training set, which is like a bootstrap replicate. This training set is often
called a bag. We keep a record of the examples that do not appear in the bag (the
“out of bag” examples). Now to evaluate the forest, we evaluate each tree on its
out of bag examples, and average these error terms. In this approach, the entire
forest has seen all labelled data, and we also get an estimate of error, but no tree
has seen all the training data.

Procedure: 2.8 Building a decision forest using bagging

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Now build k boot-
strap replicates of the training data set. Train one decision tree on each
replicate.

2.2.5 Classifying Data Items with a Decision Forest

Once we have a forest, we must classify test data items. There are two major
strategies. The simplest is to classify the item with each tree in the forest, then
take the class with the most votes. This is effective, but discounts some evidence
that might be important. For example, imagine one of the trees in the forest has a
leaf with many data items with the same class label; another tree has a leaf with
exactly one data item in it. One might not want each leaf to have the same vote.

Section 2.2 Classifying with Random Forests 50

Procedure: 2.9 Classification with a decision forest

Given a test example x, pass it down each tree of the forest. Now choose
one of the following strategies.

• Each time the example arrives at a leaf, record one vote for the
label that occurs most often at the leaf. Now choose the label
with the most votes.

• Each time the example arrives at a leaf, recordNl votes for each of
the labels that occur at the leaf, where Nl is the number of times
the label appears in the training data at the leaf. Now choose the
label with the most votes.

An alternative strategy that takes this observation into account is to pass the
test data item down each tree. When it arrives at a leaf, we record one vote for each
of the training data items in that leaf. The vote goes to the class of the training
data item. Finally, we take the class with the most votes. This approach allows
big, accurate leaves to dominate the voting process. Both strategies are in use, and
I am not aware of compelling evidence that one is always better than the other.
This may be because the randomness in the training process makes big, accurate
leaves uncommon in practice.

Section 2.2 Classifying with Random Forests 51

Worked example 2.1 Classifying heart disease data

Build a random forest classifier to classify the “heart” dataset from the UC
Irvine machine learning repository. The dataset is at http://archive.ics.uci.edu/
ml/datasets/Heart+Disease. There are several versions. You should look at the
processed Cleveland data, which is in the file “processed.cleveland.data.txt”.

Solution: I used the R random forest package. This uses a bagging strategy.
This package makes it quite simple to fit a random forest, as you can see. In
this dataset, variable 14 (V14) takes the value 0, 1, 2, 3 or 4 depending on
the severity of the narrowing of the arteries. Other variables are physiological
and physical measurements pertaining to the patient (read the details on the
website). I tried to predict all five levels of variable 14, using the random forest
as a multivariate classifier. This works rather poorly, as the out-of-bag class
confusion matrix below shows. The total out-of-bag error rate was 45%.

Predict

T
ru
e

0 1 2 3 4 Class error
0 151 7 2 3 1 7.9%
1 32 5 9 9 0 91%
2 10 9 7 9 1 81%
3 6 13 9 5 2 86%
4 2 3 2 6 0 100%

This is the example of a class confusion matrix from table 1.1. Fairly clearly,
one can predict narrowing or no narrowing from the features, but not the
degree of narrowing (at least, not with a random forest). So it is natural to
quantize variable 14 to two levels, 0 (meaning no narrowing), and 1 (meaning
any narrowing, so the original value could have been 1, 2, or 3). I then built a
random forest to predict this quantized variable from the other variables. The
total out-of-bag error rate was 19%, and I obtained the following out-of-bag
class confusion matrix

Predict

T
ru
e 0 1 Class error

0 138 26 16%
1 31 108 22%

Notice that the false positive rate (16%, from 26/164) is rather better than the
false negative rate (22%). You might wonder whether it is better to train on
and predict 0, . . . , 4, then quantize the predicted value. If you do this, you will
find you get a false positive rate of 7.9%, but a false negative rate that is much
higher (36%, from 50/139). In this application, a false negative is likely more
of a problem than a false positive, so the tradeoff is unattractive.

http://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://archive.ics.uci.edu/ml/datasets/Heart+Disease

Section 2.2 Classifying with Random Forests 52

Remember this: Random forests are straightforward to build, and very
effective. They can predict any kind of label. Good software implementa-
tions are easily available.

Section 2.3 You should 53

2.3 YOU SHOULD

2.3.1 remember these definitions:

2.3.2 remember these terms:

decision boundary . 29
hinge loss . 31
support vector machine . 31
SVM . 31
regularization . 32
regularizer . 32
regularization parameter . 32
descent direction . 33
line search . 33
gradient descent . 33
Stochastic gradient descent . 33
batch . 34
batch size . 34
steplength . 34
step size . 34
learning rate . 34
steplength schedule . 34
epoch . 34
learning curves . 35
all-vs-all . 40
one-vs-all . 40
decision tree . 41
decision forest . 41
decision function . 42
information gain . 45
bagging . 49
bag . 49

2.3.3 remember these facts:

Linear SVM’s are a go-to classifier. 40
Any SVM package should build a multi-class classifier for you. . . . 41
Random forests are good and easy. 52

2.3.4 use these procedures:

Training an SVM: Overall . 36
Training an SVM: estimating the accuracy 36
Training an SVM: stochastic gradient descent 37
Building a decision tree: overall . 47
Splitting an ordinal feature . 47
Splitting a non-ordinal feature . 48
Building a decision forest . 49
Building a decision forest using bagging 49

Section 2.3 You should 54

Classification with a decision forest 50

2.3.5 be able to:

• build an SVM using your preferred software package, and produce a cross-
validated estimate of its error rate or its accuracy;

• write code to train an SVM using stochastic gradient descent, and produce a
cross-validated estimate of its error rate or its accuracy;

• and build a decision forest using your preferred software package, and produce
a cross-validated estimate of its error rate or its accuracy.

Section 2.3 You should 55

PROGRAMMING EXERCISES

2.1. The UC Irvine machine learning data repository hosts a collection of data
on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and
William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an
id number, 10 continuous variables, and a class (benign or malignant). There
are 569 examples. Separate this dataset randomly into 100 validation, 100
test, and 369 training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you don’t
really need one), but your own code. You should ignore the id number, and use
the continuous variables as a feature vector. You should scale these variables
so each has unit variance. You should search for an appropriate value of the
regularization constant, trying at least the values λ = [1e− 3, 1e− 2, 1e− 1, 1].
Use the validation set for this search.
You should use at least 50 epochs of at least 100 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 10 steps. You should produce:
(a) A plot of the accuracy every 10 steps, for each value of the regularization

constant.
(b) Your estimate of the best value of the regularization constant, together

with a brief description of why you believe that is a good value.
(c) Your estimate of the accuracy of the best classifier on held out data

2.2. The UC Irvine machine learning data repository hosts a collection of data on
adult income, donated by Ronny Kohavi and Barry Becker. You can find this
data at https://archive.ics.uci.edu/ml/datasets/Adult For each record, there is
a set of continuous attributes, and a class ≥ 50K or < 50K. There are 48842
examples. You should use only the continous attributes (see the description on
the web page) and drop examples where there are missing values of the contin-
uous attributes. Separate the resulting dataset randomly into 10% validation,
10% test, and 80% training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you don’t
really need one), but your own code. You should ignore the id number, and use
the continuous variables as a feature vector. You should scale these variables so
that each has unit variance. You should search for an appropriate value of the
regularization constant, trying at least the values λ = [1e− 3, 1e− 2, 1e− 1, 1].
Use the validation set for this search
You should use at least 50 epochs of at least 300 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 30 steps. You should produce:
(a) A plot of the accuracy every 30 steps, for each value of the regularization

constant.
(b) Your estimate of the best value of the regularization constant, together

with a brief description of why you believe that is a good value.
(c) Your estimate of the accuracy of the best classifier on held out data

2.3. The UC Irvine machine learning data repository hosts a collection of data on
the whether p53 expression is active or inactive. You can find out what this
means, and more information about the dataset, by reading: Danziger, S.A.,

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Adult

Section 2.3 You should 56

Baronio, R., Ho, L., Hall, L., Salmon, K., Hatfield, G.W., Kaiser, P., and
Lathrop, R.H. “Predicting Positive p53 Cancer Rescue Regions Using Most
Informative Positive (MIP) Active Learning,” PLOS Computational Biology,
5(9), 2009; Danziger, S.A., Zeng, J., Wang, Y., Brachmann, R.K. and Lathrop,
R.H. “Choosing where to look next in a mutation sequence space: Active
Learning of informative p53 cancer rescue mutants”, Bioinformatics, 23(13),
104-114, 2007; and Danziger, S.A., Swamidass, S.J., Zeng, J., Dearth, L.R.,
Lu, Q., Chen, J.H., Cheng, J., Hoang, V.P., Saigo, H., Luo, R., Baldi, P.,
Brachmann, R.K. and Lathrop, R.H. “Functional census of mutation sequence
spaces: the example of p53 cancer rescue mutants,” IEEE/ACM transactions
on computational biology and bioinformatics, 3, 114-125, 2006.
You can find this data at https://archive.ics.uci.edu/ml/datasets/p53+Mutants.
There are a total of 16772 instances, with 5409 attributes per instance. At-
tribute 5409 is the class attribute, which is either active or inactive. There are
several versions of this dataset. You should use the version K8.data.
(a) Train an SVM to classify this data, using stochastic gradient descent. You

will need to drop data items with missing values. You should estimate
a regularization constant using cross-validation, trying at least 3 values.
Your training method should touch at least 50% of the training set data.
You should produce an estimate of the accuracy of this classifier on held
out data consisting of 10% of the dataset, chosen at random.

(b) Now train a naive bayes classifier to classify this data. You should produce
an estimate of the accuracy of this classifier on held out data consisting
of 10% of the dataset, chosen at random.

(c) Compare your classifiers. Which one is better? why?
2.4. The UC Irvine machine learning data repository hosts a collection of data on

whether a mushroom is edible, donated by Jeff Schlimmer and to be found at
http://archive.ics.uci.edu/ml/datasets/Mushroom. This data has a set of cat-
egorical attributes of the mushroom, together with two labels (poisonous or
edible). Use the R random forest package (as in the example in the chapter)
to build a random forest to classify a mushroom as edible or poisonous based
on its attributes.
(a) Produce a class-confusion matrix for this problem. If you eat a mushroom

based on your classifier’s prediction it is edible, what is the probability of
being poisoned?

MNIST Exercises

The following exercises are elaborate, but rewarding. The MNIST dataset is a dataset of
60, 000 training and 10, 000 test examples of handwritten digits, originally constructed
by Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. It is very widely used
to check simple methods. There are 10 classes in total (“0” to “9”). This dataset
has been extensively studied, and there is a history of methods and feature construc-
tions at https://en.wikipedia.org/wiki/MNIST database and at http://yann.lecun.com/exdb/
mnist/. You should notice that the best methods perform extremely well. The original
dataset is at http://yann.lecun.com/exdb/mnist/. It is stored in an unusual format, de-
scribed in detail on that website. Writing your own reader is pretty simple, but web
search yields readers for standard packages. There is reader code in matlab available
(at least) at http://ufldl.stanford.edu/wiki/index.php/Using the MNIST Dataset. There is
reader code for R available (at least) at https://stackoverflow.com/questions/21521571/
how-to-read-mnist-database-in-r.

https://archive.ics.uci.edu/ml/datasets/p53+Mutants
http://archive.ics.uci.edu/ml/datasets/Mushroom
https://en.wikipedia.org/wiki/MNIST_database
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/wiki/index.php/Using_the_MNIST_Dataset
https://stackoverflow.com/questions/21521571/how-to-read-mnist-database-in-r
https://stackoverflow.com/questions/21521571/how-to-read-mnist-database-in-r

Section 2.3 You should 57

The dataset consists of 28 × 28 images. These were originally binary images, but
appear to be grey level images as a result of some anti-aliasing. I will ignore mid grey
pixels (there aren’t many of them) and call dark pixels “ink pixels”, and light pixels “paper
pixels”. The digit has been centered in the image by centering the center of gravity of the
image pixels. Here are some options for re-centering the digits that I will refer to in the
exercises.

• Untouched: do not re-center the digits, but use the images as is.

• Bounding box: construct an b × b bounding box so that the horizontal (resp.
vertical) range of ink pixels is centered in the box.

• Stretched bounding box: construct an b× b bounding box so that the horizontal
(resp. vertical) range of ink pixels runs the full horizontal (resp. vertical) range of
the box. Obtaining this representation will involve rescaling image pixels: you find
the horizontal and vertical ink range, cut that out of the original image, then resize
the result to b× b.

Once the image has been re-centered, you can compute features. Here are some options
for constructing features that I will refer to in the exercises.

• Raw pixels: use the raw pixel values from images.

• PCA: project images onto the first d principal components computed for the entire
dataset.

• Local PCA: first, compute the first d principal components for each digit class
separately. Now for any image, compute a 10d dimensional feature vector by, for
each class, subtracting that class mean from the image, then projecting the image
onto the d principal components for that class. Finally, stack all 10 d dimensional
features you get. This measures how much the difference between the image and
the class mean looks like the difference between images of that class and the class
mean.

2.5. Investigate classifying MNIST using naive bayes. Use the procedures of Sec-
tion 1.3.1 to compare four cases on raw pixel image features. These cases are
obtained by choosing either normal model or binomial model for every feature,
and untouched images or stretched bounding box images.
(a) Which is the best case?
(b) How accurate is the best case? (remember, the answer to this is not

obtained by taking the best accuracy from the previous subexercise —
check Section 1.3.1 if you’re vague on this point).

2.6. Investigate classifying MNIST using nearest neighbors. You will use approxi-
mate nearest neighbors. Obtain the FLANN package for approximate nearest
neighbors from http://www.cs.ubc.ca/∼mariusm/index.php/FLANN/FLANN. To
use this package, you should consider first using a function that builds an in-
dex for the training dataset (flann build index(), or variants), then query-
ing with your test points (flann find nearest neighbors index(), or vari-
ants). The alternative (flann find nearest neighbors(), etc.) builds the
index then throws it away, which can be inefficient if you don’t use it correctly.

(a) Compare untouched raw pixels with bounding box raw pixels and with
stretched bounding box raw pixels. Which works better? Why? Is there
a difference in query times?

http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

Section 2.3 You should 58

(b) Does rescaling each feature (i.e. each pixel value) so that it has unit
variance improve either classifier from the previous subexercise?

(c) Plot accuracy against d for a variety of d values for stretched bounding
box PCA. You should use some large values of d, reasonably close to 784
(= 28×28). Compare this to the accuracy of stretched bounding box raw
pixels (equivalent to d = 784).

(d) Does rescaling each feature (i.e. each projected direction) so that it has
unit variance improve results from the previous subexercise?

2.7. Investigate classifying MNIST using an SVM. Compare the following four
cases: untouched raw pixels; stretched bounding box raw pixels; stretched
bounding box PCA; and stretched bounding box local PCA. Which works
best? Why?

2.8. Investigate classifying MNIST using a decision forest. Using the same parame-
ters for your forest construction (i.e. same depth of tree; same number of trees;
etc.), compare the following four cases: untouched raw pixels; stretched bound-
ing box raw pixels; stretched bounding box PCA; and stretched bounding box
local PCA. Which works best? Why?

2.9. If you’ve done all four previous exercises, you’re likely tired of MNIST, but
very well informed. Compare your methods to the table of methods at http://
yann.lecun.com/exdb/mnist/. What improvements could you make?

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

P A R T T W O

HIGH DIMENSIONAL DATA

59

C H A P T E R 3

High-dimensional Data

We have a dataset that is a collection of d dimensional vectors. A dataset
like this is hard to plot, though section 3.1 suggests some tricks that are helpful.
Most readers will already know the mean as a summary (it’s an easy generalization
of the 1D mean). The covariance matrix may be less familiar. This is a collection
of all covariances between pairs of components. We use covariances, rather than
correlations, because covariances can be represented in a matrix easily. Natural
transformations of the dataset lead to easy transformations of mean and the co-
variance matrix, which we exploit in the next few chapters. In turn, this means
we can construct a transformation that produces a new dataset, whose covariance
matrix has desirable properties, from any dataset.

High dimensional data has some nasty properties (it’s usual to lump these
under the name “the curse of dimension”). The data isn’t where you think it is,
and this can be a serious nuisance, making it difficult to fit complex probability
models. The cure is to use extremely simple representations of the data. The most
powerful of these is to think of a dataset as a collection of blobs of data. Each blob
of data consists of points that are “reasonably close” to each other and “rather far”
from other blobs. A blob can be modelled with a multivariate normal distribution.
Our knowledge of what transformations do to a dataset’s mean and covariance
reveals the main points about the multivariate normal distribution.

3.1 SUMMARIES AND SIMPLE PLOTS

In this part, we assume that our data items are vectors. This means that we can
add and subtract values and multiply values by a scalar without any distress.

For 1D data, mean and variance are a very helpful description of data that had
a unimodal histogram. If there is more than one mode, one needs to be somewhat
careful to interpret the mean and variance, because the mean doesn’t summarize
the modes particularly well, and the variance depends on how the modes are placed.
In higher dimensions, the analogue of a unimodal histogram is a “blob” — a group
of data points that clusters nicely together and should be understood together.

You might not believe that “blob” is a technical term, but it’s quite widely
used. This is because it is relatively easy to understand a single blob of data. There
are good summary representations (mean and covariance, which I describe below).
If a dataset forms multiple blobs, we can usually coerce it into a representation as a
collection of blobs (using the methods of chapter 7). But many datasets really are
single blobs, and we concentrate on such data here. There are quite useful tricks
for understanding blobs of low dimension by plotting them, which I describe in
this part. To understand a high dimensional blob, we will need to think about the
coordinate transformations that places it into a particularly convenient form.

Notation: Our data items are vectors, and we write a vector as x. The

60

Section 3.1 Summaries and Simple Plots 61

Sepal.Length

P
et

al
.L

en
gt

h

1

2

3

4

5

6

7

5 6 7 8

setosa versicolor virginica

Sepal.Length
Petal.Width

Petal.Length

setosa versicolor virginica

FIGURE 3.1: Left: a 2D scatterplot for the famous Iris data. I have chosen
two variables from the four, and have plotted each species with a different marker.
Right: a 3D scatterplot for the same data. You can see from the plots that the
species cluster quite tightly, and are different from one another. If you compare
the two plots, you can see how suppressing a variable leads to a loss of structure.
Notice that, on the left, some ‘x’s lie on top of boxes; you can see that this is an
effect of projection by looking at the 3D picture (for each of these data points, the
petal widths are quite different). You should worry that leaving out the last variable
might have suppressed something important like this.

data items are d-dimensional, and there are N of them. The entire data set is {x}.
When we need to refer to the i’th data item, we write xi. We write {xi} for a new
dataset made up of N items, where the i’th item is xi. If we need to refer to the

j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold, because

it is a component not a vector, and the j is in parentheses because it isn’t a power).
Vectors are always column vectors.

3.1.1 The Mean

For one-dimensional data, we wrote

mean ({x}) =
∑

i xi

N
.

This expression is meaningful for vectors, too, because we can add vectors and
divide by scalars. We write

mean ({x}) =
∑

i xi

N

and call this the mean of the data. Notice that each component of mean ({x}) is the
mean of that component of the data. There is not an easy analogue of the median,

Section 3.1 Summaries and Simple Plots 62

0 2 4 6 8 10 12 14
0

200

400

600

800

1000

1200
Wine data overall mean

0 2 4 6 8 10 12 14
0

200

400

600

800

1000

1200
Wine data class means

FIGURE 3.2: On the left, a stem plot of the mean of all data items in the wine
dataset, from http://archive.ics.uci.edu/ml/datasets/Wine. On the right, I have
overlaid stem plots of each class mean from the wine dataset, from http://archive.
ics.uci.edu/ml/datasets/Wine, so that you can see the differences between class
means.

however (how do you order high dimensional data?) and this is a nuisance. Notice
that, just as for the one-dimensional mean, we have

mean ({x−mean ({x})}) = 0

(i.e. if you subtract the mean from a data set, the resulting data set has zero mean).

3.1.2 Stem Plots and Scatterplot Matrices

Plotting high dimensional data is tricky. If there are relatively few dimensions, you
could just choose two (or three) of them and produce a 2D (or 3D) scatterplot. Fig-
ure 3.1 shows such a scatterplot, for data that was originally four dimensional. This
is the famous Iris dataset (it has to do with the botanical classification of irises),
which was collected by Edgar Anderson in 1936, and made popular amongst statis-
ticians by Ronald Fisher in that year. I found a copy at the UC Irvine repository of
datasets that are important in machine learning (at http://archive.ics.uci.edu/ml/
index.html). I will show several plots of this dataset.

Another simple but useful plotting mechanism is the stem plot. This is can be
a useful way to plot a few high dimensional data points. One plots each component
of the vector as a vertical line, typically with a circle on the end (easier seen than
said; look at figure 3.2). The dataset I used for this is the wine dataset, from the UC
Irvine machine learning data repository. You can find this dataset at http://archive.
ics.uci.edu/ml/datasets/Wine. For each of three types of wine, the data records the
values of 13 different attributes. In the figure, I show the overall mean of the
dataset, and also the mean of each type of wine (also known as the class means, or
class conditional means). A natural way to compare class means is to plot them on
top of one another in a stem plot (figure 3.2).

Another strategy that is very useful when there aren’t too many dimensions
is to use a scatterplot matrix. To build one, you lay out scatterplots for each pair

http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine

Section 3.1 Summaries and Simple Plots 63

Sepal.Length

Petal.Width

Pe
ta

l.
L
e
n
g
th

setosa versicolor virginica

Scatter Plot Matrix

Sepal
Length

7

8
7 8

5

6

5 6

Sepal
Width

3.5

4.0

4.5

3.5 4.0 4.5

2.0

2.5

3.0

2.0 2.5 3.0

Petal
Length

4

5

6

7
4 5 6 7

1

2

3

4

1 2 3 4

Petal
Width

1.5

2.0

2.5
1.5 2.0 2.5

0.0

0.5

1.0

0.0 0.5 1.0

FIGURE 3.3: Left: the 3D scatterplot of the iris data of Figure 3.1, for comparison.
Right: a scatterplot matrix for the Iris data. There are four variables, measured
for each of three species of iris. I have plotted each species with a different marker.
You can see from the plot that the species cluster quite tightly, and are different
from one another.

of variables in a matrix. On the diagonal, you name the variable that is the vertical
axis for each plot in the row, and the horizontal axis in the column. This sounds
more complicated than it is; look at the example of figure 3.3, which shows both a
3D scatter plot and a scatterplot matrix for the same dataset.

Figure 3.4 shows a scatter plot matrix for four of the variables in the height
weight dataset of http://www2.stetson.edu/∼jrasp/data.htm; look for bodyfat.xls at
that URL). This is originally a 16-dimensional dataset, but a 16 by 16 scatterplot
matrix is squashed and hard to interpret. For figure 3.4, you can see that weight
and adiposity appear to show quite strong correlations, but weight and age are
pretty weakly correlated. Height and age seem to have a low correlation. It is also
easy to visualize unusual data points. Usually one has an interactive process to
do so — you can move a “brush” over the plot to change the color of data points
under the brush.

3.1.3 Covariance

Variance, standard deviation and correlation can each be seen as an instance of a
more general operation on data. Extract two components from each vector of a
dataset of vectors, yielding two 1D datasets of N items; write {x} for one and {y}

http://www2.stetson.edu/~jrasp/data.htm

Section 3.1 Summaries and Simple Plots 64

20 40
20

40

60

80

100

0 50
20

40

60

80

100

100 200 300 400
20

40

60

80

100

Age

20 40
100

200

300

400

0 50
100

200

300

400

Weight

50 100
100

200

300

400

20 40
0

20

40

60

80

Height

100 200 300 400
0

20

40

60

80

50 100
0

20

40

60

80

Adiposity

0 50
10

20

30

40

50

100 200 300 400
10

20

30

40

50

50 100
10

20

30

40

50

FIGURE 3.4: This is a scatterplot matrix for four of the variables in the height weight
dataset of http://www2.stetson.edu/∼jrasp/data.htm. Each plot is a scatterplot of
a pair of variables. The name of the variable for the horizontal axis is obtained by
running your eye down the column; for the vertical axis, along the row. Although
this plot is redundant (half of the plots are just flipped versions of the other half),
that redundancy makes it easier to follow points by eye. You can look at a column,
move down to a row, move across to a column, etc. Notice how you can spot
correlations between variables and outliers (the arrows).

for the other. The i’th element of {x} corresponds to the i’th element of {y} (the
i’th element of {x} is one component of some bigger vector xi and the i’th element
of {y} is another component of this vector). We can define the covariance of {x}
and {y}.

http://www2.stetson.edu/~jrasp/data.htm

Section 3.1 Summaries and Simple Plots 65

Definition: 3.1 Covariance

Assume we have two sets of N data items, {x} and {y}. We compute
the covariance by

cov ({x} , {y}) =
∑

i(xi −mean ({x}))(yi −mean ({y}))
N

Covariance measures the tendency of corresponding elements of {x} and of
{y} to be larger than (resp. smaller than) the mean. The correspondence is defined
by the order of elements in the data set, so that x1 corresponds to y1, x2 corresponds
to y2, and so on. If {x} tends to be larger (resp. smaller) than its mean for data
points where {y} is also larger (resp. smaller) than its mean, then the covariance
should be positive. If {x} tends to be larger (resp. smaller) than its mean for data
points where {y} is smaller (resp. larger) than its mean, then the covariance should
be negative.

Notice that
std (x)

2
= var ({x}) = cov ({x} , {x})

which you can prove by substituting the expressions. Recall that variance measures
the tendency of a dataset to be different from the mean, so the covariance of a
dataset with itself is a measure of its tendency not to be constant. More important
is the relationship between covariance and correlation, in the box below.

Remember this:

corr ({(x, y)}) = cov ({x} , {y})
√

cov ({x} , {x})
√

cov ({y} , {y})
.

This is occasionally a useful way to think about correlation. It says that the
correlation measures the tendency of {x} and {y} to be larger (resp. smaller) than
their means for the same data points, compared to how much they change on their
own.

3.1.4 The Covariance Matrix

Working with covariance (rather than correlation) allows us to unify some ideas.
In particular, for data items which are d dimensional vectors, it is straightforward
to compute a single matrix that captures all covariances between all pairs of com-
ponents — this is the covariance matrix.

Section 3.1 Summaries and Simple Plots 66

Definition: 3.2 Covariance Matrix

The covariance matrix is:

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

Notice that it is quite usual to write a covariance matrix as Σ, and we
will follow this convention.

Covariance matrices are often written as Σ, whatever the dataset (you get to
figure out precisely which dataset is intended, from context). Generally, when we
want to refer to the j, k’th entry of a matrix A, we will write Ajk, so Σjk is the
covariance between the j’th and k’th components of the data.

Useful Facts: 3.1 Properties of the covariance matrix

• The j, k’th entry of the covariance matrix is the covariance
of the j’th and the k’th components of x, which we write
cov

({

x(j)
}

,
{

x(k)
})

.

• The j, j’th entry of the covariance matrix is the variance of the
j’th component of x.

• The covariance matrix is symmetric.

• The covariance matrix is always positive semi-definite; it is pos-
itive definite, unless there is some vector a such that aT (xi −
mean ({xi}) = 0 for all i.

Section 3.1 Summaries and Simple Plots 67

Proposition:

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

Proof: Recall

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

and the j, k’th entry in this matrix will be

∑

i(x
(j)
i −mean

({

x(j)
})

)(x
(k)
i −mean

({

x(k)
})

)T

N

which is cov
({

x(j)
}

,
{

x(k)
})

.

Proposition:

Covmat ({x})jj = Σjj = var
({

x(j)
})

Proof:

Covmat ({x})jj = cov
({

x(j)
}

,
{

x(j)
})

= var
({

x(j)
})

Section 3.2 Using Mean and Covariance to Understand High Dimensional Data 68

Proposition:

Covmat ({x}) = Covmat ({x})T

Proof: We have

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

= cov
({

x(k)
}

,
{

x(j)
})

= Covmat ({x})kj

Proposition: Write Σ = Covmat ({x}). If there is no vector a such that
aT (xi−mean ({x})) = 0 for all i, then for any vector u, such that ||u|| > 0,

uTΣu > 0.

If there is such a vector a, then

uTΣu ≥ 0.

Proof: We have

uTΣu =
1

N

∑

i

[

uT (xi −mean ({x}))
] [

(xi −mean ({x}))Tu
]

=
1

N

∑

i

[

uT (xi −mean ({x}))
]2

.

Now this is a sum of squares. If there is some a such that aT (xi −
mean ({x})) = 0 for every i, then the covariance matrix must be positive
semidefinite (because the sum of squares could be zero in this case).
Otherwise, it is positive definite, because the sum of squares will always
be positive.

3.2 USING MEAN AND COVARIANCE TO UNDERSTAND HIGH DIMENSIONAL DATA

The trick to interpreting high dimensional data is to use the mean and covariance
to understand the blob. Figure 3.5 shows a two-dimensional data set. Notice that
there is obviously some correlation between the x and y coordinates (it’s a diagonal

Section 3.2 Using Mean and Covariance to Understand High Dimensional Data 69

Translate center to origin

FIGURE 3.5: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have plotted
the mean of these data points with a hollow square (it’s easier to see when there is
a lot of data). To translate the blob to the origin, we just subtract the mean from
each datapoint, yielding the blob on the right.

blob), and that neither x nor y has zero mean. We can easily compute the mean
and subtract it from the data points, and this translates the blob so that the origin
is at the mean (Figure 3.5). The mean of the new, translated dataset is zero.

Notice this blob is diagonal. We know what that means from our study of
correlation – the two measurements are correlated. Now consider rotating the blob
of data about the origin. This doesn’t change the distance between any pair of
points, but it does change the overall appearance of the blob of data. We can
choose a rotation that means the blob looks (roughly!) like an axis aligned ellipse.
In these coordinates there is no correlation between the horizontal and vertical
components. But one direction has more variance than the other.

It turns out we can extend this approach to high dimensional blobs. We will
translate their mean to the origin, then rotate the blob so that there is no correlation
between any pair of distinct components (this turns out to be straightforward, which
may not be obvious to you). Now the blob looks like an axis-aligned ellipsoid, and
we can reason about (a) what axes are “big” and (b) what that means about the
original dataset.

3.2.1 Mean and Covariance under Affine Transformations

We have a d dimensional dataset {x}. An affine transformation of this data
is obtained by choosing some matrix A and vector b, then forming a new dataset
{m}, where mi = Axi + b. Here A doesn’t have to be square, or symmetric, or
anything else; it just has to have second dimension d.

Section 3.2 Using Mean and Covariance to Understand High Dimensional Data 70

Rotate to diagonalize

covariance

FIGURE 3.6: On the left, the translated blob of figure 3.5. This blob lies somewhat
diagonally, because the vertical and horizontal components are correlated. On the
right, that blob of data rotated so that there is no correlation between these compo-
nents. We can now describe the blob by the vertical and horizontal variances alone,
as long as we do so in the new coordinate system. In this coordinate system, the
vertical variance is significantly larger than the horizontal variance — the blob is
short and wide.

It is easy to compute the mean and covariance of {m}. We have

mean ({m}) = mean ({Ax + b})
= Amean ({x}) + b,

so you get the new mean by multiplying the original mean by A and adding b;
equivalently, by transforming the old mean the same way you transformed the
points.

The new covariance matrix is easy to compute as well. We have:

Covmat ({m}) = Covmat ({Ax+ b})

=

∑

i(mi −mean ({m}))(mi −mean ({m}))T
N

=

∑

i(Axi + b−Amean ({x})− b)(Axi + b−Amean ({x})− b)T

N

=
A
[
∑

i(xi −mean ({x}))(xi −mean ({x}))T
]

AT

N

= ACovmat ({x})AT .

All this means that we can try and choose affine transformations that yield
“good” means and covariance matrices. It is natural to choose b so that the mean of
the new dataset is zero. An appropriate choice of A can reveal a lot of information
about the dataset.

Section 3.2 Using Mean and Covariance to Understand High Dimensional Data 71

Remember this: Transform a dataset {x} into a new dataset {m},
where mi = Axi + b. Then

mean ({m}) = Amean ({x}) + b

Covmat ({m}) = ACovmat ({x})AT .

3.2.2 Eigenvectors and Diagonalization

Recall a matrix M is symmetric if M = MT . A symmetric matrix is necessarily
square. Assume S is a d×d symmetric matrix, u is a d×1 vector, and λ is a scalar.
If we have

Su = λu

then u is referred to as an eigenvector of S and λ is the corresponding eigenvalue.
Matrices don’t have to be symmetric to have eigenvectors and eigenvalues, but the
symmetric case is the only one of interest to us.

In the case of a symmetric matrix, the eigenvalues are real numbers, and there
are d distinct eigenvectors that are normal to one another, and can be scaled to
have unit length. They can be stacked into a matrix U = [u1, . . . ,ud]. This matrix
is orthonormal, meaning that UTU = I.

This means that there is a diagonal matrix Λ and an orthonormal matrix U
such that

SU = UΛ.
In fact, there is a large number of such matrices, because we can reorder the eigen-
vectors in the matrix U , and the equation still holds with a new Λ, obtained by
reordering the diagonal elements of the original Λ. There is no reason to keep track
of this complexity. Instead, we adopt the convention that the elements of U are
always ordered so that the elements of Λ are sorted along the diagonal, with the
largest value coming first. This gives us a particularly important procedure.

Procedure: 3.1 Diagonalizing a symmetric matrix

We can convert any symmetric matrix S to a diagonal form by com-
puting

UTSU = Λ.

Numerical and statistical programming environments have procedures
to compute U and Λ for you. We assume that the elements of U are
always ordered so that the elements of Λ are sorted along the diagonal,
with the largest value coming first.

Section 3.2 Using Mean and Covariance to Understand High Dimensional Data 72

Useful Facts: 3.2 Orthonormal matrices are rotations

You should think of orthonormal matrices as rotations, because they do
not change lengths or angles. For x a vector, R an orthonormal matrix,
and m = Rx, we have

uTu = xTRTRx = xT Ix = xTx.

This means that R doesn’t change lengths. For y, z both unit vectors,
we have that the cosine of the angle between them is

yTx.

By the argument above, the inner product of Ry and Rx is the same
as yTx. This means that R doesn’t change angles, either.

3.2.3 Diagonalizing Covariance by Rotating Blobs

We start with a dataset of N d-dimensional vectors {x}. We can translate this
dataset to have zero mean, forming a new dataset {m} wheremi = xi−mean ({x}).
Now recall that, if we were to form a new dataset {a} where

ai = Ami

the covariance matrix of {a} would be

Covmat ({a}) = ACovmat ({m})AT = ACovmat ({x})AT .

Recall also we can diagonalize Covmat ({m}) = Covmat ({x}) to get

UTCovmat ({x})U = Λ.

But this means we could form the dataset {r}, using the rule

ri = UTmi = UT (xi −mean ({x})).

The mean of this new dataset is clearly 0. The covariance of this dataset is

Covmat ({r}) = Covmat
({

UTx
})

= UTCovmat ({x})U
= Λ,

where Λ is a diagonal matrix of eigenvalues of Covmat ({x}) that we obtained by
diagonalization. We now have a very useful fact about {r}: its covariance matrix is

Section 3.3 The Curse of Dimension 73

diagonal. This means that every pair of distinct components has covariance zero,
and so has correlation zero. Remember that, in describing diagonalization, we
adopted the convention that the eigenvectors of the matrix being diagonalized were
ordered so that the eigenvalues are sorted in descending order along the diagonal
of Λ. Our choice of ordering means that the first component of r has the highest
variance, the second component has the second highest variance, and so on.

The transformation from {x} to {r} is a translation followed by a rotation
(remember U is orthonormal, and so a rotation). So this transformation is a high
dimensional version of what I showed in Figures 3.5 and 3.6.

Useful Fact: 3.3 You can transform data to zero mean and diagonal
covariance

We can translate and rotate any blob of data into a coordinate system
where it has (a) zero mean and (b) diagonal covariance matrix.

3.3 THE CURSE OF DIMENSION

High dimensional models display uninituitive behavior (or, rather, it can take years
to make your intuition see the true behavior of high-dimensional models as natural).
In these models, most data lies in places you don’t expect. We will do several simple
calculations with an easy high-dimensional distribution to build some intuition.

3.3.1 The Curse: Data isn’t Where You Think it is

Assume our data lies within a cube, with edge length two, centered on the origin.
This means that each component of xi lies in the range [−1, 1]. One simple model
for such data is to assume that each dimension has uniform probability density in
this range. In turn, this means that P (x) = 1

2d
. The mean of this model is at the

origin, which we write as 0.
The first surprising fact about high dimensional data is that most of the data

can lie quite far away from the mean. For example, we can divide our dataset into
two pieces. A(ǫ) consists of all data items where every component of the data has
a value in the range [−(1− ǫ), (1 − ǫ)]. B(ǫ) consists of all the rest of the data. If
you think of the data set as forming a cubical orange, then B(ǫ) is the rind (which
has thickness ǫ) and A(ǫ) is the fruit.

Your intuition will tell you that there is more fruit than rind. This is true,
for three dimensional oranges, but not true in high dimensions. The fact that the
orange is cubical simplifies the calculations, but has nothing to do with the real
problem.

We can compute P ({x ∈ A(ǫ)}) and P ({x ∈ A(ǫ)}). These probabilities tell
us the probability a data item lies in the fruit (resp. rind). P ({x ∈ A(ǫ)}) is easy
to compute as

P ({x ∈ A(ǫ)}) = (2(1− ǫ)))d
(

1

2d

)

= (1− ǫ)d

Section 3.3 The Curse of Dimension 74

and
P ({x ∈ B(ǫ)}) = 1− P ({x ∈ A(ǫ)}) = 1− (1− ǫ)d.

But notice that, as d → ∞,

P ({x ∈ A(ǫ)}) → 0.

This means that, for large d, we expect most of the data to be in B(ǫ). Equivalently,
for large d, we expect that at least one component of each data item is close to
either 1 or −1.

This suggests (correctly) that much data is quite far from the origin. It is
easy to compute the average of the squared distance of data from the origin. We
want

E
[

xTx
]

=

∫

box

(

∑

i

x2
i

)

P (x)dx

but we can rearrange, so that

E
[

xTx
]

=
∑

i

E
[

x2
i

]

=
∑

i

∫

box
x2
iP (x)dx.

Now each component of x is independent, so that P (x) = P (x1)P (x2) . . . P (xd).
Now we substitute, to get

E
[

xTx
]

=
∑

i

E
[

x2
i

]

=
∑

i

∫ 1

−1

x2
iP (xi)dxi =

∑

i

1

2

∫ 1

−1

x2
i dxi =

d

3
,

so as d gets bigger, most data points will be further and further from the origin.
Worse, as d gets bigger, data points tend to get further and further from one
another. We can see this by computing the average of the squared distance of data
points from one another. Write u for one data point and v; we can compute

E
[

d(u,v)2
]

=

∫

box

∫

box

∑

i

(ui − vi)
2dudv = E

[

uTu
]

+ E
[

vTv
]

− 2E
[

uTv
]

but since u and v are independent, we have E
[

uTv
]

= E[u]
T
E[v] = 0. This yields

E
[

d(u,v)2
]

= 2
d

3
.

This means that, for large d, we expect our data points to be quite far apart.

3.3.2 Minor Banes of Dimension

High dimensional data presents a variety of important practical nuisances which
follow from the curse of dimension. It is hard to estimate covariance matrices, and
it is hard to build histograms.

Covariance matrices are hard to work with for two reasons. The number of
entries in the matrix grows as the square of the dimension, so the matrix can get
big and so difficult to store. More important, the amount of data we need to get an

Section 3.3 The Curse of Dimension 75

accurate estimate of all the entries in the matrix grows fast. As we are estimating
more numbers, we need more data to be confident that our estimates are reasonable.
There are a variety of straightforward work-arounds for this effect. In some cases,
we have so much data there is no need to worry. In other cases, we assume that
the covariance matrix has a particular form, and just estimate those parameters.
There are two strategies that are usual. In one, we assume that the covariance
matrix is diagonal, and estimate only the diagonal entries. In the other, we assume
that the covariance matrix is a scaled version of the identity, and just estimate this
scale. You should see these strategies as acts of desperation, to be used only when
computing the full covariance matrix seems to produce more problems than using
these approaches.

It is difficult to build histogram representations for high dimensional data.
The strategy of dividing the domain into boxes, then counting data into them, fails
miserably because there are too many boxes. In the case of our cube, imagine we
wish to divide each dimension in half (i.e. between [−1, 0] and between [0, 1]). Then
we must have 2d boxes. This presents two problems. First, we will have difficulty
representing this number of boxes. Second, unless we are exceptionally lucky, most
boxes must be empty because we will not have 2d data items.

Instead, high dimensional data is typically represented in terms of clusters —
coherent blobs of similar datapoints that could, under appropriate circumstances,
be regarded as the same. We could then represent the dataset by, for example, the
center of each cluster and the number of data items in each cluster. Since each
cluster is a blob, we could also report the covariance of each cluster, if we can
compute it. This representation is explored in part ??

It can be hard to get accurate estimates of the mean of a high dimensional
normal distribution (and so of any other). This is mostly a minor nuisance, but it’s
worth understanding what is happening. The data is a set of N IID samples of a
normal distribution with mean µ and covariance Σ in d dimensional space. These
points will tend to lie far away from one another. But they may not be evenly
spread out, so there may be slightly more points on one side of the true mean than
on the other, and so the estimate of the mean is likely noisy. It’s tough to be crisp
about what it means to be on one side of the true mean, so I’ll do this in algebra,
too. The estimate of the mean is

XN =

∑

i xi

N

which is a random variable, because different draws of data will give different val-
ues of XN . In the exercises, you will show that E

[

XN
]

is µ (so the estimate is
reasonable). One reasonable measure of the total error in estimating the mean is
(XN − µ)T (XN − µ). In the exercises, you will show that the expected value of
this error is

Trace(Σ)

N

which may grow with d unless Σ has some strong properties. Likely, your estimate
of the mean for a high dimensional distribution is poor.

Section 3.4 The Multivariate Normal Distribution 76

Remember this: High dimensional data does not behave in a way that
is consistent with most people’s intuition. Points are always close to the
boundary and further apart than you think. This property makes a nuisance
of itself in a variety of ways. The most important is that only the simplest
models work well in high dimensions. Another is that your estimate of the
mean for a high dimensional distribution is likely poor.

3.4 THE MULTIVARIATE NORMAL DISTRIBUTION

All the nasty facts about high dimensional data, above, suggest that we need to use
quite simple probability models. By far the most important model is the multivari-
ate normal distribution, which is quite often known as the multivariate gaussian
distribution. There are two sets of parameters in this model, the mean µ and the
covariance Σ. For a d-dimensional model, the mean is a d-dimensional column
vector and the covariance is a d× d dimensional matrix. The covariance is a sym-
metric matrix. For our definitions to be meaningful, the covariance matrix must be
positive definite.

The form of the distribution p(x|µ,Σ) is

p(x|µ,Σ) = 1
√

(2π)ddet(Σ)
exp

(

−1

2
(x − µ)TΣ−1(x− µ)

)

.

The following facts explain the names of the parameters:

Useful Facts: 3.4 Parameters of a multivariate normal distribution

Assuming a multivariate normal distribution, we have

• E[x] = µ, meaning that the mean of the distribution is µ.

• E
[

(x − µ)(x− µ)T
]

= Σ, meaning that the entries in Σ represent
covariances.

Assume I know have a dataset of items xi, where i runs from 1 to N , and we
wish to model this data with a multivariate normal distribution. The maximum
likelihood estimate of the mean, µ̂, is

µ̂ =

∑

i xi

N

(which is quite easy to show). The maximum likelihood estimate of the covariance,
Σ̂, is

Σ̂ =

∑

i(xi − µ̂)(xi − µ̂)T

N

Section 3.4 The Multivariate Normal Distribution 77

(which is rather a nuisance to show, because you need to know how to differentiate
a determinant). These facts mean that we already know most of what is interesting
about multivariate normal distributions (or gaussians).

3.4.1 Affine Transformations and Gaussians

Gaussians behave very well under affine transformations. In fact, we’ve already
worked out all the math. Assume I have a dataset xi. The mean of the maximum
likelihood gaussian model is mean ({xi}), and the covariance is Covmat ({xi}). I
can now transform the data with an affine transformation, to get yi = Axi + b.
The mean of the maximum likelihood gaussian model for the transformed dataset
is mean ({yi}), and we’ve dealt with this; similarly, the covariance is Covmat ({yi}),
and we’ve dealt with this, too.

A very important point follows in an obvious way. I can apply an affine trans-
formation to any multivariate gaussian to obtain one with (a) zero mean and (b)
independent components. In turn, this means that, in the right coordinate sys-
tem, any gaussian is a product of zero mean one-dimensional normal distributions.
This fact is quite useful. For example, it means that simulating multivariate nor-
mal distributions is quite straightforward — you could simulate a standard normal
distribution for each component, then apply an affine transformation.

3.4.2 Plotting a 2D Gaussian: Covariance Ellipses

There are some useful tricks for plotting a 2D Gaussian, which are worth knowing
both because they’re useful, and they help to understand Gaussians. Assume we
are working in 2D; we have a Gaussian with mean µ (which is a 2D vector), and
covariance Σ (which is a 2x2 matrix). We could plot the collection of points x that
has some fixed value of p(x|µ,Σ). This set of points is given by:

1

2

(

(x− µ)TΣ−1(x− µ)
)

= c2

where c is some constant. I will choose c2 = 1
2 , because the choice doesn’t matter,

and this choice simplifies some algebra. You might recall that a set of points x that
satisfies a quadratic like this is a conic section. Because Σ (and so Σ−1) is positive
definite, the curve is an ellipse. There is a useful relationship between the geometry
of this ellipse and the Gaussian.

This ellipse — like all ellipses — has a major axis and a minor axis. These
are at right angles, and meet at the center of the ellipse. We can determine the
properties of the ellipse in terms of the Gaussian quite easily. The geometry of the
ellipse isn’t affected by rotation or translation, so we will translate the ellipse so
that µ = 0 (i.e. the mean is at the origin) and rotate it so that Σ−1 is diagonal.
Writing x = [x, y] we get that the set of points on the ellipse satisfies

1

2
(
1

k21
x2 +

1

k22
y2) =

1

2

where 1
k2
1
and 1

k2
2
are the diagonal elements of Σ−1. We will assume that the ellipse

has been rotated so that k1 > k2. The points (k1, 0) and (−k1, 0) lie on the ellipse,

Section 3.4 The Multivariate Normal Distribution 78

as do the points (0, k2) and (0,−k2). The major axis of the ellipse, in this coordinate
system, is the x-axis, and the minor axis is the y-axis. In this coordinate system,
x and y are independent. If you do a little algebra, you will see that the standard
deviation of x is abs (k1) and the standard deviation of y is abs (k2). So the ellipse
is longer in the direction of largest standard deviation and shorter in the direction
of smallest standard deviation.

Now rotating the ellipse is means we will pre- and post-multiply the covariance
matrix with some rotation matrix. Translating it will move the origin to the mean.
As a result, the ellipse has its center at the mean, its major axis is in the direction
of the eigenvector of the covariance with largest eigenvalue, and its minor axis is
in the direction of the eigenvector with smallest eigenvalue. A plot of this ellipse,
which can be coaxed out of most programming environments with relatively little
effort, gives us a great deal of information about the underlying Gaussian. These
ellipses are known as covariance ellipses.

Remember this: The multivariate normal distribution has the form

p(x|µ,Σ) = 1
√

(2π)ddet(Σ)
exp

(

−1

2
(x− µ)TΣ−1(x− µ)

)

.

Assume you wish to model a dataset {x} with a multivariate normal distri-
bution. The maximum likelihood estimate of the mean is mean ({x}). The
maximum likelihood estimate of the covariance Σ is Covmat ({x}).

3.4.3 Descriptive Statistics and Expectations

It is quite usual to use each of the terms mean, variance, covariance, and standard
deviation in two slightly different ways. One sense of each term, as in the discription
of covariance above, describes a property of a dataset. Terms used in this sense
are known as descriptive statistics. The other sense is a property of probability
distributions; so mean, for example, means E[X]; variance means E

[

(X − E[X])2
]

;
and so on. Terms used in this sense are known as expectations. The reason we
use one name for two notions is that the notions are not really all that different.

Here is a useful construction to illustrate the point. Imagine we have a dataset
{x} of N items, where the i’th item is xi. Build a random variable X using this
dataset by placing the same probability on each data item. This means that each
data item has probability 1/N . Write E[X] for the mean of this distribution. We
have

E[X] =
∑

i

xiP (xi) =
1

N

∑

i

xi = mean ({x})

and, by the same reasoning,

var[X] = var ({x}).

Section 3.4 The Multivariate Normal Distribution 79

This construction works for standard deviation and covariance, too. For this partic-
ular distribution (sometimes called the empirical distribution), the expectations
have the same value as the descriptive statistics.

There is a form of converse to this fact, which you should have seen already,
and which we shall see on and off later. Imagine we have a dataset that consists
of independent, identically distributed samples from a probability distribution (i.e.
we know that each data item was obtained independently from the distribution).
For example, we might have a count of heads in each of a number of coin flip
experiments. The weak law of large numbers says the descriptive statistics will
turn out to be accurate estimates of the expectations.

In particular, assume we have a random variable X with distribution P (X)
which has finite variance. We want to estimate E[X]. Now if we have a set of IID
samples of X , which we write xi, write

XN =

∑N
i=1 xi

N
.

This is a random variable (different sets of samples yield different values of XN),
and the weak law of large numbers gives that, for any positive number ǫ

lim
N→∞

P ({||XN − E[X]|| > ǫ}) = 0.

You can interpret this as saying that, that for a set of IID random samples xi, the
probability that

∑N
i=1 Xi

N

is very close to E[X] for large N

Useful Facts: 3.5 Weak law of large numbers

Given a random variable X with distribution P (X) which has finite
variance, and a set of N IID samples xi from P (X), write

XN =

∑N
i=1 xi

N
.

Then for any positive number ǫ

lim
N→∞

P ({||XN − E[X]|| > ǫ}) = 0.

Section 3.4 The Multivariate Normal Distribution 80

Remember this: Mean, variance, covariance and standard deviation
can refer either to properties of a dataset, or to expectations. The sense
usually tells you which. There is a strong relationship between these senses.
Given a dataset, you can construct an empirical distribution, whose mean,
variance and covariances (intepreted as expectations) have the same values
as the mean, variance and covariances (interpreted as descriptive statis-
tics). If a dataset is an IID sample of a probability distribution, the mean,
variance and covariances (interpreted as descriptive statistics) are usually
very good estimates of the values of the mean, variance and covariances
(interpreted as expectations).

Section 3.5 You should 81

3.5 YOU SHOULD

3.5.1 remember these definitions:

Covariance . 65
Covariance Matrix . 66

3.5.2 remember these terms:

affine transformation . 69
symmetric . 71
eigenvector . 71
eigenvalue . 71
clusters . 75
covariance ellipses . 78
descriptive statistics . 78
empirical distribution . 79
weak law of large numbers . 79

3.5.3 remember these facts:

Correlation from covariance . 65
Properties of the covariance matrix 66
Mean and covariance of affine transformed dataset 71
Orthonormal matrices are rotations 72
You can transform data to zero mean and diagonal covariance 73
High dimensional data displays odd behavior. 76
Parameters of a multivariate normal distribution 76
The multivariate normal distribution 78
Weak law of large numbers . 79
Mean, variance and covariance can be used in two senses 80

3.5.4 remember these procedures:

Diagonalizing a symmetric matrix 72

Section 3.5 You should 82

PROBLEMS

Summaries

3.1. You have a dataset {x} of N vectors, xi, each of which is d-dimensional. We
will consider a linear function of this dataset. Write a for a constant vector;
then the value of this linear function evaluated on the i’th data item is aTxi.
Write fi = aTxi. We can make a new dataset {f} out of the values of this
linear function.
(a) Show that mean ({f}) = aTmean ({x}) (easy).
(b) Show that var ({f}) = aTCovmat ({x})a (harder, but just push it through

the definition).
(c) Assume the dataset has the special property that there exists some a so

that aTCovmat ({x})a. Show that this means that the dataset lies on a
hyperplane.

3.2. You have a dataset {x} of N vectors, xi, each of which is d-dimensional.
Assume that Covmat ({x}) has one non-zero eigenvalue. Assume that x1 and
x2 do not have the same value.
(a) Show that you can choose a set of ti so that you can represent every data

item xi exactly as
xi = x1 + ti(x2 − x1).

(b) Now consider the dataset of these t values. What is the relationship
between (a) std (t) and (b) the non-zero eigenvalue of Covmat ({x})? Why?

3.3. You have a dataset {x} of N vectors, xi, each of which is d-dimensional.
Assume mean ({x}) = 0. We will consider a linear function of this dataset.
Write a for some vector; then the value of this linear function evaluated on
the i’th data item is aTxi. Write fi(a) = aTxi. We can make a new dataset
{f(a)} out of these fi (the notation is to remind you that this dataset depends
on the choice of vector a).
(a) Show that var ({f(sa)}) = s2var ({f(a)}).
(b) The previous subexercise means that, to choose a to obtain a dataset with

large variance in any kind of sensible way, we need to insist that aTa is
kept constant. Show that

Maximize var ({f})(a) subject to aTa = 1

is solved by the eigenvector of Covmat ({x}) corresponding to the largest
eigenvalue. (You need to know Lagrange multipliers to do this, but you
should.)

3.4. You have a dataset {x} of N vectors, xi, each of which is d-dimensional. We
will consider two linear functions of this dataset, given by two vectors a, b.
(a) Show that cov

({

aTx
}

,
{

bTx
})

= aTCovmat ({x})b. This is easier to
do if you show that the mean has no effect on covariance, and then do the
math assuming x has zero mean.

(b) Show that the correlation between aTx and bTx is given by

aTCovmat ({x})b
√

aTCovmat ({x})a
√

bTCovmat ({x})b
.

3.5. It is sometimes useful to map a dataset to have zero mean and unit covariance.
Doing so is known as whitening the data (for reasons I find obscure). This can

Section 3.5 You should 83

be a sensible thing to do when we don’t have a clear sense of the relative
scales of the components of each data vector or whiten the data might be that
we know relatively little about the meaning of each component. You have a
dataset {x} of N vectors, xi, each of which is d-dimensional. Write U , Λ for
the eigenvectors and eigenvalues of Covmat ({x}).
(a) Show that Λ ≥ 0
(b) Assume that some diagonal element of Λ is zero. How do you interpret

this?
(c) Assume that all diagonal elements of Λ are greater than zero. Write

Λ1/2 for the matrix whose diagonal is the non-negative square roots of
the diagonal of Λ. Write {y} for the dataset of vectors where yi =

(Λ1/2)−1UT (xi −mean ({x})). Show that Covmat ({y}) is the identity
matrix.

(d) Write O for some orthonormal matrix. Using the notation of the previous
subexercise, and writing zi = Oyi, show that Covmat ({z}) is the identity
matrix. Use this information to argue that there is not a unique version
of a whitened dataset.

The Multivariate Normal Distribution

3.6. A dataset of points (x, y) has zero mean and covariance

Σ =

(

k21 0

0 k22

)

with k1 > k2.
(a) Show that the standard deviation of the x coordinate is abs (k1) and of

the y coordinate is abs (k2).
(b) Show that the set of points that satisfies

1

2
(
1

k21
x2 +

1

k22
y2) =

1

2

is an ellipse.
(c) Show that the major axis of the ellipse is the x axis, the minor axis of the

ellipse is the y axis, and the center of the ellipse is at (0, 0).
3.7. For Σ a positive definite matrix, µ some two dimensional vector, show that the

family of points that satisfies

1

2

(

(x− µ)TΣ−1(x− µ)
)

= c2

is an ellipse. An easy way to do this is to notice that ellipses remain ellipses
when rotated and translated, and exploit the previous exercise.

The Curse of Dimension

3.8. A dataset consists of N IID samples from a multivariate normal distribution
with dimension d. The mean of this distribution is zero, and its covariance
matrix is the identity. You compute

XN =
1

N

∑

i

xi.

Section 3.5 You should 84

The number you compute is a random variable, because you will compute
a slightly different number for each different sample you draw. It turns out
that the distribution of XN is normal because the sum of normally distributed
random variables is normal. You should remember (or, if you don’t, memorize)
the fact that

• a sample of a (1D) normal random variable is within one standard devi-
ation of its mean about 66% of the time;

• a sample of a (1D) normal random variable is within two standard devi-
ations of its mean about 95% of the time;

• a sample of a (1D) normal random variable is within three standard
deviations of its mean about 99% of the time.

(a) Show that each component of XN has expected value zero and variance
1/N .

(b) Argue that about d/3 of the components have absolute value greater than
1/N .

(c) Argue that about d/20 of the components have absolute value greater
than 2/N .

(d) Argue that about d/100 of the components have absolute value greater
than 3/N .

(e) What happens when d is very large compared to N?
3.9. For a dataset that consists of N IID samples xi from a multivariate normal

distribution with mean µ and covariance Σ, you compute

XN =
1

N

∑

i

xi.

The number you compute is a random variable, because you will compute a
slightly different number for each different sample you draw.
(a) Show that E

[

XN
]

= µ. You can do this by noticing that, if N = 1,

E
[

X1
]

= µ fairly obviously. Now use the fact that each of the samples is
independent.

(b) The random variable TN = (XN−µ)T (XN−µ) is one reasonable measure
of how well XN approximates µ. Show that

E

[

TN
]

=
Trace(Σ)

N
.

Do this by noticing that E
[

TN
]

is the sum of the variances of the compo-

nents of XN . This exercise is much easier if you notice that translating
the normal distribution to have zero mean doesn’t change anything (so
it’s enough to work out the case where µ = 0).

C H A P T E R 4

Principal Component Analysis

We have seen that a blob of data can be translated so that it has zero mean,
then rotated so the covariance matrix is diagonal. In this coordinate system, we
can set some components to zero, and get a representation of the data that is still
accurate. The rotation and translation can be undone, yielding a dataset that is in
the same coordinates as the original, but lower dimensional. The new dataset is a
good approximation to the old dataset. All this yields a really powerful idea: we
can choose a small set of vectors, so that each item in the original dataset can be
represented as the mean vector plus a weighted sum of this set. This representation
means we can think of the dataset as lying on a low dimensional space inside the
original space. It’s an experimental fact that this model of a dataset is usually accu-
rate for real high-dimensional data, and it is often an extremely convenient model.
Furthermore, representing a dataset like this very often suppresses noise – if the
original measurements in your vectors are noisy, the low dimensional representation
may be closer to the true data than the measurements are.

4.1 REPRESENTING DATA ON PRINCIPAL COMPONENTS

We start with a dataset of N d-dimensional vectors {x}. We translate this dataset
to have zero mean, forming a new dataset {m} where mi = xi −mean ({x}). We
diagonalize Covmat ({m}) = Covmat ({x}) to get

UTCovmat ({x})U = Λ

and form the dataset {r}, using the rule

ri = UTmi = UT (xi −mean ({x})).

We saw the mean of this dataset is zero, and the covariance is diagonal. Most
high dimensional datasets display another important property: many, or most, of
the diagonal entries in the covariance matrix are very small. This means we can
build a low dimensional representation of the high dimensional dataset that is quite
accurate.

4.1.1 Approximating Blobs

The covariance matrix of {r} is diagonal, and the values on the diagonal are inter-
esting. It is quite usual for high dimensional datasets to have a small number of
large values on the diagonal, and a lot of small values. This means that the blob
of data is really a low dimensional blob in a high dimensional space. For example,
think about a line segment (a 1D blob) in 3D. As another example, look at Fig-
ure 3.3; the scatterplot matrix strongly suggests that the blob of data is flattened
(eg look at the petal width vs petal length plot).

85

Section 4.1 Representing Data on Principal Components 86

The blob represented by {r} is low dimensional in a very strong sense. We
need some notation to see this. The data set {r} is d-dimensional. We will try to
represent it with an s dimensional dataset, and see what error we incur. Choose
some s < d. Now take each data point ri and replace the last d − s components
with 0. Call the resulting data item pi. We should like to know the average error
in representing ri with pi.

This error is
1

N

∑

i

[

(ri − pi)
T
(ri − pi)

]

.

Write r
(j)
i for the j′ component of ri, and so on. Remember that pi is zero in the

last d− s components. The mean error is then

1

N

∑

i





j=d
∑

j>s

(

r
(j)
i

)2



 .

But we know this number, because we know that {r} has zero mean. The error is

j=d
∑

j>s

[

1

N

∑

i

(

r
(j)
i

)2
]

=

j=d
∑

j>s

var
({

r(j)
})

which is the sum of the diagonal elements of the covariance matrix from r, r to d, d.
Equivalently, writing λi for the i’th eigenvalue of Covmat ({x}) and assuming the
eigenvalues are sorted in descending order, the error is

j=d
∑

j>s

λj

If this sum is small compared to the sum of the first s components, then dropping
the last d − s components results in a small error. In that case, we could think
about the data as being s dimensional. Figure 4.1 shows the result of using this
approach to represent the blob I’ve used as a running example as a 1D dataset.

This is an observation of great practical importance. As a matter of experi-
mental fact, a great deal of high dimensional data produces relatively low dimen-
sional blobs. We can identify the main directions of variation in these blobs, and
use them to understand and to represent the dataset.

4.1.2 Example: Transforming the Height-Weight Blob

Translating a blob of data doesn’t change the scatterplot matrix in any interesting
way (the axes change, but the picture doesn’t). Rotating a blob produces really
interesting results, however. Figure 4.2 shows the dataset of figure 3.4, translated
to the origin and rotated to diagonalize it. Now we do not have names for each
component of the data (they’re linear combinations of the original components),
but each pair is now not correlated. This blob has some interesting shape features.
Figure 4.2 shows the gross shape of the blob best. Each panel of this figure has
the same scale in each direction. You can see the blob extends about 80 units in

Section 4.1 Representing Data on Principal Components 87

Project to x-axis

FIGURE 4.1: On the left, the translated and rotated blob of figure 3.6. This blob is
stretched — one direction has more variance than another. Setting the y coordinate
to zero for each of these datapoints results in a representation that has relatively
low error, because there isn’t much variance in these values. This results in the
blob on the right. The text shows how the error that results from this projection is
computed.

direction 1, but only about 15 units in direction 2, and much less in the other two
directions. You should think of this blob as being rather cigar-shaped; it’s long in
one direction, but there isn’t much in the others. The cigar metaphor isn’t perfect
(have you seen a four-dimensional cigar recently?), but it’s helpful. You can think
of each panel of this figure as showing views down each of the four axes of the cigar.

Now look at figure 4.3. This shows the same rotation of the same blob of
data, but now the scales on the axis have changed to get the best look at the
detailed shape of the blob. First, you can see that blob is a little curved (look at
the projection onto direction 2 and direction 4). There might be some effect here
worth studying. Second, you can see that some points seem to lie away from the
main blob. I have plotted each data point with a dot, and the interesting points
with a number. These points are clearly special in some way.

The problem with these figures is that the axes are meaningless. The compo-
nents are weighted combinations of components of the original data, so they don’t
have any units, etc. This is annoying, and often inconvenient. But I obtained Fig-
ure 4.2 by translating, rotating and projecting data. It’s straightforward to undo
the rotation and the translation – this takes the projected blob (which we know
to be a good approximation of the rotated and translated blob) back to where the
original blob was. Rotation and translation don’t change distances, so the result
is a good approximation of the original blob, but now in the original blob’s co-
ordinates. Figure 4.4 shows what happens to the data of Figure 3.4. This is a
two dimensional version of the original dataset, embedded like a thin pancake of
data in a four dimensional space. Crucially, it represents the original dataset quite

Section 4.1 Representing Data on Principal Components 88

−100 0 100
−100

0

100

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 4

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 3

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 2

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 1

−100 0 100
−100

0

100

−100 0 100
−100

0

100

−100 0 100
−100

0

100

FIGURE 4.2: A panel plot of the bodyfat dataset of figure 3.4, now rotated so that the
covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions — they’re linear combinations of the original variables.
Each scatterplot is on the same set of axes, so you can see that the dataset extends
more in some directions than in others. You should notice that, in some directions,
there is very little variance. This suggests that replacing the coefficient in those
directions with zero (as in figure 4.1) should result in a representation of the data
that has very little error.

accurately.

4.1.3 Representing Data on Principal Components

Now consider undoing the rotation and translation for our projected dataset {p}.
We would form a new dataset {x̂}, with the i’th element given by

x̂i = Upi +mean ({x})

(you should check this expression). But this expression says that x̂i is constructed
by forming a weighted sum of the first s columns of U (because all the other
components of pi are zero), then adding mean ({x}). If we write uj for the j’th
column of U and wij for a weight value, we have

x̂i =
s
∑

j=1

wijuj +mean ({x}).

What is important about this sum is that s is usually a lot less than d. In turn, this
means that we are representing the dataset using a lower dimensional dataset. We

Section 4.1 Representing Data on Principal Components 89

−100 0 100
−5

0

5

1

2
3

4 5

−50 0 50
−5

0

5

1

2
3

45

−20 0 20
−5

0

5

1

2
3

45 Direction 4

−100 0 100
−20

−10

0

10

1

2

3
4

5

−50 0 50
−20

−10

0

10

1

2

3
4

5 Direction 3

−5 0 5
−20

−10

0

10

1

2

3
4

5

−100 0 100
−50

0

50

1
23

4

5 Direction 2

−20 0 20
−50

0

50

1
2 3

4

5

−5 0 5
−50

0

50

1
23

4

5

Direction 1

−50 0 50
−100

0

100

1
2

3 4

5

−20 0 20
−100

0

100

1
2

34

5

−5 0 5
−100

0

100

1
2

3 4

5

FIGURE 4.3: A panel plot of the bodyfat dataset of figure 3.4, now rotated so that the
covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions — they’re linear combinations of the original variables.
Compare this figure with figure 4.3; in that figure, the axes were the same, but in
this figure I have scaled the axes so you can see details. Notice that the blob is a
little curved, and there are several data points that seem to lie some way away from
the blob, which I have numbered.

choose an s dimensional flat subspace of d dimensional space, and represent each
data item with a point that lies on in that subset. The uj are known as principal

components (sometimes loadings) of the dataset; the r
(j)
i are sometimes known

as scores, but are usually just called coefficients. Forming the representation is
called principal components analysis or PCA. The weights wij are actually
easy to evaluate. We have that

wij = r
(j)
i = (xi −mean ({x}))Tuj .

Remember this: Data items in a d dimensional data set can usually be
represented with good accuracy as a weighted sum of a small number s of d
dimensional vectors, together with the mean. This means that the dataset
lies on an s-dimensional subspace of the d-dimensional space. The subspace
is spanned by the principal components of the data.

Section 4.1 Representing Data on Principal Components 90

20 40
20

40

60

80

100

0 50
20

40

60

80

100

100 200 300 400
20

40

60

80

100

Age

20 40
100

200

300

400

0 50
100

200

300

400

Weight

50 100
100

200

300

400

20 40
0

20

40

60

80

Height

100 200 300 400
0

20

40

60

80

50 100
0

20

40

60

80

Adiposity

0 50
10

20

30

40

50

100 200 300 400
10

20

30

40

50

50 100
10

20

30

40

50

FIGURE 4.4: The data of Figure 3.4, represented by translating and rotating so that
the covariance is diagonal, projecting off the two smallest directions, then undoing
the rotation and translation. This blob of data is two dimensional (because we
projected off two dimensions – figure 4.2 suggested this was safe), but is represented
in a four dimensional space. You can think of it as a thin two dimensional pancake
of data in the four dimensional space (you should compare to Figure 3.4 on page
64). It is a good representation of the original data. Notice that it looks slightly
thickened on edge, because it isn’t aligned with the coordinate system – think of a
view of a flat plate at a slight slant.

4.1.4 The Error in a Low Dimensional Representation

We can easily determine the error in approximating {x} with {x̂}. The error in
representing {r} by {p} was easy to compute. We had

1

N

∑

i

[

(ri − pi)
T
(ri − pi)

]

=

j=d
∑

j>s

var
({

r(j)
})

=

j=d
∑

j>s

λj

If this sum is small compared to the sum of the first s components, then dropping
the last d− s components results in a small error.

The average error in representing {x} with {x̂} is now easy to get. Rotations
and translations do not change lengths. This means that

1

N

∑

i

||xi − x̂i||2 =
1

N

∑

i

||ri − pi||2 =

j=d
∑

j>s

λj

which is easy to evaluate, because these are the values of the d − s eigenvalues of
Covmat ({x}) that we decided to ignore. Now we could choose s by identifying how

Section 4.1 Representing Data on Principal Components 91

much error we can tolerate. More usual is to plot the eigenvalues of the covariance
matrix, and look for a “knee”, like that in Figure 4.5. You can see that the sum of
remaining eigenvalues is small.

Procedure: 4.1 Principal Components Analysis

Assume we have a general data set xi, consisting of N d-dimensional
vectors. Now write Σ = Covmat ({x}) for the covariance matrix.
Form U , Λ, such that

ΣU = UΛ
(these are the eigenvectors and eigenvalues of Σ). Ensure that the
entries of Λ are sorted in decreasing order. Choose r, the number of
dimensions you wish to represent. Typically, we do this by plotting the
eigenvalues and looking for a “knee” (Figure 4.5). It is quite usual to
do this by hand.
Constructing a low-dimensional representation: For 1 ≤ j ≤ s,
write ui for the i’th column of U . Represent the data point xi as

x̂i = mean ({x}) +
s
∑

j=1

[

uT
j (xi −mean ({x}))

]

uj

The error in this representation is

1

N

∑

i

||xi − x̂i||2 =

j=d
∑

j>s

λj

4.1.5 Extracting a Few Principal Components with NIPALS

If you remember the curse of dimension, you should have noticed something of a
problem in my account of PCA. When I described the curse, I said one consequence
was that forming a covariance matrix for high dimensional data is hard or impos-
sible. Then I described PCA as a method to understand the important dimensions
in high dimensional datasets. But PCA appears to rely on covariance, so I should
not be able to form the principal components in the first place. In fact, we can
form principal components without computing a covariance matrix.

I will now assume the dataset has zero mean, to simplify notation. This is
easily achieved. You subtract the mean from each data item at the start, and add
the mean back once you’ve finished. As usual, we have N data items, each a d

Section 4.1 Representing Data on Principal Components 92

dimensional column vector. We will now arrange these into a matrix,

X =









xT
1

xT
2

. . .
xT
N









where each row of the matrix is a data vector. Now assume we wish to recover
the first principal component. This means we are seeking a vector u and a set of
N numbers wi such that wiu is a good approximation to xi. Now we can stack
the wi into a column vector w. We are asking that the matrix wuT be a good
approximation to X , in the sense that wuT encodes as much of the variance of X
as possible.

The Frobenius norm is a term for the matrix norm obtained by summing
squared entries of the matrix. We write

||A||F 2
=
∑

i,j

a2ij .

In the exercises, you will show that the right choice of w and u minimizes the cost

||X −wuT ||F
2

which we can write as
C(w,u) =

∑

ij

(xij − wiuj)
2
.

Now we need to find the relevant w and u. Notice there is not a unique choice,
because the pair (sw, (1/s)u) works as well as the pair (w,u). We will choose u

such that ||u|| = 1. There is still not a unique choice, because you can flip the signs
in u and w, but this doesn’t matter. At the right w and u, the gradient of the cost
function will be zero.

The gradient of the cost function is a set of partial derivatives with respect
to components of w and u. The partial with respect to wk is

∂C

∂wk
=
∑

j

(xkj − wkuj)uj

which can be written in matrix vector form as

∇wC = (X −wuT)u.

Similarly, the partial with respect to ul is

∂C

∂ul
=
∑

i

(xil − wiul)wi

which can be written in matrix vector form as

∇uC = (X T − uwT)w.

Section 4.1 Representing Data on Principal Components 93

At the solution, these partial derivatives are zero. Notice that, if we know
the right u, then the equation ∇wC = 0 is linear in w. Similarly, if we know the
right w, then the equation ∇uC = 0 is linear in u. This suggests an algorithm.
First, assume we have an estimate of u, say u(n). Then we could choose the w that
makes the partial wrt w zero, so

ŵ =
Xu(n)

(u(n))Tu(n)
.

Now we can update the estimate of u by choosing a value that makes the partial
wrt u zero, using our estimate ŵ, to get

û =
X T ŵ

(ŵ)T ŵ
.

We need to rescale to ensure that our estimate of u has unit length. Write s =
√

(û)T û We get

u(n+1) =
û

s

and
w(n+1) = sŵ.

This iteration can be started by choosing some row of X as u(0). You can test for
convergence by checking ||u(n+1) − u(n)||. If this is small enough, then the algorithm
has converged.

To obtain a second principal component, you form X (1) = X−wuT and apply
the algorithm to that. You can get many principal components like this, but it’s not
a good way to get all of them (eventually numerical issues mean the estimates are
poor). The algorithm is widely known as NIPALS (for Non-linear Iterative Partial
Least Squares).

4.1.6 Principal Components and Missing Values

Now imagine our dataset has missing values. We assume that the values are not
missing in inconvenient patterns — if, for example, the k’th component was missing
for every vector then we’d have to drop it — but don’t go into what precise kind
of pattern is a problem. Your intuition should suggest that we can estimate a few
principal components of the dataset without particular problems. The argument
is as follows. Each entry of a covariance matrix is a form of average; estimating
averages in the presence of missing values is straightforward; and, when we estimate
a few principal components, we are estimating far fewer numbers than when we are
estimating a whole covariance matrix, so we should be able to make something
work. This argument is sound, if vague.

The whole point of NIPALS is that, if you want a few principal components,
you don’t need to use a covariance matrix. This simplifies thinking about missing
values. NIPALS is quite forgiving of missing values, though missing values make
it hard to use matrix notation. Recall I wrote the cost function as C(w,u) =
∑

ij(xij−wiuj)
2. Notice that missing data occurs in X because there are xij whose

values we don’t know, but there is no missing data in w or u (we’re estimating the

Section 4.1 Representing Data on Principal Components 94

values, and we always have some estimate). We change the sum so that it ranges
over only the known values, to get

C(w,u) =
∑

ij∈known values

(xij − wiuj)
2
.

Now we need a shorthand to ensure that sums run over only known values. Write
V(k) for the set of column (resp. row) indices of known values for a given row (resp.
column index) k. So i ∈ V(k) means all i such that xik is known or all i such that
xki is known (the context will tell you which). We have

∂C

∂wk
=

∑

j∈V(k)

(xkj − wkuj)uj

and
∂C

∂ul
=
∑

i∈V(l)

(xil − wiul)wi.

These partial derivatives must be zero at the solution, so we can estimate

ŵk =

∑

j∈V(k)

xkjuj

∑

j

u
(n)
j u

(n)
j

and

ûl =

∑

i∈V(l)

xilwl

∑

i

ŵiŵi

We then normalize as before.

Section 4.1 Representing Data on Principal Components 95

Procedure: 4.2 Obtaining some principal components with NIPALS

We assume that X has zero mean. Each row is a data item. Start with
u0 as some row of X . Write V(k) for the set of indices of known values
for a given row or column index k. Now iterate

• compute

ŵk =

∑

j∈V(k)

xkjuj

∑

j u
(n)
j u

(n)
j

and

ûl =

∑

i∈V(l)

xilwl

∑

i ŵiŵi
;

• compute s =
√

(û)T û, and

u(n+1) =
û

s

and
w(n+1) = sŵ;

• Check for convergence by checking that ||u(n+1) − u(n)|| is small.

This procedure yields a single principal component representing the
highest variance in the dataset. To obtain the next principal compo-
nent, replace X with X −wuT and repeat the procedure. This process
will yield good estimates of the first few principal components, but as
you generate more principal components, numerical errors will become
more significant.

4.1.7 PCA as Smoothing

Assume that each data item xi is noisy. We use a simple noise model. Write x̃i for
the true underlying value of the data item, and ξi for the value of a normal random
variable with zero mean and covariance σ2I. Then we use the model

xi = x̃i + ξi

(so the noise in each component is independent, and has variance σ2; this is known
as additive, zero-mean, independent gaussian noise). You should think of
the measurement xi as an estimate of x̃i. A principal component analysis of xi can
produce an estimate of x̃i that is closer than the measurements are.

Section 4.1 Representing Data on Principal Components 96

There is a subtlety here, because the noise is random, but we see the values
of the noise. This means that Covmat ({ξ}) (i.e. the covariance of the observed
numbers) is the value of a random variable (because the noise is random) whose
mean is σ2I (because that’s the model). The subtlety is that mean ({ξ}) will not
necessarily be exactly 0 and Covmat ({ξ}) will not necessarily be exactly σ2I. The
weak law of large numbers tells us that Covmat ({ξ}) will be extremely close to its
expected value (which is σ2I) for a large enough dataset. We will assume that
mean ({ξ}) = 0 and Covmat ({ξ}) = σ2I.

The first step is to write Σ̃ for the covariance matrix of the true underlying
values of the data, and Covmat ({x}) for the covariance of the observed data. Then
it is straightforward that

Covmat ({x}) = Σ̃ + σ2I
because the noise is independent of the measurements. Notice that if U diagonalizes
Covmat ({x}), it will also diagonalize Σ̃. Write Λ̃ = UT Σ̃U . We have

UTCovmat ({x})U = Λ = Λ̃ + σ2I.
Now think about the diagonal entries of Λ. If they are large, then they are quite
close to the corresponding components of Λ̃, but if they are small, it is quite likely
they are the result of noise. But these eigenvalues are tightly linked to error in a
PCA representation.

In PCA (procedure 4.1), the d dimensional data point xi is represented by

x̂i = mean ({x}) +
s
∑

j=1

[

uT
j (xi −mean ({x}))

]

uj

where uj are the principal components. This representation is obtained by setting
the coefficients of the d− s principal components with small variance to zero. The
error in representing {x} with {x̂} follows from section 4.1.4 and is

1

N

∑

i

||xi − x̂i||2 =

j=d
∑

j>s

λj .

Now consider the error in representing x̃i (which we don’t know) by xi (which we
do). The average error over the whole dataset is

1

N

∑

i

||xi − x̃i||2.

Because the variance of the noise is σ2I, this error must be dσ2. Alternatively, we
could represent x̃i by x̂i. The average error of this representation over the whole
dataset will be

1

N

∑

i

||x̂i − x̃i||2 = Error in components that are preserved +

Error in components that are zeroed

= sσ2 +

d
∑

j=s+1

λ̃u.

Section 4.2 Example: Representing Colors with Principal Components 97

Now if, for j > s, λ̃j < σ2, this error is smaller than dσ2. We don’t know which

s guarantees this unless we know σ2 and λ̃j which often doesn’t happen. But it’s
usually possible to make a safe choice, and so smooth the data by reducing noise.
This smoothing works because the components of the data are correlated. So the
best estimate of each component of a data item is likely not the measurement –
it’s a prediction obtained from all measurements. The projection onto principal
components is such a prediction.

Remember this: Given a d dimensional dataset where data items have
had independent random noise added to them, representating each data item
on s < d principal components can result in a representation which is on
average closer to the true underlying data than the original data items. The
choice of s is application dependent.

4.2 EXAMPLE: REPRESENTING COLORS WITH PRINCIPAL COMPONENTS

Diffuse surfaces reflect light uniformly in all directions. Examples of diffuse surfaces
include matte paint, many styles of cloth, many rough materials (bark, cement,
stone, etc.). One way to tell a diffuse surface is that it does not look brighter
(or darker) when you look at it along different directions. Diffuse surfaces can
be colored, because the surface reflects different fractions of the light falling on it
at different wavelengths. This effect can be represented by measuring the spectral
reflectance of a surface, which is the fraction of light the surface reflects as a function
of wavelength. This is usually measured in the visual range of wavelengths (about
380nm to about 770 nm). Typical measurements are every few nm, depending on
the measurement device. I obtained data for 1995 different surfaces from http://
www.cs.sfu.ca/∼colour/data/ (there are a variety of great datasets here, from Kobus
Barnard).

Each spectrum has 101 measurements, which are spaced 4nm apart. This
represents surface properties to far greater precision than is really useful. Phys-
ical properties of surfaces suggest that the reflectance can’t change too fast from
wavelength to wavelength. It turns out that very few principal components are
sufficient to describe almost any spectral reflectance function. Figure 4.5 shows the
mean spectral reflectance of this dataset, and Figure 4.5 shows the eigenvalues of
the covariance matrix.

This is tremendously useful in practice. One should think of a spectral re-
flectance as a function, usually written ρ(λ). What the principal components anal-
ysis tells us is that we can represent this function rather accurately on a (really
small) finite dimensional basis. This basis is shown in figure 4.5. This means that
there is a mean function r(λ) and k functions φm(λ) such that, for any ρ(λ),

ρ(λ) = r(λ) +

k
∑

i=1

ciφi(λ) + e(λ)

http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/

Section 4.2 Example: Representing Colors with Principal Components 98

300 400 500 600 700 800
0.05

0.1

0.15

0.2

0.25

0.3
Mean spectral reflectance

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue

0 50 100 150
0

1

2

3

4
Sorted eigenvalues, 1995 spectra

Number of eigenvalue

V
al

ue

200 400 600 800
−0.2

−0.15

−0.1

−0.05

0
First PC of spectral reflectance

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue

300 400 500 600 700 800
−0.2

−0.1

0

0.1

0.2
Second PC of spectral reflectance

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue

300 400 500 600 700 800
−0.3

−0.2

−0.1

0

0.1
Third PC of spectral reflectance

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue
FIGURE 4.5: On the top left, the mean spectral reflectance of a dataset of 1995
spectral reflectances, collected by Kobus Barnard (at http://www.cs.sfu.ca/∼colour/
data/). On the top right, eigenvalues of the covariance matrix of spectral re-
flectance data, from a dataset of 1995 spectral reflectances, collected by Kobus
Barnard (at http://www.cs.sfu.ca/∼colour/data/). Notice how the first few eigen-
values are large, but most are very small; this suggests that a good representation
using few principal components is available. The bottom row shows the first three
principal components. A linear combination of these, with appropriate weights,
added to the mean (top left), gives a good representation of the dataset.

where e(λ) is the error of the representation, which we know is small (because it
consists of all the other principal components, which have tiny variance). In the
case of spectral reflectances, using a value of k around 3-5 works fine for most
applications (Figure 4.6). This is useful, because when we want to predict what
a particular object will look like under a particular light, we don’t need to use a
detailed spectral reflectance model; instead, it’s enough to know the ci for that
object. This comes in useful in a variety of rendering applications in computer
graphics. It is also the key step in an important computer vision problem, called
color constancy. In this problem, we see a picture of a world of colored ob-
jects under unknown colored lights, and must determine what color the objects
are. Modern color constancy systems are quite accurate, even though the problem
sounds underconstrained. This is because they are able to exploit the fact that
relatively few ci are enough to accurately describe a surface reflectance.

Figures ?? and ?? illustrate the smoothing process. I know neither the noise
process nor the true variances (this is quite usual), so I can’t say which smoothed

http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/

Section 4.2 Example: Representing Colors with Principal Components 99

400 500 600 700
0

0.2

0.4

0.6

0.8
Approx with 0, 3, 5, 7 PCs

400 500 600 700
−0.2

−0.1

0

0.1

0.2

0.3

0.4
Error with 0, 3, 5, 7 PCs

FIGURE 4.6: On the left, a spectral reflectance curve (dashed) and approximations
using the mean, the mean and 3 principal components, the mean and 5 principal
components, and the mean and 7 principal components. Notice the mean is a rela-
tively poor approximation, but as the number of principal components goes up, the
mean squared distance between measurements and principal component representa-
tion falls rather quickly. On the right is is this distance for these approximations.
A projection onto very few principal components suppresses local wiggles in the data
unless very many data items have the same wiggle in the same place. As the num-
ber of principal components increases, the representation follows the measurements
more closely. The best estimate of each component of a data item is likely not the
measurement – it’s a prediction obtained from all measurements. The projection
onto principal components is such a prediction, and you can see the smoothing ef-
fects of principal components analysis in these plots. Figure plotted from a dataset
of 1995 spectral reflectances, collected by Kobus Barnard (at http://www.cs.sfu.ca/
∼colour/data/).

0 1000 2000 3000 4000
0

5

10

15

20
Eigenvalues, total of 213 images

Number of eigenvalue

V
al

ue

0 5 10 15 20
0

5

10

15

20
Eigenvalues, total of 213 images

Number of eigenvalue

V
al

ue

FIGURE 4.7: On the left,the eigenvalues of the covariance of the Japanese facial
expression dataset; there are 4096, so it’s hard to see the curve (which is packed
to the left). On the right, a zoomed version of the curve, showing how quickly the
values of the eigenvalues get small.

http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/

Section 4.2 Example: Representing Colors with Principal Components 100

Mean image from Japanese Facial Expression dataset

First sixteen principal components of the Japanese Facial Expression dat

a

FIGURE 4.8: The mean and first 16 principal components of the Japanese facial
expression dataset.

representation is best. Each figure shows four spectral reflectances and their repre-
sentation on a set of principal components. Notice how, as the number of principal
components goes up, the measurements and the representation get closer together.
This doesn’t necessarily mean that more principal components are better – the
measurement itself may be noisy. Notice also how representations on few principal
components tend to suppress small local “wiggles” in the spectral reflectance. They
are suppressed because these patterns tend not to appear in the same place in all
spectral reflectances, so the most important principal components tend not to have
them. The noise model tends to produce these patterns, so that the representation
on a small set of principal components may well be a more accurate estimate of the
spectral reflectance than the measurement is.

Section 4.3 Example: Representing Faces with Principal Components 101

Sample Face Image

mean 1 5 10 20 50 100

FIGURE 4.9: Approximating a face image by the mean and some principal compo-
nents; notice how good the approximation becomes with relatively few components.

4.3 EXAMPLE: REPRESENTING FACES WITH PRINCIPAL COMPONENTS

An image is usually represented as an array of values. We will consider intensity
images, so there is a single intensity value in each cell. You can turn the image
into a vector by rearranging it, for example stacking the columns onto one another.
This means you can take the principal components of a set of images. Doing so was
something of a fashionable pastime in computer vision for a while, though there
are some reasons that this is not a great representation of pictures. However, the
representation yields pictures that can give great intuition into a dataset.

Figure ?? shows the mean of a set of face images encoding facial expressions of
Japanese women (available at http://www.kasrl.org/jaffe.html; there are tons of face
datasets at http://www.face-rec.org/databases/). I reduced the images to 64x64,
which gives a 4096 dimensional vector. The eigenvalues of the covariance of this
dataset are shown in figure 4.7; there are 4096 of them, so it’s hard to see a trend,
but the zoomed figure suggests that the first couple of hundred contain most of
the variance. Once we have constructed the principal components, they can be
rearranged into images; these images are shown in figure 4.8. Principal components
give quite good approximations to real images (figure 4.9).

The principal components sketch out the main kinds of variation in facial
expression. Notice how the mean face in Figure 4.8 looks like a relaxed face, but
with fuzzy boundaries. This is because the faces can’t be precisely aligned, because
each face has a slightly different shape. The way to interpret the components is to
remember one adjusts the mean towards a data point by adding (or subtracting)
some scale times the component. So the first few principal components have to
do with the shape of the haircut; by the fourth, we are dealing with taller/shorter
faces; then several components have to do with the height of the eyebrows, the
shape of the chin, and the position of the mouth; and so on. These are all images of
women who are not wearing spectacles. In face pictures taken from a wider set of
models, moustaches, beards and spectacles all typically appear in the first couple

http://www.kasrl.org/jaffe.html
http://www.face-rec.org/databases/

Section 4.3 Example: Representing Faces with Principal Components 102

of dozen principal components.
A representation on enough principal components results in pixel values that

are closer to the true values than the measurements (this is one sense of the word
“smoothing”). Another sense of the word is blurring. Irritatingly, blurring reduces
noise, and some methods for reducing noise, like principal components, also blur
(figure 4.9). But this doesn’t mean the resulting images are better as images. In
fact, you don’t have to blur an image to smooth it. Producing images that are both
accurate estimates of the true values and look like sharp, realistic images requires
quite substantial technology, beyond our current scope.

Section 4.4 You should 103

4.4 YOU SHOULD

4.4.1 remember these definitions:

4.4.2 remember these terms:

principal components . 89
loadings . 89
scores . 89
coefficients . 89
principal components analysis . 89
PCA . 89
Frobenius norm . 92
additive, zero-mean, independent gaussian noise 95
smooth . 97
color constancy . 98

4.4.3 remember these facts:

A few principal components can represent a high-D dataset 89
PCA can significantly reduce noise 97

4.4.4 remember these procedures:

Principal Components Analysis . 91
Obtaining some principal components with NIPALS 95

4.4.5 be able to:

• Create, plot and interpret the first few principal components of a dataset.

• Compute the error resulting from ignoring some principal components.

• Interpret the principal components of a dataset.

Section 4.4 You should 104

PROBLEMS

4.1. Using the notation of the chapter, show that

wij = r
(j)
i = (xi −mean ({x}))Tuj .

4.2. We have N d-dimensional data items forming a dataset {x}. We translate this
dataset to have zero mean, compute

UTCovmat ({x})U = Λ

and form the dataset {r}, using the rule

ri = UTmi = UT (xi −mean ({x})).

Choose some s < d, take each data point ri and replace the last d− s compo-
nents with 0. Call the resulting data item pi.
(a) Show that

1

N

∑

i

[

(ri − pi)
T (ri − pi)

]

=

j=d
∑

j>s

var
({

r(j)
})

.

(b) Sort the eigenvalues of Covmat ({x}) in descending order, and write λi for
the i’th (so that λ1 ≥ λ2 . . . ≥ λN). Show that

1

N

∑

i

[

(ri − pi)
T (ri − pi)

]

=

j=d
∑

j>s

λj .

4.3. You have a dataset of N vectors xi in d-dimensions, stacked into a matrix X .
This dataset has zero mean. You would like to determine the principal compo-
nent of this dataset corresponding to the largest eigenvalue of its covariance.
Write u for this principal component.
(a) The Frobenius norm is a term for the matrix norm obtained by summing

squared entries of the matrix. We write

||A||F
2 =

∑

i,j

a2ij .

Show that
||A||F

2 = Trace(AAT)

(b) Show that
Trace(AB) = Trace(BA).

I have found this fact worth remembering. It may help to remember the
trace is defined only for square matrices.

(c) Show that, if u and w together minimize

||X −wuT ||F
2

then

(wTw)u = XTw

(uTu)w = Xu

Do this by differentiating and setting to zero; the text of the NIPALS
section should help.

Section 4.4 You should 105

(d) u is a unit vector – why?
(e) Show that

XTXu = (wTw)u

and so that, if u minimizes the Frobenius norm as above, it must be some
eigenvector of Covmat ({x}).

(f) Show that, if u is a unit vector, then

Trace(uuT) = 1

(g) Assume that u, w satisfy the equations for a minimizer, above, then show

||X −wuT ||F
2

= Trace(XTX − u(wTw)uT)

= Trace(XTX)− (wTw)

(h) Use the information above to argue that if u and w together minimize

||X −wuT ||F
2

then u is the eigenvector of XTX corresponding to the largest eigenvalue.
4.4. You have a dataset of N vectors xi in d-dimensions, stacked into a matrix X .

This dataset has zero mean. You would like to determine the principal compo-
nent of this dataset corresponding to the largest eigenvalue of its covariance.
Write u for this principal component. Assume that each data item xi is noisy.
We use a simple noise model. Write x̃i for the true underlying value of the
data item, and ξi for the value of a normal random variable with zero mean
and covariance σ2I. Then we use the model

xi = x̃i + ξi

We will assume that mean ({ξ}) = 0 and Covmat ({ξ}) = σ2I.
(a) Notice that the noise is independent of the dataset. This means that

mean
({

xξT
})

= mean ({x})mean
({

ξT
})

= 0. Show that

Covmat ({x}) = Σ̃ + σ2I.

(b) Show that if U diagonalizes Covmat ({x}), it will also diagonalize Σ̃.

PROGRAMMING EXERCISES

4.5. Obtain the iris dataset from the UC Irvine machine learning data repository at
http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data.
(a) Plot a scatterplot matrix of this dataset, showing each species with a

different marker.
(b) Now obtain the first two principal components of the data. Plot the

data on those two principal components alone, again showing each species
with a different marker. Has this plot introduced significant distortions?
Explain

4.6. Take the wine dataset from the UC Irvine machine learning data repository at
https://archive.ics.uci.edu/ml/datasets/Wine.
(a) Plot the eigenvalues of the covariance matrix in sorted order. How many

principal components should be used to represent this dataset? Why?

http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
https://archive.ics.uci.edu/ml/datasets/Wine

Section 4.4 You should 106

(b) Construct a stem plot of each of the first 3 principal components (i.e. the
eigenvectors of the covariance matrix with largest eigenvalues). What do
you see?

(c) Compute the first two principal components of this dataset, and project
it onto those components. Now produce a scatter plot of this two dimen-
sional dataset, where data items of class 1 are plotted as a ’1’, class 2 as
a ’2’, and so on.

4.7. Take the wheat kernel dataset from the UC Irvine machine learning data repos-
itory at http://archive.ics.uci.edu/ml/datasets/seeds. Compute the first two
principal components of this dataset, and project it onto those components.
(a) Produce a scatterplot of this projection. Do you see any interesting phe-

nomena?
(b) Plot the eigenvalues of the covariance matrix in sorted order. How many

principal components should be used to represent this dataset? why?
4.8. The UC Irvine machine learning data repository hosts a collection of data

on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and
William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an
id number, 10 continuous variables, and a class (benign or malignant). There
are 569 examples. Separate this dataset randomly into 100 validation, 100
test, and 369 training examples. Plot this dataset on the first three principal
components, using different markers for benign and malignant cases. What do
you see?

4.9. The UC Irvine Machine Learning data archive hosts a dataset of measure-
ments of abalone at http://archive.ics.uci.edu/ml/datasets/Abalone. Compute
the principal components of all variables except Sex. Now produce a scatter
plot of the measurements projected onto the first two principal components,
plotting an “m” for male abalone, an “f” for female abalone and an “i” for
infants. What do you see?

4.10. Obtain the iris dataset from the UC Irvine machine learning data repository at
http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data. We
will investigate the use of principal components to smooth data.
(a) Ignore the species names, so you should have 150 data items with four

measurements each. For each value in {0.1, 0.2, 0.5, 1}, form a dataset
by adding an independent sample from a normal distribution with this
standard deviation to each entry in the original dataset. Now for each
value, plot the mean-squared-error between the original dataset and an
expansion onto 1, 2, 3, and 4 principal components. You should see that,
as the noise gets larger, using fewer principal components gives a more
accurate estimate of the original dataset (i.e. the one without noise).

(b) We will now try the previous subexercise with a very much different noise
model. For each of w = {10, 20, 30, 40}, construct a mask matrix each of
whose entries is a sample of a binomial random variable with probability
p = 1 − w/600 of turning up 1. This matrix should have about w zeros
in it. Ignore the species names, so you should have 150 data items with
four measurements each. Now form a new dataset by multiplying each
location in the original dataset by the corresponding mask location (so
you are randomly setting a small set of measurements to zero). Now for
each value of w, plot the mean-squared-error between the original dataset
and an expansion onto 1, 2, 3, and 4 principal components. You should
see that, as the noise gets larger, using fewer principal components gives

http://archive.ics.uci.edu/ml/datasets/seeds
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Abalone
http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

Section 4.4 You should 107

a more accurate estimate of the original dataset (i.e. the one without
noise).

C H A P T E R 5

Low Rank Approximations

A principal components analysis models high-dimensional data points with
an accurate, low-dimensional, model. Form a data matrix from the approximate
points; this has low rank (because the model is low dimensional) and it’s close to
the original data matrix (because the model is accurate). Looking for a low rank
model of a data matrix is productive.

Assume we have X , with rank d, and we wish to produce Xs such that (a)

the rank of Xs is s (which is less than d) and (b) such that ||X − Xs||2 is minimized.
The resulting Xs is called a low rank approximation to X . Producing a low rank
approximation is a straightforward application of the singular value decomposition
(SVD).

We have already seen examples of useful low rank approximations. NIPALS
– which is actually a form of partial SVD – produces a rank one approximation
to a matrix (check this point if you’re uncertain). A new, and useful, important
application is to use a low rank approximation to make a low-dimensional map of
a high dimensional dataset (section ??).

The link between principal components analysis and low rank approxima-
tion suggests (correctly) that you can use a low rank approximation to smooth
and suppress noise. Smoothing is extremely powerful, and section ?? describes an
important application. The count of words in a document gives a rough represen-
tation of the document’s meaning. But there are many different words an author
could use for the same idea (“spanner” or “wrench”, say), and this effect means
that documents with quite similar meaning could have quite different word counts.
Word counts can be smoothed very effectively with a low rank approximation to an
appropriate matrix. There are two quite useful applications. First, this low rank
approximation yields quite good measures of how similar documents are. Second,
the approximation can yield a representation of the underlying meaning of a word
which is useful in dealing with unfamiliar words.

5.1 THE SINGULAR VALUE DECOMPOSITION

For any m× p matrix X , it is possible to obtain a decomposition

X = UΣVT

where U is m × m, V is p × p, and Σ is m × p and is diagonal. The diagonal
entries of Σ are non-negative. Both U and V are orthonormal (i.e. UUT = I and
VVT = I). This decomposition is known as the singular value decomposition,
almost always abbreviated to SVD).

If you don’t recall what a diagonal matrix looks like when the matrix isn’t
square, it’s simple. All entries are zero, except the i, i entries for i in the range 1 to
min(m, p). So if Σ is tall and thin, the top square is diagonal and everything else is
zero; if Σ is short and wide, the left square is diagonal and everything else is zero.

108

Section 5.1 The Singular Value Decomposition 109

The terms on the diagonal of Σ are usually called the singular values. There is
a significant literature on methods to compute the SVD efficiently, accurately and
at large scale, which we ignore: any decent computing environment should do this
for you if you find the right function. Read the manual for your environment.

Procedure: 5.1 Singular Value Decomposition

Given a matrix X , any halfway decent numerical linear algebra package
or computing environment will produce a decomposition

X = UΣVT

and U and V are both orthonormal, Σ is diagonal with non-negative
entries. Most environments that can do an SVD can be persuaded to
provide the columns of U and rows of VT corresponding to the k largest
singular values.

There are many SVD’s for a given matrix, because you could reorder the
singular values and then reorder U and V . We will always assume that the diagonal
entries in Σ go from largest to smallest as one moves down the diagonal. In this
case, the columns of U and the rows of VT corresponding to non-zero diagonal
elements of Σ are unique.

Notice that there is a relationship between forming an SVD and diagonalizing
a matrix. In particular, X TX is symmetric, and it can be diagonalized as

X TX = VΣTΣVT .

Similarly, XX T is symmetric, and it can be diagonalized as

XX T = UΣΣTU .

Remember this: A singular value decomposition (SVD) decomposes a
matrix X as X = UΣVT where U is m × m, V is p × p, and Σ is m × p
and is diagonal. The diagonal entries of Σ are non-negative. Both U and
V are orthonormal. The SVD of X yields the diagonalization of X TX and
the diagonalization of XX T .

Section 5.1 The Singular Value Decomposition 110

5.1.1 SVD and PCA

Now assume we have a dataset with zero mean. As usual, we have N data items,
each a d dimensional column vector. We will now arrange these into a matrix,

X =









xT
1

xT
2

. . .
xT
N









where each row of the matrix is a data vector. The covariance matrix is

Covmat ({X}) = 1

N
X TX

(zero mean, remember). Form the SVD of X , to get

X = UΣVT .

But we have X TX = VΣTΣVT so that

Covmat ({X})V =
1

N
(X TX)V = VΣTΣ

N

and ΣTΣ is diagonal. By pattern matching, the columns of V contains the principal
components of X , and

ΣTΣ

N

are the variances on each component. All this means we can read the principal
components of a dataset of the SVD of that dataset, without actually forming the
covariance matrix - we just form the SVD of X , and the columns of V are the
principal components. Remember, these are the columns of V – it’s easy to get
mixed up about V and VT here.

We have seen NIPALS as a way of extracting some principal components from
a data matrix. In fact, NIPALS is a method to recover a partial SVD of X . Recall
that NIPALS produces a vector u and a vector w so that wuT is as close as possible
to X , and u is a unit vector. By pattern matching, we have that

• uT is the row of VT corresponding to the largest singular value;

• w

||w|| is the column of U corresponding to the largest singular value;

• ||w|| is the largest singular value.

It is easy to show that if you use NIPALS to extract several principal components,
you will get several rows of VT , several columns of U , and several singular values.
Be careful, however: this isn’t an efficient or accurate way to extract many singular
values, because numerical errors accumulate. If you want a partial SVD with many
singular values, you should be searching for specialist packages, not making your
own.

Section 5.1 The Singular Value Decomposition 111

Remember this: Assume X has zero mean. Then the SVD of X yields
the principal components of the dataset represented by this matrix. NIPALS
is a method to recover a partial SVD of X

5.1.2 SVD and Low Rank Approximations

Assume we have X , with rank d, and we wish to produce Xs such that (a) the rank

of Xs is s (which is less than d) and (b) such that ||X − Xs||2 is minimized. An
SVD will yield Xs. Take the SVD to get X = UΣVT . Now write Σs for the matrix
obtained by setting all but the s largest singular values in Σ to 0. We have that

Xs = UΣsVT .

It is obvious that Xs has rank s. You can show (exercises) that ||X − Xs||2 is

minimized, by noticing that ||X − Xs||2 = ||Σ− Σs||2.
There is one potential point of confusion. There are a lot of zeros in Σs, and

they render most of the columns of U and rows of VT irrelevant. In particular,
write Us for the m× s matrix consisting of the first s columns of U , and so on; and

write Σ
(s)
s for the s× s submatrix of Σs with non-zero diagonal. Then we have

Xs = UΣsVT = UsΣ
(s)
s (Vs)

T

and it is quite usual to switch from one representation to the other without com-
ment. I try not to do this, but it’s quite common practice.

5.1.3 Smoothing with the SVD

As we have seen, principal components analysis can smooth noise in the data matrix
(section 18). That argument was for one particular kind of noise, but experience
shows that PCA can smooth other kinds of noise (there is an example in the exer-
cises for chapter 4). This means that the entries of a data matrix can be smoothed
by computing a low-rank approximation of X .

I have already shown that PCA can smooth data. In PCA (procedure 4.1),
the d dimensional data point xi is represented by

x̂i = mean ({x}) +
s
∑

j=1

[

uT
j (xi −mean ({x}))

]

uj

where uj are the principal components. A low rank approximation represents the
i’th row of X (which is xT

i) as

x̂i
T =

r
∑

j=1

wijv
T
j

where vT
j is a row of VT (obtained from the SVD) and where wij are weights that

can be computed from the SVD. In each case, the data point is represented by

Section 5.2 Multi-Dimensional Scaling 112

a projection onto a low dimensional space, so it is fair to conclude the SVD can
smooth something.

Just like smoothing with a PCA, smoothing with an SVD works for a wide
range of noise processes. In one very useful example, each component of the data
might be a count. For concreteness, let the entries be counts of roadkill species
per mile of highway. Each row would correspond to a species, each column to a
particular mile. Counts like this would typically be noisy, because you see rare
species only occasionally. At least for rare species, the count for most miles would
be 0, but occasionally, you would count 1. The 0 is too low a per-mile estimate,
and the 1 is too high, but one doesn’t see a fraction of a roadkill. Constructing a
low rank approximation tends to lead to better estimates of the counts.

Missing data is a particularly interesting form of noise - the noise process
deletes entries in the data matrix - and low rank approximations are quite effective
at dealing with this. Assume you know most, but not all, entries of X . You would
like to build an estimate of the whole matrix. If you expect that the true whole
matrix has low rank, you can compute a low rank approximation to the matrix. For
example, the entries in the data matrix are scores of how well a viewer liked a film.
Each row of the data matrix corresponds to one viewer; each column corresponds
to one film. At useful scales, most viewers haven’t seen most films, so most of the
data matrix is missing data. However, there is good reason to believe that users
are “like” each other – the rows are unlikely to be independent, because if two
viewers both like (say) horror movies they might very well also both dislike (say)
documentaries. Films are “like” each other, too. Two horror movies are quite likely
to be liked by viewers who like horror movies but dislike documentaries. All this
means that the rows (resp. columns) of the true data matrix are very likely to be
highly dependent. More formally, the true data matrix is likely to have low rank.
This suggests using an SVD to fill in the missing values.

Numerical and algorithmic questions get tricky here. If the rank is very low,
you could use NIPALS to manage the question of missing entries. If you are dealing
with a larger rank, or many missing values, you need to be careful about numerical
error, and you should be searching for specialist packages, not making your own
with NIPALS.

Remember this: Taking an SVD of a data matrix usually produces a
smoothed estimate of the data matrix. Smoothing is guaranteed to be effec-
tive if the entries are subject to additive, zero-mean, independent gaussian
noise, but often works very well if the entries are noisy counts. Smoothing
can be used to fill in missing values, too.

5.2 MULTI-DIMENSIONAL SCALING

One way to get insight into a dataset is to plot it. But choosing what to plot for
a high dimensional dataset could be difficult. Assume we must plot the dataset

Section 5.2 Multi-Dimensional Scaling 113

in two dimensions (by far the most common choice). We wish to build a scatter
plot in two dimensions — but where should we plot each data point? One natural
requirement is that the points be laid out in two dimensions in a way that reflects
how they sit in many dimensions. In particular, we would like points that are far
apart in the high dimensional space to be far apart in the plot, and points that are
close in the high dimensional space to be close in the plot.

5.2.1 Choosing Low D Points using High D Distances

We will plot the high dimensional point xi at yi, which is an s-dimensional vector
(almost always, s will be 2 or 3). Now the squared distance between points i and
j in the high dimensional space is

D
(2)
ij (x) = (xi − xj)

T (xi − xj)

(where the superscript is to remind you that this is a squared distance). We could
build an N × N matrix of squared distances, which we write D(2)(x). The i, j’th

entry in this matrix is D
(2)
ij (x), and the x argument means that the distances are

between points in the high-dimensional space. Now we could choose the yi to make

∑

ij

(

D
(2)
ij (x)−D

(2)
ij (y)

)2

as small as possible. Doing so should mean that points that are far apart in the
high dimensional space are far apart in the plot, and that points that are close in
the high dimensional space are close in the plot.

In its current form, the expression is difficult to deal with, but we can refine
it. Because translation does not change the distances between points, it cannot
change either of the D(2) matrices. So it is enough to solve the case when the mean
of the points xi is zero. We assume that the mean of the points is zero, so

1

N

∑

i

xi = 0.

Now write 1 for the n-dimensional vector containing all ones, and I for the identity
matrix. Notice that

D
(2)
ij = (xi − xj)

T (xi − xj) = xi · xi − 2xi · xj + xj · xj .

Now write

A =

[

I − 1

N
11T

]

.

Now you can show that

−1

2
AD(2)(x)AT = XX T .

I now argue that, to make D(2)(y) is close to D(2)(x), it is enough to choose yi so
that YYT close to XX T . Proving this will take us out of our way unnecessarily, so
I omit a proof.

Section 5.2 Multi-Dimensional Scaling 114

5.2.2 Using a Low Rank Approximation to Factor

We need to find a set of yi so that (a) the yi are s dimensional and (b) Y (the
matrix made by stacking the yi) minimizes the distance between YYT and XX T .
Notice that YYT must have rank s.

Now form an SVD of X , to get

X = UΣVT

Recall Σ
(s)
s is the s × s submatrix of Σs with non-zero diagonal, Us is the m × s

matrix consisting of the first s columns of U , and so on. Consider

Xs = UsΣsVT
s .

We have that XsX T
s is the closest rank s approximation to XX T . The rows of Xs

are d-dimensional, so it isn’t the matrix we seek. But

XsX T
s = (UsΣsVT

s)(VsΣsUT
s)

and VT
s Vs is the s× s identity matrix (exercises). This means that

Y = UsΣs

is the matrix we seek. We can obtain Y even if we don’t know X . It is enough to
know XX T . This is because

XX T = (UΣVT)(VΣUT) = UΣ2UT

so diagonalizing XX T is enough. This method for constructing a plot is known as
principal coordinate analysis.

This plot might not be perfect, because reducing the dimension of the data
points should cause some distortions. In many cases, the distortions are tolerable.
In other cases, we might need to use a more sophisticated scoring system that
penalizes some kinds of distortion more strongly than others. There are many ways
to do this; the general problem is known as multidimensional scaling. I pick
up this theme in Chapter 287, which demonstrates more sophisticated methods for
the problem.

Section 5.2 Multi-Dimensional Scaling 115

−800 −600 −400 −200 0 200 400
−1000

−800

−600

−400

−200

0

200

400

Cape Town

Kimberley

Mahikeng

Nelspruit

Polokwane

Pietermaritzburg

Johannesburg

Bloemfontein

Bhisho

FIGURE 5.1: On the left, a public domain map of South Africa, obtained from
http://commons.wikimedia.org/wiki/File:Map of South Africa.svg , and edited to re-
move surrounding countries. On the right, the locations of the cities inferred by
multidimensional scaling, rotated, translated and scaled to allow a comparison to
the map by eye. The map doesn’t have all the provincial capitals on it, but it’s easy
to see that MDS has placed the ones that are there in the right places (use a piece
of ruled tracing paper to check).

Procedure: 5.2 Principal Coordinate Analysis

Assume we have a matrix D(2) consisting of the squared differences
between each pair of N points. We do not need to know the points. We
wish to compute a set of points in s dimensions, such that the distances
between these points are as similar as possible to the distances in D(2).

• Form A =
[

I − 1
N 11T

]

.

• Form W = 1
2AD(2)AT .

• Form the SVD of W to get W = UΣVT and ensure that the
entries of Σ are sorted in decreasing order.

• Choose s, the number of dimensions you wish to represent. Form
Σs, the top left s × s block of Σ. Form Form Us, the matrix
consisting of the first s columns of U .

Then

Y = UsΣs =





v1,
. . . ,
vN





is the set of points to plot.

http://commons.wikimedia.org/wiki/File:Map_of_South_Africa.svg

Section 5.2 Multi-Dimensional Scaling 116

−0.4

−0.2

0

0.2

0.4
−0.3−0.2−0.100.10.2

−0.2

−0.1

0

0.1

0.2

−0.4 −0.2 0 0.2 0.4

−0.3−0.2−0.100.10.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

FIGURE 5.2: Two views of the spectral data of section 4.2, plotted as a scatter plot
by applying principal coordinate analysis to obtain a 3D set of points. Notice that
the data spreads out in 3D, but seems to lie on some structure; it certainly isn’t a
single blob. This suggests that further investigation would be fruitful.

5.2.3 Example: Mapping with Multidimensional Scaling

Multidimensional scaling gets positions (the Y of section 5.2.1) from distances (the
D(2)(x) of section 5.2.1). This means we can use the method to build maps from
distances alone. I collected distance information from the web (I used http://
www.distancefromto.net, but a google search on “city distances” yields a wide range
of possible sources), then applied multidimensional scaling. I obtained distances
between the South African provincial capitals, in kilometers. I then used principal
coordinate analysis to find positions for each capital, and rotated, translated and
scaled the resulting plot to check it against a real map (Figure 5.1).

One natural use of principal coordinate analysis is to see if one can spot any
structure in a dataset. Does the dataset form a blob, or is it clumpy? This isn’t a
perfect test, but it’s a good way to look and see if anything interesting is happening.
In figure 5.2, I show a 3D plot of the spectral data, reduced to three dimensions
using principal coordinate analysis. The plot is quite interesting. You should notice
that the data points are spread out in 3D, but actually seem to lie on a complicated
curved surface — they very clearly don’t form a uniform blob. To me, the structure
looks somewhat like a butterfly. I don’t know why this occurs (perhaps the uni-
verse is doodling), but it certainly suggests that something worth investigating is
going on. Perhaps the choice of samples that were measured is funny; perhaps the
measuring instrument doesn’t make certain kinds of measurement; or perhaps there
are physical processes that prevent the data from spreading out over the space.

Our algorithm has one really interesting property. In some cases, we do not
actually know the datapoints as vectors. Instead, we just know distances between
the datapoints. This happens often in the social sciences, but there are important
cases in computer science as well. As a rather contrived example, one could survey
people about breakfast foods (say, eggs, bacon, cereal, oatmeal, pancakes, toast,
muffins, kippers and sausages for a total of 9 items). We ask each person to rate the
similarity of each pair of distinct items on some scale. We advise people that similar

http://www.distancefromto.net
http://www.distancefromto.net

Section 5.3 Example: Text Models and Latent Semantic Analysis 117

−600
−400

−200

−100−50050
−40

−20

0

20

40

−500
−400

−300
−200

−100

0

100
−50

0

50

FIGURE 5.3: Two views of a multidimensional scaling to three dimensions of the
height-weight dataset. Notice how the data seems to lie in a flat structure in 3D,
with one outlying data point. This means that the distances between data points can
be (largely) explained by a 2D representation.

items are ones where, if they were offered both, they would have no particular
preference; but, for dissimilar items, they would have a strong preference for one
over the other. The scale might be “very similar”, “quite similar”, “similar”, “quite
dissimilar”, and “very dissimilar” (scales like this are often called Likert scales).
We collect these similarities from many people for each pair of distinct items, and
then average the similarity over all respondents. We compute distances from the
similarities in a way that makes very similar items close and very dissimilar items
distant. Now we have a table of distances between items, and can compute a Y
and produce a scatter plot. This plot is quite revealing, because items that most
people think are easily substituted appear close together, and items that are hard
to substitute are far apart. The neat trick here is that we did not start with a X ,
but with just a set of distances; but we were able to associate a vector with “eggs”,
and produce a meaningful plot.

5.3 EXAMPLE: TEXT MODELS AND LATENT SEMANTIC ANALYSIS

It is really useful to be able to measure the similarity between two documents, but it
remains difficult to build programs that understand natural language. Experience
shows that very simple models can be used to measure similarity between documents
without going to the trouble of building a program that understands their content.
Here is a representation that has been successful. Choose a vocabulary (a list of
different words), then represent the document by a vector of word counts, where we
simply ignore every word outside the vocabulary. This is a viable representation for
many applications because quite often, most of the words people actually use come
from a relatively short list (typically 100s to 1000s, depending on the particular
application). The vector has one component for each word in the list, and that
component contains the number of times that particular word is used. This model
is sometimes known as a bag-of-words model.

Details of how you put the vocabulary together can be quite important. It
is not a good idea to count extremely common words, sometimes known as stop

Section 5.3 Example: Text Models and Latent Semantic Analysis 118

words, because every document has lots of them and the counts don’t tell you
very much. Typical stop words include “and”, “the”, “he”, “she”, and so on.
These are left out of the vocabulary. Notice that the choice of stop words can be
quite important, and depends somewhat on the application. It’s often, but not
always, helpful to stem words – a process that takes “winning” to “win”, “hugely”
to “huge”, and so on. This isn’t always helpful, and can create confusion (for
example, a search for “stock” may be looking for quite different things than a
search for “stocking”). We will always use datasets that have been preprocessed
to produce word counts, but you should be aware that pre-processing this data is
hard and involves choices that can have significant effects on the application.

Assume we have a set of N documents we wish to deal with. We have removed
stop words, chosen a d dimensional vocabulary, and counted the number of times
each word appears in each document. The result is a collection of N d dimensional
vectors. Write the i’th vector xi (these are usually called word vectors). There
is one minor irritation here; I have used d for the dimension of the vector xi for
consistency with the rest of the text, but d is the number of terms in the vocabulary
not the number of documents.

The distance between two word vectors is usually a poor guide to the similarity
of two documents. One reason is quite small changes in word use might lead to
large differences between count vectors. For example, some authors might write
“car” when others write “auto”. In turn, two documents might have a large (resp.
small) count for “car” and a small (resp. large) count for “auto”. Just looking at
the counts would significantly overstate the difference between the vectors.

5.3.1 The Cosine Distance

The number of words in a document isn’t particularly informative. As an extreme
example, we could append a document to itself to produce a new document. The
new document would have twice as many copies of each word as the old one, so the
distance from the new document’s word vector to other word vectors would have
changed a lot. But the meaning of the new document wouldn’t have changed. One
way to overcome this nuisance is to normalize the vector of word counts in some
way. It is usual to normalize the word counts by the magnitude of the count vector.

The distance between two word count vectors, normalized to be unit vectors,
is

|| xi

||xi||
− xj

||xj||
||
2

= 2− 2
xT
i xj

||xi||||xj||
.

The expression

dij =
xT
i xj

||xi||||xj||
is often known as the cosine distance between documents. While this is widely
referred to as a distance, it isn’t really. If two documents are very similar, their
cosine distance will be close to 1; if they are really different, their cosine distance
will be close to -1. Experience has shown that a very effective measure of the
similarity of documents i and j is their cosine distance.

Section 5.3 Example: Text Models and Latent Semantic Analysis 119

5.3.2 Smoothing Word Counts

Measuring the cosine distance for word counts has problems. We have seen one
important problem already: if one document uses “car” and the other “auto”,
the two might be quite similar and yet have cosine distance that is close to zero.
Remember, cosine distance close to zero suggests they’re far apart. This is because
the word counts are misleading. If you count, say, “car” once, you should have a
non-zero count for “auto” as well. You could regard the zero count for “auto” as
noise. This suggests smoothing word counts.

Arrange the word vectors into a matrix in the usual way, to obtain

X =





xT
1

. . .
xT
N



 .

This matrix is widely called a document-term matrix (its transpose is called
a term-document matrix). This is because you can think of it as a table of
counts; each row represents a document, each column represents a term from the
vocabulary. We will use this object to produce a reduced dimension representation
of the words in each document; this will smooth the word counts. Take an SVD of
X , yielding

X = UΣVT .

Write Σr for the matrix obtained by setting all but the r largest singular values in
Σ to 0, and construct

X (r) = UΣrVT .

You should think of X (r) as a smoothing of X . The argument I used to justify
seeing principal components as a smoothing method (section 287) doesn’t work
here, because the noise model doesn’t apply. But a qualitative argument supports
the idea that we are smoothing. Each document that contains the word “car” should
also have a non-zero count for the word “automobile” (and vice versa) because the
two words mean about the same thing. The original matrix of word counts X
doesn’t have this information, because it relies on counting actual words. The
counts in X (r) are better estimates of what true word counts should be than one
can obtain by simply counting words, because they take into account correlations
between words.

Here is one way to think about this. Because word vectors in X (r) are com-
pelled to occupy a low dimensional space, counts “leak” between words with similar
meanings. This happens because most documents that use “car” will tend to have
many other in common with most documents that use “auto”. For example, it’s
highly unlikely that every document that uses “car” instead of “auto” also uses
“spanner” instead of “wrench”, and vice-versa. A good low dimensional representa-
tion will place documents that use a large number of words with similar frequencies
close together, even if they use some words with different frequencies; in turn, a
document that uses “auto” will likely have the count for that word go down some-
what, and the count for “car” go up. Recovering information from the SVD of X
is referred to as latent semantic analysis.

Section 5.3 Example: Text Models and Latent Semantic Analysis 120

We have that

(x
(r)
i)T =

r
∑

k=1

uikσkv
T
k =

r
∑

k=1

aikv
T
k

so each x
(r)
i is a weighted sum of the first r rows of VT .

A natural representation for the i’th document is

di =
x
(r)
i

||x(r)
i ||

.

The distance between di and dj is a good representation of the differences in
meaning of document i and document j (it’s 2− cosine distance.

A key application for latent semantic analysis is in search. Assume you have
a few query words, and you need to find documents that are suggested by those
words. You can represent the query words as a word vector q, which you can
think of as a very small document. We will find nearby documents by: computing
a low dimensional unit vector dq for the query word vector, then finding nearby
documents by an approximate nearest neighbor search on the document dataset.
Computing a dq for the query word vector is straightforward. We find the best
representation of q on the space spanned by {v1, . . . ,vr}, then scale that to have
unit norm.

Now V is orthonormal, so vT
k vm is 1 for k = m, and zero otherwise. This

means that

(x
(r)
i)T (x

(r)
j) = (

r
∑

k=1

aikv
T
k)(

r
∑

m=1

ajmvm) =
r
∑

k=1

aikajk.

But all the terms we are interested are inner products between document vectors.
In turn, this means we could adopt a low dimensional representation for documents
explicitly, and so, for example, use

di =
[ai1, . . . , air]
∑

k a
2
ik

.

This representation has a much lower dimension than the normalized smoothed
document vector, but contains exactly the same information.

5.3.3 Mapping NIPS Documents

At https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015, you
can find a dataset giving word counts for each word that appears at least 50 times
in the NIPS conference proceedings from 1987-2015, by paper. It’s big. There are
11463 distinct words in the vocabulary, and 5811 total documents. We will use
LSA to compute smoothed word counts in documents, and to map documents.

First, we need to deal with practicalities. Taking the SVD of a matrix this size
will present problems, and storing the result will present quite serious problems.
Storing X is quite easy, because most of the entries are zero, and a sparse matrix
representation will work. But the whole point of the exercise is that X (r) is not

https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015

Section 5.3 Example: Text Models and Latent Semantic Analysis 121

−0.4 −0.2 0.0 0.2 0.4

−
0

.2
0

.0
0

.2
0

.4

−0.4 −0.2 0.0 0.2 0.4

−
0

.2
0

.0
0

.2
0

.4

network

input

networks

neural

output

units

architecture

unit

inputs

weights

visual

cells

spikes

system

cortex

stimulus

neurons

cell

temporal

stimuli

model

models

account

visual

simoncelli

responses

figure

image

fit

capture

reinforcement

actions

agent

state

singh

action

learning

watkins

kaelbling

policy

approach

descriptors

distance

descriptor

feature

training

computed

features

nodes

evaluate

models

model

likelihood

data

posterior

prior

latent

inference

distribution

ghahramani

algorithm

proof

theorem

algorithms

let

bound

following

convex

loss

lemma

siam

proof

section

solve

solving

problem

matrix

following

let

theorem

sample

matrix

liu

dimensional

gaussian

data

log

annals

statistics

wainwright

FIGURE 5.4: On the left, a multidimensional scaling mapping the NIPS documents
into 2D. The distances between points represent (as well as an MDS can) the dis-
tances between normalized smoothed word counts. I have plotted every 10’th doc-
ument, to avoid crowding the plot. Superimposed on the figure is a grid, dividing
each coordinate at the 33% (resp. 66%) quantile. On the right, I have plotted the
10 words most strongly correlated with a document appearing in the corresponding
grid block (highest correlation at top left in block, lowest in bottom right). Each
block has quite different sets of words, but there is evidence that: changes in the co-
ordinates result in changes in document content; the dataset still has proper names
in it, though insiders might notice the names are in sensible places; the horizontal
coordinate seems to represent a practical-conceptual axis; and increasing values of
the vertical coordinate seems to represent an increasingly statistical flavor. This is
(rather rough) evidence that distances between smoothed normalized word counts do
capture aspects of meaning.

sparse, and this will have about 107 entries. Nonetheless, I was able to form an
SVD in R, though it took about 30 minutes on my laptop. Figure 5.5 shows a
multidimensional scaling of distances between normalized smoothed word counts.
You should notice that documents are fairly evenly spread over the space. To give
some meaning to the space, I have plotted the 10 words most strongly correlated
with a document appearing in the corresponding grid block (highest correlation
at top left in block, lowest in bottom right). Notice how the word clusters shade
significantly across the coordinates. This is (rather rough) evidence that distances
between smoothed normalized word counts do capture aspects of meaning.

5.3.4 Obtaining the Meaning of Words

It is difficult to know what a word means by looking at it, unless you have seen it
before or it is an inflected version of a word you have seen before. A high percent-
age of readers won’t have seen “peridot”, “incarnadine”, “whilom”, or “numbat”
before. If any of these are unfamiliar, simply looking at the letters isn’t going to
tell you what they mean. This means that unfamiliar words are quite different from

Section 5.3 Example: Text Models and Latent Semantic Analysis 122

original
smoothed

Smoothed vs. unsmoothed word counts, D1

Frequency rank

C
ou

nt

0
10

20
30

40
50

60 original
smoothed

Smoothed vs. unsmoothed word counts, D2

Frequency rank

C
ou

nt

0
10

20
30

40
50

60
FIGURE 5.5: Unsmoothed and smoothed word counts for two different documents,
where smoothing is by LSA to 1000 intermediate dimensions. Each figure shows
one document; the blue bars are unsmoothed counts and the red bars are smoothed
counts. The figure shows the counts for the 100 words that appear most frequently
in the whole dataset, ordered by the rank of the word count (most common word
first, etc.) Notice that generally, large counts tend to go down, and small counts
tend to go up, as one would expect.

unfamiliar pictures. If you look at a picture of something you haven’t seen before,
you’re likely to be able to make some sensible guesses as to what it is like (how
you do this remains very poorly understood; but that you can do this is everyday
experience).

We run into unfamiliar words all the time, but the words around them seem
to help us figure out what the unfamiliar words mean. As a demonstration, you
should find these texts, which I modified from sentences found on the internet,
helpful

• Peridot: “A sweet row of Peridot sit between golden round beads, strung from
a delicate plated chain” (suggesting some form of decorative stone).

• Incarnidine: “A spreading stain incarnadined the sea” (a color description of
some sort).

• Whilom: “Portions of the whilom fortifications have been converted into
promenades.” (a reference to the past).

• Numbat: “They fed the zoo numbats modified cat chow with crushed termite”
(some form of animal, likely not vegetarian, and perhaps a picky eater).

This is a demonstration of a general point. Words near a particular word give
strong and often very useful hints to that word’s meaning, an effect known as

Section 5.3 Example: Text Models and Latent Semantic Analysis 123

distributional semantics. Latent semantic analysis offers a way to exploit this
effect to estimate representations of word meaning.

Each row of X (r) is a smoothed count of the number of times each word
appears in a single document. In contrast, each column is a smoothed count of the
number of times a single word appears in each document. Imagine we wish to know
the similarity in meaning between two words. Represent the i’th word by the i’th
column of X (r), which I shall write as wi, so that

X (r) = [w1, . . . ,wd] .

Using a word more often (or less often) should likely not change its meaning. In
turn, this means we should represent the i’th word by

ni =
wi

||wi||

and the distance between the i’th and j’th words is the distance between ni and
nj . This distance gives quite a good representation of word meaning, because two
words that are close in this distance will tend to appear in the same documents.
For example, “auto” and “car” should be close. As we saw above, the smoothing
will tend to reduce counts of “auto” and increase counts of “car” for documents
that have only “auto”, and so on. In turn, this means that “auto” will tend to
appear in the same documents as “car”, meaning that the distance between their
normalized smoothed counts should be small.

We have that

(w
(r)
i) =

r
∑

k=1

(σkvki)uk =

r
∑

k=1

bikuk

so each w
(r)
i is a weighted sum of the first r columns of U .

Now U is orthonormal, so uT
k um is 1 for k = m, and zero otherwise. This

means that

(w
(r)
i)T (w

(r)
j) = (

r
∑

k=1

biku
T
k)(

r
∑

m=1

bjmum) =

r
∑

k=1

bikbjk.

But all the terms we are interested are inner products between word vectors. In
turn, this means we could adopt a low dimensional representation for words explic-
itly, and so, for example, use

ni =
[bi1, . . . , bir]
∑

k b
2
ik

.

This representation has a much lower dimension than the normalized smoothed
word vector, but contains exactly the same information. This representation of
a word is an example of a word embedding — a representation that maps a
word to a point in some high dimensional space, where embedded points have good
properties. In this case, we seek an embedding that places words with similar
meanings near one another.

Section 5.3 Example: Text Models and Latent Semantic Analysis 124

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

model

learning

data

algorithm

set

function

using

time

figure

number

problem

models

used

training

given

also
results

distribution

network
based

matrix

neuralfirst

information

use

error

method
linear

input

state

different

case
probability

methods
space

algorithms

performance
approach

parameters
networks

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

value

image

random

large

vector
section

let

order

functions
log

features

optimal

analysis

gaussian

following

example

see
show

since

newmaywork values

kernel

feature

point

shown

well

bound

test

class

theorem

output

noisevariables

thus

points

classification

size

step

FIGURE 5.6: On the left, the 40 most frequent words in the NIPS dataset, plotted
using a multidimensional scaling of the document frequencies, smoothed using latent
semantic analysis. On the right, the next 40 most frequent words, plotted in the
same way. I used 1000 dimensions for the smoothing. Words that have a similar
pattern of incidence in documents appear near one another.

5.3.5 Mapping NIPS Words

LSA does not give a particularly strong word embedding, as this example will
show. I used the dataset of section 5.3.3, and computed a representation on 1000
dimensions. Figure 5.5 shows a multidimensional scaling (using the method of
section 5.2.3) onto two dimensions, where distances between points are given by
distances between the normalized vectors of section 5.3.4. I have shown only the
top 80 words, so that the figures are not too cluttered to read.

Some results are natural. For example, “used” and “using” lie close to one
another, as do “algorithm” and “algorithms”; “network” and “networks”; and “fea-
tures” and “feature”. This suggests the data wasn’t stemmed or even pre-processed
to remove plurals. Most of the pairs that seem to make sense (and aren’t explained
as plurals or inflections) seem to have more to do with phrases than with meaning.
For example, “work” and “well” are close (“work well”); “problem” and “case”
(“problem case”); “probability” and “distribution” (“probability distribution”).
Some pairs are close because the words likely appear near one another in common
phrases. So “classification” and “feature” suggest “feature based classification” or
“classification by feature”.

This tendency can be seen in the k-nearest neighbors of embedded words, too.
Table 5.1 shows the six nearest neighbors for the 20 most frequent words. But there
is evidence that the embedding is catching some kind of semantics, too. Notice that
“network”, “neural”, “units” and “weights” are close, as they should be. Similarly,
“distribution”, “distributions” and “probability” are close, and so are “algorithm”
and “problem”.

Embedding words in a way that captures semantics is a hard problem. Good

Section 5.3 Example: Text Models and Latent Semantic Analysis 125

model models also using used figure parameters
learning also used using machine results use
data using also used use results set
algorithm algorithms problem also set following number
set also given using results used use
function functions also given using defined paper
using used use also results given first
time also first given used university figure
figure shown shows used using also different
number also results set given using used
problem problems following paper also set algorithm
models model using also used parameters use
used using use also results first university
training used set using test use results
given also using set results university first
also results using use used well first
results also using used paper use show
distribution distributions given probability also university using
network networks neural input output units weights
based using also use used results given

TABLE 5.1: The leftmost column gives the top 20 words, by frequency of use in the
NIPS dataset. Each row shows the seven closest words to each query word using
the cosine distance applied to document counts of the word smoothed using latent
semantic analysis. I used 1000 dimensions. Words that have similar patterns of
use across documents do have important similarities, but these are not restricted to
similarities of meaning. For example, “algorithm” is very similar to “algorithms”,
and also to “following” (likely because the phrase “following algorithm” is quite
common) and to “problem” (likely because it’s natural to have an algorithm to solve
aproblem).

recent algorithms use finer measures of word similarity than the pattern of doc-
uments a word appears in. Strong recent methods, like Word2Vec or Glove, pay
most attention to the words that appear near the word of interest, and construct
embeddings that try to explain such similarity statistics. These methods tend to
be trained on very large datasets, too; much larger than this one.

5.3.6 TF-IDF

The raw count of the number of times a word appears in a document may not
be the best value to use in a term-document matrix. If a word is very common
in all documents, then the fact that it appears often in a given document isn’t
that informative about what the document means. If a word appears only in a few
documents, but is quite common in those documents, the number of times the word
appears may understate how important it is. For example, in a set of documents
about small pets, a word like “cat” is likely to appear often in each document; a
word like “tularemia” is unlikely to appear often in many documents, but will tend
to be repeated in a document if it appears. You can then argue that observing “cat”
five times is a lot less informative about the document than observing “tularemia”
five times is. Much time and trouble has been spent on making this very appealing

Section 5.3 Example: Text Models and Latent Semantic Analysis 126

argument more rigorous, without significant benefits that I’m aware of.
All this suggests that you might use a modified word score. The standard is

known as TF-IDF (or, very occasionally, term frequency-inverse document

frequency). Write cij for the number of times the i’th word appears in the j’th
document, N for the number of documents, and Ni for the number of documents
that contain at least one instance of the i’th word. Then one TF-IDF score is

cij log
N

Ni

(where we exclude cases where Ni = 0 because the term then doesn’t appear in any
document). Notice that a term appears in most documents, the score is about the
same as the count; but if the term appears in few documents, the score is rather
larger than the count. Using this score, rather than a count, tends to produce
improved behavior from systems that use term-document matrices. There are a
variety of ingenious variants of this score – the wikipedia page lists many – each of
which tends to produce changes in systems (typically, some things get better and
some get worse). Don’t forget the logarithm, which got dropped from the acronym
for no reason I know.

Section 5.4 You should 127

5.4 YOU SHOULD

5.4.1 remember these definitions:

5.4.2 remember these terms:

low rank approximation . 108
singular value decomposition . 108
SVD . 108
singular values . 109
principal coordinate analysis . 114
multidimensional scaling . 114
Likert scales . 117
bag-of-words . 117
stop words . 118
stem . 118
word vectors . 118
cosine distance . 118
document-term matrix . 119
term-document matrix . 119
latent semantic analysis . 119
distributional semantics . 123
word embedding . 123
TF-IDF . 126
term frequency-inverse document frequency 126

5.4.3 remember these facts:

The SVD decomposes a matrix in a useful way 109
The SVD yields principal components 111
The SVD smoothes a data matrix . 112

5.4.4 remember these procedures:

Singular Value Decomposition . 109
Principal Coordinate Analysis . 115

5.4.5 be able to:

• Use a singular value decomposition to obtain principal components.

Section 5.4 You should 128

PROBLEMS

5.1. You have a dataset of N vectors xi in d-dimensions, stacked into a matrix X .
This dataset does not have zero mean. The data xi is noisy. We use a simple
noise model. Write x̃i for the true underlying value of the data item, and ξi
for the value of a normal random variable with zero mean and covariance σ2I.
Then we use the model

xi = x̃i + ξi.

In matrices, we write
X = X̃ + Ξ.

We will assume that mean ({ξ}) = 0 and Covmat ({ξ}) = σ2I.
(a) Show that our assumptions mean that the row rank of Ξ is d. Do this by

contradiction: show if the row rank of Ξ is r < d, there is some rotation U
so that each Uξ has zeros in the last d− r components; now think about
the covariance matrix of Uξ.

(b) Assume that the row rank of X̃ is s << d. Show that the row rank of X is
d. Do this by noticing that the noise is independent of the dataset. This
means that mean

({

xξT
})

= mean ({x})mean
({

ξT
})

= 0. Now show
that

Covmat ({x}) = Covmat ({x̃}) + σ2I.

Now use the results of the previous exercise
(c) We now have a geometric model for both X̃ and X . The points in X̃ lie on

some hyperplane that passes through the origin in d-dimensional space.
This hyperplane has dimension s.

(d) The points in X lie on a “thickened” version of this hyperplane which has
dimension d because the matrix has rank d. Show that the variance of the
data in any direction normal to the original hyperplane is σ2.

(e) Use the previous subexercises to argue that a rank s approximation of X
lies closer to X̃ than X does. Use the Frobenius norm.

5.2. Write D(2) for the matrix whose i,j’th component is

D
(2)
ij = (xi − xj)

T (xi − xj) = xi · xi − 2xi · xj + xj · xj

where mean ({x}) = 0. Now write

A =
[

I −
1

N
11T

]

.

Show that

−
1

2
AD(2)(x)AT = XXT .

5.3. You have a dataset of N vectors xi in d-dimensions, stacked into a matrix
X , and wish to build an s dimensional dataset Ys so that YsY∫

T minimizes

||YsY∫
T − XXT ||F . Form an SVD, to get

X = UΣVT

and write
Y = UsΣs

(the subscript-s notation is in the chapter).
(a) Show that

||YsY∫
T − XXT ||F = ||Σ2

s − Σ2 ||F .

Explain why this means that Ys is a solution.

Section 5.4 You should 129

(b) For any s × s orthonormal matrix R, show that YR = UsΣsR is also a
solution. Interpret this geometrically.

PROGRAMMING EXERCISES

5.4. At https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015,
you can find a dataset giving word counts for each word that appears at least 50
times in the NIPS conference proceedings from 1987-2015, by paper. It’s big.
There are 11463 distinct words in the vocabulary, and 5811 total documents.
We will investigate simple document clustering with this dataset.
(a) Reproduce figure 5.5 using approximations with rank 100, 500, and 2000.

Which is best, and why?
(b) Now use a TF-IDF weight to reproduce figure 5.5 using approximations

with rank 100, 500, and 2000. Which is best, and why?
5.5. At https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015,

you can find a dataset giving word counts for each word that appears at least
50 times in the NIPS conference proceedings from 1987-2015, by paper. It’s
big. There are 11463 distinct words in the vocabulary, and 5811 total docu-
ments. We will investigate simple distributional semantics using this dataset.

(a) Reproduce figure 5.6 using approximations with rank 100, 500, and 2000.
Which is best, and why?

(b) Now use a TF-IDF weight to reproduce figure 5.6 using approximations
with rank 100, 500, and 2000. Which is best, and why?

5.6. Choose a state. For the 15 largest cities in your chosen state, find the distance
between cities and the road mileage between cities. These differ because of
the routes that roads take; you can find these distances by careful use of the
internet. Prepare a map showing these cities on the plane using principal
coordinate analysis for each of these two distances. How badly does using the
road network distort to make a map distort the state? Does this differ from
state to state? Why?

5.7. CIFAR-10 is a dataset of 32x32 images in 10 categories, collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton. It is often used to evaluate
machine learning algorithms. You can download this dataset from https://
www.cs.toronto.edu/∼kriz/cifar.html.
(a) For each category, compute the mean image and the first 20 principal

components. Plot the error resulting from representing the images of each
category using the first 20 principal components against the category.

(b) Compute the distances between mean images for each pair of classes. Use
principal coordinate analysis to make a 2D map of the means of each
categories. For this exercise, compute distances by thinking of the images
as vectors.

(c) Here is another measure of the similarity of two classes. For class A and
class B, define E(A → B) to be the average error obtained by represent-
ing all the images of class A using the mean of class A and the first 20
principal components of class B. This should tell you something about
the similarity of the classes. For example, imagine images in class A con-
sist of dark circles that are centered in a light image, but where different
images have circles of different sizes; images of class B are dark on the
left, light on the right, but different images change from dark to light
at different vertical lines. Then the mean of class A should look like a

https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Section 5.4 You should 130

fuzzy centered blob, and its principal components make the blob bigger
or smaller. The principal components of class B will move the dark patch
left or right. Encoding an image of class A with the principal components
of class B should work very badly. But if class C consists of dark circles
that move left or right from image to image, encoding an image of class
C using A’s principal components might work tolerably. Now define the
similarity between classes to be (1/2)(E(A → B) + E(B → A)). Use
principal coordinate analysis to make a 2D map of the classes. Compare
this map to the map in the previous exercise – are they different? why?

C H A P T E R 6

Canonical Correlation Analysis

In many applications, one wants to associate one kind of data with another.
For example, every data item could be a video sequence together with its sound
track. You might want to use this data to learn to associate sounds with video,
so you can predict a sound for a new, silent, video. You might want to use this
data to learn how to read the (very small) motion cues in a video that result from
sounds in a scene (so you could, say, read a conversation off the tiny wiggles in the
curtain caused by the sound waves). As another example, every data item could
be a captioned image. You might want to predict words from pictures to label the
pictures, or predict pictures from words to support image search. The important
question here is: what aspects of the one kind of data can be predicted from the
other kind of data?

In each case, we deal with a dataset of N pairs, pi = [xi,yi]
T
, where xi is a dx

dimensional vector representing one kind of data (eg words; sound; image; video)
and yi is a dy dimensional vector representing the other kind. I will write {x} for
the x part, etc., but notice that our agenda of prediction assumes that the pairing
is significant — if you could shuffle one of the parts without affecting the outcome
of the algorithm, then you couldn’t predict one from the other.

We could do a principal components analysis on {p}, but that approach misses
the point. We are primarily interested in the relationship between {x} and {y} and
the principal components capture only the major components of variance of {p}.
For example, imagine the xi all have a very large scale, and the yi all have a very
small scale. Then the principal components will be determined by the xi. We
assume that {x} and {y} have zero mean, because it will simplify the equations
and is easy to achieve. There is a standard procedure for dealing with data like
this. This is quite good at, say, predicting words to attach to pictures. However, it
can result in a misleading analysis, and I show how to check for this.

6.1 CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis (or CCA) seeks linear projections of {x} and {y} such
that one is easily predicted from the other. A projection of {x} onto one dimension
can be represented by a vector u. The projection yields a dataset

{

uTx
}

whose
i’th element is uTxi. Assume we project {x} onto u and {y} onto v. Our ability
to predict one from the other is measured by the correlation of these two datasets.
So we should look for u, v so that

corr
({

uTx,vTy
})

is maximized. If you are worried that a negative correlation with a large absolute
value also allows good prediction, and this isn’t accounted for by the expression,
you should remember that we get to choose the sign of v.

131

Section 6.1 Canonical Correlation Analysis 132

We need some more notation. Write Σ for the covariance matrix of {p}. Recall
pi = [xi,yi]

t
. This means the covariance matrix has a block structure, where one

block is covariance of x components of {p} with each other, another is covariance
of y components with each other, and the third is covariance of x components with
y components. We write

Σ =

[

Σxx Σxy

Σyx Σyy

]

=

[

x− x covariance x− y covariance
y − x covariance y − y covariance

]

.

We have that

corr
({

uTx,vTy
})

=
uTΣxyv

√

uTΣxxu
√

vTΣyyv

and maximizing this ratio will be hard (think about what the derivatives look like).
There is a useful trick. Assume u∗, v∗ are values at a maximum. Then they must
also be solutions of the problem

Max uTΣxyv Subject to uTΣxxu = c1 and vTΣyyv = c2

(where c1, c2 are positive constants of no particular interest). This second problem
is quite easy to solve. The Lagrangian is

uTΣxyv − λ1(u
TΣxxu− c1)− λ2(v

TΣyyv − c2)

so we must solve
Σxyv − λ1Σxxu = 0
ΣT

xyu− λ2Σyyv = 0

For simplicity, we assume that there are no redundant variables in x or y, so that
Σxx and Σyy are both invertible. We substitute (1/λ1)Σ

−1
xxΣxyv = u to get

Σ−1
yy Σ

T
xyΣ

−1
xxΣxyv = (λ1λ2)v.

Similar reasoning yields

Σ−1
xxΣxyΣ

−1
yy Σ

T
xyu = (λ1λ2)u.

So u and v are eigenvectors of the relevant matrices. But which eigenvectors?
Notice that

uTΣxyv = uT (λ1Σxxu) =
(

λ2v
TΣyy

)

v

so that

corr
({

uTx,vTy
})

=
uTΣxyv

√

uTΣxxu
√

vTΣyyv
=
√

λ1

√

λ2

meaning that the eigenvectors corresponding to the largest eigenvalues give the
largest correlation directions, to the second largest give the second largest correla-
tion directions, and so on. There are min(dx, dy) directions in total. The values of
corr

({

uTx,vTy
})

for the different directions are often called canonical correla-

tions. The projections are sometimes known as canonical variables.

Section 6.1 Canonical Correlation Analysis 133

Worked example 6.1 Anxiety and wildness in mice

Compute the canonical correlations between indicators of anxiety and of wild-
ness in mice, using the dataset at http://phenome.jax.org/db/q?rtn=projects/
details&sym=Jaxpheno7

Solution: You should read the details on the web page that publishes the
data. The anxiety indicators are: transfer arousal, freeze, activity,

tremor, twitch, defecation jar, urination jar, defecation arena,

urination arena, and the wildness indicators are: biting, irritability,

aggression, vocal, finger approach. After this, it’s just a question of
finding a package and putting the data in it. I used R’s cancor, and found the
following five canonical correlations: 0.62, 0.53, 0.40, 0.35, 0.30. You shouldn’t
find the presence of strong correlations shocking (anxious mice should be
bitey), but we don’t have any evidence this isn’t an accident. The example in
the subsection below goes into this question in more detail.
This data was collected by The Jackson Laboratory, who ask it be cited as:
Neuromuscular and behavioral testing in males of 6 inbred strains of mice.
MPD:Jaxpheno7. Mouse Phenome Database web site, The Jackson Laboratory,
Bar Harbor, Maine USA. http://phenome.jax.org

Procedure: 6.1 Canonical Correlation Analysis

Given a dataset of N pairs, pi = [xi,yi]
T
, where xi is a dx dimensional

vector representing one kind of data (eg words; sound; image; video)
and yi is a dy dimensional vector representing the other kind. Write Σ
for the covariance matrix of {p}. We have

Σ =

[

Σxx Σxy

Σyx Σyy

]

.

Write uj for the eigenvectors of

Σ−1
xxΣxyΣ

−1
yy Σ

T
xy

sorted in descending order of eigenvalue. Write vj for the eigenvectors
of

Σ−1
yy Σ

T
xyΣ

−1
xxΣxy

sorted in descending order of eigenvalue. Then uT
1 xi is most strongly

correlated with v1yi; u
T
2 xi is second most strongly correlated with v2yi;

and so on, up to j = min(dx, dy).

http://phenome.jax.org/db/q?rtn=projects/details&sym=Jaxpheno7
http://phenome.jax.org/db/q?rtn=projects/details&sym=Jaxpheno7
http://phenome.jax.org

Section 6.2 Example: CCA of Words and Pictures 134

0 50 100 150 200 250
Rank

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
va

lu
e

Features
Annotations

0 50 100 150 200 250
Rank

0

0.2

0.4

0.6

0.8

1

V
al

ue

FIGURE 6.1: On the left, the 291 largest eigenvalues of the covariance for features
and for word vectors, normalized by the largest eigenvalue in each case, plotted
against rank. Notice in each case relatively few eigenvalues capture most of the
variance. The word vectors are 291 dimensional, so this figure shows all the vari-
ances for the word vectors, but there are a total of 3000 eigenvalues for the features.
On the right, the canonical correlations for this data set. Notice that there are some
rather large correlations, but quite quickly the values are small.

6.2 EXAMPLE: CCA OF WORDS AND PICTURES

CCA is commonly used to find good matching spaces. Here is an example. Assume
we have a set of captioned images. It is natural to want to build two systems:
given an image, caption it; and given a caption, produce a good image. There
is a very wide range of methods that have been deployed to attack this problem.
Perhaps the simplest – which is suprisingly effective – is to use a form of nearest
neighbors in a cleverly chosen space. We have N images described by feature
vectors xi, corresponding to N captions described by word vectors yi. The i’th
image corresponds to the i’th caption. The image features have been constructed
using specialized methods (there are some constructions in chapter 287, but coming
up with the best construction is still a topic of active research, and way outside the
scope of this book). The word vectors are like those of section 5.3.

We would like to map the word vectors and the image features into a new
space. We will assume that the features have extracted all the useful properties of
the images and captions, and so a linear map of each is sufficient. If an image and
a caption correspond, we would like their feature vectors to map to points that are
nearby. If a caption describes an image very poorly, we would like its feature vector
to map far away from where the image’s feature vector maps.

Assume we have this new space. Then we could come up with a caption for
a new image by mapping the image into the space, and picking the nearest point
that represents a caption. We could come up with an image for a new caption by
mapping the caption into the space, then picking the nearest point that represents
an image. This strategy (with some tuning, improvements, and so on) remains
extremely hard to beat.

For this example, I will use a dataset called the IAPR TC-12 benchmark,
which is published by ImageCLEF. A description of the dataset can be found at
https://www.imageclef.org/photodata. There are 20,000 images, each of which has

https://www.imageclef.org/photodata

Section 6.2 Example: CCA of Words and Pictures 135

FIGURE 6.2: Four images with true (in red) and predicted (green) label words. Words
are predicted using a CCA of image features and word vectors, as described in the
text. Images are from a test set, not used in constructing the CCA. The yellow
box gives the cosine distance between the predicted and true word vectors, smoothed
by projection to a 150 dimensional space as in section 287. For these images, the
cosine distances are reasonably close to one, and the predictions are quite good.

FIGURE 6.3: Four images with true (in red) and predicted (green) label words. Words
are predicted using a CCA of image features and word vectors, as described in the
text. Images are from a test set, not used in constructing the CCA. The yellow
box gives the cosine distance between the predicted and true word vectors, smoothed
by projection to a 150 dimensional space as in section 287. For these images, the
cosine distances are rather far from one, and the predictions are not as good as
those in figure 6.2.

Section 6.2 Example: CCA of Words and Pictures 136

FIGURE 6.4: Four images with true (in red) and predicted (green) label words. Words
are predicted using a CCA of image features and word vectors, as described in the
text. Images are from a test set, not used in constructing the CCA. The yellow
box gives the cosine distance between the predicted and true word vectors, smoothed
by projection to a 150 dimensional space as in section 287. For these images, the
cosine distances are rather close to zero, and the predictions are bad.

a text annotation. The annotations use a vocabulary of 291 words, and the word
vectors are binary (ie word is there or not). I used image features published by
Mathieu Guillaumin, at https://lear.inrialpes.fr/people/guillaumin/data.php. These
features are not the current state-of-the-art for this problem, but they’re easily
available and effective. There are many different features available at this location,
but for these figures, I used the DenseSiftV3H1 feature set. I matched test im-
ages to training captions using the 150 canonical variables with largest canonical
correlations.

The first thing you should notice (Figure 6.1) is that both image features and
text behave as you should expect. There are a small number of large eigenvalues
in the covariance matrix, and a large number of small eigenvalues. Because the
scaling of the features is meaningless, I have plotted the eigenvalues as fractions
of the largest value. Notice also that the first few canonical correlations are large
(Figure 6.1).

There are two ways to evaluate a system like this. The first is qualitative, and
if you’re careless or optimistic, it looks rather good. Figure 6.2 shows a set of images
with true word labels and labels predicted using the nearest neighbors procedure.
Predicted labels are in green, and true labels are in red. Mostly, these labellings
should look quite good to you. Some words are missing from the predictions, true,
but most predictions are about right.

A quantitative evaluation reflects the “about right” sense. For each image, I
formed the cosine distance between the predicted word vector and the true word
vector, smoothed by projection to a 150 dimensional space. This is the number in

https://lear.inrialpes.fr/people/guillaumin/data.php

Section 6.3 Example: CCA of Albedo and Shading 137

0 50 100 150 200 250 300 350 400
Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

os
in

e
di

st
an

ce
Cosine distance between predicted

and true label sets, train data
dim=50
dim=100
dim=150
dim=200
dim=250

0 500 1000 1500 2000

Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

u
e

Cosine distance between predicted

and true label sets, test data

FIGURE 6.5: Left: all values of cosine distance between predicted and true word
labels, sorted from best to worst, for the CCA method of the text, for different
numbers of canonical variables, for the training data. The distances are fairly good,
and 150 seems like a reasonable choice of dimension. On the right, cosine distances
between predicted and true for test data; this looks much worse. I have marked the
regions where the “good”, “medium” and “bad” figures come from. Note that most
values are bad – predicting words from images is hard. Accurate predictions require
considerably more sophisticated feature constructions than we have used here.

the yellow box. These numbers are fairly close to one for Figure 6.2, which is a
good sign. But Figures 6.3 and 6.4 suggest real problems. There are clearly images
for which the predictions are poor. In fact, predictions are poor for most images,
as Figure 6.5 shows. This figure gives the cosine distance between predicted and
true labels (again, smoothed by projection to a 150 dimensional space), sorted from
best to worst, for all test images. Most produce really bad label vectors with very
low cosine distance.

Improving this is a matter of image features. The features I have used here
are outdated. I used them because it was easy to get many different sets of features
for the same set of images (yielding some rather interesting exercises). Modern
feature constructions allow improved labelling of images, but modern systems still
tend to use CCA, although often in more complex forms than we can deal with
here.

6.3 EXAMPLE: CCA OF ALBEDO AND SHADING

Here is a classical computer vision problem. The brightness of a diffuse (=dull,
not shiny or glossy) surface in an image is the product of two effects: the albedo

(the percentage of incident light that it reflects) and the shading (the amount of
light incident on the surface). We will observe the brightness in an image, and the
problem is to recover the albedo and the shading separately. This is a problem that
dates back to the early 70’s, but still gets regular and significant attention in the
computer vision literature, because it’s hard, and because it seems to be important.

We will confine our discussion to smooth (=not rough) surfaces, to prevent

Section 6.3 Example: CCA of Albedo and Shading 138

the complexity spiralling out of control. Albedo is a property of surfaces. A dark
surface has low albedo (it reflects relatively little of the light that falls on it) and a
light surface has high albedo (it reflects most of the light that falls on it). Shading
is a property of the geometry of the light sources with respect to the surface. When
you move an object around in a room, its shading may change a lot (though people
are surprisingly bad at noticing this), but its albedo doesn’t change at all. To
change an object’s albedo, you need (say) a marker or paint. All this suggests that
a CCA of albedo against shading will suggest there is no correlation.

Because this is a classical problem, there are datasets one can download.
There is a very good dataset giving the albedo and shading for images, collected
by Roger Grosse, Micah K. Johnson, Edward H. Adelson, and William T. Freeman
at http://www.cs.toronto.edu/∼rgrosse/intrinsic/. These images show individual ob-
jects on black backgrounds, and there are masks identifying object pixels. For each
image in the dataset, there is an albedo map (basically, an image of the albedos)
and a shading map. These maps are constructed by clever photographic techniques.
I constructed random 11× 11 tiles of albedo and shading for each of the 20 objects
depicted. I chose 20 tiles per image (so 400 in total), centered at random locations,
but chosen so that every pixel in a tile lies on an object pixel. The albedo tiles I
chose for a particular image were in the same locations in that image as the shading
tiles — each pair of tiles represents a pair of albedo-shading in some image patch.
I then reshaped each tile into a 121 dimensional vector, and computed a CCA. The
top 10 values of canonical correlations I obtained were: 0.96, 0.94, 0.93, 0.93, 0.92,
0.92, 0.91, 0.91, 0.90, 0.88.

If this doesn’t strike you as ridiculous, then you should check you understand
the definitions of albedo and shading. How could albedo and shading be correlated?
Do people put dark objects in light places, and light objects in dark places? The
correct answer is that they are not correlated, but that this analysis has missed one
important, nasty point. The objective function we are maximizing is a ratio

corr
({

uTx,vTy
})

=
uTΣxyv

√

uTΣxxu
√

vTΣyyv
.

Now look at the denominator of this fraction, and recall our work on PCA. The
whole point of PCA is that there are many directions u such that uTΣxxu is small
— these are the directions that we can drop in building low dimensional models.
But now they have a potential to be a significant nuisance. We could have the
objective function take a large value simply because the terms in the denominator
are very small. This is what happens in the case of albedo and shading. You can
check this by looking at Figure 6.6, or by actually looking at the size of the canonical
correlation directions (the u’s and v’s). You will find that, if you compute u and
v using the procedure I described, these vectors have large magnitude (I found
magnitudes of the order of 100). This suggests, correctly, that they’re associated
with small eigenvalues in Σxx and Σyy.

Just a quick check with intuition and an image tells us that these canonical
correlations don’t mean what we think. But this works only for a situation where
we have intuition, etc. We need a test that tells whether the large correlation values
have arisen by accident.

http://www.cs.toronto.edu/~rgrosse/intrinsic/

Section 6.3 Example: CCA of Albedo and Shading 139

Albedo tiles (10x10) Shading tiles (10x10) Albedo CC’s (5x5) Shading CC’s (5x5)

FIGURE 6.6: On the left, a 10 × 10 grid of tiles of albedo (far left) and shading
(center left), taken from Grosse et al’s data set. The position of the tiles is keyed,
so (for example) the albedo tile at 3, 5 corresponds to the shading tile at 3, 5. On
the right, the first 25 canonical correlation directions for albedo (center right)
and shading (far right). I have reshaped these into tiles and zoomed them. The
scale is smallest value is black, and largest white. These are ordered so the pair
with highest correlation is at the top left, next highest is one step to the right, etc.
You should notice that these directions do not look even slightly like the patterns in
the original tiles, or like any pattern you expect to encounter in a real image. This
is because they’re not: these are directions that have very small variance.

6.3.1 Are Correlations Significant?

There is an easy and useful strategy for testing this. If there really are meaningful
correlations between the {x} and {y}, they should be disrupted if we reorder the
datasets. So if something important is changed by permuting one dataset, there is
evidence that there is a meaningful correlation. The recipe is straightforward. We
choose a method to summarize the canonical correlations in a number (this is a
statistic; if you don’t remember the term, it’s in the backup material). In the case
of canonical correlations, the usual choice is Wilks’ lambda (or Wilks’ λ if you’re
fussy). Write ρi for the i’th canonical correlation. Wilks’ lambda is

i=min(dx,dy)
∏

i=1

(1− ρ2i).

Notice if there are a lot of strong correlations, we should get a small number. We
now compute that number for the dataset we have. We then construct a collection
of new datasets by randomly reordering the items in {y}, and for each we compute
the value of the statistic. This gives an estimate of the distribution of values of
Wilks’ lambda available if there is no correlation. We then ask what fraction of the
reordered datasets have an even smaller value of Wilk’s lambda than the observed
value. If this fraction is small, then it is unlikely that the correlations we observed
arose by accident. All this is fairly easily done using a package (I used CCP in R).

Figure 6.7 shows what happens for the mouse canonical correlation of exam-
ple 6.1. You should notice that this is a significance test, and follows the usual
recipe for such tests except that we estimate the distribution of the statistic empir-
ically. Here about 97% of random permutations have a larger value of the Wilks’

Section 6.3 Example: CCA of Albedo and Shading 140

Permutation distribution

stat

D
en

si
ty

0.2 0.3 0.4 0.5 0.6 0.7

0
1

2
3

4
5

test= Wilks , original test statistic= 0.297 , p= 0.023

FIGURE 6.7: A histogram of values of Wilks’ lambda obtained from permuted versions
of the mouse dataset of example 6.1. The value obtained for the original dataset is
shown by the vertical line. Notice that most values are larger (about 97% of values),
meaning that we would see the canonical correlation values we see only about once
in 30 experiments if they were purely a chance effect. There is very likely a real
effect here.

lambda than that of the original data, which means that we would see the canonical
correlation values we see only about once in 30 experiments if they were purely a
chance effect. You should read this as quite good evidence there is a correlation.
As figure 6.8 shows, there is good evidence that the correlations for the words and
pictures data of section 6.2 are not accidental, either.

But the albedo-shading correlations really are accidental. Figure 6.9 shows
what happens for albedo and shading. The figure is annoying to interpret, because
the value of the Wilks’ lambda is extremely small; the big point is that almost
every permutation of the data has an even smaller value of the Wilks’ lambda —
the correlations are entirely an accident, and are of no statistical significance.

Remember this: A canonical correlation analysis can mislead you.
The problem is the division in the objective function. If you’re working
with data where many principal components have very small variances, you
can get large correlations as a result. You should always check whether the
CCA is actually telling you something useful. A natural check is the Wilks’
lambda procedure.

Section 6.4 You should 141

3.8 4 4.2 4.4 4.6 4.8 5 5.2
Wilks lambda 10-16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fr
eq

ue
nc

y

Wilks lambda for shuffled word/picture
data, 30 shuffles

FIGURE 6.8: A histogram of values of Wilks’ lambda obtained from permuted versions
of the word and picture dataset of section 6.2. I computed the value for the first 150
canonical variates, and used 30 shuffles (which takes quite a long time). The value
for the true dataset is 9.92e− 25, which suggests very strongly that the correlations
are not accidental.

6.4 YOU SHOULD

6.4.1 remember these definitions:

6.4.2 remember these terms:

canonical correlations . 132
canonical variables . 132
albedo . 137
shading . 137
Wilks’ lambda . 139

6.4.3 remember these facts:

CCA can mislead you . 140

6.4.4 remember these procedures:

Canonical Correlation Analysis . 133

6.4.5 be able to:

• Use a canonical correlation analysis to investigate correlations between two
types of data.

• Use Wilks’ lambda to determine whether correlations are the result of real
effects.

PROGRAMMING EXERCISES

6.1. We investigate CCA to predict words from pictures using Mathieu Guillaumin’s

Section 6.4 You should 142

Permutation distribution

stat

D
en

si
ty

0e+00 1e−21 2e−21 3e−21 4e−21 5e−21

0e
+

00
1e

+
21

2e
+

21
3e

+
21

4e
+

21
5e

+
21

test= Wilks , original test statistic= 0.000000000000000000000000138 , p= 0.826

FIGURE 6.9: A histogram of values of Wilks’ lambda obtained from permuted versions
of the 400 tile albedo shading dataset discussed in the text. The value obtained for
the original dataset is shown by the vertical line, and is really tiny (rather less than
1e-21). But rather more than four-fifths (82.6%) of the values obtained by permuting
the data are even tinier, meaning that we would see the canonical correlation values
we see or smaller about 4 in every 5 experiments if they were purely a chance effect.
There is no reason to believe the two have a correlation.

published features, available at https://lear.inrialpes.fr/people/guillaumin/data.
php.
(a) Reproduce Figure 6.1 and Figure 6.5 of section 6.2, using the same features

and the same number of canonical variables.
(b) One reasonable summary of performance is the mean of the cosine distance

between true and predicted label vectors over all test images. This number
will vary depending on how many of the canonical variables you use to
match. Plot this number over the range [1 . . . 291], using at least 10 points.

(c) Based on the results of the previous subexercise, choose a good number
of canonical variables. For the 30 most common words in the vocabulary,
compute the total error rate, the false positive rate, and the false negative
rate for predictions over the whole test set. Does this suggest any way to
improve the method?

6.2. We investigate image features using Mathieu Guillaumin’s published features,
available at https://lear.inrialpes.fr/people/guillaumin/data.php.
(a) Compute a CCA of the GIST features against the DenseSiftV3H1 features,

and plot the sorted canonical correlations. You should get a figure like
figure ??. Does this suggest that different feature sets encode different
aspects of the image?

(b) If you concatenate GIST features with DenseSiftV3H1 features, do you
get improved word predictions?

6.3. Here is a much more elaborate exercise investigating CCA to predict words
from pictures using Mathieu Guillaumin’s published features, available at https://

https://lear.inrialpes.fr/people/guillaumin/data.php
https://lear.inrialpes.fr/people/guillaumin/data.php
https://lear.inrialpes.fr/people/guillaumin/data.php
https://lear.inrialpes.fr/people/guillaumin/data.php

Section 6.4 You should 143

lear.inrialpes.fr/people/guillaumin/data.php.
(a) Reproduce Figure 6.5 of section 6.2, for each of the available image feature

sets. Is any particular feature set better overall?
(b) Now take the top 50 canonical variables of each feature set for the images,

and concatenate them. This should yield 750 variables that you can use as
image features. Reproduce Figure 6.5 for this set of features. Was there
an improvement in performance?

(c) Finally, if you can get your hands on some hefty linear algebra software,
concatenate all the image feature sets. Reproduce Figure 6.5 for this set
of features. Was there an improvement in performance?

https://lear.inrialpes.fr/people/guillaumin/data.php

P A R T T H R E E

CLUSTERING

144

C H A P T E R 7

Clustering: Models of High
Dimensional Data

One very good, very simple, model for high dimensional data is to assume
that it consists of multiple blobs. To build models like this, we must determine
(a) what the blob parameters are and (b) which datapoints belong to which blob.
Generally, we will collect together data points that are close and form blobs out of
them. This process is known as clustering.

Clustering is a somewhat puzzling activity. It is extremely useful to cluster
data, and it seems to be quite important to do it reasonably well. But it surprisingly
hard to give crisp criteria for a good (resp. bad) clustering of a dataset. Usually,
clustering is part of building a model, and the main way to know that the clustering
algorithm is bad is that the model is bad.

7.1 AGGLOMERATIVE AND DIVISIVE CLUSTERING

There are two natural recipes you can use to produce clustering algorithms. In
agglomerative clustering, you start with each data item being a cluster, and
then merge clusters recursively to yield a good clustering (procedure 7.2). The
difficulty here is that we need to know a good way to measure the distance between
clusters, which can be somewhat harder than the distance between points. In
divisive clustering, you start with the entire data set being a cluster, and then
split clusters recursively to yield a good clustering (procedure ??). The difficulty
here is we need to know some criterion for splitting clusters.

Procedure: 7.1 Agglomerative Clustering

Choose an inter-cluster distance. Make each point a separate cluster.
Now, until the clustering is satisfactory,

• Merge the two clusters with the smallest inter-cluster distance.

145

Section 7.1 Agglomerative and Divisive Clustering 146

Procedure: 7.2 Divisive Clustering

Choose a splitting criterion. Regard the entire dataset as a single clus-
ter. Now, until the clustering is satisfactory,

• choose a cluster to split;

• then split this cluster into two parts.

To turn these recipes into algorithms requires some more detail. For agglom-
erative clustering, we need to choose a good inter-cluster distance to fuse nearby
clusters. Even if a natural distance between data points is available, there is no
canonical inter-cluster distance. Generally, one chooses a distance that seems ap-
propriate for the data set. For example, one might choose the distance between the
closest elements as the inter-cluster distance, which tends to yield extended clusters
(statisticians call this method single-link clustering). Another natural choice is
the maximum distance between an element of the first cluster and one of the second,
which tends to yield rounded clusters (statisticians call this method complete-link

clustering). Finally, one could use an average of distances between elements in the
cluster, which also tends to yield rounded clusters (statisticians call this method
group average clustering).

For divisive clustering, we need a splitting method. This tends to be something
that follows from the logic of the application, because the ideal is an efficient method
to find a natural split in a large dataset. We won’t pursue this question further.

Finally, we need to know when to stop. This is an intrinsically difficult task
if there is no model for the process that generated the clusters. The recipes I have
described generate a hierarchy of clusters. Usually, this hierarchy is displayed to
a user in the form of a dendrogram—a representation of the structure of the hi-
erarchy of clusters that displays inter-cluster distances—and an appropriate choice
of clusters is made from the dendrogram (see the example in Figure 7.1).

Another important thing to notice about clustering from the example of fig-
ure 7.1 is that there is no right answer. There are a variety of different clusterings
of the same data. For example, depending on what scales in that figure mean, it
might be right to zoom out and regard all of the data as a single cluster, or to zoom
in and regard each data point as a cluster. Each of these representations may be
useful.

7.1.1 Clustering and Distance

In the algorithms above, and in what follows, we assume that the features are scaled
so that distances (measured in the usual way) between data points are a good
representation of their similarity. This is quite an important point. For example,
imagine we are clustering data representing brick walls. The features might contain
several distances: the spacing between the bricks, the length of the wall, the height
of the wall, and so on. If these distances are given in the same set of units, we could

Section 7.1 Agglomerative and Divisive Clustering 147

d
is

ta
n
ce

1 2 3 4 5 6

1

2

3

4

5

6

1 cluster

2 clusters

6 clusters

FIGURE 7.1: Left, a data set; right, a dendrogram obtained by agglomerative clus-
tering using single-link clustering. If one selects a particular value of distance, then
a horizontal line at that distance splits the dendrogram into clusters. This repre-
sentation makes it possible to guess how many clusters there are and to get some
insight into how good the clusters are.

have real trouble. For example, assume that the units are centimeters. Then the
spacing between bricks is of the order of one or two centimeters, but the heights
of the walls will be in the hundreds of centimeters. In turn, this means that the
distance between two datapoints is likely to be completely dominated by the height
and length data. This could be what we want, but it might also not be a good
thing.

There are some ways to manage this issue. One is to know what the features
measure, and know how they should be scaled. Usually, this happens because you
have a deep understanding of your data. If you don’t (which happens!), then it is
often a good idea to try and normalize the scale of the data set. There are two good
strategies. The simplest is to translate the data so that it has zero mean (this is
just for neatness - translation doesn’t change distances), then scale each direction
so that it has unit variance. More sophisticated is to translate the data so that
it has zero mean, then transform it so that each direction is independent and has
unit variance. Doing so is sometimes referred to as decorrelation or whitening;
I described how to do this in exercise 5.

Section 7.1 Agglomerative and Divisive Clustering 148

173207169155192203188186145159162195205193209206146156174177179160151184187150175191176178194190153158167182163183196181154170157144201210197148164168165171172149199161198141143185152147166180200202189142204208 1 59 35 50 56 25 18 47 5 23 26 3 8 29 22 6 57 39 45 48 49 21 54 14 15 7 33 51 53 4 12 46 34 68 16 41 42 30 55 67 69 27 70 32 20 64 2 58 28 43 66 13 19 9 10 36 37 38 11 44 63 24 60 31 65 52 71 77108137 75 96122101123134140 72 76 73 81 74132118107 92 93105 97104112119106 85 98116100113111124131 86 99 88 87110102128117126127109120103 79 95 82 94 80130133135 84 91129125136114138139 61 62 78115 90 83121 89 17 40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 7.2: A dendrogram obtained from the seed dataset, using single link cluster-
ing. Recall that the data points are on the horizontal axis, and that the vertical axis
is distance; there is a horizontal line linking two clusters that get merged, established
at the height at which they’re merged. I have plotted the entire dendrogram, despite
the fact it’s a bit crowded at the bottom, because you can now see how clearly the
data set clusters into a small set of clusters — there are a small number of vertical
“runs”.

Worked example 7.1 Agglomerative clustering

Cluster the seed dataset from the UC Irvine Machine Learning Dataset Repos-
itory (you can find it at http://archive.ics.uci.edu/ml/datasets/seeds).

Solution: Each item consists of seven measurements of a wheat kernel; there
are three types of wheat represented in this dataset. For this example, I used
Matlab, but many programming environments will provide tools that are useful
for agglomerative clustering. I show a dendrogram in figure ??). I deliberately
forced Matlab to plot the whole dendrogram, which accounts for the crowded
look of the figure. As you can see from the dendrogram and from Figure 7.3,
this data clusters rather well.

http://archive.ics.uci.edu/ml/datasets/seeds

Section 7.1 Agglomerative and Divisive Clustering 149

−4 −3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

FIGURE 7.3: A clustering of the seed dataset, using agglomerative clustering, sin-
gle link distance, and requiring a maximum of 30 clusters. I have plotted each
cluster with a distinct marker (though some markers differ only by color). Notice
that there are a set of fairly natural isolated clusters. The original data is 8 di-
mensional, which presents plotting problems; I show a scatter plot on the first two
principal components (though I computed distances for clustering in the original 8
dimensional space).

Remember this: Agglomerative clustering starts with each data point a
cluster, then recursively merges. There are three main ways to compute the
distance between clusters. Divisive clustering starts with all in one cluster,
then recursively splits. Choosing a split can be tricky.

Section 7.2 The K-Means Algorithm and Variants 150

Sepal.Length

Petal.Width

Pe
ta

l.
L
e
n
g
th

setosa versicolor virginica

Scatter Plot Matrix

Sepal
Length

7

8
7 8

5

6

5 6

Sepal
Width

3.5

4.0

4.5

3.5 4.0 4.5

2.0

2.5

3.0

2.0 2.5 3.0

Petal
Length

4

5

6

7
4 5 6 7

1

2

3

4

1 2 3 4

Petal
Width

1.5

2.0

2.5
1.5 2.0 2.5

0.0

0.5

1.0

0.0 0.5 1.0

FIGURE 7.4: Left: a 3D scatterplot for the famous Iris data, collected by Edgar
Anderson in 1936, and made popular amongst statisticians by Ronald Fisher in that
year. I have chosen three variables from the four, and have plotted each species with
a different marker. You can see from the plot that the species cluster quite tightly,
and are different from one another. Right: a scatterplot matrix for the Iris data.
There are four variables, measured for each of three species of iris. I have plotted
each species with a different marker. You can see from the plot that the species
cluster quite tightly, and are different from one another.

7.2 THE K-MEANS ALGORITHM AND VARIANTS

Assume we have a dataset that, we believe, forms many clusters that look like
blobs. If we knew where the center of each of the clusters was, it would be easy to
tell which cluster each data item belonged to — it would belong to the cluster with
the closest center. Similarly, if we knew which cluster each data item belonged to,
it would be easy to tell where the cluster centers were — they’d be the mean of the
data items in the cluster. This is the point closest to every point in the cluster.

We can formalize this fairly easily by writing an expression for the squared
distance between data points and their cluster centers. Assume that we know how
many clusters there are in the data, and write k for this number. There are N data
items. The ith data item to be clustered is described by a feature vector xi. We
write cj for the center of the jth cluster. We write δi,j for a discrete variable that
records which cluster a data item belongs to, so

δi,j =

{

1 if xi belongs to cluster j
0 otherwise

Section 7.2 The K-Means Algorithm and Variants 151

We require that every data item belongs to exactly one cluster, so that
∑

j δi,j = 1.
We require that every cluster contain at least one point, because we assumed we
knew how many clusters there were, so we must have that

∑

i δi,j > 0 for every j.
We can now write the sum of squared distances from data points to cluster centers
as

Φ(δ, c) =
∑

i,j

δi,j
[

(xi − cj)
T (xi − cj)

]

.

Notice how the δi,j are acting as “switches”. For the i’th data point, there is only
one non-zero δi,j which selects the distance from that data point to the appropriate
cluster center. It is natural to want to cluster the data by choosing the δ and c that
minimizes Φ(δ, c). This would yield the set of k clusters and their cluster centers
such that the sum of distances from points to their cluster centers is minimized.

There is no known algorithm that can minimize Φ exactly in reasonable time.
The δi,j are the problem: it turns out to be hard to choose the best allocation
of points to clusters. The algorithm we guessed above is a remarkably effective
approximate solution. Notice that if we know the c’s, getting the δ’s is easy – for
the i’th data point, set the δi,j corresponding to the closest cj to one and the others
to zer. Similarly, if the δi,j are known, it is easy to compute the best center for
each cluster – just average the points in the cluster. So we iterate:

• Assume the cluster centers are known and allocate each point to the closest
cluster center.

• Replace each center with the mean of the points allocated to that cluster.

We choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process eventually converges to a local minimum of
the objective function (the value either goes down or is fixed at each step, and
it is bounded below). It is not guaranteed to converge to the global minimum of
the objective function, however. It is also not guaranteed to produce k clusters,
unless we modify the allocation phase to ensure that each cluster has some nonzero
number of points. This algorithm is usually referred to as k-means (summarized
in Algorithm 7.3).

Procedure: 7.3 K-Means Clustering

Choose k. Now choose k data points cj to act as cluster centers. Until
the cluster centers change very little

• Allocate each data point to cluster whose center is nearest.

• Now ensure that every cluster has at least one data point; one
way to do this is by supplying empty clusters with a point chosen
at random from points far from their cluster center.

• Replace the cluster centers with the mean of the elements in their
clusters.

Section 7.2 The K-Means Algorithm and Variants 152

Scatter Plot Matrix

Sepal
Length0

1

2 0 1 2

−2

−1

0

−2 −1 0

Sepal
Width

1

2

3
1 2 3

−2

−1

0

−2 −1 0

Petal
Length0.0

0.5

1.0

1.5 0.00.51.01.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

Petal
Width0.0

0.5

1.0

1.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2

CLUSPLOT(scalediris)

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

FIGURE 7.5: On the left, a panel plot of the iris data clustered using k-means with
k = 2. By comparison with figure 7.8, notice how the versicolor and verginica
clusters appear to have been merged. On the right, this data set projected onto the
first two principal components, with one blob drawn over each cluster.

Usually, we are clustering high dimensional data, so that visualizing clusters
can present a challenge. If the dimension isn’t too high, then we can use panel plots.
An alternative is to project the data onto two principal components, and plot the
clusters there; the process for plotting 2D covariance ellipses from section 3.4.2
comes in useful here. A natural dataset to use to explore k-means is the iris data,
where we know that the data should form three clusters (because there are three
species). Recall this dataset from section ??. I reproduce figure 3.3 from that
section as figure 7.8, for comparison. Figures 7.5, ?? and ?? show different k-means
clusterings of that data.

7.2.1 How to choose K

The iris data is just a simple example. We know that the data forms clean clusters,
and we know there should be three of them. Usually, we don’t know how many
clusters there should be, and we need to choose this by experiment. One strategy
is to cluster for a variety of different values of k, then look at the value of the cost
function for each. If there are more centers, each data point can find a center that
is close to it, so we expect the value to go down as k goes up. This means that
looking for the k that gives the smallest value of the cost function is not helpful,
because that k is always the same as the number of data points (and the value is
then zero). However, it can be very helpful to plot the value as a function of k, then
look at the “knee” of the curve. Figure 7.8 shows this plot for the iris data. Notice
that k = 3 — the “true” answer — doesn’t look particularly special, but k = 2,
k = 3, or k = 4 all seem like reasonable choices. It is possible to come up with

Section 7.2 The K-Means Algorithm and Variants 153

Scatter Plot Matrix

Sepal
Length0

1

2 0 1 2

−2

−1

0

−2 −1 0

Sepal
Width

1

2

3
1 2 3

−2

−1

0

−2 −1 0

Petal
Length0.0

0.5

1.0

1.5 0.00.51.01.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

Petal
Width0.0

0.5

1.0

1.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

CLUSPLOT(scalediris)

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

FIGURE 7.6: On the left, a panel plot of the iris data clustered using k-means with
k = 3. By comparison with figure 7.8, notice how the clusters appear to follow
the species labels. On the right, this data set projected onto the first two principal
components, with one blob drawn over each cluster.

a procedure that makes a more precise recommendation by penalizing clusterings
that use a large k, because they may represent inefficient encodings of the data.
However, this is often not worth the bother.

In some special cases (like the iris example), we might know the right answer
to check our clustering against. In such cases, one can evaluate the clustering by
looking at the number of different labels in a cluster (sometimes called the purity),
and the number of clusters. A good solution will have few clusters, all of which have
high purity. Mostly, we don’t have a right answer to check against. An alternative
strategy, which might seem crude to you, for choosing k is extremely important in
practice. Usually, one clusters data to use the clusters in an application (one of
the most important, vector quantization, is described in section 7.3). There are
usually natural ways to evaluate this application. For example, vector quantization
is often used as an early step in texture recognition or in image matching; here one
can evaluate the error rate of the recognizer, or the accuracy of the image matcher.
One then chooses the k that gets the best evaluation score on validation data. In
this view, the issue is not how good the clustering is; it’s how well the system that
uses the clustering works.

7.2.2 Soft Assignment

One difficulty with k-means is that each point must belong to exactly one cluster.
But, given we don’t know how many clusters there are, this seems wrong. If a
point is close to more than one cluster, why should it be forced to choose? This
reasoning suggests we assign points to cluster centers with weights. These weights
are different from the original δi,j because they are not forced to be either zero
or one, however. Write wi,j for the weight connecting point i to cluster center j.

Section 7.2 The K-Means Algorithm and Variants 154

Scatter Plot Matrix

Sepal
Length0

1

2 0 1 2

−2

−1

0

−2 −1 0

Sepal
Width

1

2

3
1 2 3

−2

−1

0

−2 −1 0

Petal
Length0.0

0.5

1.0

1.5 0.00.51.01.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

Petal
Width0.0

0.5

1.0

1.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

CLUSPLOT(scalediris)

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

1
2

34

5

FIGURE 7.7: On the left, a panel plot of the iris data clustered using k-means with
k = 5. By comparison with figure 7.8, notice how setosa seems to have been broken
in two groups, and versicolor and verginica into a total of three . On the right,
this data set projected onto the first two principal components, with one blob drawn
over each cluster.

Weights should be non-negative (i.e. wi,j ≥ 0), and each point should carry a total
weight of 1 (i.e

∑

j wi,j = 1), so that it if the i’th point contributes more to one
cluster center, it is forced to contribute less to all others. You should see wi,j as
a simplification of the δi,j in the original cost function. We can write a new cost
function

Φ(w, c) =
∑

i,j

wi,j

[

(xi − cj)
T (xi − cj)

]

,

which we would like to minimize by choice of w and c. There isn’t any improvement
in the problem, because for any choice of c, the best choice of w is to allocate
each point to its closest cluster center. This is because we have not specified any
relationship between w and c.

But w and c should be coupled. We would like wi,j to be large when xi is
close to cj , and small otherwise. Write di,j for the distance ||xi − cj||, choose a
scaling parameter σ > 0, and write

si,j = e
−d2

i,j

2σ2 .

This si,j is often called the affinity between the point i and the center j; it is large
when they are close in σ units, and small when they are far apart. Now a natural
choice of weights is

wi,j =
si,j

∑k
l=1 si,l

.

All these weights are non-negative, they sum to one. The weight linking a point
and a cluster center is large if the point is much closer to one center than to any

Section 7.2 The K-Means Algorithm and Variants 155

Scatter Plot Matrix

Sepal
Length

7

8
7 8

5

6

5 6

Sepal
Width

3.5

4.0

4.5
3.5 4.0 4.5

2.0

2.5

3.0

2.0 2.5 3.0

Petal
Length

4

5

6

7
4 5 6 7

1

2

3

4

1 2 3 4

Petal
Width

1.5

2.0

2.5
1.5 2.0 2.5

0.0

0.5

1.0

0.0 0.5 1.0

setosa versicolor virginica

2 4 6 8 10 12 14

10
0

20
0

30
0

40
0

50
0

60
0

Number of Clusters

W
ith

in
 g

ro
up

s
su

m
 o

f s
qu

ar
es

FIGURE 7.8: On the left, the scatterplot matrix for the Iris data, for reference. On
the right, a plot of the value of the cost function for each of several different values
of k. Notice how there is a sharp drop in cost going from k = 1 to k = 2, and again
at k = 4; after that, the cost falls off slowly. This suggests using k = 2, k = 3, or
k = 4, depending on the precise application.

other. The scaling parameter σ sets the meaning of “much closer” — we measure
distance in units of σ.

Once we have weights, re-estimating the cluster centers is easy. We use the
weights to compute a weighted average of the points. In particular, we re-estimate
the j’th cluster center by

∑

iwi,jxi
∑

iwi,j
.

Notice that k-means is a special case of this algorithm where σ limits to zero. In
this case, each point has a weight of one for some cluster, and zero for all others,
and the weighted mean becomes an ordinary mean. I have collected the description
into a box (procedure 7.4) for convenience.

Notice one other feature of this procedure. As long as you use sufficient
precision for the arithmetic (which might be a problem), wi,j is always greater than
zero. This means that no cluster is empty. In practice, if σ is small compared to
the distances between points, you can end up with empty clusters. You can tell if
this is happening by looking at

∑

iwi,j ; if this is very small or zero, you have a
problem.

Section 7.2 The K-Means Algorithm and Variants 156

Procedure: 7.4 K-Means with Soft Weights

Choose k. Choose k data points cj to act as initial cluster centers.
Choose a scale, σ. Until the cluster centers change very little:

• First, we estimate the weights. For each pair of a data point xi

and a cluster cj , compute the affinity

si,j = e
−||xi−cj||

2σ2 .

• Now for each pair of a data point xi and a cluster cj compute the
soft weight linking the data point to the center

wi,j = si,j/

k
∑

l=1

si,l.

• For each cluster, compute a new center

cj =

∑

i wi,jxi
∑

i wi,j

7.2.3 Efficient Clustering and Hierarchical K Means

One important difficulty occurs in applications. We might need to have an enormous
dataset (millions of items is a real possibility), and so a very large k. In this case, k-
means clustering becomes difficult because identifying which cluster center is closest
to a particular data point scales linearly with k (and we have to do this for every
data point at every iteration). There are two useful strategies for dealing with this
problem.

The first is to notice that, if we can be reasonably confident that each cluster
contains many data points, some of the data is redundant. We could randomly
subsample the data, cluster that, then keep the cluster centers. This helps rather
a lot, but not enough if you expect the data will contain many clusters.

A more effective strategy is to build a hierarchy of k-means clusters. We
randomly subsample the data (typically quite aggressively), then cluster this with
a small value of k. Each data item is then allocated to the closest cluster center, and
the data in each cluster is clustered again with k-means. We now have something
that looks like a two-level tree of clusters. Of course, this process can be repeated
to produce a multi-level tree of clusters.

7.2.4 K-Mediods

In some cases, we want to cluster objects that can’t be averaged. One case where
this happens is when you have a table of distances between objects, but do not know

Section 7.2 The K-Means Algorithm and Variants 157

Scatter Plot Matrix

Fresh

Milk

Grocery

Frozen

DetPaper

Delicatessen

FIGURE 7.9: A panel plot of the wholesale customer data of http://archive.ics.uci.
edu/ml/datasets/Wholesale+customers, which records sums of money spent annu-
ally on different commodities by customers in Portugal. This data is recorded for six
different groups (two channels each within three regions). I have plotted each group
with a different marker, but you can’t really see much structure here, for reasons
explained in the text.

vectors representing the objects. For example, you could collect data giving the
distances between cities, without knowing where the cities are (as in Section 5.2.3,
particularly Figure 5.1), then try and cluster using this data. As another example,
you could collect data giving similarities between breakfast items as in Section 5.2.3,
then turn the similarities into distances by taking the negative logarithm. This gives
a useable table of distances. You still can’t average kippers with oatmeal, so you
couldn’t use k-means to cluster this data.

A variant of k-means, known as k-medoids, applies to this case. In k-medoids,
the cluster centers are data items rather than averages, and so are called “mediods”.
The rest of the algorithm has a familiar form. We assume k, the number of cluster
centers, is known. We initialize the cluster centers by choosing examples at random.
We then iterate two procedures. In the first, we allocate each data point to the
closest mediod. In the second, we choose the best medoid for each cluster by finding
the data point that minimizes the sum of distances of points in the cluster to that
medoid. This point can be found by simply searching all the points in the cluster.

7.2.5 Example: Groceries in Portugal

Clustering can be used to expose structure in datasets that isn’t visible with simple
tools. Here is an example. At http://archive.ics.uci.edu/ml/datasets/Wholesale+customers,
you will find a dataset giving sums of money spent annually on different commodi-
ties by customers in Portugal. The commodities are divided into a set of categories
(fresh; milk; grocery; frozen; detergents and paper; and delicatessen) relevant for
the study. These customers are divided by channel (two channels, corresponding

http://archive.ics.uci.edu/ml/datasets/Wholesale+customers
http://archive.ics.uci.edu/ml/datasets/Wholesale+customers
http://archive.ics.uci.edu/ml/datasets/Wholesale+customers

Section 7.2 The K-Means Algorithm and Variants 158

0 5 10 15 20 25 30 35

5.
0e

+
10

1.
0e

+
11

1.
5e

+
11

Number of Clusters

W
ith

in
 g

ro
up

s
su

m
 o

f s
qu

ar
es

Scatter Plot Matrix

Fresh

Milk

Grocery

Frozen

DetPaper

Delicatessen

FIGURE 7.10: On the left, the cost function (of section 7.2) for clusterings of the
customer data with k-means for k running from 2 to 35. This suggests using a k
somewhere in the range 10-30; I chose 10. On the right, I have clustered this data
to 10 cluster centers with k-means. The clusters do seem to be squashed together,
but the plot on the left suggests that clusters do capture some important information.
Using too few clusters will clearly lead to problems. Notice that I did not scale the
data, because each of the measurements is in a comparable unit. For example, it
wouldn’t make sense to scale expenditures on fresh and expenditures on grocery with
a different scale.

to different types of shop) and by region (three regions). You can think of the data
as being divided into six groups (one for each pair of channel and region). There
are 440 customer records, and there are many customers in each group. The data
was provided by M. G. M. S. Cardoso.

Figure 7.9 shows a panel plot of the customer data; the data has been clus-
tered, and I gave each of 10 clusters its own marker. You (or at least, I) can’t see
any evidence of the six groups here. This is due to the form of the visualization,
rather than a true property of the data. People tend to like to live near people
who are “like” them, so you could expect people in a region to be somewhat sim-
ilar; you could reasonably expect differences between groups (regional preferences;
differences in wealth; and so on). Retailers have different channels to appeal to
different people, so you could expect people using different channels to be different.
But you don’t see this in the plot of clusters. In fact, the plot doesn’t really show
much structure at all, and is basically unhelpful.

Here is a way to think about structure in the data. There are likely to be
different “types” of customer. For example, customers who prepare food at home
might spend more money on fresh or on grocery, and those who mainly buy prepared
food might spend more money on delicatessen; similarly, coffee drinkers with cats
or with children might spend more on milk than the lactose-intolerant, and so on.
So we can expect customers to cluster in types. An effect like this is hard to see

Section 7.2 The K-Means Algorithm and Variants 159

0.0

0.1

0.2

0.3

1 5 10

Channel 1, Region 1

F
re

qu
en

cy

0.0

0.1

0.2

0.3

2 4 6 8 10

Channel 2, Region 1

F
re

qu
en

cy
0.0

0.1

0.2

0.3

2 4 6 8 10

Channel 1, Region 2

F
re

qu
en

cy

0.0

0.1

0.2

0.3

2 4 6 8 10

Channel 2, Region 2

F
re

qu
en

cy

0.0

0.1

0.2

0.3

2 4 6 8 10

Channel 1, Region 3

F
re

qu
en

cy

0.0

0.1

0.2

0.3

2 4 6 8 10

Channel 2, Region 3

F
re

qu
en

cy
FIGURE 7.11: The histogram of different types of customer, by group, for the cus-
tomer data. Notice how the distinction between the groups is now apparent — the
groups do appear to contain quite different distributions of customer type. It looks
as though the channels (rows in this figure) are more different than the regions
(columns in this figure).

on a panel plot of the clustered data (Figure 7.9). The plot for this dataset is
hard to read, because the dimension is fairly high for a panel plot and the data is
squashed together in the bottom left corner. However, you can see the effect when
you cluster the data and look at the cost function in representing the data with
different values of k — quite a small set of clusters gives quite a good representation
of the customers (Figure 7.10). The panel plot of cluster membership (also in that
figure) isn’t particularly informative. The dimension is quite high, and clusters get
squashed together.

There is an important effect which isn’t apparent in the panel plots. Some of
what cause customers to cluster in types are driven by things like wealth and the ten-
dency of people to have neighbors who are similar to them. This means that differ-
ent groups should have different fractions of each type of customer. There might be
more deli-spenders in wealthier regions; more milk-spenders and detergent-spenders
in regions where it is customary to have many children; and so on. This sort of
structure will not be apparent in a panel plot. A group of a few milk-spenders and
many detergent-spenders will have a few data points with high milk expenditure
values (and low other values) and also many data points with high detergent expen-
diture values (and low other values). In a panel plot, this will look like two blobs;
but if there is a second group with many milk-spenders and few detergent-spenders
will also look like two blobs, lying roughly on top of the first set of blobs. It will
be hard to spot the difference between the groups.

Section 7.2 The K-Means Algorithm and Variants 160

An easy way to see this difference is to look at histograms of the types of
customer within each group. Figure 7.11 shows this representation for the shopper
dataset. The figure shows the histogram of customer types that appears in each
group. The groups do appear to contain quite different distributions of customer
type, as you would expect. It looks as though the channels (rows in this figure)
are more different than the regions (columns in this figure). Again, you might
expect this: regions might contain slightly different customers (eg as a result of
regional food preferences), but different channels are intended to cater to different
customers.

7.2.6 General Comments on K-Means

If you experiment with k-means, you will notice one irritating habit of the algorithm.
It almost always produces either some rather spread out clusters, or some single
element clusters. Most clusters are usually rather tight and blobby clusters, but
there is usually one or more bad cluster. This is fairly easily explained. Because
every data point must belong to some cluster, data points that are far from all
others (a) belong to some cluster and (b) very likely “drag” the cluster center into
a poor location. This applies even if you use soft assignment, because every point
must have total weight one. If the point is far from all others, then it will be
assigned to the closest with a weight very close to one, and so may drag it into a
poor location, or it will be in a cluster on its own.

There are ways to deal with this. If k is very big, the problem is often not
significant, because then you simply have many single element clusters that you
can ignore. It isn’t always a good idea to have too large a k, because then some
larger clusters might break up. An alternative is to have a junk cluster. Any point
that is too far from the closest true cluster center is assigned to the junk cluster,
and the center of the junk cluster is not estimated. Notice that points should not
be assigned to the junk cluster permanently; they should be able to move in and
out of the junk cluster as the cluster centers move.

Remember this: K-means clustering is the “go-to” clustering algo-
rithm. You should see it as a basic recipe from which many algorithms can
be concocted. The recipe is: iterate: allocate each data point to the closest
cluster center; re-estimate cluster centers from their data points. There are
many variations, improvements, etc. that are possible on this recipe. We
have seen soft weights and k-mediods. K-means is not usually best imple-
mented with the method I described (which isn’t particularly efficient, but
gets to the heart of what is going on). Implementations of k-means differ
in important ways from my rather high-level description of the algorithm;
for any but tiny problems, you should use a package, and you should look
for a package that uses the Lloyd-Hartigan method.

Section 7.3 Describing Repetition with Vector Quantization 161

7.3 DESCRIBING REPETITION WITH VECTOR QUANTIZATION

The classifiers in Chapter 1 can be applied to simple images (the MNIST exercises
at the end of the chapter, for example), but they will annoy you if you try to apply
them as described to more complicated signals. All the methods described apply
to feature vectors of fixed length. But typical of signals like speech, images, video,
or accelerometer outputs is that different versions of the same thing have different
lengths. For example, pictures appear at different resolutions, and it seems clumsy
to insist that every image be 28×28 before it can be classified. As another example,
some speakers are slow, and others are fast, but it’s hard to see much future for a
speech understanding system that insisted that everyone speak at the same speed
so the classifier could operate. We need a construction that will take a signal and
produce a useful feature vector of fixed length. This section shows one of the most
useful such constructions (but be aware, this is an enormous topic).

Repetition is an important feature of many interesting signals. For example,
images contain textures, which are orderly patterns that look like large numbers of
small structures that are repeated. Examples include the spots of animals such as
leopards or cheetahs; the stripes of animals such as tigers or zebras; the patterns on
bark, wood, and skin. Similarly, speech signals contain phonemes — characteristic,
stylised sounds that people assemble together to produce speech (for example, the
“ka” sound followed by the “tuh” sound leading to “cat”). Another example comes
from accelerometers. If a subject wears an accelerometer while moving around, the
signals record the accelerations during their movements. So, for example, brushing
one’s teeth involves a lot of repeated twisting movements at the wrist, and walking
involves swinging the hand back and forth.

Repetition occurs in subtle forms. The essence is that a small number of local
patterns can be used to represent a large number of examples. You see this effect in
pictures of scenes. If you collect many pictures of, say, a beach scene, you will expect
most to contain some waves, some sky, and some sand. The individual patches of
wave, sky or sand can be surprisingly similar. However, it’s fair to model this by
saying different images are made by selecting some patches from a vocabulary of
patches, then placing them down to form an image. Similarly, pictures of living
rooms contain chair patches, TV patches, and carpet patches. Many different living
rooms can be made from small vocabularies of patches; but you won’t often see wave
patches in living rooms, or carpet patches in beach scenes. This suggests that the
patches that are used to make an image reveal something about what is in the
image. This observation works for speech, for video, and for accelerometer signals
too.

An important part of representing signals that repeat is building a vocabulary
of patterns that repeat, then describing the signal in terms of those patterns. For
many problems, knowing what vocabulary elements appear and how often is much
more important than knowing where they appear. For example, if you want to
tell the difference between zebras and leopards, you need to know whether stripes
or spots are more common, but you don’t particularly need to know where they
appear. As another example, if you want to tell the difference between brushing
teeth and walking using accelerometer signals, knowing that there are lots of (or
few) twisting movements is important, but knowing how the movements are linked

Section 7.3 Describing Repetition with Vector Quantization 162

Dictionary

FIGURE 7.12: Top: two images with rather exaggerated repetion, published on flickr.
com with a creative commons license by webtreats. Next to these images, I have
placed zoomed sampled 10x10 patches from those images; although the spots (resp.
stripes) aren’t necessarily centered in the patches, it’s pretty clear which image each
patch comes from. Bottom: a 40 patch dictionary computed using k-means from
4000 samples from each image. If you look closely, you’ll see that some dictionary
entries are clearly stripe entries, others clearly spot entries. Stripe images will
have patches represented by stripe entries in the dictionary and spot images by spot
entries.

together in time may not be. As a general rule, one can do quite a good job of
classifying video just by knowing what patterns are there (i.e. without knowing
where or when the patterns appear). However, this doesn’t apply to speech, where
it really matters what sound follows what sound.

7.3.1 Vector Quantization

It is natural to try and find patterns by looking for small pieces of signal of fixed
size that appear often. In an image, a piece of signal might be a 10x10 patch,
which can be reshaped into a vector. In a sound file, which is likely represented
as a vector, it might be a subvector of fixed size. A 3-axis accelerometer signal
is usually represented as a 3 × r dimensional array (where r is the number of
samples); in this case, a piece might be a 3 × 10 subarray, which can be reshaped
into a vector. But finding patterns that appear often is hard to do, because the
signal is continuous — each pattern will be slightly different, so we cannot simply
count how many times a particular pattern occurs.

Here is a strategy. We take a training set of signals, and cut each signal into
pieces of fixed size and reshape them into d dimensional vectors. We then build
a set of clusters out of these pieces. This set of clusters is often thought of as a
dictionary, because we expect many or most cluster centers to look like pieces that

flickr.com
flickr.com

Section 7.3 Describing Repetition with Vector Quantization 163

occur often in the signals and so are repeated.
We can now now describe any new piece of signal with the cluster center closest

to that piece. This means that a piece of signal is described with a number in the
range [1, . . . , k] (where you get to choose k), and two pieces that are close should be
described by the same number. This strategy is known as vector quantization.

This strategy applies to any kind of signal, and is surprisingly robust to details.
We could use d dimensional vectors for a sound file;

√
d×

√
d dimensional patches

for an image; or 3×(d/3) dimensional subarrays for an accelerometer signal. In each
case, it is easy to compute the distance between two pieces using sum of squared
distances. It seems not to matter much if the signals are cut into overlapping or
non-overlapping pieces when forming the dictionary, as long as there are enough
pieces.

Procedure: 7.5 Vector Quantization - Building a Dictionary

Take a training set of signals, and cut each signal into pieces of fixed
size. The size of the piece will affect how well your method works, and
is usually chosen by experiment. It does not seem to matter much if the
pieces overlap. Cluster all the example pieces, and record the k cluster
centers. It is usual, but not required, to use k-means clustering.

To build a dictionary for vector quantization
We can now build features that represent important repeated structure in

signals. We take a signal, and cut it up into vectors of length d. These might
overlap, or be disjoint. We then take each vector, and compute the number that
describes it (i.e. the number of the closest cluster center, as above). We then
compute a histogram of the numbers we obtained for all the vectors in the signal.
This histogram describes the signal.

Procedure: 7.6 Vector Quantization - Representing a Signal

Take your signal, and cut it into pieces of fixed size. The size of the
piece will affect how well your method works, and is usually chosen by
experiment. It does not seem to matter much if the pieces overlap. For
each piece, record the closest cluster center in the dictionary. Repre-
sent the signal with a histogram of these numbers, which will be a k
dimensional vector.

To represent a signal with vector quantization
Notice several nice features to this construction. First, it can be applied to

anything that can be thought of in terms of fixed size pieces, so it will work for
speech signals, sound signals, accelerometer signals, images, and so on. Another
nice feature is the construction can accept signals of different length, and produce a
description of fixed length. One accelerometer signal might cover 100 time intervals;

Section 7.3 Describing Repetition with Vector Quantization 164

another might cover 200; but the description is always a histogram with k buckets,
so it’s always a vector of length k.

Yet another nice feature is that we don’t need to be all that careful how we
cut the signal into fixed length vectors. This is because it is hard to hide repetition.
This point is easier to make with a figure than in text, so look at figure 7.12.

The number of pieces of signal (and so k), might be very big indeed. It is
quite reasonable to want to build a dictionary for a million items and use tens to
hundreds of thousands of cluster centers. In this case, it is a good idea to use
hierarchical k-means, as in Section 7.2.3. Hierarchical k-means produces a tree of
cluster centers. It is easy to use this tree to vector quantize a query data item. We
vector quantize at the first level. Doing so chooses a branch of the tree, and we
pass the data item to this branch. It is either a leaf, in which case we report the
number of the leaf, or it is a set of clusters, in which case we vector quantize, and
pass the data item down. This procedure is efficient both when one clusters and at
run time.

Representing a signal as a histogram of cluster centers loses information in
two important ways. First, the histogram has little or no information about how
the pieces of signal are arranged. So, for example, the representation can tell
whether an image has stripy or spotty patches in it, but not where those patches
lie. You should not rely on your intuition to tell you whether this lost information
is important or not. For many kinds of image classification task, histograms of
cluster centers are much better than you might guess, despite not encoding where
patches lie (though still better results are now obtained with convolutional neural
networks).

Second, replacing a piece of signal with a cluster center must lose some detail,
which might be important, and likely results in some classification errors. There is
a surprisingly simple construction that can alleviate these problems. Build three
(or more) dictionaries, rather than one, using different sets of training pieces. For
example, you could cut the same signals into pieces on a different grid. Now use
each dictionary to produce a histogram of cluster centers, and classify with those.
Finally, use a voting scheme to decide the class of each test signal. In many prob-
lems, this approach yields small but useful improvements.

7.3.2 Example: Activity from Accelerometer Data

A complex example dataset appears at
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer.
This dataset consists of examples of the signal from a wrist mounted accelerometer,
produced as different subjects engaged in different activities of daily life. Activities
include: brushing teeth, climbing stairs, combing hair, descending stairs, and so
on. Each is performed by sixteen volunteers. The accelerometer samples the data
at 32Hz (i.e. this data samples and reports the acceleration 32 times per second).
The accelerations are in the x, y and z-directions. The dataset was collected by
Barbara Bruno, Fulvio Mastrogiovanni and Antonio Sgorbissa. Figure 7.13 shows
the x-component of various examples of toothbrushing.

There is an important problem with using data like this. Different subjects
take quite different amounts of time to perform these activities. For example, some

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer

Section 7.3 Describing Repetition with Vector Quantization 165

0 500 1000 1500 2000 2500
0

20

40

60
Brushing teeth − example 1

Time

X
 A

cc
el

er
at

io
n

0 200 400 600 800 1000
0

20

40

60
Brushing teeth − example 2

Time

X
 A

cc
el

er
at

io
n

0 500 1000 1500 2000 2500
0

20

40

60

80
Brushing teeth − example 3

Time

X
 A

cc
el

er
at

io
n

0 500 1000 1500 2000 2500
0

20

40

60

80
Brushing teeth − example 4

Time

X
 A

cc
el

er
at

io
n

0 1000 2000 3000 4000 5000
25

30

35

40

45

50
Eat meat − example 1

Time

X
 A

cc
el

er
at

io
n

0 2000 4000 6000
25

30

35

40

45
Eat meat − example 4

Time

X
 A

cc
el

er
at

io
n

0 2000 4000 6000 8000
20

25

30

35

40

45
Eat meat − example 3

Time

X
 A

cc
el

er
at

io
n

0 1000 2000 3000 4000 5000
25

30

35

40

45
Eat meat − example 2

Time

X
 A

cc
el

er
at

io
n

FIGURE 7.13: Some examples from the accelerom-
eter dataset at https://archive.ics.uci.edu/ml/datasets/
Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer. I have la-
belled each signal by the activity. These show acceleration in the X direction (Y
and Z are in the dataset, too). There are four examples for brushing teeth and
four for eat meat. You should notice that the examples don’t have the same length
in time (some are slower and some faster eaters, etc.), but that there seem to be
characteristic features that are shared within a category (brushing teeth seems to
involve faster movements than eating meet).

subjects might be more thorough tooth-brushers than other subjects. As another
example, people with longer legs walk at somewhat different frequencies than people
with shorter legs. This means that the same activity performed by different subjects
will produce data vectors that are of different lengths. It’s not a good idea to deal
with this by warping time and resampling the signal. For example, doing so will
make a thorough toothbrusher look as though they are moving their hands very
fast (or a careless toothbrusher look ludicrously slow: think speeding up or slowing
down a movie). So we need a representation that can cope with signals that are a
bit longer or shorter than other signals.

Another important property of these signals is that all examples of a particular
activity should contain repeated patterns. For example, brushing teeth should show
fast accelerations up and down; walking should show a strong signal at somewhere
around 2 Hz; and so on. These two points should suggest vector quantization to
you. Representing the signal in terms of stylized, repeated structures is probably a
good idea because the signals probably contain these structures. And if we represent
the signal in terms of the relative frequency with which these structures occur, the
representation will have a fixed length, even if the signal doesn’t. To do so, we need
to consider (a) over what time scale we will see these repeated structures and (b)
how to ensure we segment the signal into pieces so that we see these structures.

Generally, repetition in activity signals is so obvious that we don’t need to be
smart about segment boundaries. I broke these signals into 32 sample segments,
one following the other. Each segment represents one second of activity. This
is long enough for the body to do something interesting, but not so long that our

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer

Section 7.3 Describing Repetition with Vector Quantization 166

0 10 20 30 40
0

20

40

60

Time

X
 A

cc
el

er
at

io
n

Accelerometer cluster centers

FIGURE 7.14: Some cluster centers from the accelerometer dataset. Each cluster
center represents a one-second burst of activity. There are a total of 480 in my
model, which I built using hierarchical k-means. Notice there are a couple of cen-
ters that appear to represent movement at about 5Hz; another few that represent
movement at about 2Hz; some that look like 0.5Hz movement; and some that seem
to represent much lower frequency movement. These cluster centers are samples
(rather than chosen to have this property).

representation will suffer if we put the segment boundaries in the wrong place. This
resulted in about 40, 000 segments. I then used hierarchical k-means to cluster these
segments. I used two levels, with 40 cluster centers at the first level, and 12 at the
second. Figure 7.14 shows some cluster centers at the second level.

I then computed histogram representations for different example signals (Fig-
ure 7.15). You should notice that when the activity label is different, the histogram
looks different, too.

Another useful way to check this representation is to compare the average
within class chi-squared distance with the average between class chi-squared dis-
tance. I computed the histogram for each example. Then, for each pair of examples,
I computed the chi-squared distance between the pair. Finally, for each pair of ac-
tivity labels, I computed the average distance between pairs of examples where one
example has one of the activity labels and the other example has the other activity
label. In the ideal case, all the examples with the same label would be very close
to one another, and all examples with different labels would be rather different.
Table 7.1 shows what happens with the real data. You should notice that for some
pairs of activity label, the mean distance between examples is smaller than one
would hope for (perhaps some pairs of examples are quite close?). But generally,
examples of activities with different labels tend to be further apart than examples
of activities with the same label.

Yet another way to check the representation is to try classification with nearest
neighbors, using the chi-squared distance to compute distances. I split the dataset
into 80 test pairs and 360 training pairs; using 1-nearest neighbors, I was able to
get a held-out error rate of 0.79. This suggests that the representation is fairly
good at exposing what is important.

Section 7.4 You should 167

100 200 300 400
0

0.05

0.1

0.15

0.2
Climb stairs

100 200 300 400
0

0.05

0.1

0.15

0.2
Climb stairs

100 200 300 400
0

0.05

0.1

0.15

0.2
Climb stairs

100 200 300 400
0

0.05

0.1

0.15

0.2
Climb stairs

100 200 300 400
0

0.05

0.1

0.15

0.2
Comb hair

100 200 300 400
0

0.05

0.1

0.15

0.2
Comb hair

100 200 300 400
0

0.05

0.1

0.15

0.2
Comb hair

100 200 300 400
0

0.05

0.1

0.15

0.2
Comb hair

100 200 300 400
0

0.05

0.1

0.15

0.2
Brush teeth

100 200 300 400
0

0.05

0.1

0.15

0.2
Brush teeth

100 200 300 400
0

0.05

0.1

0.15

0.2
Brush teeth

100 200 300 400
0

0.05

0.1

0.15

0.2
Brush teeth

FIGURE 7.15: Histograms of cluster centers for the accelerometer dataset, for differ-
ent activities. You should notice that (a) these histograms look somewhat similar for
different actors performing the same activity and (b) these histograms look some-
what different for different activities.

7.4 YOU SHOULD

7.4.1 remember these definitions:

7.4.2 remember these terms:

clustering . 145
decorrelation . 147
whitening . 147
k-means . 151
affinity . 154
vector quantization . 163

7.4.3 remember these facts:

Agglomerative and divisive clustering 149
K-means is the “go-to” clustering recipe 160

7.4.4 remember these procedures:

Agglomerative Clustering . 145
Divisive Clustering . 146
K-Means Clustering . 152
K-Means with Soft Weights . 156

Section 7.4 You should 168

0.9 2.0 1.9 2.0 2.0 2.0 1.9 2.0 1.9 1.9 2.0 2.0 2.0 2.0
1.6 2.0 1.8 2.0 2.0 2.0 1.9 1.9 2.0 1.9 1.9 2.0 1.7

1.5 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 2.0
1.4 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.8

1.5 1.8 1.7 1.9 1.9 1.8 1.9 1.9 1.8 2.0
0.9 1.7 1.9 1.9 1.8 1.9 1.9 1.9 2.0

0.3 1.9 1.9 1.5 1.9 1.9 1.9 2.0
1.8 1.8 1.9 1.9 1.9 1.9 1.9

1.7 1.9 1.9 1.9 1.9 1.9
1.6 1.9 1.9 1.9 2.0

1.8 1.9 1.9 1.9
1.8 2.0 1.9

1.5 2.0
1.5

TABLE 7.1: Each column of the table represents an activity
for the activity dataset https://archive.ics.uci.edu/ml/datasets/
Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer, as does each
row. In each of the upper diagonal cells, I have placed the average chi-squared
distance between histograms of examples from that pair of classes (I dropped the
lower diagonal for clarity). Notice that in general the diagonal terms (average
within class distance) are rather smaller than the off diagonal terms. This quite
strongly suggests we can use these histograms to classify examples successfully.

Vector Quantization - Building a Dictionary 163
Vector Quantization - Representing a Signal 163

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer

Section 7.4 You should 169

PROGRAMMING EXERCISES

7.1. You can find a dataset dealing with European employment in 1979 at http://
dasl.datadesk.com/data/view/47. This dataset gives the percentage of people
employed in each of a set of areas in 1979 for each of a set of European countries.

(a) Use an agglomerative clusterer to cluster this data. Produce a dendrogram
of this data for each of single link, complete link, and group average clus-
tering. You should label the countries on the axis. What structure in the
data does each method expose? it’s fine to look for code, rather than writ-
ing your own. Hint: I made plots I liked a lot using R’s hclust clustering
function, and then turning the result into a phylogenetic tree and using a
fan plot, a trick I found on the web; try plot(as.phylo(hclustresult),

type=’’fan’’). You should see dendrograms that “make sense” (at least
if you remember some European history), and have interesting differences.

(b) Using k-means, cluster this dataset. What is a good choice of k for this
data and why?

7.2. Obtain the activities of daily life dataset from the UC Irvine machine learning
website (https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
data provided by Barbara Bruno, Fulvio Mastrogiovanni and Antonio Sgor-
bissa).
(a) Build a classifier that classifies sequences into one of the 14 activities pro-

vided. To make features, you should vector quantize, then use a histogram
of cluster centers (as described in the subsection; this gives a pretty ex-
plicit set of steps to follow). You will find it helpful to use hierarchical
k-means to vector quantize. You may use whatever multi-class classifier
you wish, though I’d start with R’s decision forest, because it’s easy to
use and effective. You should report (a) the total error rate and (b) the
class confusion matrix of your classifier.

(b) Now see if you can improve your classifier by (a) modifying the number
of cluster centers in your hierarchical k-means and (b) modifying the size
of the fixed length samples that you use.

7.3. This is a fairly ambitious exercise. It will demonstrate how to use vector
quantization to handle extremely sparse data. The 20 newsgroups dataset is a
famous text dataset. It consists of posts collected from 20 different newsgroups.
There are a variety of tricky data issues that this presents (for example, what
aspects of the header should one ignore? should one reduce words to their
stems, so “winning” goes to “win”, “hugely” to “huge”, and so on?). We will
ignore these issues, and deal with a cleaned up version of the dataset. This
consists of three items each for train and test: a document-word matrix, a
set of labels, and a map. You can find this cleaned up version of the dataset
at http://qwone.com/∼jason/20Newsgroups/. You should look for the cleaned
up version, identified as 20news-bydate-matlab.tgz on that page. The usual
task is to label a test article with which newsgroup it came from. Instead, we
will assume you have a set of test articles, all from the same newsgroup, and
you need to identify the newsgroup. The document-word matrix is a table of
counts of how many times a particular word appears in a particular document.
The collection of words is very large (53975 distinct words), and most words
do not appear in most documents, so most entries of this matrix are zero. The
file train.data contains this matrix for a collection of training data; each row
represents a distinct document (there are 11269), and each column represents

http://dasl.datadesk.com/data/view/47
http://dasl.datadesk.com/data/view/47
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
http://qwone.com/~jason/20Newsgroups/

Section 7.4 You should 170

a distinct word.
(a) Cluster the rows of this matrix to get a set of cluster centers using k-

means. You should have about one center for every 10 documents. Use
k-means, and you should find an efficient package rather than using your
own implementation. In particular, implementations of k-means differ
in important ways from my rather high-level description of the algorithm;
you should look for a package that uses the Lloyd-Hartigan method. Hint:
Clustering all these points is a bit of a performance; check your code on
small subsets of the data first, because the size of this dataset means that
clustering the whole thing will be slow.

(b) You can now think of each cluster center as a document “type”. For each
newsgroup, plot a histogram of the “types” of document that appear in the
training data for that newsgroup. You’ll need to use the file train.label,
which will tell you what newsgroup a particular item comes from.

(c) Now train a classifier that accepts a small set of documents (10-100) from
a single newsgroup, and predicts which of 20 newsgroups it comes from.
You should use the histogram of types from the previous sub-exercise as
a feature vector. Compute the performance of this classifier on the test
data (test.data and test.label).

7.4. This is another fairly ambitious exercise. We will use the document clustering
method of section ?? to identify clusters of documents, which we will asso-
ciate with topics. The 20 newsgroups dataset is a famous text dataset. It
consists of posts collected from 20 different newsgroups. There are a vari-
ety of tricky data issues that this presents (for example, what aspects of the
header should one ignore? should one reduce words to their stems, so “win-
ning” goes to “win”, “hugely” to “huge”, and so on?). We will ignore these
issues, and deal with a cleaned up version of the dataset. This consists of three
items each for train and test: a document-word matrix, a set of labels, and a
map. You can find this cleaned up version of the dataset at http://qwone.com/
∼jason/20Newsgroups/. You should look for the cleaned up version, identified
as 20news-bydate-matlab.tgz on that page. The usual task is to label a test
article with which newsgroup it came from. The document-word matrix is a
table of counts of how many times a particular word appears in a particular
document. The collection of words is very large (53975 distinct words), and
most words do not appear in most documents, so most entries of this matrix
are zero. The file train.data contains this matrix for a collection of training
data; each row represents a distinct document (there are 11269), and each
column represents a distinct word.
(a) Cluster the rows of this matrix, using the method of section ??, to get a

set of cluster centers which we will identify as topics. Hint: Clustering all
these points is a bit of a performance; check your code on small subsets of
the data first, because the size of this dataset means that clustering the
whole thing will be slow.

(b) You can now think of each cluster center as a document “type”. Assume
you have k clusters (topics). Represent each document by a k-dimensional
vector. Each entry of the vector should be the negative log-probability
of the document under that cluster model. Now use this information to
build a classifier that identifies the newsgroup using the vector. You’ll
need to use the file train.label, which will tell you what newsgroup a
particular item comes from. I advise you use a randomized decision forest,
but other choices are plausible. Evaluate your classifier usingthe test data

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/

Section 7.4 You should 171

(test.data and test.label).

C H A P T E R 8

Clustering using Probability Models

Clustering objects requires some notion of how similar they are. We have seen
how to cluster using distance in feature space, which is a natural way of thinking
about similarity. Another way to think about similarity is to ask whether two
objects have high probability under the same probability model. This can be a
convenient way of looking at things when it is easier to build probability models
than it is to measure distances. It turns out to be a natural way of obtaining soft
clustering weights (which emerge from the probability model). And it provides a
framework for our first encounter with an extremely powerful and general algorithm,
which you should see as a very aggressive generalization of K-means.

8.1 MIXTURE MODELS AND CLUSTERING

It is natural to think of clustering in the following way. The data was created by
a collection of distinct probability models (one per cluster). For each data item,
something (nature?) chose which model was to produce a point, and then an IID
sample of that model is the point. We see the points: we’d like to know what the
models were, but (and this is crucial) we don’t know which model produced which
point. If we knew the models, it would be easy to decide which model produced
which point. Similarly, if we knew which point went to which model, we could
determine what the models were. One encounters this situation – or problems that
can be mapped to this situation – again and again. It is very deeply embedded in
clustering problems.

You should notice a resonance with K-means here. In K-means, if we knew
the centers, which point belongs to which center would be easy; if we knew which
point belongs to which center, the centers would be easy. We dealt with this situa-
tion quite effectively by re-estimating. It is pretty clear that a natural algorithm for
dealing with the probability models is to iterate between estimating which model
gets which point, and the model parameters. This is the key to a standard, and
very important, algorithm for estimation here, called EM (or expectation maxi-

mization, if you want the long version). I will develop this algorithm in two simple
cases, and we will see it in a more general form later.

Notation: This topic lends itself to a glorious festival of indices, limits of
sums and products, etc. I will do one example in quite gory detail; the other
follows the same form, and for that we’ll proceed more expeditiously. Writing the
limits of sums or products explicitly is usually even more confusing than adopting
a compact notation. When I write

∑

i or
∏

i, I mean a sum (or product) over all
values of i. When I write

∑

i,ĵ or
∏

i,ĵ , I mean a sum (or product) over all values
of i except for the j’th item. I will write vectors, as usual, as x; the i’th such vector
in a collection is xi, and the k’th component of the i’th vector in a collection is xik.
In what follows, I will construct a vector δi corresponding to the i’th data item xi

172

Section 8.1 Mixture Models and Clustering 173

(it will tell us what cluster that item belongs to). I will write δ to mean all the δi
(one for each data item). The j’th component of this vector is δij . When I write
∑

δu
, I mean a sum over all values that δu can take. When I write

∑

δ, I mean a
sum over all values that each δ can take. When I write

∑

δ,δ̂v
, I mean a sum over

all values that all δ can take, omitting all cases for the v’th vector δv.

8.1.1 A Finite Mixture of Blobs

A blob of data points is quite easily modelled with a single normal distribution.
Obtaining the parameters is straightforward (estimate the mean and covariance
matrix with the usual expressions). Now imagine I have t blobs of data, and I know
t. A normal distribution is likely a poor model, but I could think of the data as being
produced by t normal distributions. I will assume that each normal distribution has
a fixed, known covariance matrix Σ, but the mean of each is unknown. Because the
covariance matrix is fixed, and known, we can compute a factorization Σ = AAT .
The factors must have full rank, because the covariance matrix must be positive
definite. This means that we can apply A−1 to all the data, so that each blob
covariance matrix (and so each normal distribution) is the identity.

Write µj for the mean of the j’th normal distribution. We can model a
distribution that consists of t distinct blobs by forming a weighted sum of the
blobs, where the j’th blob gets weight πj . We ensure that

∑

j πj = 1, so that we
can think of the overall model as a probability distribution. We can then model
the data as samples from the probability distribution

p(x|µ1, . . . , µk, π1, . . . , πk) =
∑

j

πj

[

1
√

(2π)d
exp

(

−1

2
(x− µj)

T (x− µj)

)

]

.

The way to think about this probability distribution is that a point is generated by
first choosing one of the normal distributions (the j’th is chosen with probability
πj), then generating a point from that distribution. This is a pretty natural model
of clustered data. Each mean is the center of a blob. Blobs with many points in
them have a high value of πj , and blobs with few points have a low value of πj .
We must now use the data points to estimate the values of πj and µj (again, I am
assuming that the blobs – and the normal distribution modelling each – have the
identity as a covariance matrix). A distribution of this form is known as a mixture

of normal distributions, and the πj terms are usually called mixing weights.
Writing out the likelihood will reveal a problem: we have a product of many

sums. The usual trick of taking the log will not work, because then you have a sum
of logs of sums, which is hard to differentiate and hard to work with. A much more
productive approach is to think about a set of hidden variables which tell us which
blob each data item comes from. For the i’th data item, we construct a vector
δi. The j’th component of this vector is δij , where δij = 1 if xi comes from blob
(equivalently, normal distribution) j and zero otherwise. Notice there is exactly
one 1 in δi, because each data item comes from one blob. I will write δ to mean all
the δi (one for each data item). Assume we know the values of these terms. I will

Section 8.1 Mixture Models and Clustering 174

write θ = (µ1, . . . , µk, π1, . . . , πk) for the unknown parameters. Then we can write

p(xi|δi, θ) =
∏

j

[

1
√

(2π)d
exp

(

−1

2
(xi − µj)

T (xi − µj)

)

]δij

(because δij = 1 means that xi comes from blob j, so the terms in the product are
a collection of 1’s and the probability we want). We also have

p(δij = 1|θ) = πj

allowing us to write

p(δi|θ) =
∏

j

[πj]
δij

(because this is the probability that we select blob j to produce a data item; again,
the terms in the product are a collection of 1’s and the probability we want). This
means that

p(xi, δi|θ) =
∏

j

{[

1
√

(2π)d
exp

(

−1

2
(xi − µj)

T (xi − µj)

)

]

πj

}δij

and we can write a log-likelihood. The data are the observed values of x and δ
(remember, we pretend we know these; I’ll fix this in a moment), and the parameters
are the unknown values of µ1, . . . , µk and π1, . . . , πk. We have

L(µ1, . . . , µk, π1, . . . , πk;x, δ) = L(θ;x, δ)

=
∑

ij

{[(

−1

2
(xi − µj)

T (xi − µj)

)]

+ log πj

}

δij +K

where K is a constant that absorbs the normalizing constants for the normal dis-
tributions. You should check this expression gives the right answer. I have used
the δij as a “switch” – for one term, δij = 1 and the term in curly brackets is “on”,
and for all others that term is multiplied by zero. The problem with all this is that
we don’t know δ. I will deal with this when we have another example.

8.1.2 Topics and Topic Models

We have already seen that word counts expose similarities between documents (sec-
tion 287). We now assume that documents with similar word counts will come from
the same topic (mostly, a term of art for cluster used in the natural language pro-
cessing community). A really useful model is to assume that words are conditionally
independent, conditioned on the topic. This means that, once you know the topic,
words are IID samples of a multinomial distribution that is given by the topic (the
word probabilities for that topic). If it helps, you can think of the topic as multi-
sided die with a different word on each face. You then make a document by rolling
this die – which is likely not a fair die – some number of times.

This model of documents has problems. Word order doesn’t matter in this
model, nor does where a word appears in a document or what words are near in

Section 8.1 Mixture Models and Clustering 175

the document and what others are far away. We’ve already seen that ignoring
word order, word position, and neighbors can still produce useful representations
(section 287). Despite its problems, this model clusters documents rather well, is
easy to work with, and is the basis for more complex models.

A single document is a set of word counts that is obtained by (a) selecting
a topic then (b) drawing words as IID samples from that topic. We now have a
collection of documents, and we want to know (a) what topic each document came
from and (b) the word probabilities for each topic. Now imagine we know which
document comes from which topic. Then we could estimate the word probabilities
using the documents in each topic by simply counting. In turn, imagine we know
the word probabilities for each topic. Then we could tell (at least in principle) which
topic a document comes from by looking at the probability each topic generates
the document, and choosing the topic with the highest probability. This procedure
should strike you as being very like k-means, though the details have changed.

To construct a probabilistic model more formally, we will assume that a doc-
ument is generated in two steps. We will have t topics. First, we choose a topic,
choosing the j’th topic with probability πj . Then we will obtain a set of words
by repeatedly drawing IID samples from that topic, and record the count of each
word in a count vector. Each topic is a multinomial probability distribution. The
vocabulary is d-dimensional. Write pj for the d-dimensional vector of word prob-
abilities for the j’th topic. Now write xi for the i’th vector of word counts (there
are N vectors in the collection). We assume that words are generated indepen-
dently, conditioned on the topic. Write xik for the k’th component of xi, and so
on. Notice that xT

i 1 is the sum of entries in xi, and so the number of words in
document i. Then the probability of observing the counts in xi when the document
was generated by topic j is

p(xi|pj) =

(

(xT
i 1)!

∏

v xiv !

)

∏

u

pxiu

ju .

We can now write the probability of observing a document. Again, we write θ =
(p1, . . . ,pt, π1, . . . , πt) for the vector of unknown parameters. We have

p(xi|θ) =
∑

l

p(xi|topic is l)p(topic is l|θ)

=
∑

l

[

(

(xT
i 1)!

∏

v xiv!

)

∏

u

pxiu

lu

]

πl.

This model is widely called a topic model; be aware that there are many kinds
of topic model, and this is a simple one. The expression should look unpromising,
in a familiar way. If you write out a likelihood, you will see a product of sums;
and if you write out a log-likelihood, you will see a sum of logs of sums. Neither
is enticing. We could use the same trick we used for a mixture of normals. Write
δij = 1 if xi comes from topic j, and δij = 0 otherwise. Then we have

p(xi|δij = 1, θ) =

[

(

(xT
i 1)!

∏

v xiv!

)

∏

u

pxiu

ju

]

Section 8.2 The EM Algorithm 176

(because δij = 1 means that xi comes from topic j). This means we can write

p(xi|δi, θ) =
∏

j

{[

(

(xT
i 1)!

∏

v xiv!

)

∏

u

pxiu

ju

]}δij

(because δij = 1 means that xi comes from topic j, so the terms in the product are
a collection of 1’s and the probability we want). We also have

p(δij = 1|θ) = πj

(because this is the probability that we select topic j to produce a data item),
allowing us to write

p(δi|θ) =
∏

j

[πj]
δij

(again, the terms in the product are a collection of 1’s and the probability we want).
This means that

p(xi, δi|θ) =
∏

j

[

(

(xT
i 1)!

∏

v xiv !

)

∏

u

(

pxiu

ju

)

πj

]δij

and we can write a log-likelihood. The data are the observed values of x and δ
(remember, we pretend we know these for the moment), and the parameters are
the unknown values collected in θ. We have

L(θ;x, δ) =
∑

i







∑

j

[

∑

u

xiu log pju + log πj

]

δij







+K

where K is a term that contains all the

log

(

(xT
i 1)!

∏

v xiv!

)

terms. This is of no interest to us, because it doesn’t depend on any of our pa-
rameters. It takes a fixed value for each dataset. You should check this expression,
noticing that, again, I have used the δij as a “switch” – for one term, δij = 1 and
the term in curly brackets is “on”, and for all others that term is multiplied by
zero. The problem with all this, as before, is that we don’t know δij . But there is
a recipe.

8.2 THE EM ALGORITHM

There is a straightforward, natural, and very powerful recipe for estimating θ for
both models. In essence, we will average out the things we don’t know. But this
average will depend on our estimate of the parameters, so we will average, then re-
estimate parameters, then re-average, and so on. If you lose track of what’s going
on here, think of the example of k-means with soft weights (section 287; this is close
to what the equations for the case of a mixture of normals will boil down to). In

Section 8.2 The EM Algorithm 177

this analogy, the δ tell us which cluster center a data item came from. Because we
don’t know the values of the δ, we assume we have a set of cluster centers; these
allow us to make a soft estimate of the δ; then we use this estimate to re-estimate
the centers; and so on.

This is an instance of a general recipe. Recall we wrote θ for a vector of
parameters. In the mixture of normals case, θ contained the means and the mixing
weights; in the topic model case, it contained the topic distributions and the mixing
weights. Assume we have an estimate of the value of this vector, say θ(n). We could
then compute p(δ|θ(n),x). In the mixture of normals case, this is a guide to which
example goes to which cluster. In the topic case, it is a guide to which example
goes to which topic.

We could use this to compute the expected value of the likelihood with respect
to δ. We compute

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x) = Ep(δ|θ(n),x)[L(θ;x, δ)]

(where the sum is over all values of δ). Notice that Q(θ; θ(n)) is a function of θ
(because L was), but now does not have any unknown δ terms in it. This Q(θ; θ(n))
encodes what we know about δ.

For example, assume that p(δ|θ(n),x) has a single, narrow peak in it, at (say)
δ = δ0. In the mixture of normals case, this would mean that there is one allocation
of points to clusters that is significantly better than all others, given θ(n). For this
example, Q(θ; θ(n)) will be approximately L(θ;x, δ0).

Now assume that p(δ|θ(n),x) is about uniform. In the mixture of normals
case, this would mean that any particular allocation of points to clusters is about
as good as any other. For this example, Q(θ; θ(n)) will average L over all possible
δ values with about the same weight for each.

We obtain the next estimate of θ by computing

θ(n+1) =
argmax

θ
Q(θ; θ(n))

and iterate this procedure until it converges (which it does, though I shall not prove
that). The algorithm I have described is extremely general and powerful, and is
known as expectation maximization or (more usually) EM. The step where
we compute Q(θ; θ(n)) is called the E step; the step where we compute the new
estimate of θ is known as the M step.

One trick to be aware of: it is quite usual to ignore additive constants in the
log-likelihood, because they have no effect. When you do the E-step, taking the
expectation of a constant gets you a constant; in the M-step, the constant can’t
change the outcome. As a result, additive constants may disappear without notice
(they do so regularly in the research literature). In the mixture of normals example,
below, I’ve tried to keep track of them; for the mixture of multinomials, I’ve been
looser.

Section 8.2 The EM Algorithm 178

8.2.1 Example: Mixture of Normals: The E-step

Now let us do the actual calculations for a mixture of normal distributions. The E
step requires a little work. We have

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

If you look at this expression, it should strike you as deeply worrying. There are
a very large number of different possible values of δ. In this case, there are N × t
cases (there is one δi for each data item, and each of these can have a one in each
of t locations). It isn’t obvious how we could compute this average.

But notice

p(δ|θ(n),x) = p(δ,x|θ(n))
p(x|θ(n))

and let us deal with numerator and denominator separately. For the numerator,
notice that the xi and the δi are independent, identically distributed samples, so
that

p(δ,x|θ(n)) =
∏

i

p(δi,xi|θ(n)).

The denominator is slightly more work. We have

p(x|θ(n)) =
∑

δ

p(δ,x|θ(n))

=
∑

δ

[

∏

i

p(δi,xi|θ(n))
]

=
∏

i





∑

δi

p(δi,xi|θ(n))



 .

You should check the last step; one natural thing to do is check with N = 2 and
t = 2. This means that we can write

p(δ|θ(n),x) =
p(δ,x|θ(n))
p(x|θ(n))

=

∏

i p(δi,xi|θ(n))
∏

i

[

∑

δi p(δi,xi|θ(n))
]

=
∏

i

p(δi,xi|θ(n))
∑

δi p(δi,xi|θ(n))

=
∏

i

p(δi|xi, θ
(n))

Now we need to look at the log-likelihood. We have

L(θ;x, δ) =
∑

ij

{[(

−1

2
(xi − µj)

T (xi − µj)

)]

+ log πj

}

δij +K.

Section 8.2 The EM Algorithm 179

The K term is of no interest – it will result in a constant – but we will try to
keep track of it. To simplify the equations we need to write, I will construct a t
dimensional vector ci for the i’th data point. The j’th component of this vector
will be

{[(

−1

2
(xi − µj)

T (xi − µj)

)]

+ log πj

}

so we can write
L(θ;x, δ) =

∑

i

cTi δi +K.

Now all this means that

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

δ

(

∑

i

cTi δi +K

)

p(δ|θ(n),x)

=
∑

δ

(

∑

i

cTi δi +K

)

∏

u

p(δu|θ(n),x)

=
∑

δ

(

cT1 δ1
∏

u

p(δu|θ(n),x) + . . . cTN δN
∏

u

p(δu|θ(n),x)
)

.

We can simplify further. We have that
∑

δi p(δi|xi, θ
(n)) = 1, because this is a

probability distribution. Notice that, for any index v,

∑

δ

(

cTv δv
∏

u

p(δu|θ(n),x)
)

=
∑

δv

(

cTv δvp(δv|θ(n),x)
)







∑

δ, δ̂v

∏

u,v̂

p(δu|θ(n),x)







=
∑

δv

(

cTv δvp(δv|θ(n),x)
)

So we can write

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

i





∑

δi

cTi δip(δi|θ(n),x)



+K

=
∑

i









∑

j

{[(

−1

2
(xi − µj)

T (xi − µj)

)

+ log πj

]

wij

}







+K

where

wij = 1p(δij = 1|θ(n),x) + 0p(δij = 0|θ(n),x)
= p(δij = 1|θ(n),x).

Section 8.2 The EM Algorithm 180

Now

p(δij = 1|θ(n),x) =
p(x, δij = 1|θ(n))

p(x|θ(n))

=
p(x, δij = 1|θ(n))
∑

l p(x, δil = 1|θ(n))

=
p(xi, δij = 1|θ(n))∏u,̂i p(xu, δu|θ)

(
∑

l p(x, δil = 1|θ(n))
)
∏

u,̂i p(xu, δu|θ)

=
p(xi, δij = 1|θ(n))
∑

l p(x, δil = 1|θ(n))

If the last couple of steps puzzle you, remember we obtained p(x, δ|θ) =∏i p(xi, δi|θ).
Also, look closely at the denominator; it expresses the fact that the data must have
come from somewhere. So the main question is to obtain p(xi, δij = 1|θ(n)). But

p(xi, δij = 1|θ(n)) = p(xi|δij = 1, θ(n))p(δij = 1|θ(n))

=

[

1
√

(2π)d
exp

(

−1

2
(xi − µj)

T (xi − µj)

)

]

πj .

Substituting yields

p(δij = 1|θ(n),x) =
[

exp
(

− 1
2 (xi − µj)

T (xi − µj)
)]

πj
∑

k

[

exp
(

− 1
2 (xi − µk)T (xi − µk)

)]

πk

= wij .

8.2.2 Example: Mixture of Normals: The M-step

The M-step is more straightforward. Recall

Q(θ; θ(n)) =





∑

ij

{[(

−1

2
(xi − µj)

T (xi − µj)

)]

+ log πj

}

wij +K





and we have to maximise this with respect to µ and π, and the terms wij are known.
This maximization is easy. We compute

µ
(n+1)
j =

∑

i xiwij
∑

i wij

and

π
(n+1)
j =

∑

iwij

N
.

You should check these expressions by differentiating and setting to zero. When you
do so, remember that, because π is a probability distribution,

∑

j πj = 1 (otherwise
you’ll get the wrong answer).

Section 8.2 The EM Algorithm 181

8.2.3 Example: Topic Model: The E-Step

We need to work out two steps. The E step requires a little calculation. We have

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

δ





∑

ij

{[

∑

u

xiu log pju

]

+ log πj

}

δij



 p(δ|θ(n),x)

=





∑

ij

{[

∑

k

xi,k log pj,k

]

+ log πj

}

wij





Here the last two steps follow from the same considerations as in the mixture of
normals. The xi and δi are IID samples, and so the expectation simplifies as in
that case. If you’re uncertain, rewrite the steps of section 8.2.1. The form of this Q
function is the same as that (a sum of cTi δi terms, but using a different expression
for ci). In this case, as above,

wij = 1p(δij = 1|θ(n),x) + 0p(δij = 0|θ(n),x)
= p(δij = 1|θ(n),x).

Again, we have

p(δij = 1|θ(n),x) =
p(xi, δij = 1|θ(n))

p(xi|θ(n))

=
p(xi, δij = 1|θ(n))
∑

l p(xi, δil = 1|θ(n))

and so the main question is to obtain p(xi, δij = 1|θ(n)). But

p(xi, δij = 1|θ(n)) = p(xi|δij = 1, θ(n))p(δij = 1|θ(n))

= =

[

∏

k

pxk

j,k

]

πj .

Substituting yields

p(δij = 1|θ(n),x) =

[

∏

k p
xk

j,k

]

πj

∑

l

[

∏

k p
xk

l,k

]

πl

8.2.4 Example: Topic Model: The M-step

The M-step is more straightforward. Recall

Q(θ; θ(n)) =





∑

ij

{[

∑

k

xi,k log pj,k

]

+ log πj

}

wij





Section 8.2 The EM Algorithm 182

and we have to maximise this with respect to µ and π, and the terms wij are known.
This maximization is easy, but remember that the probabilities sum to one, so you
need either to use a Lagrange multiplier or to set one probability to (1−all others).
You should get

p
(n+1)
j =

∑

i xiwij
∑

i x
T
i 1wij

and

π
(n+1)
j =

∑

iwij

N
.

You should check these expressions by differentiating and setting to zero.

8.2.5 EM in Practice

The algorithm we have seen is amazingly powerful; I will use it again, ideally with
less notation. One could reasonably ask whether it produces a “good” answer.
Slightly surprisingly, the answer is yes. The algorithm produces a local maximum
of p(x|θ), the likelihood of the data conditioned on parameters. This is rather
surprising because we engaged in all the activity with δ to avoid directly dealing
with this likelihood (which in our cases was an unattractive product of sums). I
did not prove this, but it’s true anyway.

There are some practical issues. First, how many cluster centers should there
be? Mostly, the answer is a practical one. We are usually clustering data for a
reason (vector quantization is a really good reason), and then we search for a k
that yields the best results.

Second, how should one start the iteration? This depends on the problem
you want to solve, but for the two cases I have described, a rough clustering using
k-means usually provides an excellent start. In the mixture of normals problem,
you can take the cluster centers as initial values for the means, and the fraction of
points in each cluster as initial values for the mixture weights. In the topic model
problem, you can cluster the count vectors with k-means, use the overall counts
within a cluster to get an initial estimate of the multinomial model probabilities,
and use the fraction of documents within a cluster to get mixture weights. You need
to be careful here, though. You really don’t want to initialize a topic probability
with a zero value for any word (otherwise no document containing that word can
ever go into the cluster, which is a bit extreme). For our purposes, it will be enough
to allocate a small value to each zero count, then adjust all the word probabilies to
be sure they sum to one. More complicated approaches are possible.

Third, we need to avoid numerical problems in the implementation. Notice
that you will be evaluating terms that look like

πke
−(xi−µk)

T (xi−µk)/2

∑

u πue−(xi−µu)T (xi−µu)/2
.

Imagine you have a point that is far from all cluster means. If you just blithely
exponentiate the negative distances, you could find yourself dividing zero by zero,
or a tiny number by a tiny number. This can lead to trouble. There’s an easy
alternative. Find the center the point is closest to. Now subtract the square of this

Section 8.2 The EM Algorithm 183

distance (d2min for concreteness) from all the distances. Then evaluate

πke
−
[

(xi−µk)
T (xi−µk)−d2

min

]

/2

∑

u πue
−
[

(xi−µu)T (xi−µu)−d2

min

]

/2

which is a better way of estimating the same number (notice the e
−d2

min
/2

terms
cancel top and bottom).

The last problem is more substantial. EM will get to a local minimum of
p(x|θ), but there might be more than one local minimum. For clustering problems,
the usual case is there are lots of them. One doesn’t really expect a clustering
problem to have a single best solution, as opposed to a lot of quite good solutions.
Points that are far from all clusters are a particular source of local minima; placing
these points in different clusters yields somewhat different sets of cluster centers,
each about as good as the other. It’s not usual to worry much about this point. A
natural strategy is to start the method in a variety of different places (use k means
with different start points), and choose the one that has the best value of Q when
it has converged.

However, EM isn’t magic. There are problems where computing the expecta-
tion is hard, typically because you have to sum over a large number of cases which
don’t have the nice independence structure that helped in the examples I showed.
There are strategies for dealing with this problem — essentially, you can get away
with an approximate expectation – but they’re beyond our reach at present.

Section 8.3 You should 184

8.3 YOU SHOULD

8.3.1 remember:

EM . 172
expectation maximization . 172
mixture of normal distributions . 173
mixing weights . 173
topic . 174
word probabilities . 174
topic model . 175
expectation maximization . 177
EM . 177
E step . 177
M step . 177

Section 8.3 You should 185

PROGRAMMING EXERCISES

8.1. Obtain the activities of daily life dataset from the UC Irvine machine learning
website (https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
data provided by Barbara Bruno, Fulvio Mastrogiovanni and Antonio Sgor-
bissa).
(a) Build a classifier that classifies sequences into one of the 14 activities pro-

vided. To make features, you should vector quantize, then use a histogram
of cluster centers (as described in the subsection; this gives a pretty ex-
plicit set of steps to follow). You will find it helpful to use hierarchical
k-means to vector quantize. You may use whatever multi-class classifier
you wish, though I’d start with R’s decision forest, because it’s easy to
use and effective. You should report (a) the total error rate and (b) the
class confusion matrix of your classifier.

(b) Now see if you can improve your classifier by (a) modifying the number
of cluster centers in your hierarchical k-means and (b) modifying the size
of the fixed length samples that you use.

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer

P A R T F O U R

REGRESSION

186

C H A P T E R 9

Regression

Classification tries to predict a class from a data item. Regression tries to
predict a value. For example, we know the zip code of a house, the square footage
of its lot, the number of rooms and the square footage of the house, and we wish to
predict its likely sale price. As another example, we know the cost and condition of
a trading card for sale, and we wish to predict a likely profit in buying it and then
reselling it. As yet another example, we have a picture with some missing pixels
– perhaps there was text covering them, and we want to replace it – and we want
to fill in the missing values. As a final example, you can think of classification as
a special case of regression, where we want to predict either +1 or −1; this isn’t
usually the best way to proceed, however. Predicting values is very useful, and so
there are many examples like this.

9.1 OVERVIEW

Some formalities are helpful here. In the simplest case, we have a dataset consisting
of a set of N pairs (xi, yi). We think of yi as the value of some function evaluated
at xi, but with some random component. This means there might be two data
items where the xi are the same, and the yi are different. We refer to the xi as
explanatory variables and the yi is a dependent variable. We regularly say
that we are regressing the dependent variable against the explanatory variables.
We want to use the examples we have — the training examples — to build a
model of the dependence between y and x. This model will be used to predict
values of y for new values of x, which are usually called test examples. By far
the most important model has the form y = xTβ + ξ, where β are some set of
parameters we need to choose and ξ are random effects. Now imagine that we have
one independent variable. An appropriate choice of x (details below) will mean
that the predictions made by this model will lie on a straight line. Figure 9.1 shows
two regressions. The data are plotted with a scatter plot, and the line gives the
prediction of the model for each value on the x axis.

We do not guarantee that different values of x produce different values of y.
Data just isn’t like this (see the crickets example Figure 9.1). Traditionally, regres-
sion produces some representation of a probability distribution for y conditioned on
x, so that we would get (say) some representation of a distribution on the houses
likely sale value. The best prediction would then be the expected value of that
distribution.

It should be clear that none of this will work if there is not some relationship
between the training examples and the test examples. If I collect training data
on the height and weight of children, I’m unlikely to get good predictions of the
weight of adults from their height. We can be more precise with a probabilistic
framework. We think of xi as IID samples from some (usually unknown) probability
distribution P (X). Then the test examples should also be IID samples from P (X),

187

Section 9.1 Overview 188

10 20 30 40

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Weight vs length in perch from Lake Laengelmavesi

Length (cm)

W
e

ig
h

t
(g

r)

R^2=0.87

I WROTE ON THIS FIGURE

14 15 16 17 18 19 20

70
75

80
85

90

Chirp frequency vs temperature in crickets

Frequency

Te
m

pe
ra

tu
re

R^2=0.68

FIGURE 9.1: On the left, a regression of weight against length for perch from a
Finnish lake (you can find this dataset, and the back story at http://www.amstat.
org/publications/ jse/ jse data archive.htm; look for “fishcatch” on that page). No-
tice that the linear regression fits the data fairly well, meaning that you should be
able to predict the weight of a perch from its length fairly well. On the right, a
regression of air temperature against chirp frequency for crickets. The data is fairly
close to the line, meaning that you should be able to tell the temperature from the
pitch of cricket’s chirp fairly well. This data is from http://mste.illinois.edu/patel/
amar430/keyprob1.html. The R2 you see on each figure is a measure of the goodness
of fit of the regression (section 9.2.4).

or, at least, rather like them – you usually can’t check this point with any certainty.
A probabilistic formalism can help be precise about the yi, too. Assume another
random variable Y has joint distribution with X given by P (Y,X). We think of
each yi as a sample from P (Y | {X = xi}). Then our modelling problem would be:
given the training data, build a model that takes a test example x and yields a
model of P (Y | {X = xi}).

Thinking about the problem this way should make it clear that we’re not
relying on any exact, physical, or causal relationship between Y and X . It’s enough
that their joint probability makes useful predictions possible, something we will test
by experiment. This means that you can build regressions that work in somewhat
surprising circumstances. For example, regressing childrens’ reading ability against
their foot size can be quite successful. This isn’t because having big feet somehow
helps you read; it’s because on the whole, older children read better, and also have
bigger feet.

To do anything useful with this formalism requires some aggressive simplifying
assumptions. There are very few circumstances that require a comprehensive rep-
resentation of P (Y | {X = xi}). Usually, we are interested in E[Y | {X = xi}] (the
mean of P (Y | {X = xi})) and in var ({P (Y | {X = xi})}). To recover this represen-
tation, we assume that, for any pair of examples (x, y), the value of y is obtained

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://mste.illinois.edu/patel/amar430/keyprob1.html
http://mste.illinois.edu/patel/amar430/keyprob1.html

Section 9.1 Overview 189

0.65 0.70 0.75 0.80 0.85 0.90 0.95

20
40

60
80

10
0

Longevity vs Thorax in Female Fruitflies

Thorax Length (mm)

Li
fe

sp
an

R^2=0.41

97 98 99 100

60
65

70
75

80
85

90

Heart rate vs temperature in humans

Temperature (F)

H
ea

rt
 r

at
e

(b
pm

)

R^2=0.06

FIGURE 9.2: Regressions do not necessarily yield good predictions or good model fits.
On the left, a regression of the lifespan of female fruitflies against the length of
their torso as adults (apparently, this doesn’t change as a fruitfly ages; you can
find this dataset, and the back story at http://www.amstat.org/publications/jse/
jse data archive.htm; look for “fruitfly” on that page). The figure suggests you can
make some prediction of how long your fruitfly will last by measuring its torso, but
not a particularly accurate one. On the right, a regression of heart rate against
body temperature for adults. You can find the data at http://www.amstat.org/
publications/jse/ jse data archive.htm as well; look for “temperature” on that page.
Notice that predicting heart rate from body temperature isn’t going to work that well,
either.

by applying some (unknown) function f to x, then adding some random variable
ξ with zero mean. We can write y(x) = f(x) + ξ, though it’s worth remembering
that there can be many different values of y associated with a single x. Now we
must make some estimate of f — which yields E[Y | {X = xi}] — and estimate the
variance of ξ. The variance of ξ might be constant, or might vary with x.

9.1.1 Regression to Spot Trends

Regression isn’t only used to predict values. Another reason to build a regression
model is to compare trends in data. Doing so can make it clear what is really hap-
pening. Here is an example from Efron (“Computer-Intensive methods in statistical
regression”, B. Efron, SIAM Review, 1988). The table in the appendix shows some
data from medical devices, which sit in the body and release a hormone. The data
shows the amount of hormone currently in a device after it has spent some time in
service, and the time the device spent in service. The data describes devices from
three production lots (A, B, and C). Each device, from each lot, is supposed to have
the same behavior. The important question is: Are the lots the same? The amount
of hormone changes over time, so we can’t just compare the amounts currently in
each device. Instead, we need to determine the relationship between time in service

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm

Section 9.1 Overview 190

and hormone, and see if this relationship is different between batches. We can do
so by regressing hormone against time.

50 100 150 200
15

20

25

30

35

40

A

C

A
C

C

A

B

C

A

BC
A

C

A

B
C

A

B

C
A

B
C

Time in service

A
m

ou
nt

 o
f

ho
rm

on
e

Hormone against time in service

50 100 150 200
−6

−4

−2

0

2

4

6

A

C

A

C

C

A

B C

A

BC

A
C

A
B
C

A

B
C

A

B

C

Time in service

R
es

id
ua

l

Regression residual against time

FIGURE 9.3: On the left, a scatter plot of hormone against time for devices from
tables 9.1 and 9.1. Notice that there is a pretty clear relationship between time and
amount of hormone (the longer the device has been in service the less hormone there
is). The issue now is to understand that relationship so that we can tell whether lots
A, B and C are the same or different. The best fit line to all the data is shown as
well, fitted using the methods of section 9.2. On the right, a scatter plot of residual
— the distance between each data point and the best fit line — against time for the
devices from tables 9.1 and 9.1. Now you should notice a clear difference; some
devices from lots B and C have positive and some negative residuals, but all lot
A devices have negative residuals. This means that, when we account for loss of
hormone over time, lot A devices still have less hormone in them. This is pretty
good evidence that there is a problem with this lot.

Figure 9.3 shows how a regression can help. In this case, we have modelled
the amount of hormone in the device as

a× (time in service) + b

for a, b chosen to get the best fit (much more on this point later!). This means
we can plot each data point on a scatter plot, together with the best fitting line.
This plot allows us to ask whether any particular batch behaves differently from
the overall model in any interesting way.

However, it is hard to evaluate the distances between data points and the best
fitting line by eye. A sensible alternative is to subtract the amount of hormone
predicted by the model from the amount that was measured. Doing so yields a
residual — the difference between a measurement and a prediction. We can then
plot those residuals (Figure 9.3). In this case, the plot suggests that lot A is special
— all devices from this lot contain less hormone than our model predicts.

Section 9.2 Linear Regression and Least Squares 191

Definition: 9.1 Regression

Regression accepts a feature vector and produces a prediction, which
is usually a number, but can sometimes have other forms. You can
use these predictions as predictions, or to study trends in data. It is
possible, but not usually particularly helpful, to see classification as a
form of regression.

9.2 LINEAR REGRESSION AND LEAST SQUARES

Assume we have a dataset consisting of a set of N pairs (xi, yi). We think of yi as
the value of some function evaluated at xi, with some random component added.
This means there might be two data items where the xi are the same, and the yi are
different. We refer to the xi as explanatory variables and the yi is a dependent

variable. We want to use the examples we have — the training examples —
to build a model of the dependence between y and x. This model will be used to
predict values of y for new values of x, which are usually called test examples. It
can also be used to understand the relationships between the x. The model needs
to have some probabilistic component; we do not expect that y is a function of x,
and there is likely some error in evaluating y anyhow.

9.2.1 Linear Regression

We cannot expect that our model makes perfect predictions. Furthermore, y may
not be a function of x — it is quite possible that the same value of x could lead
to different y’s. One way that this could occur is that y is a measurement (and so
subject to some measurement noise). Another is that there is some randomness in
y. For example, we expect that two houses with the same set of features (the x)
might still sell for different prices (the y’s).

A good, simple model is to assume that the dependent variable (i.e. y) is
obtained by evaluating a linear function of the explanatory variables (i.e. x), then
adding a zero-mean normal random variable. We can write this model as

y = xTβ + ξ

where ξ represents random (or at least, unmodelled) effects. We will always assume
that ξ has zero mean. In this expression, β is a vector of weights, which we must
estimate. When we use this model to predict a value of y for a particular set of
explanatory variables x∗, we cannot predict the value that ξ will take. Our best
available prediction is the mean value (which is zero). Notice that if x = 0, the
model predicts y = 0. This may seem like a problem to you — you might be
concerned that we can fit only lines through the origin — but remember that x

contains explanatory variables, and we can choose what appears in x. The two
examples show how a sensible choice of x allows us to fit a line with an arbitrary
y-intercept.

Section 9.2 Linear Regression and Least Squares 192

Definition: 9.2 Linear regression

A linear regression takes the feature vector x and predicts xTβ, for
some vector of coefficients β. The coefficients are adjusted, using data,
to produce the best predictions.

Example: 9.1 A linear model fitted to a single explanatory variable

Assume we fit a linear model to a single explanatory variable. Then
the model has the form y = xβ + ξ, where ξ is a zero mean random
variable. For any value x∗ of the explanatory variable, our best estimate
of y is βx∗. In particular, if x∗ = 0, the model predicts y = 0, which
is unfortunate. We can draw the model by drawing a line through the
origin with slope β in the x, y plane. The y-intercept of this line must
be zero.

Example: 9.2 A linear model with a non-zero y-intercept

Assume we have a single explanatory variable, which we write u. We
can then create a vector x = [u, 1]

T
from the explanatory variable. We

now fit a linear model to this vector. Then the model has the form
y = xTβ + ξ, where ξ is a zero mean random variable. For any value
x∗ = [u∗, 1]T of the explanatory variable, our best estimate of y is
(x∗)Tβ, which can be written as y = β1u

∗ + β2. If x∗ = 0, the model
predicts y = β2. We can draw the model by drawing a line through the
origin with slope β1 and y-intercept β2 in the x, y plane.

9.2.2 Choosing β

We must determine β. We can proceed in two ways. I show both because different
people find different lines of reasoning more compelling. Each will get us to the
same solution. One is probabilistic, the other isn’t. Generally, I’ll proceed as if
they’re interchangeable, although at least in principle they’re different.

Probabilistic approach: we could assume that ξ is a zero mean normal
random variable with unknown variance. Then P (y|x, β) is normal, with mean
xTβ, and so we can write out the log-likelihood of the data. Write σ2 for the
variance of ξ, which we don’t know, but will not worry about right now. We have

Section 9.2 Linear Regression and Least Squares 193

that

logL(β) = −
∑

i

logP (yi|xi, β)

=
1

2σ2

∑

i

(yi − xT
i β)

2 + term not depending on β

Maximizing the log-likelihood of the data is equivalent to minimizing the negative
log-likelihood of the data. Furthermore, the term 1

2σ2 does not affect the location
of the minimum, so we must have that β minimizes

∑

i(yi − xT
i β)

2, or anything
proportional to it. It is helpful to minimize an expression that is an average of
squared errors, because (hopefully) this doesn’t grow much when we add data. We
therefore minimize

(

1

N

)

(

∑

i

(yi − xT
i β)

2

)

.

Direct approach: notice that, if we have an estimate of β, we have an
estimate of the values of the unmodelled effects ξi for each example. We just take
ξi = yi − xT

i β. It is quite natural to make the unmodelled effects “small”. A good
measure of size is the mean of the squared values, which means we want to minimize

(

1

N

)

(

∑

i

(yi − xT
i β)

2

)

.

We can write all this more conveniently using vectors and matrices. Write y

for the vector








y1
y2
. . .
yn









and X for the matrix




xT
1

xT
2

. . .xT
n



 .

Then we want to minimize
(

1

N

)

(

y −Xβ)T (y −Xβ
)

which means that we must have

X TXβ −X Ty = 0.

For reasonable choices of features, we could expect that X TX — which should
strike you as being a lot like a covariance matrix — has full rank. If it does, which
is the usual case, this equation is easy to solve. If it does not, there is more to do,
which we will do in section 9.4.2.

Section 9.2 Linear Regression and Least Squares 194

Listing 9.1: R code used for the linear regression example of worked example 9.1

e fd<−read . table (’ e f r o n t ab l e . txt ’ , header=TRUE)
the t a b l e has the form

#N1 Ah Bh Ch N2 At Bt Ct

now we need to cons t ruc t a new da t a s e t

hor<−s tack (efd , s e l e c t =2:4)
tim<−s tack (efd , s e l e c t =6:8)
f oo<−data . frame (time=tim [, c (” va lues ”)] ,

hormone=hor [, c (” va lues ”)])
f oo . lm<−lm(hormone˜time , data=foo)
plot (f oo)
abline (f oo . lm)

Remember this: The vector of coefficients β for a linear regression is
usually estimated using a least-squares procedure.

Worked example 9.1 Simple Linear Regression with R

Regress the hormone data against time for all the devices in the Efron example.

Solution: This example is mainly used to demonstrate how to regress in R.
There is sample code in listing 9.1. The summary in the listing produces a
great deal of information (try it). Most of it won’t mean anything to you yet.
You can get a figure by doing plot(foo.lm), but these figures will not mean
anything yet, either. In the code, I’ve shown how to plot the data and a line
on top of it.

9.2.3 Residuals

Assume we have produced a regression by solving

X TX β̂ −X Ty = 0

for the value of β̂. I write β̂ because this is an estimate; we likely don’t have the
true value of the β that generated the data (the model might be wrong; etc.). We

cannot expect that X β̂ is the same as y. Instead, there is likely to be some error.
The residual is the vector

e = y −X β̂

which gives the difference between the true value and the model’s prediction at each
point. Each component of the residual is an estimate of the unmodelled effects for

Section 9.2 Linear Regression and Least Squares 195

that data point. The mean square error is

m =
eTe

N

and this gives the average of the squared error of prediction on the training exam-
ples.

Notice that the mean squared error is not a great measure of how good the
regression is. This is because the value depends on the units in which the dependent
variable is measured. So, for example, if you measure y in meters you will get a
different mean squared error than if you measure y in kilometers.

9.2.4 R-squared

There is an important quantitative measure of how good a regression is which
doesn’t depend on units. Unless the dependent variable is a constant (which would
make prediction easy), it has some variance. If our model is of any use, it should
explain some aspects of the value of the dependent variable. This means that
the variance of the residual should be smaller than the variance of the dependent
variable. If the model made perfect predictions, then the variance of the residual
should be zero.

We can formalize all this in a relatively straightforward way. We will ensure
that X always has a column of ones in it, so that the regression can have a non-zero
y-intercept. We now fit a model

y = Xβ + e

(where e is the vector of residual values) by choosing β such that eTe is minimized.
Then we get some useful technical results.

Useful Facts: 9.1 Regression

We write y = X β̂+ e, where e is the residual. Assume X has a column
of ones, and β̂ is chosen to minimize eTe. Then we have

1. eTX = 0, i.e. that e is orthogonal to any column of X . This
is because, if e is not orthogonal to some column of e, we can
increase or decrease the β̂ term corresponding to that column to
make the error smaller. Another way to see this is to notice that
β̂ is chosen to minimize 1

N eTe, which is 1
N (y − X β̂)T (y − X β̂).

Now because this is a minimum, the gradient with respect to β̂ is
zero, so (y −X β̂)T (−X) = −eTX = 0.

2. eT1 = 0 (recall that X has a column of all ones, and apply the
previous result).

3. 1T (y −X β̂) = 0 (same as previous result).

4. eTX β̂ = 0 (first result means that this is true).

Section 9.2 Linear Regression and Least Squares 196

Now y is a one dimensional dataset arranged into a vector, so we can compute
mean ({y}) and var[y]. Similarly, X β̂ is a one dimensional dataset arranged into a

vector (its elements are xT
i β̂), as is e, so we know the meaning of mean and variance

for each. We have a particularly important result:

var[y] = var
[

X β̂
]

+ var[e].

This is quite easy to show, with a little more notation. Write y = (1/N)(1Ty)1 for

the vector whose entries are all mean ({y}); similarly for e and for X β̂. We have

var[y] = (1/N)(y − y)T (y − y)

and so on for var[ei], etc. Notice from the facts that y = X β̂. Now

var[y] = (1/N)
([

X β̂ −X β̂
]

+ [e− e]
)T ([

X β̂ −X β̂
]

+ [e− e]
)

= (1/N)

(

[

X β̂ −X β̂
]T [

X β̂ −X β̂
]

+ 2 [e− e]
T
[

X β̂ −X β̂
]

+ [e− e]
T
[e− e]

)

= (1/N)

(

[

X β̂ −X β̂
]T [

X β̂ −X β̂
]

+ [e− e]
T
[e− e]

)

because e = 0 and eTX β̂ = 0 and eT1 = 0

= var
[

X β̂
]

+ var[e].

This is extremely important, because us allows us to think about a regression as
explaining variance in y. As we are better at explaining y, var[e] goes down. In
turn, a natural measure of the goodness of a regression is what percentage of the
variance of y it explains. This is known as R2 (the r-squared measure). We have

R2 =
var
[

xT
i β̂
]

var[yi]

which gives some sense of how well the regression explains the training data. Notice
that the value of R2 is not affected by the units of y (exercises)

Good predictions result in high values of R2, and a perfect model will have
R2 = 1 (which doesn’t usually happen). For example, the regression of figure 9.3
has an R2 value of 0.87. Figures 9.1 and 9.2 show the R2 values for the regressions
plotted there; notice how better models yield larger values of R2. Notice that if
you look at the summary that R provides for a linear regression, it will offer you
two estimates of the value for R2. These estimates are obtained in ways that try to
account for (a) the amount of data in the regression, and (b) the number of variables
in the regression. For our purposes, the differences between these numbers and the
R2 I defined are not significant. For the figures, I computed R2 as I described in the
text above, but if you substitute one of R’s numbers nothing terrible will happen.

Section 9.2 Linear Regression and Least Squares 197

Remember this: The quality of predictions made by a regression can be
evaluated by looking at the fraction of the variance in the dependent variable
that is explained by the regression. This number is called R2, and lies be-
tween zero and one; regressions with larger values make better predictions.

0 20 40 60 80 100

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

Frequency of word usage in Shakespeare

Rank

N
um

be
r

of
 a

pp
ea

ra
nc

es

0 1 2 3 4

2
4

6
8

Frequency of word usage in Shakespeare, log−log

Log rank

Lo
g

nu
m

be
r

of
 a

pp
ea

ra
nc

es

FIGURE 9.4: On the left, word count plotted against rank for the 100 most common
words in Shakespeare, using a dataset that comes with R (called “bard”, and quite
likely originating in an unpublished report by J. Gani and I. Saunders). I show a
regression line too. This is a poor fit by eye, and the R2 is poor, too (R2 = 0.1). On
the right, log word count plotted against log rank for the 100 most common words
in Shakespeare, using a dataset that comes with R (called “bard”, and quite likely
originating in an unpublished report by J. Gani and I. Saunders). The regression
line is very close to the data.

9.2.5 Transforming Variables

Sometimes the data isn’t in a form that leads to a good linear regression. In this
case, transforming explanatory variables, the dependent variable, or both can lead
to big improvements. Figure 9.4 shows one example, based on the idea of word
frequencies. Some words are used very often in text; most are used seldom. The
dataset for this figure consists of counts of the number of time a word occurred
for the 100 most common words in Shakespeare’s printed works. It was originally
collected from a concordance, and has been used to attack a variety of interesting
questions, including an attempt to assess how many words Shakespeare knew. This
is hard, because he likely knew many words that he didn’t use in his works, so
one can’t just count. If you look at the plot of Figure 9.4, you can see that a
linear regression of count (the number of times a word is used) against rank (how

Section 9.2 Linear Regression and Least Squares 198

common a word is, 1-100) is not really useful. The most common words are used
very often, and the number of times a word is used falls off very sharply as one
looks at less common words. You can see this effect in the scatter plot of residual
against dependent variable in Figure 9.4 — the residual depends rather strongly
on the dependent variable. This is an extreme example that illustrates how poor
linear regressions can be.

However, if we regress log-count against log-rank, we get a very good fit
indeed. This suggests that Shakespeare’s word usage (at least for the 100 most
common words) is consistent with Zipf’s law. This gives the relation between
frequency f and rank r for a word as

f ∝ 1

r

s

where s is a constant characterizing the distribution. Our linear regression suggests
that s is approximately 1.67 for this data.

In some cases, the natural logic of the problem will suggest variable transfor-
mations that improve regression performance. For example, one could argue that
humans have approximately the same density, and so that weight should scale as
the cube of height; in turn, this suggests that one regress weight against the cube
root of height. Generally, shorter people tend not to be scaled versions of taller
people, so the cube root might be too aggressive, and so one thinks of the square
root.

Remember this: The performance of a regression can be improved by
transforming variables. Transformations can follow from looking at plots,
or thinking about the logic of the problem

The Box-Cox transformation is a method that can search for a transfor-
mation of the dependent variable that improves the regression. The method uses a
one-parameter family of transformations, with parameter λ, then searches for the
best value of this parameter using maximum likelihood. A clever choice of transfor-
mation means that this search is relatively straightforward. We define the Box-Cox
transformation of the dependent variable to be

y
(bc)
i =

{

yλ
i −1
λ if λ 6= 0

log yi if λ = 0
.

It turns out to be straightforward to estimate a good value of λ using maximum
likelihood. One searches for a value of λ that makes residuals look most like a
normal distribution. Statistical software will do it for you; the exercises sketch
out the method. This transformation can produce significant improvements in a
regression. For example, the transformation suggests a value of λ = 0.303 for
the fish example of Figure 9.1. It isn’t natural to plot weight0.303 against height,

Section 9.2 Linear Regression and Least Squares 199

10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

Weight vs length in perch from Lake Laengelmavesi

Length (cm)

W
ei

gh
t (

gr
)

14 15 16 17 18 19 20

70
75

80
85

90

Chirp frequency vs temperature in crickets

Frequency

Te
m

pe
ra

tu
re

FIGURE 9.5: The Box-Cox transformation suggests a value of λ = 0.303 for the
regression of weight against height for the perch data of Figure 9.1. You can
find this dataset, and the back story at http://www.amstat.org/publications/jse/
jse data archive.htm; look for “fishcatch” on that page). On the left, a plot of the
resulting curve overlaid on the data. For the cricket temperature data of that fig-
ure (from http://mste.illinois.edu/patel/amar430/keyprob1.html), the transforma-
tion suggests a value of λ = 4.75. On the right, a plot of the resulting curve
overlaid on the data.

because we don’t really want to predict weight0.303. Instead, we plot the predictions
of weight that come from this model, which will lie on a curve with the form
(ax+ b)

1
0.303 , rather than on a straight line. Similarly, the transformation suggests

a value of λ = 0.475 for the cricket data. Figure 9.5 shows the result of these
transforms.

9.2.6 Can you Trust Your Regression?

Linear regression is useful, but it isn’t magic. Some regressions make poor predic-
tions (recall the regressions of figure 9.2). As another example, regressing the first
digit of your telephone number against the length of your foot won’t work.

We have some straightforward tests to tell whether a regression is working.
You can look at a plot for a dataset with one explanatory variable and one
dependent variable. You plot the data on a scatter plot, then plot the model as a
line on that scatterplot. Just looking at the picture can be informative (compare
Figure 9.1 and Figure 9.2).

You can check if the regression predicts a constant. This is usually a bad
sign. You can check this by looking at the predictions for each of the training data
items. If the variance of these predictions is small compared to the variance of
the independent variable, the regression isn’t working well. If you have only one
explanatory variable, then you can plot the regression line. If the line is horizontal,
or close, then the value of the explanatory variable makes very little contribution

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://mste.illinois.edu/patel/amar430/keyprob1.html

Section 9.2 Linear Regression and Least Squares 200

to the prediction. This suggests that there is no particular relationship between
the explanatory variable and the independent variable.

You can also check, by eye, if the residual isn’t random. If y − xTβ is
a zero mean normal random variable, then the value of the residual vector should
not depend on the corresponding y-value. Similarly, if y − xTβ is just a zero
mean collection of unmodelled effects, we want the value of the residual vector to
not depend on the corresponding y-value either. If it does, that means there is
some phenomenon we are not modelling. Looking at a scatter plot of e against
y will often reveal trouble in a regression (Figure 9.7). In the case of Figure 9.7,
the trouble is caused by a few data points that are very different from the others
severely affecting the regression. We will discuss how to identify and deal with
such points in Section ??. Once they have been removed, the regression improves
markedly (Figure 9.8).

Remember this: Linear regressions can make bad predictions. You can
check for trouble by: evaluating R2; looking at a plot; looking to see if the
regression makes a constant prediction; or checking whether the residual is
random. Other strategies exist, but are beyond the scope of this book.

Section 9.3 Problem Data Points 201

Procedure: 9.1 Linear Regression using Least Squares

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional explanatory vector, and each yi is a single dependent vari-
able. We assume that each data point conforms to the model

yi = xT
i β + ξi

where ξi represents unmodelled effects. We assume that ξi are samples
of a random variable with 0 mean and unknown variance. Sometimes,
we assume the random variable is normal. Write

y =









y1
y2
. . .
yn









and

X =





xT
1

xT
2

. . .xT
n



 .

We estimate β̂ (the value of β) by solving the linear system

X TX β̂ −X Ty = 0.

For a data point x, our model predicts xT β̂. The residuals are

e = y −X β̂.

We have that eT1 = 0. The mean square error is given by

m =
eT e

N
.

The R2 is given by

var
({

xT
i β̂
})

var ({y}) .

Values of R2 range from 0 to 1; a larger value means the regression is
better at explaining the data.

9.3 PROBLEM DATA POINTS

I have described regressions on a single explanatory variable, because it is easy to
plot the line in this case. You can find most problems by looking at the line and

Section 9.3 Problem Data Points 202

the data points. But a single explanatory variable isn’t the most common or useful
case. If we have many explanatory variables, it can be hard to plot the regression
in a way that exposes problems. This section mainly describes methods to identify
and solve difficulties that don’t involve looking at the line.

−40 −20 0 20 40

−
40

−
20

0
20

40

xv

yv

−40 −20 0 20 40

−
40

−
20

0
20

40

nxv

ny
v

FIGURE 9.6: On the left, a synthetic dataset with one independent and one explana-
tory variable, with the regression line plotted. Notice the line is close to the data
points, and its predictions seem likely to be reliable. On the right, the result of
adding a single outlying datapoint to that dataset. The regression line has changed
significantly, because the regression line tries to minimize the sum of squared verti-
cal distances between the data points and the line. Because the outlying datapoint is
far from the line, the squared vertical distance to this point is enormous. The line
has moved to reduce this distance, at the cost of making the other points further
from the line.

9.3.1 Problem Data Points have Significant Impact

Outlying data points can significantly weaken the usefulness of a regression. For
some regression problems, we can identify data points that might be a problem, and
then resolve how to deal with them. One possibility is that they are true outliers —
someone recorded a data item wrong, or they represent an effect that just doesn’t
occur all that often. Another is that they are important data, and our linear model
may not be good enough. If the data points really are outliers, we can drop them
from the data set. If they aren’t, we may be able to improve the regression by
transforming features or by finding a new explanatory variable.

When we construct a regression, we are solving for the β that minimizes
∑

i(yi − xT
i β)

2, equivalently for the β that produces the smallest value of
∑

i e
2
i .

This means that residuals with large value can have a very strong influence on
the outcome — we are squaring that large value, resulting in an enormous value.
Generally, many residuals of medium size will have a smaller cost than one large
residual and the rest tiny. As figure 9.6 illustrates, this means that a data point

Section 9.3 Problem Data Points 203

that lies far from the others can swing the regression line significantly.

30 40 50 60 70 80

10
0

15
0

20
0

25
0

30
0

35
0

Weight against height,
all points

Height

W
ei

gh
t

100 150 200 250

−
50

0
50

10
0

15
0

Residuals against fitted values,
weight against height,

all points

Fitted values
R

es
id

ua
ls

FIGURE 9.7: On the left, weight regressed against height for the bodyfat dataset. The
line doesn’t describe the data particularly well, because it has been strongly affected
by a few data points (filled-in markers). On the right, a scatter plot of the residual
against the value predicted by the regression. This doesn’t look like noise, which is
a sign of trouble.

This creates a problem, because data points that are very different from most
others (sometimes called outliers) can also have the highest influence on the out-
come of the regression. Figure 9.8 shows this effect for a simple case. When we
have only one explanatory variable, there’s an easy method to spot problem data
points. We produce a scatter plot and a regression line, and the difficulty is usually
obvious. In particularly tricky cases, printing the plot and using a see-through ruler
to draw a line by eye can help (if you use an opaque ruler, you may not see some
errors).

These data points can come from many sources. They may simply be errors.
Failures of equipment, transcription errors, someone guessing a value to replace lost
data, and so on are some methods that might produce outliers. Another possibility
is your understanding of the problem is wrong. If there are some rare effects that are
very different than the most common case, you might see outliers. Major scientific
discoveries have resulted from investigators taking outliers seriously, and trying to
find out what caused them (though you shouldn’t see a Nobel prize lurking behind
every outlier).

What to do about outliers is even more fraught. The simplest strategy is to
find them, then remove them from the data. I will describe some methods that
can identify outliers, but you should be aware that this strategy can get dangerous
fairly quickly. First, you might find that each time you remove a few problematic
data points, some more data points look strange to you. This process is unlikely to
end well. Second, you should be aware that throwing out outliers can increase your
future prediction error, particularly if they’re caused by real effects. An alternative

Section 9.3 Problem Data Points 204

30 40 50 60 70 80

10
0

15
0

20
0

25
0

30
0

35
0

Weight against height,
4 outliers removed

Height

W
ei

gh
t

100 150 200 250

−
50

0
50

10
0

15
0

Residuals against fitted values,
weight against height,

4 outliers removed

Fitted values

R
es

id
ua

ls
FIGURE 9.8: On the left, weight regressed against height for the bodyfat dataset. I
have now removed the four suspicious looking data points, identified in Figure 9.7
with filled-in markers; these seemed the most likely to be outliers. On the right, a
scatter plot of the residual against the value predicted by the regression. Notice that
the residual looks like noise. The residual seems to be uncorrelated to the predicted
value; the mean of the residual seems to be zero; and the variance of the residual
doesn’t depend on the predicted value. All these are good signs, consistent with our
model, and suggest the regression will yield good predictions.

strategy is to build methods that can either discount the effects of outliers, or
model them; I describe some such methods, which can be technically complex, in
the following chapter.

Remember this: Outliers can affect linear regressions significantly.
Usually, if you can plot the regression, you can look for outliers by eyeballing
the plot. Other methods exist, but are beyond the scope of this text.

9.3.2 The Hat Matrix and Leverage

Write β̂ for the estimated value of β, and y(p) = X β̂ for the predicted y values.
Then we have

β̂ =
(

X TX
)−1

(X Ty)

so that
y(p) = (X

(

X TX
)−1 X T)y.

What this means is that the values the model predicts at training points are a linear

function of the true values at the training points. The matrix (X
(

X TX
)−1 X T) is

Section 9.3 Problem Data Points 205

sometimes called the hat matrix. The hat matrix is written H, and I shall write
the i, j’th component of the hat matrix hij .

Remember this: The predictions of a linear regression at training
points are a linear function of the y-values at the training points. The
linear function is given by the hat matrix.

The hat matrix has a variety of important properties. I won’t prove any here,
but the proofs are in the exercises. It is a symmetric matrix. The eigenvalues can
be only 1 or 0. And the row sums have the important property that

∑

j

h2
ij ≤ 1.

This is important, because it can be used to find data points that have values that
are hard to predict. The leverage of the i’th training point is the i’th diagonal
element, hii, of the hat matrix H. Now we can write the prediction at the i’th
training point yp,i = hiiyi +

∑

j 6=i hijyj . But if hii has large absolute value, then
all the other entries in that row of the hat matrix must have small absolute value.
This means that, if a data point has high leverage, the model’s value at that point
is predicted almost entirely by the observed value at that point. Alternatively, it’s
hard to use the other training data to predict a value at that point.

Here is another way to see this importance of hii. Imagine we change the

value of yi by adding ∆; then y
(p)
i becomes y

(p)
i +hii∆. In turn, a large value of hii

means that the predictions at the i’th point are very sensitive to the value of yi.

Remember this: Ideally, the value predicted for a particular data point
depends on many other data points. Leverage measures the importance of
a data point in producing a prediction at that data point. If the leverage of
a point is high, other points are not contributing much to the prediction for
that point, and it may well be an outlier.

9.3.3 Cook’s Distance

Another way to find points that may be creating problems is to look at the effect
of omitting the point from the regression. We could compute y(p) using the whole
data set. We then omit the i’th point from the dataset, compute the regression
coefficients from the remaining data (which I will write β̂î), then compare y(p)

to X ˆbetaî. If there is a large difference, the point is suspect, because omitting it

Section 9.3 Problem Data Points 206

strongly changes the predictions. The score for the comparison is called Cook’s

distance. If a point has a large value of Cook’s distance, then it has a strong
influence on the regression and might well be an outlier. Typically, one computes
Cook’s distance for each point, and takes a closer look at any point with a large
value. This procedure is described in more detail in procedure 33

Notice the rough similarity to cross-validation (omit some data and recom-
pute). But in this case, we are using the procedure to identify points we might not
trust, rather than to get an unbiased estimate of the error.

Procedure: 9.2 Computing Cook’s distance

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional explanatory vector, and each yi is a single dependent vari-
able. Write β̂ for the coefficients of a linear regression (see proce-

dure 9.1), and β̂î for the coefficients of the linear regression computed

by omitting the i’th data point, y(p) for X β̂, and m for the mean square
error. The Cook’s distance of the i’th data point is

(y(p) −X β̂î)
T (y(p) − X β̂î)

dm
.

Large values of this distance suggest a point may present problems.
Statistical software will compute and plot this distance for you.

Remember this: The Cook’s distance of a training data point measures
the effect on predictions of leaving that point out of the regression. A large
value of Cook’s distance suggests other points are poor at predicting the
value at a given point, so a point with a large value of Cook’s distance may
be an outlier.

9.3.4 Standardized Residuals

The hat matrix has another use. It can be used to tell how “large” a residual is. The
residuals that we measure depend on the units in which y was expressed, meaning
we have no idea what a “large” residual is. For example, if we were to express y in
kilograms, then we might want to think of 0.1 as a small residual. Using exactly
the same dataset, but now with y expressed in grams, that residual value becomes
100 — is it really “large” because we changed units?

Now recall that we assumed, in section 9.2.1, that y − xTβ was a zero mean
normal random variable, but we didn’t know its variance. It can be shown that,

Section 9.3 Problem Data Points 207

100 150 200 250

−
4

−
2

0
2

4

Standardized residuals against fitted values,
weight against height,

4 outliers removed

Fitted values

R
es

id
ua

ls
Standardized residuals of height vs weight

str

F
re

qu
en

cy

−2 −1 0 1 2 3

0
10

20
30

40
FIGURE 9.9: On the left, standardized residuals plotted against predicted value for
weight regressed against height for the bodyfat dataset. I removed the four suspicious
looking data points, identified in Figure 9.7 with filled-in markers ; these seemed the
most likely to be outliers. You should compare this plot with the residuals in figure
9.8, which are not standardized. On the right, a histogram of the residual values.
Notice this looks rather like a histogram of a standard normal random variable,
though there are slightly more large positive residuals than one would like. This
suggests the regression is working tolerably.

under our assumption, the i’th residual value, ei, is a sample of a normal random
variable whose variance is

(

(eT e)

N

)

(1− hii).

This means we can tell whether a residual is large by standardizing it – that is,
dividing by its standard deviation. Write si for the standard residual at the i’th
training point. Then we have that

si =
ei

√

(

(eT e)
N

)

(1 − hii)

.

When the regression is behaving, this standard residual should look like a sample
of a standard normal random variable. In turn, this means that if all is going well,
about 66% of the residuals should have values in the range [−1, 1], and so on. Large
values of the standard residuals are a sign of trouble.

R produces a nice diagnostic plot that can be used to look for problem data
points (code and details in the appendix). The plot is a scatter plot of the standard-
ized residuals against leverage, with level curves of Cook’s distance superimposed.
Figure 9.10 shows an example. Some bad points that are likely to present problems
are identified with a number (you can control how many, and the number, with
arguments to plot; appendix). Problem points will have high leverage and/or high

Section 9.4 Many Explanatory Variables 208

0.0 0.1 0.2 0.3 0.4 0.5

−
2

0
2

4
6

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(WEIGHT ~ HEIGHT)

Cook’s distance

1

0.5

0.5

1

Residuals vs Leverage

4239

0.00 0.01 0.02 0.03

−
2

−
1

0
1

2
3

4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(WEIGHT ~ HEIGHT)

Cook’s distance
0.1

0.05

0.05

0.1

Residuals vs Leverage

216

41

0.00 0.01 0.02 0.03

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(WEIGHT ~ HEIGHT)

Cook’s distance
0.1

0.05

0.05

0.1

Residuals vs Leverage

36

145

FIGURE 9.10: A diagnostic plot, produced by R, of a linear regression of weight
against height for the bodyfat dataset. Top: the whole dataset; bottom left: with
the two most extreme points in the top figure removed; bottom right: with two
further points (highest residual) removed. Details in text.

Cook’s distance and/or high residual. The figure shows this plot for three differ-
ent versions of the dataset (original; two problem points removed; and two further
problem points removed).

9.4 MANY EXPLANATORY VARIABLES

In earlier sections, I implied you could put anything into the explanatory variables.
This is correct, and makes it easy to do the math for the general case. However, I
have plotted only cases where there was one explanatory variable (together with a
constant, which hardly counts). In some cases (section 9.4.1), we can add explana-

Section 9.4 Many Explanatory Variables 209

tory variables and still have an easy plot. Adding explanatory variables can cause
the matrix X TX to have poor condition number; there’s an easy strategy to deal
with this (section 9.4.2).

Most cases are hard to plot successfully, and one needs better ways to visualize
the regression than just plotting. The value of R2 is still a useful guide to the
goodness of the regression, but the way to get more insight is to use the tools of
the previous section.

9.4.1 Functions of One Explanatory Variable

Imagine we have only one measurement to form explanatory variables. For example,
in the perch data of Figure 9.1, we have only the length of the fish. If we evaluate
functions of that measurement, and insert them into the vector of explanatory
variables, the resulting regression is still easy to plot. It may also offer better
predictions. The fitted line of Figure 9.1 looks quite good, but the data points
look as though they might be willing to follow a curve. We can get a curve quite
easily. Our current model gives the weight as a linear function of the length with
a noise term (which we wrote yi = β1xi + β0 + ξi). But we could expand this
model to incorporate other functions of the length. In fact, it’s quite suprising that
the weight of a fish should be predicted by its length. If the fish doubled in each
direction, say, its weight should go up by a factor of eight. The success of our
regression suggests that fish do not just scale in each direction as they grow. But
we might try the model yi = β2x

2
i + β1xi + β0 + ξi. This is easy to do. The i’th

row of the matrix X currently looks like [xi, 1]. We build a new matrix X (b), where
the i’th row is [x2

i , xi, 1], and proceed as before. This gets us a new model. The
nice thing about this model is that it is easy to plot – our predicted weight is still
a function of the length, it’s just not a linear function of the length. Several such
models are plotted in Figure 9.11.

You should notice that it can be quite easy to add a lot of functions like this
(in the case of the fish, I tried x3

i as well). However, it’s hard to decide whether
the regression has actually gotten better. The least-squares error on the training
data will never go up when you add new explanatory variables, so the R2 will
never get worse. This is easy to see, because you could always use a coefficient of
zero with the new variables and get back the previous regression. However, the
models that you choose are likely to produce worse and worse predictions as you
add explanatory variables. Knowing when to stop can be tough (Section 10.1),
though it’s sometimes obvious that the model is untrustworthy (Figure 9.11).

Remember this: If you have only one measurement, you can construct
a high dimensional x by using functions of that measurement. This produces
a regression that has many explanatory variables, but is still easy to plot.
Knowing when to stop is hard. An understanding of the problem is helpful.

Section 9.4 Many Explanatory Variables 210

10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

Weight vs length in
 perch from Lake Laengelmavesi,

 three models.

Length (cm)

W
ei

gh
t (

gr
)

linear
quadratic
cubic

10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

Weight vs length in
 perch from Lake Laengelmavesi,

 all powers up to 10.

Length (cm)

W
ei

gh
t (

gr
)

FIGURE 9.11: On the left, several different models predicting fish weight from length.
The line uses the explanatory variables 1 and xi; and the curves use other monomi-
als in xi as well, as shown by the legend. This allows the models to predict curves
that lie closer to the data. It is important to understand that, while you can make
a curve go closer to the data by inserting monomials, that doesn’t mean you neces-
sarily have a better model. On the right, I have used monomials up to x10

i . This
curve lies very much closer to the data points than any on the other side, at the
cost of some very odd looking wiggles inbetween data points (look at small lengths;
the model goes quite strongly negative there, but I can’t bring myself to change the
axes and show predictions that are obvious nonsense). I can’t think of any reason
that these structures would come from true properties of fish, and it would be hard
to trust predictions from this model.

9.4.2 Regularizing Linear Regressions

When we have many explanatory variables, some might be significantly correlated.
This means that we can predict, quite accurately, the value of one explanatory
variable using the values of the other variables. This means there must be a vector
w so that Xw is small (exercises). In turn, that wTX TXw must be small, so that
X TX has some small eigenvalues. These small eigenvalues lead to bad predictions,
as follows. The vector w has the property that X TXw is small. This means that
X TX (β̂ +w) is not much different from X TX β̂ (equivalently, the matrix can turn
large vectors into small ones). All this means that (X TX)−1 will turn some small
vectors into big ones. A small change in X TY can lead to a large change in the
estimate of β̂.

This is a problem, because we can expect that different samples from the same
data will have somewhat different values of X TY. For example, imagine the person
recording fish measurements in Lake Laengelmavesi recorded a different set of fish;
we expect changes in X and Y. But, if X TX has small eigenvalues, these changes
could produce large changes in our model.

The problem is relatively easy to control. When there are small eigenvalues

Section 9.4 Many Explanatory Variables 211

2 4 6 8

45
0

50
0

55
0

60
0

65
0

70
0

75
0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

NA NA NA NA NA NA NA NA NA NA NA NA NA NA

four outliers removed

64 66 68 70 72 74 76 78

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Linear regression of Weight against Height,
 four outliers removed

Height

W
ei

gh
t

no regularization
regularization

FIGURE 9.12: On the left, cross-validated error estimated for different choices of reg-
ularization constant for a linear regression of weight against height for the bodyfat
dataset, with four outliers removed. The horizontal axis is log regression constant;
the vertical is cross-validated error. The mean of the error is shown as a spot, with
vertical error bars. The vertical lines show a range of reasonable choices of regular-
ization constant (left yields the lowest observed error, right the error whose mean
is within one standard error of the minimum). On the right, two regression lines
on a scatter plot of this dataset; one is the line computed without regularization, the
other is obtained using the regularization parameter that yields the lowest observed
error. In this case, the regularizer doesn’t change the line much, but may produce
improved values on new data (notice how the cross-validated error is fairly flat with
low values of the regularization constant).

in X TX , we expect that β̂ will be large (because we can add components in the

direction of w without changing all that much), and the largest components in β̂
might be very inaccurately estimated. If we are trying to predict new y values, we
expect that large components in β̂ turn into large errors in prediction (exercises).

An important and useful way to suppress these errors is to try to find a β̂
that isn’t large, and also gives a low error. We can do this by regularizing, using
the same trick we saw in the case of classification. Instead of choosing the value of
β that minimizes

(

1

N

)

(y −Xβ)T (y −Xβ)

we minimize
(

1

N

)

(y −Xβ)T (y −Xβ) + λβTβ

Error + Regularizer

Here λ > 0 is a constant that weights the two requirements (small error; small β̂)
relative to one another. Notice also that dividing the total error by the number of

Section 9.4 Many Explanatory Variables 212

data points means that our choice of λ shouldn’t be affected by changes in the size
of the data set.

2 4 6 8

70
0

80
0

90
0

10
00

11
00

12
00

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

NA NA NA NA NA NA NA NA NA NA NA NA NA NA

all points

30 40 50 60 70

15
0

20
0

25
0

30
0

35
0

Linear regression of Weight against Height,
 all points

Height

W
ei

gh
t

no regularization
regularization

FIGURE 9.13: Regularization doesn’t make outliers go away. On the left, cross-
validated error estimated for different choices of regularization constant for a linear
regression of weight against height for the bodyfat dataset, with all points. The
horizontal axis is log regression constant; the vertical is cross-validated error. The
mean of the error is shown as a spot, with vertical error bars. The vertical lines
show a range of reasonable choices of regularization constant (left yields the lowest
observed error, right the error whose mean is within one standard error of the
minimum). On the right, two regression lines on a scatter plot of this dataset; one
is the line computed without regularization, the other is obtained using the regular-
ization parameter that yields the lowest observed error. In this case, the regularizer
doesn’t change the line much, but may produce improved values on new data (no-
tice how the cross-validated error is fairly flat with low values of the regularization
constant).

Regularization helps deal with the small eigenvalue, because to solve for β we
must solve the equation

[(

1

N

)

X TX + λI
]

β̂ =

(

1

N

)

X Ty

(obtained by differentiating with respect to β and setting to zero) and the smallest
eigenvalue of the matrix (

(

1
N

)

(X TX +λI) will be at least λ (exercises). Penalizing
a regression with the size of β in this way is sometimes known as ridge regression.

We choose λ in the same way we used for classification; split the training set
into a training piece and a validation piece, train for different values of λ, and test
the resulting regressions on the validation piece. The error is a random variable,
random because of the random split. It is a fair model of the error that would occur
on a randomly chosen test example (assuming that the training set is “like” the
test set, in a way that I do not wish to make precise yet). We could use multiple

Section 9.4 Many Explanatory Variables 213

0.0 0.2 0.4 0.6 0.8

−
5

0
5

1
0

1
5

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

lm(WEIGHT ~ BODYFAT + DENSITY + AGE + HEIGHT + ADIPOSITY + NECK + CHEST + A

Cook’s distance

1
0.5

0.5
1

Residuals vs Leverage

42

39

36

0.0 0.2 0.4 0.6

−
10

−
5

0
5

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(WEIGHT ~ BODYFAT + DENSITY + AGE + HEIGHT + ADIPOSITY + NECK + CHEST + A ...

Cook’s distance

1
0.5

0.5
1

Residuals vs Leverage

163

216

221

FIGURE 9.14: On the left, residuals plotted against leverage for a regression of
weight against all other measurements for the bodyfat dataset. I did not remove the
outliers. The contours on the plot are contours of Cook’s distance; I have overlaid
arrows showing points with suspiciously large Cook’s distance. Notice also that
several points have high leverage, without having a large residual value. These points
may or may not present problems. On the right, the same plot for this dataset with
points 36, 39, 41 and 42 removed (these are the points I have been removing for
each such plot). Notice that another point now has high Cook’s distance, but mostly
the residual is much smaller.

splits, and average over the splits. Doing so yields both an average error for a value
of λ and an estimate of the standard deviation of error.

Statistical software will do all the work for you. I used the glmnet package
in R (see exercises for details). Figure 9.12 shows an example, for weight regressed
against height. Notice the regularization doesn’t change the model (plotted in the
figure) all that much. For each value of λ (horizontal axis), the method has com-
puted the mean error and standard deviation of error using cross-validation splits,
and displays these with error bars. Notice that λ = 0 yields poorer predictions
than a larger value; large β̂ really are unreliable. Notice that now there is now no λ
that yields the smallest validation error, because the value of error depends on the
random splits used in cross-validation. A reasonable choice of λ lies between the
one that yields the smallest error encountered (one vertical line in the plot) and the
largest value whose mean error is within one standard deviation of the minimum
(the other vertical line in the plot).

All this is quite similar to regularizing a classification problem. We started
with a cost function that evaluated the errors caused by a choice of β, then added
a term that penalized β for being “large”. This term is the squared length of β, as
a vector. It is sometimes known as the L2 norm of the vector. In section 287, I
describe the consequences of using other norms.

Section 9.4 Many Explanatory Variables 214

100 150 200 250 300 350

−
15

−
10

−
5

0
5

10
15

Standardized residuals against fitted values,
weight against all,

all points

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

100 150 200 250 300 350

−
15

−
10

−
5

0
5

10
15

Standardized residuals against fitted values,
weight against all,
4 outliers removed

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

FIGURE 9.15: On the left, standardized residuals plotted against predicted value
for weight regressed against all variables for the bodyfat dataset. Four data points
appear suspicious, and I have marked these with a filled in marker. On the right,
standardized residuals plotted against predicted value for weight regressed against
all variables for the bodyfat dataset, but with the four suspicious looking data points
removed. Notice two other points stick out markedly.

Remember this: The performance of a regression can be improved by
regularizing, particularly if some explanatory variables are correlated. The
procedure is similar to that used for classification.

9.4.3 Example: Weight against Body Measurements

We can now look at regressing weight against all body measurements for the bodyfat
dataset. We can’t plot this regression (too many independent variables), but we
can approach the problem in a series of steps.

Finding suspect points: Figure 9.14 shows the R diagnostic plots for a
regression of weight against all body measurements for the bodyfat dataset. We’ve
already seen there are outliers, so the odd structure of this plot should be no par-
ticular surprise. There are several really worrying points here. As the figure shows,
removing the four points identified in the caption, based on their very high stan-
dardized residuals, high leverage, and high Cook’s distance, yields improvements.
We can get some insight by plotting standardized residuals against predicted value
(Figure 9.9). There is clearly a problem here; the residual seems to depend quite
strongly on the predicted value. Removing the four outliers we have already iden-
tified leads to a much improved plot, also shown in Figure 9.15. This is banana-
shaped, which is suspicious. There are two points that seem to come from some

Section 9.4 Many Explanatory Variables 215

100 150 200 250 300 350

−
15

−
10

−
5

0
5

10
15

Standardized residuals against fitted values,
weight against all,

 6 outliers removed

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

18 20 22 24 26 28 30

−
4

−
2

0
2

4

Standardized residuals against fitted values,
sqrt(weight) against all,

 6 outliers removed

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

FIGURE 9.16: On the left, standardized residuals plotted against predicted value for
weight regressed against all variables for the bodyfat dataset. I removed the four
suspicious data points of Figure 9.15, and the two others identified in that figure.
Notice a suspicious “banana” shape – the residuals are distinctly larger for small and
for large predicted values. This suggests a non-linear transformation of something
might be helpful. I used a Box-Cox transformation, which suggested a value of 0.5
(i.e. regress 2(

√
weight − 1)) against all variables. On the right, the standardized

residuals for this regression. Notice that the “banana” has gone, though there is
a suspicious tendency for the residuals to be smaller rather than larger. Notice
also the plots are on different axes. It’s fair to compare these plots by eye; but it’s
not fair to compare details, because the residual of a predicted square root means
something different than the residual of a predicted value.

other model (one above the center of the banana, one below). Removing these
points gives the residual plot shown in Figure 9.16.

Transforming variables: The banana shape of the plot of standardized
residuals against value is a suggestion that some non-linearity somewhere would
improve the regression. One option is a non-linear transformation of the indepen-
dent variables. Finding the right one might require some work, so it’s natural to
try a Box-Cox transformation first. This gives the best value of the parameter as
0.5 (i.e. the dependent variable should be

√
weight, which makes the residuals look

much better (Figure 9.16).
Choosing a regularizing value: Figure 9.17 shows the glmnet plot of cross-

validated error as a function of regularizer weight. A sensible choice of value here
seems to be a bit smaller than -2 (between the value that yields the smallest error
encountered – one vertical line in the plot – and the largest value whose mean error
is within one standard deviation of the minimum – the other vertical line in the
plot). I chose -2.2

How good are the resulting predictions likely to be: the standard-
ized residuals don’t seem to depend on the predicted values, but how good are the

Section 9.4 Many Explanatory Variables 216

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

six outliers removed

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

all data

FIGURE 9.17: Plots of mean-squared error as a function of log regularization param-
eter (i.e. logλ) for a regression of weight1/2 against all variables for the bodyfat
dataset. These plots show mean-squared error averaged over cross-validation folds
with a vertical one standard deviation bar. On the left, the plot for the dataset
with the six outliers identified in Figure 287 removed. On the right, the plot for
the whole dataset. Notice how the outliers increase the variability of the error, and
the best error.

120 140 160 180 200 220 240

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Predicted vs True values of weight for
 a regression of weight against all variables

 six outliers removed

True weight, lbs

P
re

di
ct

ed
 w

ei
gh

t,
lb

s

FIGURE 9.18: A scatter plot of the predicted weight against the true weight for the
bodyfat dataset. The prediction is made with all variables, but the six outliers iden-
tified above are omitted. I used a Box-Cox transformation with parameter 1/2,
and the regularization parameter that yielded the smallest mean square error in
Figure 9.17.

Section 9.4 Many Explanatory Variables 217

predictions? We already have some information on this point. Figure 9.17 shows
cross-validation errors for regressions of weight1/2 against height for different reg-
ularization weights, but some will find this slightly indirect. We want to predict
weight, not weight1/2. I chose the regularization weight that yielded the lowest
mean-square-error for the model of Figure 9.17, omitting the six outliers previously
mentioned. I then computed the predicted weight for each data point using that
model (which predicts weight1/2, remember; but squaring takes care of that). Fig-
ure 9.18 shows the predicted values plotted against the true values. You should
not regard this plot as a safe way to estimate generalization (the points were used
in training the model; Figure 9.17 is better for that), but it helps to visualize the
errors. This regression looks as though it is quite good at predicting bodyweight
from other measurements.

Section 9.5 You should 218

9.5 YOU SHOULD

9.5.1 remember these definitions:

Regression . 191
Linear regression . 192

9.5.2 remember these terms:

Regression . 187
explanatory variables . 187
dependent variable . 187
training examples . 187
test examples . 187
residual . 190
explanatory variables . 191
dependent variable . 191
training examples . 191
test examples . 191
residual . 194
mean square error . 195
Zipf’s law . 198
Box-Cox transformation . 198
outliers . 203
hat matrix . 205
leverage . 205
Cook’s distance . 206
standardizing . 207
ridge regression . 212
L2 norm . 213
condition number . 226
condition number . 226

9.5.3 remember these facts:

Estimating β . 194
Regression . 196
R2 evaluates the quality of predictions made by a regression 197
Transforming variables is useful . 198
Linear regressions can fail. 200
Outliers can affect linear regressions significantly. 204
The hat matrix mixes training y-values to produce predictions. . . . 205
Be suspicious of points with high leverage. 205
Be suspicious of points with high Cook’s distance. 206
Appending functions of a measurement to x is useful. 209
You can regularize a regression . 214

Section 9.5 You should 219

9.5.4 remember these procedures:

Linear Regression using Least Squares 201
Computing Cook’s distance . 206

Section 9.5 You should 220

APPENDIX: DATA

Batch A
Amount of Time in
Hormone Service

25.8 99
20.5 152
14.3 293
23.2 155
20.6 196
31.1 53
20.9 184
20.9 171
30.4 52

Batch B
Amount of Time in
Hormone Service

16.3 376
11.6 385
11.8 402
32.5 29
32.0 76
18.0 296
24.1 151
26.5 177
25.8 209

Batch C
Amount of Time in
Hormone Service

28.8 119
22.0 188
29.7 115
28.9 88
32.8 58
32.5 49
25.4 150
31.7 107
28.5 125

TABLE 9.1: A table showing the amount of hormone remaining and the time in
service for devices from lot A, lot B and lot C. The numbering is arbitrary (i.e.
there’s no relationship between device 3 in lot A and device 3 in lot B). We expect
that the amount of hormone goes down as the device spends more time in service,
so cannot compare batches just by comparing numbers.

Section 9.5 You should 221

PROBLEMS

0 20 40 60 80
100

150

200

250

Age in years

Sy
st

ol
ic

 b
lo

od
 p

re
ss

ur
e

Blood pressure against age

FIGURE 9.19: A regression of blood pressure against age, for 30 data points.

9.1. Figure 9.19 shows a linear regression of systolic blood pressure against age.
There are 30 data points.
(a) Write ei = yi − xT

i β for the residual. What is the mean ({e}) for this
regression?

(b) For this regression, var ({y}) = 509 and the R2 is 0.4324. What is var ({e})
for this regression?

(c) How well does the regression explain the data?
(d) What could you do to produce better predictions of blood pressure (with-

out actually measuring blood pressure)?

Section 9.5 You should 222

0 1000 2000 3000 4000

0
50

00
10

00
0

15
00

0

Population vs area for
 kittiwake colonies

Area (km^2)

P
op

ul
at

io
n

(n
o.

 o
f b

re
ed

in
g

pa
irs

)

FIGURE 9.20: A regression of the number of breeding pairs of kittiwakes against the
area of an island, for 22 data points.

9.2. At http://www.statsci.org/data/general/kittiwak.html, you can find a dataset
collected by D.K. Cairns in 1988 measuring the area available for a seabird
(black-legged kittiwake) colony and the number of breeding pairs for a variety
of different colonies. Figure 9.20 shows a linear regression of the number of
breeding pairs against the area. There are 22 data points.
(a) Write ei = yi − xT

i β for the residual. What is the mean ({e}) for this
regression?

(b) For this regression, var ({y}) = 16491357 and the R2 is 0.62. What is
var ({e}) for this regression?

(c) How well does the regression explain the data? If you had a large island,
to what extent would you trust the prediction for the number of kittiwakes
produced by this regression? If you had a small island, would you trust
the answer more?

http://www.statsci.org/data/general/kittiwak.html

Section 9.5 You should 223

4 5 6 7 8

0
50

00
10

00
0

15
00

0

Population vs log area for
 kittiwake colonies

log Area (log km^2)

P
op

ul
at

io
n

(n
o.

 o
f b

re
ed

in
g

pa
irs

)

4 5 6 7 8

0
50

00
10

00
0

15
00

0

Population vs log area for
 kittiwake colonies

log Area (log km^2)

P
op

ul
at

io
n

(n
o.

 o
f b

re
ed

in
g

pa
irs

)
FIGURE 9.21: Left: A regression of the number of breeding pairs of kittiwakes against
the log of area of an island, for 22 data points. Right: A regression of the number
of breeding pairs of kittiwakes against the log of area of an island, for 22 data points,
using a method that ignores two likely outliers.

9.3. At http://www.statsci.org/data/general/kittiwak.html, you can find a dataset
collected by D.K. Cairns in 1988 measuring the area available for a seabird
(black-legged kittiwake) colony and the number of breeding pairs for a variety
of different colonies. Figure 9.21 shows a linear regression of the number of
breeding pairs against the log of area. There are 22 data points.
(a) Write ei = yi − xT

i β for the residual. What is the mean ({e}) for this
regression?

(b) For this regression, var ({y}) = 16491357 and the R2 is 0.31. What is
var ({e}) for this regression?

(c) How well does the regression explain the data? If you had a large island,
to what extent would you trust the prediction for the number of kittiwakes
produced by this regression? If you had a small island, would you trust
the answer more? Why?

(d) Figure 9.21 shows the result of a linear regression that ignores two likely
outliers. Would you trust the predictions of this regression more? Why?

http://www.statsci.org/data/general/kittiwak.html

Section 9.5 You should 224

0 50 100 150

4
6

8
10

12
14

Sulfate against time for
 Brunhilda the baboon

time (hrs)

S
ul

fa
te

 c
on

ce
nt

ra
tio

n

3 4 5 6 7 8 9

0
2

4
6

Residuals against fitted values for
 sulfate against time for
 Brunhilda the baboon

fitted value

re
si

du
al

FIGURE 9.22: Left: A regression of the concentration of sulfate in the blood of
Brunhilda the baboon against time. Right: For this regression, a plot of residual
against fitted value.

9.4. At http://www.statsci.org/data/general/brunhild.html, you will find a dataset
that measures the concentration of a sulfate in the blood of a baboon named
Brunhilda as a function of time. Figure 9.22 plots this data, with a linear
regression of the concentration against time. I have shown the data, and also
a plot of the residual against the predicted value. The regression appears to
be unsuccessful.
(a) What suggests the regression has problems?
(b) What is the cause of the problem, and why?
(c) What could you do to improve the problems?

http://www.statsci.org/data/general/brunhild.html

Section 9.5 You should 225

9.5. Assume we have a dataset where Y = Xβ + ξ, for some unknown β and ξ.
The term ξ is a normal random variable with zero mean, and covariance σ2I
(i.e. this data really does follow our model).
(a) Write β̂ for the estimate of β recovered by least squares, and Ŷ for the

values predicted by our model for the training data points. Show that

Ŷ = X
(

XTX
)−1

XTY

(b) Show that
E[ŷi − yi] = 0

for each training data point yi, where the expectation is over the proba-
bility distribution of ξ.

(c) Show that
E
[

(β̂ − β)
]

= 0

where the expectation is over the probability distribution of ξ.
9.6. In this exercise, I will show that the prediction process of chapter ??(see

page ??) is a linear regression with two independent variables. Assume we
have N data items which are 2-vectors (x1, y1), . . . , (xN , yN), where N > 1.
These could be obtained, for example, by extracting components from larger
vectors. As usual, we will write x̂i for xi in normalized coordinates, and so on.
The correlation coefficient is r (this is an important, traditional notation).
(a) Assume that we have an xo, for which we wish to predict a y value. Show

that the value of the prediction obtained using the method of page ?? is

ypred =
std (y)

std (x)
r(x0 −mean ({x})) +mean ({y})

=

(

std (y)

std (x)
r

)

x0 +

(

mean ({y})−
std (x)

std (y)
mean ({x})

)

.

(b) Show that

r =
mean ({(x−mean ({x}))(y −mean ({y}))})

std (x)std (y)

=
mean ({xy})−mean ({x})mean ({y})

std (x)std (y)
.

(c) Now write

X =







x1 1
x2 1
.
xn 1






and Y =







y1
y2
. . .
yn






.

The coefficients of the linear regression will be β̂, where XTX β̂ = XTY.
Show that

XTX = N

(

mean
({

x2
})

mean ({x})

mean ({x}) 1

)

= N

(

std (x)2 +mean ({x})2 mean ({x})
mean ({x}) 1

)

Section 9.5 You should 226

(d) Now show that

XTY = N

(

mean ({xy})
mean ({y})

)

= N

(

std (x)std (y)r +mean ({x})mean ({y})
mean ({y})

)

.

(e) Now show that

(

XTX
)−1

=
1

N

1

std (x)2

(

1 −mean ({x})

−mean ({x}) std (x)2 +mean ({x})2

)

(f) Now (finally!) show that if β̂ is the solution to XTX β̂ − XTY = 0, then

β̂ =

(

r
std(y)
std(x)

mean ({y})−
(

r
std(y)
std(x)

)

mean ({x})

)

and use this to argue that the process of page ?? is a linear regression
with two independent variables.

9.7. This exercise investigates the effect of correlation on a regression. Assume we
have N data items, (xi, yi). We will investigate what happens when the data
have the property that the first component is relatively accurately predicted
by the other components. Write xi1 for the first component of xi, and xi,1̂
for the vector obtained by deleting the first component of xi. Choose u to
predict the first component of the data from the rest with minimum error, so
that xi1 = xT

i1̂
u + wi. The error of prediction is wi. Write w for the vector

of errors (i.e. the i’th component of w is wi). Because wTw is minimized by
choice of u, we havewT 1 = 0 (i.e. the average of the wi’s is zero). Assume that
these predictions are very good, so that there is some small positive number ǫ
so that wTw ≤ ǫ.
(a) Write a = [−1,u]T . Show that

aTXTXa ≤ ǫ.

(b) Now show that the smallest eigenvalue of XTX is less than or equal to ǫ.
(c) Write sk =

∑

u x2uk, and smax for max(s1, . . . , sd). Show that the largest

eigenvalue of XTX is greater than or equal to smax.
(d) The condition number of a matrix is the ratio of largest to smallest

eigenvalue of a matrix. Use the information above to bound the condition
number of XTX .

(e) Assume that β̂ is the solution to XTX β̂ = XTY. Show that the

(XTY − XTX (β̂ + a))T (XTY − XTX (β̂ + a))

(for a as above) is bounded above by

ǫ2(1 + uTu)

(f) Use the last sub exercises to explain why correlated data will lead to a
poor estimate of β̂.

Section 9.5 You should 227

9.8. This exercise explores the effect of regularization on a regression. Assume we
have N data items, (xi, yi). We will investigate what happens when the data
have the property that the first component is relatively accurately predicted
by the other components. Write xi1 for the first component of xi, and xi,1̂
for the vector obtained by deleting the first component of xi. Choose u to
predict the first component of the data from the rest with minimum error, so
that xi1 = xT

i1̂
u + wi. The error of prediction is wi. Write w for the vector

of errors (i.e. the i’th component of w is wi). Because wTw is minimized by
choice of u, we havewT 1 = 0 (i.e. the average of the wi’s is zero). Assume that
these predictions are very good, so that there is some small positive number ǫ
so that wTw ≤ ǫ.
(a) Show that, for any vector v,

vT
(

XTX + λI
)

v ≥ λvTv

and use this to argue that the smallest eigenvalue of
(

XTX + λI
)

is
greater than λ.

(b) Write b for an eigenvector of XTX with eigenvalue λb. Show that b is
an eigenvector of

(

XTX + λI
)

with eigenvalue λb + λ.

(c) Recall XTX is a d×dmatrix which is symmetric, and so has d orthonormal
eigenvectors. Write bi for the i’th such vector, and λbi

for the correspond-
ing eigenvalue. Show that

XTXβ −XTY = 0

is solved by

β =

d
∑

i=1

YTXbi

λbi

.

(d) Using the notation of the previous sub exercise, show that

(XTX + λI)β − XTY = 0

is solved by

β =

d
∑

i=1

YTXbi

λbi
+ λ

.

Use this expression to explain why a regularized regression may produce
better results on test data than an unregularized regression.

PROGRAMMING EXERCISES

9.9. At http://www.statsci.org/data/general/brunhild.html, you will find a dataset
that measures the concentration of a sulfate in the blood of a baboon named
Brunhilda as a function of time. Build a linear regression of the log of the
concentration against the log of time.
(a) Prepare a plot showing (a) the data points and (b) the regression line in

log-log coordinates.
(b) Prepare a plot showing (a) the data points and (b) the regression curve

in the original coordinates.

http://www.statsci.org/data/general/brunhild.html

Section 9.5 You should 228

(c) Plot the residual against the fitted values in log-log and in original coor-
dinates.

(d) Use your plots to explain whether your regression is good or bad and why.
9.10. At http://www.statsci.org/data/oz/physical.html, you will find a dataset of mea-

surements by M. Larner, made in 1996. These measurements include body
mass, and various diameters. Build a linear regression of predicting the body
mass from these diameters.
(a) Plot the residual against the fitted values for your regression.
(b) Now regress the cube root of mass against these diameters. Plot the

residual against the fitted values in both these cube root coordinates and
in the original coordinates.

(c) Use your plots to explain which regression is better.
9.11. At https://archive.ics.uci.edu/ml/datasets/Abalone, you will find a dataset of

measurements by W. J. Nash, T. L. Sellers, S. R. Talbot, A. J. Cawthorn and
W. B. Ford, made in 1992. These are a variety of measurements of blacklip
abalone (Haliotis rubra; delicious by repute) of various ages and genders.
(a) Build a linear regression predicting the age from the measurements, ig-

noring gender. Plot the residual against the fitted values.
(b) Build a linear regression predicting the age from the measurements, in-

cluding gender. There are three levels for gender; I’m not sure whether
this has to do with abalone biology or difficulty in determining gender.
You can represent gender numerically by choosing 1 for one level, 0 for
another, and -1 for the third. Plot the residual against the fitted values.

(c) Now build a linear regression predicting the log of age from the measure-
ments, ignoring gender. Plot the residual against the fitted values.

(d) Now build a linear regression predicting the log age from the measure-
ments, including gender, represented as above. Plot the residual against
the fitted values.

(e) It turns out that determining the age of an abalone is possible, but difficult
(you section the shell, and count rings). Use your plots to explain which
regression you would use to replace this procedure, and why.

(f) Can you improve these regressions by using a regularizer? Use glmnet to
obtain plots of the cross-validated prediction error.

http://www.statsci.org/data/oz/physical.html
https://archive.ics.uci.edu/ml/datasets/Abalone

C H A P T E R 10

Regression: Choosing and Managing
Models

10.1 MODEL SELECTION: WHICH MODEL IS BEST?

It is usually quite easy to have many explanatory variables in a regression problem.
Even if you have only one measurement, you could always compute a variety of non-
linear functions of that measurement. As we have seen, inserting variables into a
model will reduce the fitting cost, but that doesn’t mean that better predictions will
result (section 9.4.1). We need to choose which explanatory variables we will use.
A linear model with few explanatory variables may make poor predictions because
the model itself is incapable of representing the independent variable accurately (an
effect known as bias). A linear model with many explanatory variables may make
poor predictions because we can’t estimate the coefficients well (an effect known as
variance). Choosing which explanatory variables we will use (and so which model
we will use) requires that we balance these effects, described in greater detail in
section 10.1.1. In the following sections, we describe straightforward methods of
doing so.

10.1.1 Bias and Variance

We now look at the process of finding a model in a fairly abstract way. Doing
so makes plain three distinct and important effects that cause models to make
predictions that are wrong. One is irreducible error. Even a perfect choice of
model can make mistaken predictions, because more than one prediction could be
correct for the same x. Another way to think about this is that there could be
many future data items, all of which have the same x, but each of which has a
different y. In this case some of our predictions must be wrong, and the effect is
unavoidable.

A second effect is bias. We must use some collection of models. Even the
best model in the collection may not be capable of predicting all the effects that
occur in the data. Errors that are caused by the best model still not being able to
predict the data accurately are attributed to bias.

The third effect is variance. We must choose our model from the collection
of models. The model we choose is unlikely to be the best model. This might occur,
for example, because our estimates of the parameters aren’t exact because we have
a limited amount of data. Errors that are caused by our choosing a model that is
not the best in the family are attributed to variance.

All this can be written out in symbols. We have a vector of predictors x, and
a random variable Y . At any given point x, we have

Y = f(x) + ξ

229

Section 10.1 Model Selection: Which Model is Best? 230

where ξ is noise and f is an unknown function. We have E[ξ] = 0, and E
[

ξ2
]

=
var ({ξ}) = σ2

ξ ; furthermore, ξ is independent of X . We have some procedure that

takes a selection of training data, consisting of pairs (xi, yi), and selects a model f̂ .

We will use this model to predict values for future x. It is highly unlikely that f̂ is
the same as f ; assuming that it is involves assuming that we can perfectly estimate
the best model with a finite dataset, which doesn’t happen.

We need to understand the error that will occur when we use f̂ to predict
for some data item that isn’t in the training set. This is the error that we will
encounter in practice. The error at any point x is

E

[

(Y − f̂(X))2
]

where the expectation is taken over P (Y, training data|x). But the new query
point x does not depend on the training data, and so the distribution is P (Y |x)×
P (training data). The expectation can be written in an extremely useful form.

Recall var ({U}) = E
[

U2
]

− E[U]2. This means we have

E

[

(Y − f̂(x))2
]

= E
[

Y 2
]

− 2E
[

Y f̂
]

+ E

[

f̂2
]

= var ({Y }) + E[Y]
2 − 2E

[

Y f̂
]

+ var
({

f̂
})

+ E

[

f̂
]2

.

Now Y = f(X) + ξ, E[ξ] = 0, and ξ is independent of X so we have E[Y] = E[f]
and var ({Y }) = var ({ξ}) = σ2

ξ . This yields

E

[

(Y − f̂(x))2
]

= var ({Y }) + E[f]
2 − 2E

[

f f̂
]

+ var
({

f̂
})

+ E

[

f̂
]2

= σ2
ξ + E

[

(f − f̂)2
]

+ var
({

f̂
})

= σ2
ξ + (f − E

[

f̂
]

)2 + var
({

f̂
})

(f isn’t random).

The expected error on all future data is the sum of three terms. The irreducible error
is σ2

ξ ; even the true model must produce this error, on average. The best model

to choose would be E

[

f̂
]

(remember, the expectation is over choices of training

data; this model would be the one that best represented all possible attempts to

train). But we don’t have E

[

f̂
]

. Instead, we have f̂ . The variance is var
({

f̂
})

=

E

[

(f̂ − E

[

f̂
]

)2
]

. This term represents the fact that the model we chose (f̂) is

different from the mean model (E
[

f̂
]

). The difference arises because our training

data is a subset of all data, and our model is chosen to be good on the training

data, rather than on every possible training set. The bias is (f −E

[

f̂
]

)2. This term

reflects the fact that even the best choice of model (E
[

f̂
]

) may not be the same as

the true source of data (E[f] which is the same as f , because f is deterministic).
There is usually a tradeoff between bias and variance. Generally, when a

model comes from a “small” or “simple” family, we expect that (a) we can estimate

Section 10.1 Model Selection: Which Model is Best? 231

the best model in the family reasonably accurately (so the variance will be low)
but (b) the model may have real difficulty reproducing the data (meaning the bias
is large). Similarly, if the model comes from a “large” or “complex” family, the
variance is likely to be high (because it will be hard to estimate the best model in the
family accurately) but the bias will be low (because the model can more accurately
reproduce the data). All modelling involves managing this tradeoff between bias
and variance. I am avoiding being precise about the complexity of a model because
it can be tricky to do. One reasonable proxy is the number of parameters we have
to estimate to determine the model.

You can see a crude version this tradeoff in the perch example of section 9.4.1
and Figure 9.11. Recall that, as I added monomials to the regression of weight
against length, the fitting error went down; but the model that uses length10 as
an explanatory variable makes very odd predictions away from the training data.
When I use low degree monomials, the dominant source of error is bias; and when
I use high degree monomials, the dominant source of error is variance. A common
mistake is to feel that the major difficulty is bias, and so to use extremely com-
plex models. Usually the result is poor estimates of model parameters, and huge
variance. Experienced modellers fear variance far more than they fear bias.

The bias-variance discussion suggests it isn’t a good idea simply to use all
the explanatory variables that you can obtain (or think of). Doing so might lead
to a model with serious variance problems. Instead, we must choose a model that
uses a subset of the explanatory variables that is small enough to control variance,
and large enough that the bias isn’t a problem. We need some strategy to choose
explanatory variables. The simplest (but by no means the best; we’ll see better in
this chapter) approach is to search sets of explanatory variables for a good set. The
main difficulty is knowing when you have a good set.

10.1.2 Choosing a Model using Penalties: AIC and BIC

We would like to choose one of a set of models. We cannot do so using just the
training error, because more complex models will tend to have lower training error,
and so the model with the lowest training error will tend to be the most complex
model. Training error is a poor guide to test error, because lower training error is
evidence of lower bias on the models part; but with lower bias, we expect to see
greater variance, and the training error doesn’t take that into account.

One strategy is to penalize the model for complexity. We add some penalty,
reflecting the complexity of the model, to the training error. We then expect to see
the general behavior of figure 10.1. The training error goes down, and the penalty
goes up as the model gets more complex, so we expect to see a point where the sum
is at a minimum.

There are a variety of ways of constructing penalties. AIC (short for An
Information Criterion) is a method due originally to Akaike, in ****. Rather than
using the training error, AIC uses the maximum value of the log-likelihood of the
model. Write L for this value. Write k for the number of parameters estimated to
fit the model. Then the AIC is

2k − 2L
and a better model has a smaller value of AIC (remember this by remembering

Section 10.1 Model Selection: Which Model is Best? 232

Number of parameters

Negative

Log-LikelihoodPenalty

Penalized

Negative

Log-Likelihood

FIGURE 10.1: When we add explanatory variables (and so parameters) to a model,
the value of the negative log-likelihood of the best model can’t go up, and usually goes
down. This means that we cannot use the value as a guide to how many explanatory
variables there should be. Instead, we add a penalty that increases as a function
of the number of parameters, and search for the model that minimizes the sum of
negative long-likelihood and penalty. AIC and BIC grow linearly with the number
of parameters, but I am following the usual convention of plotting the penalty as a
curve rather than a straight line.

that a larger log-likelihood corresponds to a better model). Estimating AIC is
straightforward for regression models if you assume that the noise is a zero mean
normal random variable. You estimate the mean-squared error, which gives the
variance of the noise, and so the log-likelihood of the model. You do have to keep
track of two points. First, k is the total number of parameters estimated to fit the
model. For example, in a linear regression model, where you model y as xTβ + ξ,
you need to estimate d parameters to estimate β̂ and the variance of ξ (to get
the log-likelihood). So in this case k = d + 1. Second, log-likelihood is usually
only known up to a constant, so that different software implementations often use
different constants. This is wildly confusing when you don’t know about it (why
would AIC and extractAIC produce different numbers on the same model?) but
of no real significance – you’re looking for the smallest value of the number, and
the actual value doesn’t mean anything. Just be careful to compare only numbers
computed with the same routine.

An alternative is BIC (Bayes’ Information Criterion), given by

2k logN − 2L

(where N is the size of the training data set). You will often see this written as
2L − 2k logN ; I have given the form above so that one always wants the smaller
value as with AIC. There is a considerable literature comparing AIC and BIC. AIC
has a mild reputation for overestimating the number of parameters required, but is
often argued to have firmer theoretical foundations.

Section 10.1 Model Selection: Which Model is Best? 233

Worked example 10.1 AIC and BIC

Write Md for the model that predicts weight from length for the perch dataset
as
∑j=d

j=0 βj length
j . Choose an appropriate value of d ∈ [1, 10] using AIC and

BIC.

Solution: I used the R functions AIC and BIC, and got the table below.
1 2 3 4 5 6 7 8 9 10

AIC 677 617 617 613 615 617 617 612 613 614
BIC 683 625 627 625 629 633 635 633 635 638

The best model by AIC has (rather startlingly!) d = 8. One should not take
small differences in AIC too seriously, so models with d = 4 and d = 9 are fairly
plausible, too. BIC suggests d = 2.

10.1.3 Choosing a Model using Cross-Validation

AIC and BIC are estimates of error on future data. An alternative is to measure
this error on held out data, using a cross-validation strategy (as in section ??). One
splits the training data into F folds, where each data item lies in exactly one fold.
The case F = N is sometimes called “leave-one-out” cross-validation. One then
sets aside one fold in turn, fitting the model to the remaining data, and evaluating
the model error on the left-out fold. The model error is then averaged. This process
gives us an estimate of the performance of a model on held-out data. Numerous
variants are available, particularly when lots of computation and lots of data are
available. For example: one might not average over all folds; one might use fewer
or more folds; and so on.

Worked example 10.2 Cross-validation

Write Md for the model that predicts weight from length for the perch dataset
as
∑j=d

j=0 βj length
j . Choose an appropriate value of d ∈ [1, 10] using leave-one-

out cross validation.

Solution: I used the R functions CVlm, which takes a bit of getting used to.
There is sample code in the exercises section. I found:

1 2 3 4 5 6 7 8 9 10
1.9e4 4.0e3 7.2e3 4.5e3 6.0e3 5.6e4 1.2e6 4.0e6 3.9e6 1.9e8

where the best model is d = 2.

10.1.4 A Search Process: Forward and Backward Stagewise Regression

Assume we have a set of explanatory variables and we wish to build a model,
choosing some of those variables for our model. Our explanatory variables could
be many distinct measurements, or they could be different non-linear functions of

Section 10.1 Model Selection: Which Model is Best? 234

the same measurement, or a combination of both. We can evaluate models relative
to one another fairly easily (AIC, BIC or cross-validation, your choice). However,
choosing which set of explanatory variables to use can be quite difficult, because
there are so many sets. The problem is that you cannot predict easily what adding
or removing an explanatory variable will do. Instead, when you add (or remove) an
explanatory variable, the errors that the model makes change, and so the usefulness
of all other variables changes too. This means that (at least in principle) you have
to look at every subset of the explanatory variables. Imagine you start with a
set of F possible explanatory variables (including the original measurement, and
a constant). You don’t know how many to use, so you might have to try every
different group, of each size, and there are far too many groups to try. There are
two useful alternatives.

In forward stagewise regression, you start with an empty working set
of explanatory variables. You then iterate the following process. For each of the
explanatory variables not in the working set, you construct a new model using
the working set and that explanatory variable, and compute the model evaluation
score. If the best of these models has a better score than the model based on the
working set, you insert the appropriate variable into the working set and iterate.
If no variable improves the working set, you decide you have the best model and
stop. This is fairly obviously a greedy algorithm.

Backward stagewise regression is pretty similar, but you start with a
working set containing all the variables, and remove variables one-by-one and greed-
ily. As usual, greedy algorithms are very helpful but not capable of exact optimiza-
tion. Each of these strategies can produce rather good models, but neither is
guaranteed to produce the best model.

10.1.5 Significance: What Variables are Important?

Imagine you regress some measure of risk of death against blood pressure, whether
someone smokes or not, and the length of their thumb. Because high blood pressure
and smoking tend to increase risk of death, you would expect to see “large” coeffi-
cients for these explanatory variables. Since changes in the thumb length have no
effect, you would expect to see “small” coefficients for these explanatory variables.
This suggests a regression can be used to determine what effects are important in
building a model.

One difficulty is the result of sampling variance. Imagine that we have an
explanatory variable that has absolutely no relationship to the dependent variable.
If we had an arbitrarily large amount of data, and could exactly identify the correct
model, we’d find that, in the correct model, the coefficient of that variable was zero.
But we don’t have an arbitrarily large amount of data. Instead, we have a sample
of data. Hopefully, our sample is random, so that the reasoning of section 287 can
be applied. Using that reasoning, our estimate of the coefficient is the value of a
random variable whose expected value is zero, but whose variance isn’t. As a result,
we are very unlikely to see a zero. This reasoning applies to each coefficient of the
model. To be able to tell which ones are small, we would need to know the standard
deviation of each, so we can tell whether the value we observe is a small number of
standard deviations away from zero. This line of reasoning is very like hypothesis

Section 10.2 Robust Regression 235

testing. It turns out that the sampling variance of regression coefficients can be
estimated in a straightforward way. In turn, we have an estimate of the extent
to which their difference from zero could be a result of random sampling. R will
produce this information routinely; use summary on the output of lm.

A second difficulty has to do with practical significance, and is rather harder.
We could have explanatory variables that are genuinely linked to the independent
variable, but might not matter very much. This is a common phenomenon, particu-
larly in medical statistics. It requires considerable care to disentangle some of these
issues. Here is an example. Bowel cancer is an unpleasant disease, which could kill
you. Being screened for bowel cancer is at best embarrassing and unpleasant, and
involves some startling risks. There is considerable doubt, from reasonable sources,
about whether screening has value and if so, how much (as a start point, you could
look at Ransohoff DF. How Much Does Colonoscopy Reduce Colon Cancer Mor-
tality?. Ann Intern Med. 2009). There is some evidence linking eating red or
processed meat to incidence of bowel cancer. A good practical question is: should
one abstain from eating red or processed meat based on increased bowel cancer
risk?

Coming to an answer is tough; the coefficient in any regression is clearly
not zero, but it’s pretty small as these numbers indicate. The UK population in
2012 was 63.7 million (this is a summary figure from Google, using World Bank
data; there’s no reason to believe that it’s significantly wrong). I obtained the
following figures from the UK cancer research institute website, at http://www.
cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer.
There were 41, 900 new cases of bowel cancer in the UK in 2012. Of these cases,
43% occurred in people aged 75 or over. 57% of people diagnosed with bowel cancer
survive for ten years or more after diagnosis. Of diagnosed cases, an estimated 21%
are linked to eating red or processed meat, and the best current estimate is that
the risk of incidence is between 17% and 30% higher per 100g of red meat eaten
per day (i.e. if you eat 100g of red meat per day, your risk increases by some num-
ber between 17% and 30%; 200g a day gets you twice that number; and – rather
roughly – so on). These numbers are enough to confirm that there is a non-zero
coefficient linking the amount of red or processed meat in your diet with your risk
of bowel cancer (though you’d have a tough time estimating the exact value of
that coefficient from the information here). If you eat more red meat, your risk of
dying of bowel cancer really will go up. But the numbers I gave above suggest that
(a) it won’t go up much and (b) you might well die rather late in life, where the
chances of dying of something are quite strong. The coefficient linking eating red
meat and bowel cancer is clearly pretty small, because the incidence of the disease
is about 1 in 1500 per year. Does it matter? you get to choose, and your choice
has consequences.

10.2 ROBUST REGRESSION

We have seen that outlying data points can result in a poor model. This is caused by
the squared error cost function: squaring a large error yields an enormous number.
One way to resolve this problem is to identify and remove outliers before fitting
a model. This can be difficult, because it can be hard to specify precisely when

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer

Section 10.2 Robust Regression 236

a point is an outlier. Worse, in high dimensions most points will look somewhat
like outliers, and we may end up removing all most all the data. The alternative
solution I offer here is to come up with a cost function that is less susceptible to
problems with outliers. The general term for a regression that can ignore some
outliers is a robust regression.

10.2.1 M-Estimators and Iteratively Reweighted Least Squares

One way to reduce the effect of outliers on a least-squares solution would be to
weight each point in the cost function. We need some method to estimate an
appropriate set of weights. This would use a large weight for errors at points that
are “trustworthy”, and a low weight for errors at “suspicious” points.

We can obtain such weights using an M-estimator, which estimates param-
eters by replacing the negative log-likelihood with a term that is better behaved.
In our examples, the negative log-likelihood has always been squared error. Write
β for the parameters of the model being fitted, and ri(xi, β) for the residual error
of the model on the ith data point. For us, ri will always be yi − xT

i β. So rather
than minimizing

∑

i

(ri(xi, β))
2

as a function of β, we will minimize an expression of the form

∑

i

ρ(ri(xi, β);σ),

for some appropriately chosen function ρ. Clearly, our negative log-likelihood is
one such estimator (use ρ(u;σ) = u2). The trick to M-estimators is to make ρ(u;σ)
look like u2 for smaller values of u, but ensure that it grows more slowly than u2

for larger values of u.
The Huber loss is one important M-estimator. We use

ρ(u;σ) =

{

u2

2 |u | < σ

σ|u | − σ2

2

which is the same as u2 for −σ ≤ u ≤ σ, and then switches to |u | for larger
(or smaller) σ (Figure ??). The Huber loss is convex (meaning that there will
be a unique minimum for our models) and differentiable, but its derivative is not
continuous. The choice of the parameter σ (which is known as scale) has an effect
on the estimate. You should interpret this parameter as the distance that a point
can lie from the fitted function while still being seen as an inlier (anything that
isn’t even partially an outlier).

Generally, M-estimators are discussed in terms of their influence function.
This is

∂ρ

∂u
.

Its importance becomes evidence when we consider algorithms to fit β̂ using an

Section 10.2 Robust Regression 237

30 40 50 60 70

15
0

20
0

25
0

30
0

35
0

Robust regressions of weight against height,
 bodyfat dataset

Height

W
ei

gh
t

RLM, Huber, k2=1e2
LM
LM, outliers excluded

FIGURE 10.2: Comparing three different linear regression strategies on the bodyfat
data, regressing weight against height. Notice that using an M-estimator gives an
answer very like that obtained by rejecting outliers by hand. The answer may well be
“better” because it isn’t certain that each of the four points rejected is an outlier, and
the robust method may benefit from some of the information in these points. I tried
a range of scales for the Huber loss (the ’k2’ parameter), but found no difference
in the line resulting over scales varying by a factor of 1e4, which is why I plot only
one scale.

M-estimator. Our minimization criterion is

∇β

(

∑

i

ρ(yi − xT
i β;σ)

)

=
∑

i

[

∂ρ

∂u
(yi − xT

i β;σ)

]

(−xi)

= 0.

Now write wi(β) for
∂ρ
∂u (yi − xT

i β;σ)

yi − xT
i β

.

We can write the minimization criterion as
∑

i

[wi(β)] (yi − xT
i β)(−xi) = 0.

Now write W(β) for the diagonal matrix whose i’th diagonal entry is wi(β) Then
our fitting criterion is equivalent to

X T [W(β)]Y = X T [W(β)]Xβ.

The difficulty in solving this is that wi(β) depend on β, so we can’t just solve a
linear system in β. We could use the following strategy. Use W tries to downweight
points that are suspiciously inconsistent with our current estimate of β, then update

Section 10.2 Robust Regression 238

100 150 200 250 300 350

−
20

0
20

40
60

80
10

0
12

0

Weight regressed against all for bodyfat,
 residual against fitted value,

 all points

Fitted value

R
es

id
ua

l

Weight regressed against all for bodyfat,
 histogram of residuals,

 all points

Residual

F
re

qu
en

cy

0 50 100

0
20

40
60

80
10

0
12

0
FIGURE 10.3: A robust linear regression of weight against all variables for the bodyfat
dataset, using the Huber loss and all data points. On the left, residual plotted
against fitted value (the residual is not standardized). Notice that there are some
points with very large residual, but most have much smaller residual; this wouldn’t
happen with a squared error. On the right, a histogram of the residual. If one
ignores the extreme residual values, this looks normal. The robust process has been
able to discount the effect of the outliers, without us needing to identify and reject
outliers by hand.

β using those weights. The strategy is known as iteratively reweighted least

squares, and is very effective.
We assume we have an estimate of the correct parameters β̂(n), and consider

updating it to β̂(n+1). We compute

w
(n)
i = wi(β̂

(n)) =
∂ρ
∂u (yi − xT

i β
(n);σ)

yi − xT
i β̂

(n)
.

We then estimate β̂(n+1) by solving

X TW(n)Y = X TW(n)X β̂(n+1).

The key to this algorithm is finding good start points for the iteration. One
strategy is randomized search. We select a small subset of points uniformly at
random, and fit some β̂ to these points, then use the result as a start point. If
we do this often enough, one of the start points will be an estimate that is not
contaminated by outliers.

10.2.2 Scale for M-Estimators

The estimators require a sensible estimate of σ, which is often referred to as scale.
Typically, the scale estimate is supplied at each iteration of the solution method.

Section 10.3 Generalized Linear Models 239

One reasonable estimate is the MAD or median absolute deviation, given by

σ(n) = 1.4826 mediani|r(n)i (xi; β̂
(n−1)) |.

Another a popular estimate of scale is obtained with Huber’s proposal 2 (that
is what everyone calls it!). Choose some constant k1 > 0, and define Ξ(u) =

min (|u |, k1)2. Now solve the following equation for σ:

∑

i

Ξ(
r
(n)
i (xi; β̂

(n−1))

σ
) = Nk2

where k2 is another constant, usually chosen so that the estimator gives the right
answer for a normal distribution (exercises). This equation needs to be solved with
an iterative method; the MAD estimate is the usual start point. R provides hubers,
which will compute this estimate of scale (and figures out k2 for itself). The choice
of k1 depends somewhat on how contaminated you expect your data to be. As
k1 → ∞, this estimate becomes more like the standard deviation of the data.

10.3 GENERALIZED LINEAR MODELS

We have used a linear regression to predict a value from a feature vector, but
implicitly have assumed that this value is a real number. Other cases are important,
and some of them can be dealt with using quite simple generalizations of linear
regression. When we derived linear regression, I said one way to think about the
model was

y = xTβ + ξ

where ξ was a normal random variable with zero mean and variance σ2
ξ . Another

way to write this is to think of y as the value of a random variable Y . In this case,
Y has mean xTβ and variance σ2

ξ . This can be written as

Y ∼ N(xTβ, σ2
ξ).

This offers a fruitful way to generalize: we replace the normal distribution with
some other parametric distribution, and predict the parameter using xTβ. Two
examples are particularly important.

10.3.1 Logistic Regression

Assume the y values can be either 0 or 1. You could think of this as a two class clas-
sification problem, and deal with it using an SVM. There are sometimes advantages
to seeing it as a regression problem. One is that we get to see a new classification
method that explicitly models class posteriors, which an SVM doesn’t do.

We build the model by asserting that the y values represent a draw from a
Bernoulli random variable (definition below, for those who have forgotten). The
parameter of this random variable is θ, the probability of getting a one. But
0 ≤ θ ≤ 1, so we can’t just model θ as xTβ. We will choose some link function

g so that we can model g(θ) as xTβ. This means that, in this case, g must map
the interval between 0 and 1 to the whole line, and must be 1-1. The link function
maps θ to xTβ; the direction of the map is chosen by convention. We build our
model by asserting that g(θ) = xTβ.

Section 10.3 Generalized Linear Models 240

Definition: 10.1 Bernoulli random variable

A Bernoulli random variable with parameter θ takes the value 1 with
probability θ and 0 with probability 1 − θ. This is a model for a coin
toss, among other things.

Notice that, for a Bernoulli random variable, we have that

log

[

P (y = 1|θ)
P (y = 0|θ)

]

= log

[

θ

1− θ

]

and the logit function g(u) = log
[

u
1−u

]

meets our needs for a link function (it

maps the interval between 0 and 1 to the whole line, and is 1-1). This means we
can build our model by asserting that

log

[

P (y = 1|x)
P (y = 0|x)

]

= xTβ

then solving for the β that maximizes the log-likelihood of the data. Simple ma-
nipulation yields

P (y = 1|x) = ex
Tβ

1 + exTβ
and P (y = 0|x) = 1

1 + exTβ
.

In turn, this means the log-likelihood of a dataset will be

L(β) =
∑

i

[

I[y=1](yi)x
T
i β − log

(

1 + ex
T
i β
)]

.

You can obtain β from this log-likelihood by gradient ascent (or rather a lot faster
by Newton’s method, if you know that).

A regression of this form is known as a logistic regression. It has the
attractive property that it produces estimates of posterior probabilities. Another
interesting property is that a logistic regression is a lot like an SVM. To see this,
we replace the labels with new ones. Write ŷi = 2yi − 1; this means that ŷi takes
the values −1 and 1, rather than 0 and 1. Now I[y=1](yi) =

ŷi+1
2 , so we can write

−L(β) = −
∑

i

[

ŷi + 1

2
xT
i β − log

(

1 + ex
T
i β
)

]

=
∑

i

[

ŷi + 1

2
xT
i β − log

(

1 + ex
T
i β
)

]

=
∑

i

[

log

(

1 + ex
T
i β

e
ŷi+1

2 xT
i
β

)]

=
∑

i

[

log
(

e
−(ŷi+1)

2 xT
i β + e

1−ŷi
2 xT

i β
)]

Section 10.3 Generalized Linear Models 241

and we can interpret the term in square brackets as a loss function. If you plot
it, you will notice that it behaves rather like the hinge loss. When ŷi = 1, if xTβ
is positive the loss is very small, but if xTβ is strongly negative, the loss grows
linearly in xTβ. There is similar behavior when ŷi = −1. The transition is smooth,
unlike the hinge loss. Logistic regression should (and does) behave well for the same
reasons the SVM behaves well.

Be aware that logistic regression has one annoying quirk. When the data
are linearly separable (i.e. there exists some β such that yix

T
i β > 0 for all data

items), logistic regression will behave badly. To see the problem, choose the β that
separates the data. Now it is easy to show that increasing the magnitude of β will
increase the log likelihood of the data; there isn’t any limit. These situations arise
fairly seldom in practical data.

10.3.2 Multiclass Logistic Regression

Imagine y ∈ [0, 1, . . . , C − 1]. Then it is natural to model p(y|x) with a dis-
crete probability distribution on these values. This can be specified by choosing
(θ0, θ1, . . . , θC−1) where each term is between 0 and 1 and

∑

i θi = 1. Our link
function will need to map this constrained vector of θ values to a ℜC−1. We can
do this with a fairly straightforward variant of the logit function, too. Notice that
there are C− 1 probabilities we need to model (the C’th comes from the constraint
∑

i θi = 1). We choose one vector β for each probability, and write βi for the vector
used to model θi. Then we can write

xTβi = log

(

θi
1−∑u θu

)

and this yields the model

P (y = 0|x, β) =
ex

Tβ0

1 +
∑

i e
xTβi

P (y = 1|x, β) =
ex

Tβ1

1 +
∑

i e
xTβi

. . .

P (y = C − 1|x, β) =
1

1 +
∑

i e
xTβi

and we would fit this model using maximum likelihood. The likelihood is easy to
write out, and gradient descent is a good strategy for actually fitting models.

10.3.3 Regressing Count Data

Now imagine that the yi values are counts. For example, yi might have the count
of the number of animals caught in a small square centered on xi in a study region.
As another example, xi might be a set of features that represent a customer, and
yi might be the number of times that customer bought a particular product. The
natural model for count data is a Poisson model, with parameter θ representing the
intensity (reminder below).

Section 10.3 Generalized Linear Models 242

Definition: 10.2 Poisson distribution

A non-negative, integer valued random variable X has a Poisson distri-
bution when its probability distribution takes the form

P ({X = k}) = θke−θ

k!
,

where θ > 0 is a parameter often known as the intensity of the distri-
bution.

Now we need θ > 0. A natural link function is to use

xTβ = log θ

yielding a model

P ({X = k}) = ekx
T βe−ekx

T β

k!
.

Now assume we have a dataset. The negative log-likelihood can be written as

−L(β) = −
∑

i

log





eyix
T
i βe−e

yix
T
i

β

yi!





= −
∑

i

(

yix
T
i β − eyix

T
i β − log(yi!)

)

.

There isn’t a closed form minimum available, but the log-likelihood is convex, and
gradient descent (or Newton’s method) are enough to find a minimum. Notice that
the log(yi!) term isn’t relevant to the minimization, and is usually dropped.

10.3.4 Deviance

Cross-validating a model is done by repeatedly splitting a data set into two pieces,
training on one, evaluating some score on the other, and averaging the score. But
we need to keep track of what to score. For earlier linear regression models (eg
section 287), we have used the squared error of predictions. This doesn’t really
make sense for a generalized linear model, because predictions are of quite different
form. It is usual to use the deviance of the model. Write yt for the true prediction
at a point, xp for the independent variables we want to obtain a prediction for, β̂

for our estimated parameters; a generalized linear model yields P (y|xp, β̂). For our
purposes, you should think of the deviance as

−2 logP (yt|xp, β̂)

(this expression is sometimes adjusted in software to deal with extreme cases, etc.).
Notice that this is quite like the least squares error for the linear regression case,
because there

−2 logP (y|xp, β̂) = (xT
p β̂ − yt)

2/σ2 +K

Section 10.4 L1 Regularization and Sparse Models 243

for K some constant.

10.4 L1 REGULARIZATION AND SPARSE MODELS

Forward and backward stagewise regression were strategies for adding independent
variables to, or removing independent variables from, a model. An alternative, and
very powerful, strategy is to construct a model with a method that forces some
coefficients to be zero. The resulting model ignores the corresponding independent
variables. Models built this way are often called sparse models, because (one
hopes) that many independent variables will have zero coefficients, and so the model
is using a sparse subset of the possible predictors.

In some situations, we are forced to use a sparse model. For example, imagine
there are more independent variables than there are examples. In this case, the
matrix X TX will be rank deficient. We could use a ridge regression (Section 9.4.2)
and the rank deficiency problem will go away, but it would be hard to trust the
resulting model, because it will likely use all the predictors (more detail below).
We really want a model that uses a small subset of the predictors. Then, because
the model ignores the other predictors, there will be more examples than there are
predictors that we use.

There is now quite a strong belief amongst practitioners that using sparse
models is the best way to deal with high dimensional problems (although there are
lively debates about which sparse model to use, etc.). This is sometimes called the
“bet on sparsity” principle: use a sparse model for high dimensional data, because
dense models don’t work well for such problems.

10.4.1 Dropping Variables with L1 Regularization

We have a large set of explanatory variables, and we would like to choose a small
set that explains most of the variance in the independent variable. We could do
this by encouraging β to have many zero entries. In section 9.4.2, we saw we could
regularize a regression by adding a term to the cost function that discouraged large
values of β. Instead of solving for the value of β that minimized

∑

i(yi − xT
i β)

2 =
(y −Xβ)T (y −Xβ) (which I shall call the error cost), we minimized

∑

i

(yi − xT
i β)

2 +
λ

2
βTβ = (y −Xβ)T (y −Xβ) +

λ

2
βTβ

(which I shall call the L2 regularized error). Here λ > 0 was a constant chosen
by cross-validation. Larger values of λ encourage entries of β to be small, but do
not force them to be zero. The reason is worth understanding.

Write βk for the k’th component of β, and write β−k for all the other compo-
nents. Now we can write the L2 regularized error as a function of βk:

(a+ λ)β2
k − 2b(β−k)βk + c(β−k)

where a is a function of the data and b and c are functions of the data and of β−k.
Now notice that the best value of βk will be

βk =
b(β−k)

(a+ λ)
.

Section 10.4 L1 Regularization and Sparse Models 244

Notice that λ doesn’t appear in the numerator. This means that, to force βk to
zero by increasing λ, we may have to make λ arbitrarily large. This is because the
improvement in the penalty obtained by going from a small βk to βk = 0 is tiny –
the penalty is proportional to β2

k.
To force some components of β to zero, we need a penalty that grows linearly

around zero rather than quadratically. This means we should use the L1 norm of
β, given by

||β ||1 =
∑

k

|βk |.

To choose β, we must now solve

(y −Xβ)T (y −Xβ) + λ||β ||1

for an appropriate choice of λ. An equivalent problem is to solve a constrained
minimization problem, where one minimizes

(y −Xβ)T (y −Xβ) subject to ||β ||1 ≤ t

where t is some value chosen to get a good result, typically by cross-validation.
There is a relationship between the choice of t and the choice of λ (with some
thought, a smaller t will correspond to a bigger λ) but it isn’t worth investigating
in any detail.

Actually solving this system is quite involved, because the cost function is not
differentiable. You should not attempt to use stochastic gradient descent, because
this will not compel zeros to appear in β̂ (exercises). There are several methods,
which are beyond our scope. As the value of λ increases, the number of zeros in
β̂ will increase too. We can choose λ in the same way we used for classification;
split the training set into a training piece and a validation piece, train for different
values of λ, and test the resulting regressions on the validation piece. However, one
consequence of modern methods is that we can generate a very good approximation
to the path β̂(λ) for all values of λ ≥ 0 about as easily as we can choose β̂ for a
particular value of λ.

One way to understand the models that result is to look at the behavior
of cross-validated error as λ changes. The error is a random variable, random
because of the random split. It is a fair model of the error that would occur on
a randomly chosen test example (assuming that the training set is “like” the test
set, in a way that I do not wish to make precise yet). We could use multiple splits,
and average over the splits. Doing so yields both an average error for each value
of λ and an estimate of the standard deviation of error. Figure 10.4 shows the
result of doing so for two datasets. Again, there is no λ that yields the smallest
validation error, because the value of error depends on the random split cross-
validation. A reasonable choice of λ lies between the one that yields the smallest
error encountered (one vertical line in the plot) and the largest value whose mean
error is within one standard deviation of the minimum (the other vertical line in

the plot). It is informative to keep track of the number of zeros in β̂ as a function
of λ, and this is shown in Figure 10.4.

Section 10.4 L1 Regularization and Sparse Models 245

−2 −1 0 1 2 3

0
20

0
40

0
60

0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

10 10 10 10 10 10 9 9 9 9 9 8 6 4 4 2 2 1

six outliers remo

−2 −1 0 1 2 3

0
20

0
40

0
60

0
80

0
10

00

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

14 14 14 13 13 13 13 11 10 9 9 6 5 4 4 2 2 1

FIGURE 10.4: Plots of mean-squared error as a function of log regularization pa-
rameter (i.e. logλ) for a regression of weight against all variables for the bodyfat
dataset using an L1 regularizer (i.e. a lasso). These plots show mean-squared er-
ror averaged over cross-validation folds with a vertical one standard deviation bar.
On the left, the plot for the dataset with the six outliers identified in Figure 287
removed. On the right, the plot for the whole dataset. Notice how the outliers
increase the variability of the error, and the best error. The top row of numbers
gives the number of non-zero components in β̂. Notice how as λ increases, this
number falls (there are 15 explanatory variables, so the largest model would have 15
variables). The penalty ensures that explanatory variables with small coefficients
are dropped as λ gets bigger.

Worked example 10.3 Building an L1 regularized regression

Fit a linear regression to the bodyfat dataset, predicting weight as a function of
all variables, and using the lasso to regularize. How good are the predictions?
Do outliers affect the predictions?

Solution: I used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
∼hastie/glmnet/glmnet alpha.html. You can see from Figure 10.7 that (a) for
the case of outliers removed, the predictions are very good and (b) the outliers
create problems. Note the magnitude of the error, and the low variance, for
good cross validated choices. The main point of this example is to give you a
start on producing R code, and I have put a code snippet in example 10.1.

Another way to understand the models is to look at how β̂ changes as λ
changes. We expect that, as λ gets smaller, more and more coefficients become
non-zero. Figure 10.5 shows plots of coefficient values as a function of logλ for a

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html

Section 10.4 L1 Regularization and Sparse Models 246

Listing 10.1: R code used for the lasso regression example of worked example 10.4

setwd (’/us e r s/daf/Current/ cou r s e s/Probcourse/Regres s i on/RCode/HeightWeight ’) ;
l ibrary (gdata)
bfd<−read . x l s (’BodyFat . x l s ’)
l ibrary (glmnet)
xmat<−as .matrix (bfd [,−c (1 , 5 , 1 8)])
ymat<−as .matrix (bfd [, 5])
keeping in the o u t l i e r s

dmodel<−cv . glmnet (xmat , ymat , alpha=0)
plot (dmodel)
wi thout o u t l i e r s

cbfd<−bfd[−c (216 , 39 , 41 , 42 , 221 , 163) ,]
xmat<−as .matrix (cbfd [,−c (1 , 5 , 1 8)])
ymat<−as .matrix (cbfd [, 5])
model<−cv . glmnet (xmat , ymat , alpha=0)
plot (model)

regression of weight against all variables for the bodyfat dataset, penalised using
the L1 norm. For different values of λ, one gets different solutions for β̂. When
λ is very large, the penalty dominates, and so the norm of β̂ must be small. In
turn, most components of β̂ are zero. As λ gets smaller, the norm of β̂ falls and
some components of become non-zero. At first glance, the variable whose coefficient
grows very large seems important. Look more carefully; this is the last component
introduced into the model. But Figure 10.4 implies that the right model has 7
components. This means that the right model has logλ ≈ 1.3, the vertical line
shown in the detailed figure. In the best model, that coefficient is in fact zero.

The L1 norm can sometimes produce an impressively small model from a
large number of variables. In the UC Irvine Machine Learning repository, there is
a dataset to do with the geographical origin of music (https://archive.ics.uci.edu/
ml/datasets/Geographical+Original+of+Music). The dataset was prepared by Fang
Zhou, and donors were Fang Zhou, Claire Q, and Ross D. King. Further details
appear on that webpage, and in the paper: “Predicting the Geographical Origin
of Music” by Fang Zhou, Claire Q and Ross. D. King, which appeared at ICDM
in 2014. There are two versions of the dataset. One has 116 explanatory variables
(which are various features representing music), and 2 independent variables (the
latitude and longitude of the location where the music was collected). Figure 10.6
shows the results of a regression of latitude against the independent variables using
L1 regularization. Notice that the model that achieves the lowest cross-validated
prediction error uses only 38 of the 116 variables.

Regularizing a regression with the L1 norm is sometimes known as a lasso. A
nuisance feature of the lasso is that, if several explanatory variables are correlated,
it will tend to choose one for the model and omit the others (example in exercises).
This can lead to models that have worse predictive error than models chosen using
the L2 penalty. One nice feature of good minimization algorithms for the lasso is

https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music

Section 10.4 L1 Regularization and Sparse Models 247

−3 −2 −1 0 1 2 3

0
10

20
30

40

Log Lambda

C
oe

ffi
ci

en
ts

14 14 13 11 9 5 2

−2 −1 0 1 2 3 4

0
2

4
6

8
10

Log Lambda

C
oe

ffi
ci

en
ts

14 13 11 9 5 2 0

FIGURE 10.5: Plots of coefficient values as a function of logλ for a regression of
weight against all variables for the bodyfat dataset, penalised using the L1 norm. In
each case, the six outliers identified in Figure 287 were removed. On the left, the
plot of the whole path for each coefficient (each curve is one coefficient). On the
right, a detailed version of the plot. The vertical line shows the value of logλ the
produces the model with smallest cross-validated error (look at Figure 10.4). Notice
that the variable that appears to be important, because it would have a large weight
with λ = 0, does not appear in this model.

that it is easy to use both an L1 penalty and an L2 penalty together. One can form

(

1

N

)

(

∑

i

(yi − xT
i β)

2

)

+ λ

(

(1− α)

2
||β ||22 + α||β ||1

)

Error + Regularizer

where one usually chooses 0 ≤ α ≤ 1 by hand. Doing so can both discourage large
values in β and encourage zeros. Penalizing a regression with a mixed norm like this
is sometimes known as elastic net. It can be shown that regressions penalized with
elastic net tend to produce models with many zero coefficients, while not omitting
correlated explanatory variables. All the computation can be done by the glmnet

package in R (see exercises for details).

Section 10.4 L1 Regularization and Sparse Models 248

−6 −4 −2 0 2

28
0

30
0

32
0

34
0

36
0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

88 88 88 85 83 76 74 72 61 48 28 20 15 13 6 3 0

−6 −4 −2 0 2

−
10

−
5

0
5

10

Log Lambda

C
oe

ffi
ci

en
ts

88 77 57 15 0

FIGURE 10.6: Mean-squared error as a function of log regularization param-
eter (i.e. logλ) for a regression of latitude against features describing mu-
sic (details in text), using the dataset at https://archive.ics.uci.edu/ml/datasets/
Geographical+Original+of+Music and penalized with the L1 norm. The plot on the
left shows mean-squared error averaged over cross-validation folds with a vertical
one standard deviation bar. The top row of numbers gives the number of non-zero
components in β̂. Notice how as λ increases, this number falls. The penalty ensures
that explanatory variables with small coefficients are dropped as λ gets bigger. On
the right, a plot of the coefficient values as a function of logλ for the same regres-
sion. The vertical line shows the value of logλ the produces the model with smallest
cross-validated error. Only 38 of 116 explanatory variables are used by this model.

Worked example 10.4 Building an elastic net regression

Fit a linear regression to the bodyfat dataset, predicting weight as a function
of all variables, and using the elastic net to regularize. How good are the
predictions? Do outliers affect the predictions?

Solution: I used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
∼hastie/glmnet/glmnet alpha.html. The package will do ridge, lasso and elastic
net regressions. One adjusts a parameter in the function call, α, that balances
the terms; α = 0 is ridge and α = 1 is lasso. You can see from Figure 10.7
that (a) for the case of outliers removed, the predictions are very good and
(b) the outliers create problems. Note the magnitude of the error, and the low
variance, for good cross validated choices. The main point of this example is
to give you a start on producing R code, and I have put a code snippet in
example 10.2.

https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html

Section 10.4 L1 Regularization and Sparse Models 249

−2 −1 0 1 2 3

0
20

0
40

0
60

0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

10 10 10 9 9 9 9 6 4 2 1

alpha=1

−3 −2 −1 0 1 2 3 4

0
20

0
40

0
60

0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

13 14 13 12 12 12 10 8 6

alpha=.5

2 4 6 8 10

0
20

0
40

0
60

0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

15 15 15 15 15 15 15 15 15

alpha=0

−2 −1 0 1 2 3

0
20

0
40

0
60

0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

alpha=1
alpha=.5
alpha=0

−3 −2 −1 0 1 2 3

0
20

0
40

0
60

0
80

0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

14 14 13 13 11 9 7 5 4 1

alpha=1

−2 −1 0 1 2 3 4

0
20

0
40

0
60

0
80

0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

14 14 13 13 11 11 9 8 7

alpha=.5

2 4 6 8 10

0
20

0
40

0
60

0
80

0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

15 15 15 15 15 15 15 15 15

alpha=0

−3 −2 −1 0 1 2 3

20
0

40
0

60
0

80
0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

alpha=1
alpha=.5
alpha=0

FIGURE 10.7: Plots of mean-squared error as a function of log regularization pa-
rameter (i.e. logλ) for a regression of weight against all variables for the bodyfat
dataset using an elastic net regularizer for various choices of α. The case α = 1
corresponds to a lasso; α = 0 corresponds to a ridge; and α = 0.5 is one possible
choice yielding an elastic net. These plots show mean-squared error averaged over
cross-validation folds with a vertical one standard deviation bar. On the left, the
plot for the dataset with the six outliers identified in Figure 287 removed. On the
right, the plot for the whole dataset. Notice how the outliers increase the vari-
ability of the error, and the best error. The top row of numbers gives the number
of non-zero components in β̂. Notice how as λ increases, this number falls (there
are 15 explanatory variables, so the largest model would have 15 variables). The
penalty ensures that explanatory variables with small coefficients are dropped as λ
gets bigger.

10.4.2 Wide Datasets

Now imagine we have more independent variables than examples (this is some-
times referred to as a “wide” dataset). This occurs quite often for a wide range
of datasets; it’s particularly common for biological datasets and natural language
datasets. Unregularized linear regression must fail, because X TX must be rank
deficient. Using an L2 (ridge) regularizer will produce an answer that should seem
untrustworthy. The estimate of β is constrained by the data in some directions,
but in other directions it is constrained only by the regularizer.

An estimate produced by L1 (lasso) regularization should look more reliable to
you. Zeros in the estimate of β mean that the corresponding independent variables
are ignored. Now if there are many zeros in the estimate of β, the model is being
fit with a small subset of the independent variables. If this subset is small enough,
then the number of independent variables that are actually being used is smaller
than the number of examples. If the model gives low enough error, it should seem
trustworthy in this case. There are some hard questions to face here (eg does the
model choose the “right” set of variables?) that we can’t deal with.

Section 10.4 L1 Regularization and Sparse Models 250

Listing 10.2: R code used for the elastic net regression example of worked example
10.4

setwd (’/us e r s/daf/Current/ cou r s e s/Probcourse/Regres s i on/RCode/HeightWeight ’) ;
l ibrary (gdata)
bfd<−read . x l s (’BodyFat . x l s ’)
l ibrary (glmnet)
l ibrary (p l s)
x<−as .matrix (bfd [,−c (1 , 5 , 1 8)])
y<−as .matrix (bfd [, 5])
f o l d i d=sample (1 : 10 , s i z e=length (y) , replace=TRUE)
cv1=cv . glmnet (x , y , f o l d i d=f o l d i d , alpha=1)
cv .5=cv . glmnet (x , y , f o l d i d=f o l d i d , alpha =.5)
cv0=cv . glmnet (x , y , f o l d i d=f o l d i d , alpha=0)
par (mfrow=c (2 , 2))
plot (cv1) ;
legend (” top ” , legend=”alpha=1”)
plot (cv . 5)
legend (” top ” , legend=”alpha=.5”) ;
plot (cv0)
legend (” top ” , legend=”alpha=0”)
plot (log (cv1$lambda) , cv1$cvm , pch=19, col=”red ” ,

xlab=” log (Lambda) ” , y lab=cv1$name)
points (log (cv . 5$lambda) , cv . 5$cvm , pch=19, col=”grey”)
points (log (cv0$lambda) , cv0$cvm , pch=19, col=”blue ”)
legend (” t o p l e f t ” ,

legend=c (” alpha=1” , ” alpha=.5” , ” alpha=0”) ,
pch=19, col=c (” red ” , ” grey” , ” blue ”))

Section 10.4 L1 Regularization and Sparse Models 251

−4 −3 −2 −1 0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

14 10 10 8 7 4 4 3 2 1 1

alpha=1

−3 −2 −1 0 1

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

29 27 26 25 17 14 13 7 7

alpha=.5

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

55 54 51 42 37 33 24 13 9

alpha=0

−4 −3 −2 −1 0

0.
0

0.
5

1.
0

1.
5

2.
0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

alpha=1
alpha=.5
alpha=.1

3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

401 401 401 401 401 401 401 401 401 401 401 401 401

alpha=0 (ridge)

FIGURE 10.8: On the left, a comparison between three values of α in a glmnet

regression predicting octane from NIR spectra (see Example 10.5). The plots show
cross-validated error against log regularization coefficient for α = 1 (lasso) and two
elastic-net cases, α = 0.5 and α = 0.1. I have plotted these curves separately,
with error bars, and on top of each other but without error bars. The values at the
top of each separate plot show the number of independent variables with non-zero
coefficients in the best model with that regularization parameter. On the right, a
ridge regression for comparison. Notice that the error is considerably larger, even
at the best value of the regularization parameter.

Worked example 10.5 L1 regularized regression for a “wide” dataset

The gasoline dataset has 60 examples of near infrared spectra for gasoline of
different octane ratings. The dataset is due to John H. Kalivas, and was origi-
nally described in the article “Two Data Sets of Near Infrared Spectra”, in the
journal Chemometrics and Intelligent Laboratory Systems, vol. 37, pp. 255259,
1997. Each example has measurements at 401 wavelengths. I found this dataset
in the R library pls. Fit a regression of octane against infrared spectrum using
L1 regularized logistic regression.

Solution: I used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
∼hastie/glmnet/glmnet alpha.html. The package will do ridge, lasso and elastic
net regressions. One adjusts a parameter in the function call, α, that balances
the terms; α = 0 is ridge and α = 1 is lasso. Not surprisingly, the ridge isn’t
great. I tried α = 0.1, α = 0.5 and α = 1. Results in Figure 10.8 suggest fairly
strongly that very good predictions should be available with the lasso using
quite a small regularization constant; there’s no reason to believe that the best
ridge models are better than the best elastic net models, or vice versa. The
models are very sparse (look at the number of variables with non-zero weights,
plotted on the top).

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html

Section 10.4 L1 Regularization and Sparse Models 252

−10 −8 −6 −4 −2

1
2

3
4

log(Lambda)

M
ul

tin
om

ia
l D

ev
ia

nc
e

136 127 120 107 96 83 76 62 53 42 32 25 16 8 0 0

−10 −8 −6 −4 −2

1
2

3
4

log(Lambda)

M
ul

tin
om

ia
l D

ev
ia

nc
e

177 167 152 133 118 100 85 78 64 53 45 30 21 1 0

FIGURE 10.9: Multiclass logistic regression on the MNIST data set, using a lasso
and elastic net regularizers. On the left, deviance of held out data on the digit data
set (worked example 10.6), for different values of the log regularization parameter
in the lasso case. On the right, deviance of held out data on the digit data set
(worked example 10.6), for different values of the log regularization parameter in
the elastic net case, α = 0.5.

10.4.3 Using Sparsity Penalties with Other Models

A really nice feature of using an L1 penalty to enforce sparsity in a model is that
it applies to a very wide range of models. For example, we can obtain a sparse
SVM by replacing the L2 regularizer with an L1 regularizer. Most SVM packages
will do this for you, although I’m not aware of any compelling evidence that this
produces an improvement in most cases. All of the generalized linear models I
described can be regularized with an L1 regularizer. For these cases, glmnet will
do the computation required. The worked example shows using a multinomial (i.e.
multiclass) logistic regression with an L1 regularizer.

Section 10.4 L1 Regularization and Sparse Models 253

Worked example 10.6 Multiclass logistic regression with an L1 regularizer

The MNIST dataset consists of a collection of handwritten digits, which must
be classified into 10 classes (0, . . . 9). There is a standard train/test split. This
dataset is often called the zip code dataset because the digits come from zip
codes, and has been quite widely studied. Yann LeCun keeps a record of the per-
formance of different methods on this dataset at http://yann.lecun.com/exdb/
mnist/. Obtain the Zip code dataset from http://statweb.stanford.edu/∼tibs/
ElemStatLearn/, and use a multiclass logistic regression with an L1 regularizer
to classifiy it.

Solution: The dataset is rather large, and on my computer the fitting process
takes a little time. Figure 10.9 shows what happens with the lasso, and with
elasticnet with α = 0.5 on the training set, using glmnet to predict and cross
validation to select λ values. For the lasso, I found an error rate on the held
out data of 8.5%, which is OK, but not great compared to other methods. For
elastic net, I found a slightly better error rate (8.2%); I believe even lower error
rates are possible with these codes.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/

Section 10.5 You should 254

Listing 10.3: R code used for the digit example of worked example 10.6

setwd (’/us e r s/daf/Current/ cou r s e s/Probcourse/Regres s i on/RCode/Dig i t s ’) ;
l ibrary (glmnet)
digdat<−read . table (’ z i p . t r a i n ’ , sep=’ ’ , header=FALSE)
y<−as . factor (digdat$V1)
x<−as .matrix (digdat [,−c (1 , 2 5 8)])
mod<−cv . glmnet (x , y , family=”mult inomial ” , alpha=1)
plot (mod)
ok now we need to pr ed i c t

d i g t e s t<−read . table (’ z i p . t e s t ’ , sep=’ ’ , header=FALSE)
y t e s t<−as . factor (d i g t e s t $V1)
x t e s t<−as .matrix (d i g t e s t [,−c (1 , 2 5 8)])
lmpredn<−predict (mod, xtes t , type=’ c l a s s ’ , s=’ lambda . min ’)
l1predn<−predict (mod, xtes t , type=’ c l a s s ’ , s=’ lambda . 1 se ’)
nmright<−sum(y t e s t==lmpredn)
err ratem<−(1−nmright/dim(lmpredn))
n1r i ght<−sum(y t e s t==lmpredn)
e r r r a t e 1<−(1−n1r i ght/dim(lmpredn))
mod . 5<−cv . glmnet (x , y , family=”mult inomial ” , alpha =0.5)
plot (mod . 5)
ok now we need to pr ed i c t

d i g t e s t<−read . table (’ z i p . t e s t ’ , sep=’ ’ , header=FALSE)
y t e s t<−as . factor (d i g t e s t $V1)
x t e s t<−as .matrix (d i g t e s t [,−c (1 , 2 5 8)])
lmpredn . 5<−predict (mod . 5 , xtes t , type=’ c l a s s ’ , s= ’ lambda . min ’)
l1predn . 5<−predict (mod . 5 , xtes t , type=’ c l a s s ’ , s= ’ lambda . 1 se ’)
nmright . 5<−sum(y t e s t==lmpredn . 5)
er r ratem . 5<−(1−nmright . 5/dim(lmpredn . 5))
n1r i ght . 5<−sum(y t e s t==lmpredn . 5)
e r r r a t e 1 . 5<−(1−n1r i ght . 5/dim(lmpredn . 5))

10.5 YOU SHOULD

10.5.1 remember these definitions:

Bernoulli random variable . 240
Poisson distribution . 242

10.5.2 remember these terms:

irreducible error . 229
bias . 229
variance . 229
AIC . 231
BIC . 232
forward stagewise regression . 234
Backward stagewise regression . 234
robust regression . 236
Huber loss . 236
scale . 236
inlier . 236
iteratively reweighted least squares 238

Section 10.5 You should 255

MAD . 239
median absolute deviation . 239
Huber’s proposal 2 . 239
link function . 239
logit function . 240
logistic regression . 240
intensity . 242
deviance . 242
sparse models . 243
error cost . 243
L2 regularized error . 243
lasso . 246
elastic net . 247

10.5.3 remember these facts:

10.5.4 remember these procedures:

P A R T F I V E

GRAPHICAL MODELS

256

C H A P T E R 11

Markov Chains

There are many situations where one must work with sequences. Here is a
simple, and classical, example. We see a sequence of words, but the last word
is missing. I will use the sequence “I had a glass of red wine with my grilled
xxxx”. What is the best guess for the missing word? You could obtain one possible
answer by counting word frequencies, then replacing the missing word with the
most common word. This is “the”, which is not a particularly good guess because
it doesn’t fit with the previous word. Instead, you could find the most common pair
of words matching “grilled xxxx”, and then choose the second word. If you do this
experiment (I used Google Ngram viewer, and searched for “grilled *”), you will
find mostly quite sensible suggestions (I got “meats”, “meat”, “fish”, “chicken”,
in that order). If you want to produce random sequences of words, the next word
should depend on some of the words you have already produced.

11.1 MARKOV CHAINS

A sequence of random variables Xn is a Markov chain if it has the property that,

P (Xn = j|values of all previous states) = P (Xn = j|Xn−1),

or, equivalently, only the last state matters in determining the probability of the
current state. The probabilities P (Xn = j|Xn−1 = i) are the transition prob-

abilities. We will always deal with discrete random variables here, and we will
assume that there is a finite number of states. For all our Markov chains, we will
assume that

P (Xn = j|Xn−1 = i) = P (Xn−1 = j|Xn−2 = i).

Formally, we focus on discrete time, time homogenous Markov chains in a finite
state space. With enough technical machinery one can construct many other kinds
of Markov chain.

One natural way to build Markov chains is to take a finite directed graph and
label each directed edge from node i to node j with a probability. We interpret
these probabilities as P (Xn = j|Xn−1 = i) (so the sum of probabilities over outgoing
edges at any node must be 1). The Markov chain is then a biased random walk

on this graph. A bug (or any other small object you prefer) sits on one of the graph’s
nodes. At each time step, the bug chooses one of the outgoing edges at random.
The probability of choosing an edge is given by the probabilities on the drawing
of the graph (equivalently, the transition probabilities). The bug then follows that
edge. The bug keeps doing this until it hits an end state.

257

Section 11.1 Markov Chains 258

WD D

D WD

Home Office
Me

Home

Office

Umbrella

FIGURE 11.1: A directed graph representing the umbrella example. Notice you can’t
arrive at the office wet with the umbrella at home (you’d have taken it), and so on.
Labelling the edges with probabilities is left to the reader.

Worked example 11.1 Umbrellas

I own one umbrella, and I walk from home to the office each morning, and back
each evening. If it is raining (which occurs with probability p, and my umbrella
is with me), I take it; if it is not raining, I leave the umbrella where it is. We
exclude the possibility that it starts raining while I walk. Where I am, and
whether I am wet or dry, forms a Markov chain. Draw a state machine for this
Markov chain.

Solution: Figure 11.1 gives this chain. A more interesting question is with
what probability I arrive at my destination wet? Again, we will solve this with
simulation.

Section 11.1 Markov Chains 259

2 1j-1
W

L L L L

W W W

...

FIGURE 11.2: A directed graph representing the gambler’s ruin example. I have
labelled each state with the amount of money the gambler has at that state. There
are two end states, where the gambler has zero (is ruined), or has j and decides
to leave the table. The problem we discuss is to compute the probability of being
ruined, given the start state is s. This means that any state except the end states
could be a start state. I have labelled the state transitions with “W” (for win) and
“L” for lose, but have omitted the probabilities.

Worked example 11.2 The gambler’s ruin

Assume you bet 1 a tossed coin will come up heads. If you win, you get 1 and
your original stake back. If you lose, you lose your stake. But this coin has
the property that P (H) = p < 1/2. You have s when you start. You will keep
betting until either (a) you have 0 (you are ruined; you can’t borrow money)
or (b) the amount of money you have accumulated is j, where j > s. The coin
tosses are independent. The amount of money you have is a Markov chain.
Draw the underlying state machine. Write P (ruined, starting with s|p) = ps.
It is straightforward that p0 = 1, pj = 0. Show that

ps = pps+1 + (1− p)ps−1.

Solution: Figure 11.2 illustrates this example. The recurrence relation follows
because the coin tosses are independent. If you win the first bet, you have s+1
and if you lose, you have s− 1.

Notice an important difference between examples 11.1 and 11.2. For the
gambler’s ruin, the sequence of random variables can end (and your intuition likely
tells you it should do so reliably). We say the Markov chain has an absorbing

state – a state that it can never leave. In the example of the umbrella, there is
an infinite sequence of random variables, each depending on the last. Each state of
this chain is recurrent – it will be seen repeatedly in this infinite sequence. One
way to have a state that is not recurrent is to have a state with outgoing but no
incoming edges.

The gambler’s ruin example illustrates some points that are quite character-
istic of Markov chains. You can often write recurrence relations for the probability
of various events. Sometimes you can solve them in closed form, though we will
not pursue this thought further. It is often very helpful to think creatively about
what the random variable is (example 11.3).

Section 11.1 Markov Chains 260

HH

HT

TH

TT

T

H

FIGURE 11.3: A directed graph representing the coin flip example, using the pairs
of random variables described in worked example 11.3. A sequence “HTHTHH”
(where the last two H’s are the last two flips) would be generated by transitioning to
H, then to HT, then to TH, then to HT, then to TH, then to HH. By convention,
the end state is a double circle. Each edge has probability 1/2.

Worked example 11.3 Multiple Coin Flips

You choose to flip a fair coin until you see two heads in a row, and then stop.
Represent the resulting sequence of coin flips with a Markov chain. What is
the probability that you flip the coin four times?

Solution: You could think of the chain as being a sequence of independent
coin flips. This is a Markov chain, but it isn’t very interesting, and it doesn’t
get us anywhere. A better way to think about this problem is to have the
X ’s be pairs of coin flips. The rule for changing state is that you flip a coin,
then append the result to the state and drop the first item. Then you need
a special state for stopping, and some machinery to get started. Figure 11.3
shows a drawing of the directed graph that represents the chain. The last
three flips must have been THH (otherwise you’d go on too long, or end too
early). But, because the second flip must be a T , the first could be either H
or T . This means there are two sequences that work: HTHH and TTHH .
So P (4 flips) = 2/16 = 1/8. We might want to answer significantly more
interesting questions. For example, what is the probability that we must flip
the coin more than 10 times? It is often possible to answer these questions by
analysis, but we will use simulations.

Section 11.1 Markov Chains 261

21 3

p

q

p p

q

q q

q

q

FIGURE 11.4: A virus can exist in one of 3 strains. At the end of each year, the
virus mutates. With probability α, it chooses uniformly and at random from one of
the 2 other strains, and turns into that; with probability 1−α, it stays in the strain
it is in. For this figure, we have transition probabilities p = (1−α) and q = (α/2).

Useful Facts: 11.1 Markov chains

A Markov chain is a sequence of random variables Xn with the property
that,

P (Xn = j|values of all previous states) = P (Xn = j|Xn−1).

11.1.1 Transition Probability Matrices

Define the matrix P with pij = P (Xn = j|Xn−1 = i). Notice that this matrix has
the properties that pij ≥ 0 and

∑

j

pij = 1

because at the end of each time step the model must be in some state. Equivalently,
the sum of transition probabilities for outgoing arrows is one. Non-negative matrices
with this property are stochastic matrices. By the way, you should look very
carefully at the i’s and j’s here — Markov chains are usually written in terms of
row vectors, and this choice makes sense in that context.

Section 11.1 Markov Chains 262

Worked example 11.4 Viruses

Write out the transition probability matrix for the virus of Figure 11.4, assum-
ing that α = 0.2.

Solution: We have P (Xn = 1|Xn−1 = 1) = (1 − α) = 0.8, and P (Xn =
2|Xn−1 = 1) = α/2 = P (Xn = 3|Xn−1 = 1); so we get





0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8





Now imagine we do not know the initial state of the chain, but instead have
a probability distribution. This gives P (X0 = i) for each state i. It is usual to take
these k probabilities and place them in a k-dimensional row vector, which is usually
written π. From this information, we can compute the probability distribution over
the states at time 1 by

P (X1 = j) =
∑

i

P (X1 = j,X0 = i)

=
∑

i

P (X1 = j|X0 = i)P (X0 = i)

=
∑

i

pijπi.

If we write p(n) for the row vector representing the probability distribution of the
state at step n, we can write this expression as

p(1) = πP .

Now notice that

P (X2 = j) =
∑

i

P (X2 = j,X1 = i)

=
∑

i

P (X2 = j|X1 = i)P (X1 = i)

=
∑

i

pij

(

∑

ki

pkiπk

)

.

so that
p(n) = πPn.

This expression is useful for simulation, and also allows us to deduce a variety of
interesting properties of Markov chains.

Section 11.1 Markov Chains 263

Useful Facts: 11.2 Transition probability matrices

A finite state Markov chain can be represented with a matrix P of tran-
sition probabilities, where the i, j’th element pij = P (Xn = j|Xn−1 =
i). This matrix is a stochastic matrix. If the probability distribution of
state Xn−1 is represented by πn−1, then the probability distribution of
state Xn is given by πT

n−1P .

11.1.2 Stationary Distributions

Worked example 11.5 Viruses

We know that the virus of Figure 11.4 started in strain 1. After two state
transitions, what is the distribution of states when α = 0.2? when α = 0.9?
What happens after 20 state transitions? If the virus starts in strain 2, what
happens after 20 state transitions?

Solution: If the virus started in strain 1, then π = [1, 0, 0]. We must
compute π(P(α))2. This yields [0.66, 0.17, 0.17] for the case α = 0.2 and
[0.4150, 0.2925, 0.2925] for the case α = 0.9. Notice that, because the virus
with small α tends to stay in whatever state it is in, the distribution of states
after two years is still quite peaked; when α is large, the distribution of states is
quite uniform. After 20 transitions, we have [0.3339, 0.3331, 0.3331] for the case
α = 0.2 and [0.3333, 0.3333, 0.3333] for the case α = 0.9; you will get similar
numbers even if the virus starts in strain 2. After 20 transitions, the virus has
largely “forgotten” what the initial state was.

In example 11.5, the distribution of virus strains after a long interval appears
not to depend much on the initial strain. This property is true of many Markov
chains. Assume that our chain has a finite number of states. Assume that any
state can be reached from any other state, by some sequence of transitions. Such
chains are called irreducible. Notice this means there is no absorbing state, and
the chain cannot get “stuck” in a state or a collection of states. Then there is a
unique vector s, usually referred to as the stationary distribution, such that for
any initial state distribution π,

lim
n → ∞ πP(n) = s.

Equivalently, if the chain has run through many steps, it no longer matters what
the initial distribution is. The probability distribution over states will be s.

Section 11.1 Markov Chains 264

The stationary distribution can often be found using the following property.
Assume the distribution over states is s, and the chain goes through one step. Then
the new distribution over states must be s too. This means that

sP = s

so that s is an eigenvector of PT , with eigenvalue 1. It turns out that, for an
irreducible chain, there is exactly one such eigenvector.

The stationary distribution is a useful idea in applications. It allows us to
answer quite natural questions, without conditioning on the initial state of the
chain. For example, in the umbrella case, we might wish to know the probability
I arrive home wet. This could depend on where the chain starts (example 11.6).
If you look at the figure, the Markov chain is irreducible, so there is a stationary
distribution and (as long as I’ve been going back and forth long enough for the
chain to “forget” where it started), the probability it is in a particular state doesn’t
depend on where it started. So the most sensible interpretation of this probability
is the probability of a particular state in the stationary distribution.

Worked example 11.6 Umbrellas, but without a stationary distribution

This is a different version of the umbrella problem, but with a crucial difference.
When I move to town, I decide randomly to buy an umbrella with probability
0.5. I then go from office to home and back. If I have bought an umbrella, I
behave as in example 11.1. If I have not, I just get wet. Illustrate this Markov
chain with a state diagram.

Solution: Figure 11.5 does this. Notice this chain isn’t irreducible. The state
of the chain in the far future depends on where it started (i.e. did I buy an
umbrella or not).

Useful Facts: 11.3 Many Markov chains have stationary distributions

If a Markov chain has a finite set of states, and if it is possible to get
from any state to any other state, then the chain will have a stationary
distribution. A sample state of the chain taken after it has been running
for a long time will be a sample from that stationary distribution. Once
the chain has run for long enough, it will visit states with a frequency
corresponding to that stationary distribution, though it may take many
state transitions to move from state to state.

Section 11.1 Markov Chains 265

WD D

D WD

Home Office
Me

Home

Office

Umbrella

WDWD

FIGURE 11.5: In this umbrella example, there can’t be a stationary distribution; what
happens depends on the initial, random choice of buying/not buying an umbrella.

11.1.3 Example: Markov Chain Models of Text

Imagine we wish to model English text. The very simplest model would be to
estimate individual letter frequencies (most likely, by counting letters in a large
body of example text). We might count spaces and punctuation marks as letters.
We regard the frequencies as probabilities, then model a sequence by repeatedly
drawing a letter from that probability model. You could even punctuate with this
model by regarding punctuation signs as letters, too. We expect this model will
produce sequences that are poor models of English text – there will be very long
strings of ’a’s, for example. This is clearly a (rather dull) Markov chain. It is
sometimes referred to as a 0-th order chain or a 0-th order model, because each
letter depends on the 0 letters behind it.

A slightly more sophisticated model would be to work with pairs of letters.
Again, we would estimate the frequency of pairs by counting letter pairs in a body
of text. We could then draw a first letter from the letter frequency table. Assume
this is an ’a’. We would then draw the second letter by drawing a sample from
the conditional probability of encountering each letter after ’a’, which we could
compute from the table of pair frequencies. Assume this is an ’n’. We get the third
letter by drawing a sample from the conditional probability of encountering each
letter after ’n’, which we could compute from the table of pair frequencies, and so
on. This is a first order chain (because each letter depends on the one letter behind
it).

Second and higher order chains (or models) follow the general recipe, but
the probability of a letter depends on more of the letters behind it. You may be
concerned that conditioning a letter on the two (or k) previous letters means we
don’t have a Markov chain, because I said that the n’th state depends on only the
n− 1’th state. The cure for this concern is to use states that represent two (or k)
letters, and adjust transition probabilities so that the states are consistent. So for

Section 11.1 Markov Chains 266

a second order chain, the string “abcde” is a sequence of four states, “ab”, “bc”,
“cd”, and “de”.

Worked example 11.7 Modelling short words

Obtain a text resource, and use a trigram letter model to produce four letter
words. What fraction of bigrams (resp. trigrams) do not occur in this resource?
What fraction of the words you produce are actual words?

Solution: I used the text of a draft of this chapter. I ignored punctuation
marks, and forced capital letters to lower case letters. I found 0.44 of the
bigrams and 0.90 of the trigrams were not present. I built two models. In one,
I just used counts to form the probability distributions (so there were many
zero probabilities). In the other, I split a probability of 0.1 between all the
cases that had not been observed. A list of 20 word samples from the first
model is: “ngen”, “ingu”, “erms”, “isso”, “also”, “plef”, “trit”, “issi”, “stio”,
“esti”, “coll”, “tsma”, “arko”, “llso”, “bles”, “uati”, “namp”, “call”, “riat”,
“eplu”; two of these are real English words (three if you count “coll”, which I
don’t; too obscure), so perhaps 10% of the samples are real words. A list of 20
word samples from the second model is: “hate”, “ther”, “sout”, “vect”, “nces”,
“ffer”, “msua”, “ergu”, “blef”, “hest”, “assu”, “fhsp”, “ults”, “lend”, ”lsoc”,
“fysj”, “uscr”, “ithi”, “prow”, “lith”; four of these are real English words (you
might need to look up “lith”, but I refuse to count “hest” as being too archaic),
so perhaps 20% of the samples are real words. In each case, the samples are
too small to take the fraction estimates all that seriously.

Letter models can be good enough for (say) evaluating communication devices,
but they’re not great at producing words (example 11.7). More effective language
models are obtained by working with words. The recipe is as above, but now we
use words in place of letters. It turns out that this recipe applies to such domains
as protein sequencing, dna sequencing and music synthesis as well, but now we use
amino acids (resp. base pairs; notes) in place of letters. Generally, one decides what
the basic item is (letter, word, amino acid, base pair, note, etc.). Then individual
items are called unigrams and 0’th order models are unigram models; pairs are
bigrams and first order models are bigram models; triples are trigrams, second
order models trigram models; and for any other n, groups of n in sequence are
n-grams and n− 1’th order models are n-gram models.

Section 11.1 Markov Chains 267

Worked example 11.8 Modelling text with n-grams of words

Build a text model that uses bigrams (resp. trigrams, resp. n-grams) of words,
and look at the paragraphs that your model produces.

Solution: This is actually a fairly arduous assignment, because it is hard
to get good bigram frequencies without working with enormous text re-
sources. Google publishes n-gram models for English words with the year
in which the n-gram occurred and information about how many differ-
ent books it occurred in. So, for example, the word “circumvallate” ap-
peared 335 times in 1978, in 91 distinct books – some books clearly felt
the need to use this term more than once. This information can be found
starting at http://storage.googleapis.com/books/ngrams/books/datasetsv2.html.
The raw dataset is huge, as you would expect. There are numerous n-
gram language models on the web. Jeff Attwood has a brief discus-
sion of some models at https://blog.codinghorror.com/markov-and-you/; So-
phie Chou has some examples, and pointers to code snippets and text
resources, at http://blog.sophiechou.com/2013/how-to-model-markov-chains/.
Fletcher Heisler, Michael Herman, and Jeremy Johnson are authors of
RealPython, a training course in Python, and give a nice worked ex-
ample of a Markov chain language generator at https://realpython.com/
blog/python/lyricize-a-flask-app-to-create-lyrics-using-markov-chains/. Markov
chain language models are effective tools for satire. Garkov is Josh
Millard’s tool for generating comics featuring a well-known cat (at
http://joshmillard.com/garkov/). There’s a nice Markov chain for review-
ing wines by Tony Fischetti at http://www.onthelambda.com/2014/02/20/
how-to-fake-a-sophisticated-knowledge-of-wine-with-markov-chains/

It is usually straightforward to build a unigram model, because it is usually
easy to get enough data to estimate the frequencies of the unigrams. There are
many more bigrams than unigrams, many more trigrams than bigrams, and so on.
This means that estimating frequencies can get tricky. In particular, you might
need to collect an immense amount of data to see every possible n-gram several
times. Without seeing every possible n-gram several times, you will need to deal
with estimating the probability of encountering rare n-grams that you haven’t seen.
Assigning these n-grams a probability of zero is unwise, because that implies that
they never occur, as opposed to occur seldom.

There are a variety of schemes for smoothing data (essentially, estimating
the probability of rare items that have not been seen). The simplest one is to
assign some very small fixed probability to every n-gram that has a zero count.
It turns out that this is not a particularly good approach, because, for even quite
small n, the fraction of n-grams that have zero count can be very large. In turn,
you can find that most of the probability in your model is assigned to n-grams you
have never seen. An improved version of this model assigns a fixed probability to
unseen n-grams, then divides that probability up between all of the n-grams that

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://blog.codinghorror.com/markov-and-you/
http://blog.sophiechou.com/2013/how-to-model-markov-chains/
https://realpython.com/blog/python/lyricize-a-flask-app-to-create-lyrics-using-markov-chains/
https://realpython.com/blog/python/lyricize-a-flask-app-to-create-lyrics-using-markov-chains/
http://joshmillard.com/garkov/
http://www.onthelambda.com/2014/02/20/how-to-fake-a-sophisticated-knowledge-of-wine-with-markov-chains/
http://www.onthelambda.com/2014/02/20/how-to-fake-a-sophisticated-knowledge-of-wine-with-markov-chains/

Section 11.2 Estimating Properties of Markov Chains 268

have never been seen before. This approach has its own characteristic problems. It
ignores evidence that some of the unseen n-grams are more common than others.
Some of the unseen n-grams have (n-1) leading terms that are (n-1)-grams that
we have observed. These (n-1)-grams likely differ in frequency, suggesting that n-
grams involving them should differ in frequency, too. More sophisticated schemes
are beyond our scope, however.

11.2 ESTIMATING PROPERTIES OF MARKOV CHAINS

Many problems in probability can be worked out in closed form if one knows enough
combinatorial mathematics, or can come up with the right trick. Textbooks are
full of these, and we’ve seen some. Explicit formulas for probabilities are often
extremely useful. But it isn’t always easy or possible to find a formula for the
probability of an event in a model. Markov chains are a particularly rich source
of probability problems that might be too much trouble to solve in closed form.
An alternative strategy is to build a simulation, run it many times, and count the
fraction of outcomes where the event occurs. This is a simulation experiment.

11.2.1 Simulation

Imagine we have a random variable X with probability distribution P (X) that
takes values in some domain D. Assume that we can easily produce independent
simulations, and that we wish to know E[f], the expected value of the function f
under the distribution P (X).

The weak law of large numbers tells us how to proceed. Define a new random
variable F = f(X). This has a probability distribution P (F), which might be
difficult to know. We want to estimate E[f], the expected value of the function f
under the distribution P (X). This is the same as E[F]. Now if we have a set of
IID samples of X , which we write xi, then we can form a set of IID samples of F
by forming f(xi) = fi. Write

FN =

∑N
i=1 fi
N

.

This is a random variable, and the weak law of large numbers gives that, for any
positive number ǫ

lim
N→∞

P ({||FN − E[F]|| > ǫ}) = 0.

You can interpret this as saying that, that for a set of IID random samples xi, the
probability that

∑N
i=1 f(xi)

N

is very close to E[f] is high for large N

Section 11.2 Estimating Properties of Markov Chains 269

Worked example 11.9 Computing an Expectation

Assume the random variable X is uniformly distributed in the range [0 − 1],
and the random variable Y is uniformly distributed in the range [0 − 10]. X
and Z are independent. Write Z = (Y − 5X)3 −X2. What is var ({Z})?

Solution: With enough work, one could probably work this out in closed
form. An easy program will get a good estimate. We have that var ({Z}) =

E
[

Z2
]

−E[Z]
2
. My program computed 1000 values of Z (by drawing X and Y

from the appropriate random number generator, then evaluating the function).

I then computed E[Z] by averaging those values, and E[Z]
2
by averaging their

squares. For a run of my program, I got var ({Z}) = 2.76× 104.

You can compute a probability using a simulation, too, because a probabil-
ity can be computed by taking an expectation. Recall the property of indicator
functions that

E
[

I[E]
]

= P (E)
(Section ??). This means that computing the probability of an event E involves
writing a function that is 1 when the event occurs, and 0 otherwise; we then estimate
the expected value of that function.

Worked example 11.10 Computing a Probability for Multiple Coin Flips

You flip a fair coin three times. Use a simulation to estimate the probability
that you see three H ’s.

Solution: You really should be able to work this out in closed form. But it’s
amusing to check with a simulation. I wrote a simple program that obtained a
1000x3 table of uniformly distributed random numbers in the range [0−1]. For
each number, if it was greater than 0.5 I recorded an H and if it was smaller,
I recorded a T . Then I counted the number of rows that had 3 H ’s (i.e. the
expected value of the relevant indicator function). This yielded the estimate
0.127, which compares well to the right answer.

Section 11.2 Estimating Properties of Markov Chains 270

Worked example 11.11 Computing a Probability

Assume the random variable X is uniformly distributed in the range [0 − 1],
and the random variable Y is uniformly distributed in the range [0−10]. Write
Z = (Y − 5X)3 −X2. What is P ({Z > 3})?

Solution: With enough work, one could probably work this out in closed form.
An easy program will get a good estimate. My program computed 1000 values
of Z (by drawing X and Y from the appropriate random number generator,
then evaluating the function) and counted the fraction of Z values that was
greater than 3 (which is the relevant indicator function). For a run of my
program, I got P ({Z > 3}) ≈ 0.619

For all the examples we will deal with, producing an IID sample of the relevant
probability distribution will be straightforward. You should be aware that it can
be very hard to produce an IID sample from an arbitrary distribution, particularly
if that distribution is over a continuous variable in high dimensions.

11.2.2 Simulation Results as Random Variables

The estimate of a probability or of an expectation that comes out of a simulation
experiment is a random variable, because it is a function of random numbers. If
you run the simulation again, you’ll get a different value, unless you did something
silly with the random number generator. Generally, you should expect this ran-
dom variable to have a normal distribution. You can check this by constructing a
histogram over a large number of runs. The mean of this random variable is the
parameter you are trying to estimate. It is useful to know that this random variable
tends to be normal, because it means the standard deviation of the random variable
tells you a lot about the likely values you will observe.

Another helpful rule of thumb, which is almost always right, is that the stan-
dard deviation of this random variable behaves like

C√
N

where C is a constant that depends on the problem and can be very hard to evaluate,
and N is the number of runs of the simulation. What this means is that if you want
to (say) double the accuracy of your estimate of the probability or the expectation,
you have to run four times as many simulations. Very accurate estimates are tough
to get, because they require immense numbers of simulation runs.

Figure 11.6 shows how the result of a simulation behaves when the number of
runs changes. I used the simulation of example 11.11, and ran multiple experiments
for each of a number of different samples (i.e. 100 experiments using 10 samples;
100 using 100 samples; and so on).

Section 11.2 Estimating Properties of Markov Chains 271

10 100 1000 10000
0

0.2

0.4

0.6

0.8

1
Estimates of P(Z>3)

FIGURE 11.6: Estimates of the probability from example 11.11, obtained from dif-
ferent runs of my simulator using different numbers of samples. In each case, I
used 100 runs; the number of samples is shown on the horizontal axis. You should
notice that the estimate varies pretty widely when there are only 10 samples in each
run, but the variance (equivalently, the size of the spread) goes down sharply as the
number of samples per run increases to 1000. Because we expect these estimates to
be roughly normally distributed, the variance gives a good idea of how accurate the
original probability estimate is.

Worked example 11.12 Getting 14’s with 20-sided dice

You throw 3 fair 20-sided dice. Estimate the probability that the sum of the
faces is 14 using a simulation. Use N = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6]. Which
estimate is likely to be more accurate, and why?

Solution: You need a fairly fast computer, or this will take a long time.
I ran ten versions of each experiment for N = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6],
yielding ten probability estimates for each N . These were different for
each version of the experiment, because the simulations are random. I got
means of [0, 0.0030, 0.0096, 0.0100, 0.0096, 0.0098], and standard deviations of
[00.00670.00330.00090.00020.0001]. This suggests the true value is around
0.0098, and the estimate from N = 1e6 is best. The reason that the esti-
mate with N = 1e1 is 0 is that the probability is very small, so you don’t
usually observe this case at all in only ten trials.

Small probabilities can be rather hard to estimate, as we would expect. In
the case of example 11.11, let us estimate P ({Z > 950}). A few moments with a
computer will show that this probability is of the order of 1e-3 to 1e-4. I obtained
a million different simulated values of Z from my program, and saw 310 where
Z > 950. This means that to know this probability to, say, three digits of numerical
accuracy might involve a daunting number of samples. Notice that this does not
contradict the rule of thumb that the standard deviation of the random variable

Section 11.2 Estimating Properties of Markov Chains 272

defined by a simulation estimate behaves like C√
N
; it’s just that in this case, C is

very large indeed.

Useful Facts: 11.4 The properties of simulations

You should remember that

• The weak law of large numbers means you can estimate expecta-
tions and probabilities with a simulation.

• The result of a simulation is usually a normal random variable.

• The expected value of this random variable is usually the true
value of the expectation or probability you are trying to simulate.

• The standard deviation of this random variable is usually C√
N
,

where N is the number of examples in the simulation and C is a
number usually too hard to estimate.

Worked example 11.13 Comparing simulation with computation

You throw 3 fair six-sided dice. You wish to know the probability the sum is
3. Compare the true value of this probability with estimates from six runs of
a simulation using N = 10000. What conclusions do you draw?

Solution: I ran six simulations with N = 10000, and got
[0.0038, 0.0038, 0.0053, 0.0041, 0.0056, 0.0049]. The mean is 0.00458, and the
standard deviation is 0.0007, which suggests the estimate isn’t that great, but
the right answer should be in the range [0.00388, 0.00528] with probability
about 0.68. The true value is 1/216 ≈ 0.00463. The estimate is tolerable, but
not super accurate.

11.2.3 Simulating Markov Chains

We will always assume that we know the states and transition probabilities of
the Markov chain. Properties that might be of interest in this case include: the
probability of hitting an absorbing state; the expected time to go from one state to
another; the expected time to hit an absorbing state; and which states have high
probability under the stationary distribution.

Section 11.2 Estimating Properties of Markov Chains 273

Worked example 11.14 Coin Flips with End Conditions

I flip a coin repeatedly until I encounter a sequence HTHT, at which point I
stop. What is the probability that I flip the coin nine times?

Solution: You might well be able to construct a closed form solution to this
if you follow the details of example 287 and do quite a lot of extra work.
A simulation is really straightforward to write; notice you can save time by
not continuing to simulate coin flips once you’ve flipped past nine times. I got
0.0411 as the mean probability over 10 runs of a simulation of 1000 experiments
each, with a standard deviation of 0.0056.

Worked example 11.15 A Queue

A bus is supposed to arrive at a bus stop every hour for 10 hours each day. The
number of people who arrive to queue at the bus stop each hour has a Poisson
distribution, with intensity 4. If the bus stops, everyone gets on the bus and
the number of people in the queue becomes zero. However, with probability
0.1 the bus driver decides not to stop, in which case people decide to wait. If
the queue is ever longer than 15, the waiting passengers will riot (and then
immediately get dragged off by the police, so the queue length goes down to
zero). What is the expected time between riots?

Solution: I’m not sure whether one could come up with a closed form solution
to this problem. A simulation is completely straightforward to write. I get
a mean time of 441 hours between riots, with a standard deviation of 391.
It’s interesting to play around with the parameters of this problem; a less
conscientious bus driver, or a higher intensity arrival distribution, lead to much
more regular riots.

Section 11.2 Estimating Properties of Markov Chains 274

Worked example 11.16 Inventory

A store needs to control its stock of an item. It can order stocks on Fri-
day evenings, which will be delivered on Monday mornings. The store is old-
fashioned, and open only on weekdays. On each weekday, a random number of
customers comes in to buy the item. This number has a Poisson distribution,
with intensity 4. If the item is present, the customer buys it, and the store
makes 100; otherwise, the customer leaves. Each evening at closing, the store
loses 10 for each unsold item on its shelves. The store’s supplier insists that it
order a fixed number k of items (i.e. the store must order k items each week).
The store opens on a Monday with 20 items on the shelf. What k should the
store use to maximise profits?

Solution: I’m not sure whether one could come up with a closed form solution
to this problem, either. A simulation is completely straightforward to write.
To choose k, you run the simulation with different k values to see what hap-
pens. I computed accumulated profits over 100 weeks for different k values,
then ran the simulation five times to see which k was predicted. Results were
21, 19, 23, 20, 21. I’d choose 21 based on this information.

For example 11.16, you should plot accumulated profits. If k is small, the
store doesn’t lose money by storing items, but it doesn’t sell as much stuff as it
could; if k is large, then it can fill any order but it loses money by having stock on
the shelves. A little thought will convince you that k should be near 20, because
that is the expected number of customers each week, so k = 20 means the store can
expect to sell all its new stock. It may not be exactly 20, because it must depend
a little on the balance between the profit in selling an item and the cost of storing
it. For example, if the cost of storing items is very small compared to the profit,
an very large k might be a good choice. If the cost of storage is sufficiently high,
it might be better to never have anything on the shelves; this point explains the
absence of small stores selling PC’s.

Quite substantial examples are possible. The game “snakes and ladders”
involves random walk on Markov chain. If you don’t know this game, look it up;
it’s sometimes called “chutes and ladders”, and there is an excellent Wikipedia
page. The state is given by where each players’ token is on the board, so on a
10x10 board one player involves 100 states, two players 1002 states, and so on.
The set of states is finite, though big. Transitions are random, because each player
throws dice. The snakes (resp. ladders) represent extra edges in the directed graph.
Absorbing states occur when a player hits the top square. It is straightforward to
compute the expected number of turns for a given number of players by simulation,
for example. For one commercial version, the Wikipedia page gives the crucial
numbers: for two players, expected number of moves to a win is 47.76, and the first
player wins with probability 0.509. Notice you might need to think a bit about how
to write the program if there were, say, 8 players on a 12x12 board – you would
likely avoid storing the entire state space.

Section 11.3 Example: Ranking the Web by Simulating a Markov Chain 275

11.3 EXAMPLE: RANKING THE WEB BY SIMULATING A MARKOV CHAIN

Perhaps the most valuable technical question of the last thirty years has been:
Which web pages are interesting? Some idea of the importance of this question is
that it was only really asked about 20 years ago, and at least one gigantic technology
company has been spawned by a partial answer. This answer, due to Larry Page
and Sergey Brin, and widely known as PageRank, revolves around simulating the
stationary distribution of a Markov chain.

You can think of the world wide web as a directed graph. Each page is a
state. Directed edges from page to page represent links. Count only the first link
from a page to another page. Some pages are linked, others are not. We want to
know how important each page is.

One way to think about importance is to think about what a random web
surfer would do. The surfer can either (a) choose one of the outgoing links on a
page at random, and follow it or (b) type in the URL of a new page, and go to
that instead. This is a random walk on a directed graph. We expect that this
random surfer should see a lot of pages that have lots of incoming links from other
pages that have lots of incoming links that (and so on). These pages are important,
because lots of pages have linked to them.

For the moment, ignore the surfer’s option to type in a URL. Write r(i) for
the importance of the i’th page. We model importance as leaking from page to page
across outgoing links (the same way the surfer jumps). Page i receives importance
down each incoming link. The amount of importance is proportional to the amount
of importance at the other end of the link, and inversely proportional to the number
of links leaving that page. So a page with only one outgoing link transfers all its
importance down that link; and the way for a page to receive a lot of importance
is for it to have a lot of important pages link to it alone. We write

r(j) =
∑

i→j

r(i)

| i |

where | i | means the total number of links pointing out of page i. We can stack the
r(j) values into a row vector r, and construct a matrix P , where

pij =

{ 1
|i| if i points to j

0 otherwise

With this notation, the importance vector has the property

r = rP

and should look a bit like the stationary distribution of a random walk to you,
except that P isn’t stochastic — there may be some rows where the row sum of P
is zero, because there are no outgoing links from that page. We can fix this easily
by replacing each row that sums to zero with (1/n)1, where n is the total number of
pages. Call the resulting matrix G (it’s quite often called the raw Google matrix).

The web has pages with no outgoing links (which we’ve dealt with), pages
with no incoming links, and even pages with no links at all. A random walk could

Section 11.4 You should 276

get trapped by moving to a page with no outgoing links. Allowing the surfer to
randomly enter a URL sorts out all of these problems, because it inserts an edge of
small weight from every node to every other node. Now the random walk cannot
get trapped.

There are a variety of possible choices for the weight of these inserted edges.
The original choice was to make each inserted edge have the same weight. Write
1 for the n dimensional column vector containing a 1 in each component, and let
0 < α < 1. We can write the matrix of transition probabilities as

G(α) = α
(11T)

n
+ (1− α)G

where G is the original Google matrix. An alternative choice is to choose a weight
for each web page. This weight could come from a query; from advertising revenues;
or from page visit statistics. Google keeps quiet about the details. Write this weight
vector v, and require that 1Tv = 1 (i.e. the coefficients sum to one). Then we
could have

G(α,v) = α
(1vT)

n
+ (1 − α)G.

Now the importance vector r is the (unique, though I won’t prove this) row vector
r such that

r = rG(α,v).
How do we compute this vector? One natural algorithm is to estimate r with

a random walk, because r is the stationary distribution of a Markov chain. If we
simulate this walk for many steps, the probability that the simulation is in state j
should be r(j), at least approximately.

This simulation is easy to build. Imagine our random walking bug sits on a
web page. At each time step, it transitions to a new page by either (a) picking
from all existing pages at random, using v as a probability distribution on the
pages (which it does with probability α); or (b) chooses one of the outgoing links
uniformly and at random, and follows it (which it does with probability 1 − α).
The stationary distribution of this random walk is r. Another fact that I shall not
prove is that, when α is sufficiently large, this random walk very quickly “forgets”
it’s initial distribution. As a result, you can estimate the importance of web pages
by starting this random walk in a random location; letting it run for a bit; then
stopping it, and collecting the page you stopped on. The pages you see like this
are independent, identically distributed samples from r; so the ones you see more
often are more important, and the ones you see less often are less important.

11.4 YOU SHOULD

11.4.1 remember these definitions:

11.4.2 remember these terms:

Markov chain . 257
transition probabilities . 257
biased random walk . 257
absorbing state . 259

Section 11.4 You should 277

recurrent . 259
stochastic matrices . 261
irreducible . 263
stationary distribution . 263
unigrams . 266
unigram models . 266
bigrams . 266
bigram models . 266
trigrams . 266
trigram models . 266
n-grams . 266
n-gram models . 266
smoothing . 267
raw Google matrix . 275

11.4.3 remember these facts:

Markov chains . 261
Transition probability matrices . 263
Many Markov chains have stationary distributions 264
The properties of simulations . 272

11.4.4 be able to:

• Estimate various probabilities and expectations for a Markov chain by simu-
lation.

• Evaluate the results of multiple runs of a simple simulation.

PROBLEMS

11.1. Multiple die rolls: You roll a fair die until you see a 5, then a 6; after that,
you stop. Write P (N) for the probability that you roll the die N times.
(a) What is P (1)?
(b) Show that P (2) = (1/36).
(c) Draw a directed graph encoding all the sequences of die rolls that you

could encounter. Don’t write the events on the edges; instead, write their
probabilities. There are 5 ways not to get a 5, but only one probability,
so this simplifies the drawing.

(d) Show that P (3) = (1/36).
(e) Now use your directed graph to argue that P (N) = (5/6)P (N − 1) +

(25/36)P (N − 2).
11.2. More complicated multiple coin flips: You flip a fair coin until you see

eitherHTH or THT , and then you stop. We will compute a recurrence relation
for P (N).
(a) Draw a directed graph for this chain.
(b) Think of the directed graph as a finite state machine. Write ΣN for some

string of length N accepted by this finite state machine. Use this finite
state machine to argue that SigmaN has one of four forms:

1. TTΣN−2

Section 11.4 You should 278

2. HHΣN−3

3. THHΣN−2

4. HTTΣN−3

(c) Now use this argument to show that P (N) = (1/2)P (N−2)+(1/4)P (N−
3).

11.3. For the umbrella example of worked example 11.1, assume that with prob-
ability 0.7 it rains in the evening, and 0.2 it rains in the morning. I am
conventional, and go to work in the morning, and leave in the evening.
(a) Write out a transition probability matrix.
(b) What is the stationary distribution? (you should use a simple computer

program for this).
(c) What fraction of evenings do I arrive at home wet?
(d) What fraction of days do I arrive at my destination dry?

PROGRAMMING EXERCISES

11.4. A dishonest gambler has two dice and a coin. The coin and one die are both
fair. The other die is unfair. It has P (n) = [0.5, 0.1, 0.1, 0.1, 0.1, 0.1] (where n
is the number displayed on the top of the die). The gambler starts by choosing
a die. Choosing a die is by flipping a coin; if the coin comes up heads, the
gambler chooses the fair die, otherwise, the unfair die. The gambler rolls the
chosen die repeatedly until a 6 comes up. When a 6 appears, the gambler
chooses again (by flipping a coin, etc), and continues.
(a) Model this process with a hidden markov model. The emitted symbols

should be 1, . . . , 6. Doing so requires only two hidden states (which die is
in hand). Simulate a long sequence of rolls using this model. What is the
probability the emitted symbol is 1?

(b) Use your simulation to produce 10 sequences of 100 symbols. Record the
hidden state sequence for each of these. Now recover the hidden state
using dynamic programming (you should likely use a software package for
this; there are many good ones for R and Matlab). What fraction of the
hidden states is correctly identified by your inference procedure?

(c) Does inference accuracy improve when you use sequences of 1000 symbols?
11.5. Warning: this exercise is fairly elaborate, though straightforward.

We will correct text errors using a hidden Markov model.
(a) Obtain the text of a copyright-free book in plain characters. One natural

source is Project Gutenberg, at https://www.gutenberg.org. Simplify this
text by dropping all punctuation marks except spaces, mapping capital
letters to lower case, and mapping groups of many spaces to a single space.
The result will have 27 symbols (26 lower case letters and a space). From
this text, count unigram, bigram and trigram letter frequencies.

(b) Use your counts to build models of unigram, bigram and trigram let-
ter probabilities. You should build both an unsmoothed model, and at
least one smoothed model. For the smoothed models, choose some small
amount of probability ǫ and split this between all events with zero count.
Your models should differ only by the size of ǫ.

(c) Construct a corrupted version of the text by passing it through a process
that, with probability pc, replaces a character with a randomly chosen
character, and otherwise reports the original character.

https://www.gutenberg.org

Section 11.4 You should 279

(d) For a reasonably sized block of corrupted text, use an HMM inference
package to recover the best estimate of your true text. Be aware that
your inference will run more slowly as the block gets bigger, but you
won’t see anything interesting if the block is (say) too small to contain
any errors.

(e) For pc = 0.01 and pc = 0.1, estimate the error rate for the corrected text
for different values of ǫ. Keep in mind that the corrected text could be
worse than the corrupted text.

C H A P T E R 12

Hidden Markov Models

12.1 HIDDEN MARKOV MODELS AND DYNAMIC PROGRAMMING

Imagine we wish to build a program that can transcribe speech sounds into text.
Each small chunk of text can lead to one, or some, sounds, and some randomness
is involved. For example, some people pronounce the word “fishing” rather like
“fission”. As another example, the word “scone” is sometimes pronounced rhyming
with “stone”, and sometimes rhyming with “gone”. A Markov chain supplies a
model of all possible text sequences, and allows us to compute the probability of
any particular sequence. We will use a Markov chain to model text sequences, but
what we observe is sound. We must have a model of how sound is produced by
text. With that model and the Markov chain, we want to produce text that (a) is
a likely sequence of words and (b) is likely to have produced the sounds we hear.

Many applications contain the main elements of this example. We might
wish to transcribe music from sound. We might wish to understand American
sign language from video. We might wish to produce a written description of how
someone moves from video observations. We might wish to break a substitution
cipher. In each case, what we want to recover is a sequence that can be modelled
with a Markov chain, but we don’t see the states of the chain. Instead, we see
noisy measurements that depend on the state of the chain, and we want to recover
a state sequence that is (a) likely under the Markov chain model and (b) likely to
have produced the measurements we observe.

12.1.1 Hidden Markov Models

Assume we have a finite state, time homogenous Markov chain, with S states. This
chain will start at time 1, and the probability distribution P (X1 = i) is given by
the vector π. At time u, it will take the state Xu, and its transition probability
matrix is pij = P (Xu+1 = j|Xu = i). We do not observe the state of the chain.
Instead, we observe some Yu. We will assume that Yu is also discrete, and there
are a total of O possible states for Yu for any u. We can write a probability
distribution for these observations P (Yu|Xu = i) = qi(Yu). This distribution is
the emission distribution of the model. For simplicity, we will assume that the
emission distribution does not change with time.

We can arrange the emission distribution into a matrixQ. A hidden Markov

model consists of the transition probability distribution for the states, the rela-
tionship between the state and the probability distribution on Yu, and the initial
distribution on states, that is, (P ,Q, π). These models are often dictated by an
application. An alternative is to build a model that best fits a collection of observed
data, but doing so requires technical machinery we cannot expound here.

I will sketch how one might build a model for transcribing speech, but you
should keep in mind this is just a sketch of a very rich area. We can obtain the

280

Section 12.1 Hidden Markov Models and Dynamic Programming 281

probability of a word following some set of words using n-gram resources, as in
section 11.1.3. We then build a model of each word in terms of small chunks of
word that are likely to correspond to common small chunks of sound. We will call
these chunks of sound phonemes. We can look up the different sets of phonemes
that correspond to a word using a pronunciation dictionary. We can combine these
two resources into a model of how likely it is one will pass from one phoneme inside
a word to another, which might either be inside this word or inside another word.
We now have P . We will not spend much time on π, and might even model it as a
uniform distribution. We can use a variety of strategies to build Q. One is to build
discrete features of a sound signal, then count how many times a particular set of
features is produced when a particular phoneme is played.

12.1.2 Picturing Inference with a Trellis

Assume that we have a sequence of N measurements Yi that we believe to be
the output of a known hidden Markov model. We wish to recover the “best”
corresponding sequence of Xi. Doing so is inference. We will choose to recover a
sequence Xi that minimises

− logP (X1, X2, . . . , XN |Y1, Y2, . . . , YN ,P ,Q, π).

This is the same as maximizing the probability, but I chose to minimize the negative
log probability because (a) the log turns products into sums, which will be conve-
nient and (b) minimizing the negative log probability gives us a formulation that
is consistent with algorithms in chapter ??. The negative log probability factors as

− log

(

P (X1, X2, . . . , XN , Y1, Y2, . . . , YN |P ,Q, π)

P (Y1, Y2, . . . , YN)

)

and this is

− logP (X1, X2, . . . , XN , Y1, Y2, . . . , YN |P ,Q, π) + logP (Y1, Y2, . . . , YN).

Notice that P (Y1, Y2, . . . , YN) doesn’t depend on the sequence of Xu we choose, and
so the second term can be ignored. What is important here is that we can decom-
pose − logP (X1, X2, . . . , XN , Y1, Y2, . . . , YN |P ,Q, π) in a very useful way, because
the Xu form a Markov chain. We want to minimize

− logP (X1, X2, . . . , XN , Y1, Y2, . . . , YN |P ,Q, π)

but this is

− logP (X1)− logP (Y1|X1)−
logP (X2|X1)− logP (Y2|X2)−
. . .

logP (XN |Xn−1)− logP (YN |XN).

Notice that this cost function has an important structure. It is a sum of terms.
There are terms that depend on a single Xi (unary terms) and terms that depend
on two (binary terms). Any state Xi appears in at most two binary terms.

Section 12.1 Hidden Markov Models and Dynamic Programming 282

1 2

3

1

2

3

1

2

3

1

2

3

log P(Y | X =2)

p
12

p
23

p
13

p
31

Y
1

Y
2

Y
3

1 1

log P(Y | X =3)
1 1

log P(Y | X =1)
1 1

p
12

log

p
13

log

p
23

log

p
31

log

1

2

3

Y
4

FIGURE 12.1: At the top left, a simple state transition model. Each outgoing
edge has some probability, though the topology of the model forces two of these
probabilities to be 1. Below, the trellis corresponding to that model. Each path
through the trellis corresponds to a legal sequence of states, for a sequence of three
measurements. We weight the arcs with the log of the transition probabilities, and
the nodes with the log of the emission probabilities. I have shown some weights

We can illustrate this cost function in a structure called a trellis. This is a
weighted, directed graph consisting of N copies of the state space, which we arrange
in columns. There is a column corresponding to each measurement. We add a
directed arrow from any state in the u’th column to any state in the u+1’th column
if the transition probability between the states isn’t 0. This represents the fact that
there is a possible transition between these states. We then label the trellis with
weights. We weight the node representing the case that state Xu = j in the column
corresponding to Yu with − logP (Yu|Xu = j). We weight the arc from the node
representingXu = i to that representingXu+1 = j with − logP (Xu+1 = j|Xu = i).

The trellis has two crucial properties. Each directed path through the trellis
from the start column to the end column represents a legal sequence of states. Now
for some directed path from the start column to the end column, sum all the weights
for the nodes and edges along this path. This sum is the negative log of the joint
probability of that sequence of states with the measurements. You can verify each
of these statements easily by reference to a simple example (try Figure 12.1)

There is an efficient algorithm for finding the path through a trellis which
maximises the sum of terms. The algorithm is usually called dynamic program-

ming or the Viterbi algorithm. I will describe this algorithm both in narrative,
and as a recursion. We want to find the best path from each node in the first
column to each node in the last. There are S such paths, one for each node in the
first column. Once we have these paths, we can choose the one with highest log
joint probability. Now consider one of these paths. It passes through the i’th node

Section 12.1 Hidden Markov Models and Dynamic Programming 283

1

2

3

1

2

3

1

2

3

1

2

3

-1

-3

-9

-1

-3

-9

-1

-3

-9

-1

-3

-9

1

2

3

1

2

3

1

2

3

1

2

3

-1

-3

-9

-1

-3

-9

-1

-3

-9

-1

-3.69

-9

1

2

3

1

2

3

1

2

3

1

2

3

-1

-3

-9

-1

-3

-9

-4.69

-10

-10.69

Cost to go Cost to goIII

Cost of pathIVCost to goIII

1

2

3

1

2

3

1

2

3

1

2

3

-14.69

-16.69

-20.69

1

2

3

1

2

3

1

2

3

1

2

3

-1

-3

-9

-13.69

-13.69

-11.69

FIGURE 12.2: An example of finding the best path through a trellis. The probabilities
of leaving a node are uniform (and remember, ln 2 ≈ −0.69). Details in the text.

in the u’th column. The path segment from this node to the end column must,
itself, be the best path from this node to the end. If it wasn’t, we could improve
the original path by substituting the best. This is the key insight that gives us an
algorithm.

Start at the final column of the tellis. We can evaluate the best path from
each node in the final column to the final column, because that path is just the
node, and the value of that path is the node weight. Now consider a two-state
path, which will start at the second last column of the trellis (look at panel I in
Figure 12.2). We can easily obtain the value of the best path leaving each node in
this column. Consider a node: we know the weight of each arc leaving the node
and the weight of the node at the far end of the arc, so we can choose the path
segment with the largest value of the sum; this arc is the best we can do leaving
that node. This sum is the best value obtainable on leaving that node—which is

Section 12.1 Hidden Markov Models and Dynamic Programming 284

often known as the cost to go function.
Now, because we know the best value obtainable on leaving each node in the

second-last column, we can figure out the best value obtainable on leaving each
node in the third-last column (panel II in Figure 12.2). At each node in the third-
last column, we have a choice of arcs. Each of these reaches a node from which we
know the value of the best path. So we can choose the best path leaving a node in
the third-last column by finding the path that has the best value of: the arc weight
leaving the node; the weight of the node in the second-last column the arc arrives
at; and the value of the path leaving that node. This is much more easily done
than described. All this works just as well for the fourth-last column, etc. (panel
III in Figure 12.2) so we have a recursion. To find the value of the best path with
X1 = i, we go to the corresponding node in the first column, then add the value of
the node to the value of the best path leaving that node (panel IV in Figure 12.2).
Finally, to find the value of the best path leaving the first column, we compute the
minimum value over all nodes in the first column.

We can also get the path with the minimum likelihood value. When we
compute the value of a node, we erase all but the best arc leaving that node. Once
we reach the first column, we simply follow the path from the node with the best
value. This path is illustrated by dashed edges in Figure 12.2.

12.1.3 Dynamic Programming for HMM’s: Formalities

We will formalize the recursion of the previous section with two ideas. First, we
define Cw(j) to be the cost of the best path segment to the end of the trellis leaving
the node representing Xw = j. Second, we define Bw(j) to be the node in column
w + 1 that lies on the best path leaving the node representing Xw = j. So Cw(j)
tells you the cost of the best path, and Bw(j) tells you what node is next on the
best path.

Now it is straightforward to find the cost of the best path leaving each node
in the second last column, and also the path. In symbols, we have

CN−1(j) = min
u

[− logP (XN = u|XN−1 = j)− logP (YN |XN = u)]

and

BN−1(j) =
argmin

u
[− logP (XN = u|XN−1 = j)− logP (YN |XN = u)] .

You should check this against step I of Figure 12.2
Once we have the best path leaving each node in the w + 1’th column and

its cost, it’s straightforward to find the best path leaving the w’th column and its
cost. In symbols, we have

Cw(j) = min
u

[− logP (Xw+1 = u|Xw = j)− logP (Yw+1|Xw+1 = u)− Cw+1(u)]

and

Bw(j) =
argmin

u
[− logP (Xw+1 = u|Xw = j)− logP (Yw+1|Xw+1 = u)− Cw+1(u)] .

Check this against steps II and III in Figure 12.2.

Section 12.1 Hidden Markov Models and Dynamic Programming 285

12.1.4 Example: Simple Communication Errors

Hidden Markov models can be used to correct text errors. We will simplify some-
what, and assume we have text that has no punctuation marks, and no capital
letters. This means there are a total of 27 symbols (26 lower case letters, and a
space). We send this text down some communication channel. This could be a
telephone line, a fax line, a file saving procedure or anything else. This channel
makes errors independently at each character. For each location, with probability
1−p the output character at that location is the same as the input character. With
probability p, the channel chooses randomly between the character one ahead or
one behind in the character set, and produces that instead. You can think of this
as a simple model for a mechanical error in one of those now ancient printers where
a character strikes a ribbon to make a mark on the paper. We must reconstruct
the transmission from the observations.

* e t i a o s n r h
1.9e-1 9.7e-2 7.9e-2 6.6e-2 6.5e-2 5.8e-2 5.5e-2 5.2e-2 4.8e-2 3.7e-2

TABLE 12.1: The most common single letters (unigrams) that I counted from a draft
of this chapter, with their probabilities. The ’*’ stands for a space. Spaces are
common in this text, because I have tended to use short words (from the probability
of the ’*’, average word length is between five and six letters).

Lead char
* *t (2.7e-2) *a (1.7e-2) *i (1.5e-2) *s (1.4e-2) *o (1.1e-2)
e e* (3.8e-2) er (9.2e-3) es (8.6e-3) en (7.7e-3) el (4.9e-3)
t th (2.2e-2) t* (1.6e-2) ti (9.6e-3) te (9.3e-3) to (5.3e-3)
i in (1.4e-2) is (9.1e-3) it (8.7e-3) io (5.6e-3) im (3.4e-3)
a at (1.2e-2) an (9.0e-3) ar (7.5e-3) a* (6.4e-3) al (5.8e-3)
o on (9.4e-3) or (6.7e-3) of (6.3e-3) o* (6.1e-3) ou (4.9e-3)
s s* (2.6e-2) st (9.4e-3) se (5.9e-3) si (3.8e-3) su (2.2e-3)
n n* (1.9e-2) nd (6.7e-3) ng (5.0e-3) ns (3.6e-3) nt (3.6e-3)
r re (1.1e-2) r* (7.4e-3) ra (5.6e-3) ro (5.3e-3) ri (4.3e-3)
h he (1.4e-2) ha (7.8e-3) h* (5.3e-3) hi (5.1e-3) ho (2.1e-3)

TABLE 12.2: The most common bigrams that I counted from a draft of this chapter,
with their probabilities. The ’*’ stands for a space. For each of the 10 most common
letters, I have shown the five most common bigrams with that letter in the lead. This
gives a broad view of the bigrams, and emphasizes the relationship between unigram
and bigram frequencies. Notice that the first letter of a word has a slightly different
frequency than letters (top row; bigrams starting with a space are first letters).
About 40% of the possible bigrams do not appear in the text.

I built a unigram model, a bigram model, and a trigram model. I stripped the
text of this chapter of punctuation marks and mapped the capital letters to lower
case letters. I used an HMM package (in my case, for Matlab; but there’s a good one
for R as well) to perform inference. The main programming here is housekeeping

Section 12.1 Hidden Markov Models and Dynamic Programming 286

th the he is* *of of* on* es* *a* ion
1.7e-2 1.2e-2 9.8e-3 6.2e-3 5.6e-3 5.4e-3 4.9e-3 4.9e-3 4.9e-3 4.9e-3

tio e*t in* *st *in at* ng* ing *to *an
4.6e-3 4.5e-3 4.2e-3 4.1e-3 4.1e-3 4.0e-3 3.9e-3 3.9e-3 3.8e-3 3.7e-3

TABLE 12.3: The most frequent 10 trigrams in a draft of this chapter, with their
probabilities. Again, ’*’ stands for space. You can see how common ’the’ and ’*a*’
are; ’he*’ is common because ’*the*’ is common. About 80% of possible trigrams
do not appear in the text.

to make sure the transition and emission models are correct. About 40% of the
bigrams and 86% of the trigrams did not appear in the text. I smoothed the
bigram and trigram probabilities by dividing the probability 0.01 evenly between
all unobserved bigrams (resp. trigrams). The most common unigrams, bigrams
and trigrams appear in the tables. As an example sequence, I used

“the trellis has two crucial properties each directed path through the
trellis from the start column to the end column represents a legal se-
quence of states now for some directed path from the start column to
the end column sum all the weights for the nodes and edges along this
path this sum is the log of the joint probability of that sequence of states
with the measurements you can verify each of these statements easily
by reference to a simple example”

(which is text you could find in a draft of this chapter). There are 456 characters
in this sequence.

When I ran this through the noise process with p = 0.0333, I got

“theztrellis has two crucial properties each directed path through the
tqdllit from the start column to the end coluln represents a legal se-
quencezof states now for some directed path from the start column to
thf end column sum aml the veights for the nodes and edges along this
path this sum is the log of the joint probability oe that sequence of
states wish the measurements youzcan verify each of these statements
easily by reference to a simple examqle”

which is mangled but not too badly (13 of the characters are changed, so 443
locations are the same).

The unigram model produces

“the trellis has two crucial properties each directed path through the
tqdllit from the start column to the end coluln represents a legal se-
quence of states now for some directed path from the start column to
thf end column sum aml the veights for the nodes and edges along this
path this sum is the log of the joint probability oe that sequence of
states wish the measurements you can verify each of these statements
easily by reference to a simple examqle”

Section 12.2 Learning an HMM with EM 287

which fixes three errors. The unigram model only changes an observed character
when the probability of encountering that character on its own is less than the
probability it was produced by noise. This occurs only for “z”, which is unlikely on
its own and is more likely to have been a space. The bigram model produces

“she trellis has two crucial properties each directed path through the
trellit from the start column to the end coluln represents a legal sequence
of states now for some directed path from the start column to the end
column sum aml the veights for the nodes and edges along this path
this sum is the log of the joint probability oe that sequence of states
wish the measurements you can verify each of these statements easily
by reference to a simple example”

This is the same as the correct text in 449 locations, so somewhat better than the
noisy text. The trigram model produces

“the trellis has two crucial properties each directed path through the
trellit from the start column to the end column represents a legal se-
quence of states now for some directed path from the start column to
the end column sum all the weights for the nodes and edges along this
path this sum is the log of the joint probability of that sequence of states
with the measurements you can verify each of these statements easily
by reference to a simple example”

which corrects all but one of the errors (look for “trellit”).

12.2 LEARNING AN HMM WITH EM

We have a dataset Y for which we believe a hidden Markov model is an appropriate
model. This dataset consists of R sequences of visible states. The u’th sequence
has N(u) elements. We will assume that the observed values lie in a discrete space
(i.e. there are O possible values that the Y ’s can take, and no others). We wish to
choose a model that best represents a set of data. Assume, for the moment, that

we knew each hidden state corresponding to each visible state. Write Y
(u)
t is the

observed value for the t’th observed state in the u’th sequence; write X
(u)
t for the

random variable representing the hidden value for the t’th observed state in the
u’th sequence; write sk for the hidden state values (where k is in the range 1 . . . S);
and write yk for the possible values for Y (where k is in the range 1 . . . O).

The hidden Markov model is given by three sets of parameters, π, P and
Q. We will assume that these parameters are not affected by where we are in the
sequence (i.e. the model is homogeneous). First, π is an S dimensional vector.
The i’th element, πi of this vector gives the probability that the model starts in
state si, i.e. πi = P (X1 = si|θ). Second, P is an S × S dimensional table. The
i, j’th element of this table gives P (Xt+1 = sj |Xt = si). Finally, Q is an O × S
dimensional table. We will write qj(yi) = P (Yt = yi|Xt = sj) for the i, j’th element
of this table. Note I will write θ to represent all of these parameters together.

Now assume that we know the values of X
(u)
t for all t, u, (i.e. for each Y

(u)
t we

know that X
(u)
t = si). Then estimating the parameters is straightforward. We can

estimate each by counting. For example, we estimate πi by counting the number

Section 12.2 Learning an HMM with EM 288

of sequences where X1 = si, then dividing by the total number of sequences. We

will encapsulate this knowledge in a function δ
(u)
t (i), where

δ
(u)
t (i) =

{

1 if X
(u)
t = si

0 otherwise
.

If we know δ
(u)
t (i), we have

πi =
number of times in si at time 1

number of sequences

=

∑R
u=1 δ

(u)
1 (i)

R

Pij =
number of transitions from sj to si

total number of transitions

=

∑R
u=1

∑N(u)−1
t=1 δ

(u)
t (j)δ

(u)
t+1(i)

∑R
u=1 [N(u)− 1]

qj(yi) =
number of times in sj and observe Y = yi

number of times in sj

=

R
∑

u=1

N(u)
∑

t=1

δ
(u)
t (j)δ(Y

(u)
t , yi)

where δ(u, v) is one if its arguments are equal and zero otherwise.

The problem (of course) is that we don’t know δ
(u)
t (i). But we have been

here before (section 287 and section 287). The situation follows the recipe for EM:

we have missing variables (the X
(u)
t ; or, equivalently, the δ

(u)
t (i)) where the log-

likelihood can be written out cleanly in terms of the missing variables. We assume
we know an estimate of the parameters θ̂(n). We construct

Q(θ; θ̂(n)) = Elog P (X,Y |θ)
[

P (X |Y, θ̂(n))
]

(the E-step). Then we compute

ˆθ(n+1) =
argmin

θ
Q(θ; θ̂(n))

(the M-step). As usual, the problem is the E-step. I will not derive this in detail
(enthusiasts can easily reconstruct the derivation from what follows together with
chapter 287). The essential point is that we need to recover

ξ
(u)
t (i) = EP (δ|Y,θ̂(n))

[

δ
(u)
t (i)

]

= P (X
(u)
t = si|Y, θ̂(n)).

Section 12.2 Learning an HMM with EM 289

For the moment, assume we know these. Then we have

π̂i
(n+1) = expected frequency of being in si at time 1

=

∑R
u=1 ξ

(u)
1 (i)

R

P̂(n+1)
ij =

expected number of transitions from sj to si
expected number of transitions from state sj

=

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)ξ

(u)
t+1(i)

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)

q̂
(n+1)
j (k) =

expected number of times in sj and observing Y = yk
expected number of times in state sj

=

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)δ(Y

(u)
t , yk)

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)

where δ(u, v) is one if its arguments are equal and zero otherwise.

To evaluate ξ
(u)
t (i), we need two intermediate variables: a forward variable

and a backward variable. The forward variable is α
(u)
t (j) = P (Y

(u)
1 , . . . , Y

(u)
t , X

(u)
t =

sj |θ̂(n)). The backward variable is β
(u)
t (j) = P ({Y (u)

t+1, Y
(u)
t+2, . . . , Y

(u)
N(u)}|X

(u)
t =

sj |θ̂(n)). Now assume that we know the values of these variables, we have that

ξ
(u)
t (i) = P (X

(u)
t = si|θ̂(n),Y(u))

=
P (Y(u), X

(u)
t = si|θ̂(n))

P (Y(u)|θ̂(n))

=
α
(u)
t (i)β

(u)
t (i)

∑k
i=1 α

(u)
t (i)β

(u)
t (i)

Both the forward and backward variables can be evaluated by induction. We

get α
(u)
t (j) by observing that:

α
(u)
1 (j) = P (Y

(u)
1 , X

(u)
1 = sj |θ̂(n))

= π
(n)
j q

(n)
j (Y1).

Section 12.2 Learning an HMM with EM 290

Now for all other t’s, we have

α
(u)
t+1(j) = P (Y

(u)
1 , . . . , Y

(u)
t+1, X

(u)
t+1 = sj |θ̂(n))

=

S
∑

l=1

P (Y
(u)
1 , . . . , Y

(u)
t , Y

(u)
t+1, X

(u)
t = sl, X

(u)
t+1 = sj |θ̂(n))

=

(

S
∑

l=1

[

P (Y
(u)
1 , . . . , Y

(u)
t , X

(u)
t = sl|θ̂(n))×

P (X
(u)
t+1 = sj |X(u)

t = sl, θ̂
(n))

])

P (Y
(u)
t+1|X

(u)
t+1 = sj , θ̂

(n))

=

[

S
∑

l=1

α
(u)
t (l)p

(n)
lj

]

q
(n)
j (Yt+1)

We get β
(u)
t (j) by observing that:

β
(u)
N(u)(j) = P (no further output|X(u)

N(u) = sj, θ̂
(n))

= 1

. Now for all other t we have

β
(u)
t (j) = P (Y

(u)
t+1, Y

(u)
t+2, . . . , Y

(u)
N(u)|X

(u)
t = sj, θ̂

(n))

=

S
∑

l=1

[

P (Y
(u)
t+1, Y

(u)
t+2, . . . , Y

(u)
N(u), X

(u)
t+1 = sl|X(u)

t = sj, θ̂
(n))
]

=

S
∑

l=1

[

P (Y
(u)
t+2, . . . , Y

(u)
N(u)|X

(u)
t+1 = sj , θ̂

(n))

×P (Y
(u)
t+1, X

(u)
t+1 = sl|X(u)

t = sj , θ̂
(n))

]

= P (Y
(u)
t+2, . . . , Y

(u)
N(u)|X

(u)
t+1 = sj , θ̂

(n))

(

S
∑

l=1

[

P (X
(u)
t+1 = sl|X(u)

t = sj, θ̂
(n))

×P (Y
(u)
t+1|X

(u)
t+1 = slθ̂

(n))

])

= βt+1(j)

(

S
∑

l=1

[

q
(n)
l (Y

(u)
t+1)p

(n)
lj

]

)

As a result, we have a simple fitting algorithm, collected in Algorithm 12.1.

Section 12.2 Learning an HMM with EM 291

Procedure: 12.1 Fitting Hidden Markov Models with EM

We fit a model to a data sequence Y is achieved by a version of EM.
We seek the values of parameters θ = (P ,Q, π)i. We assume we have
an estimatel θ̂(n), and then compute the coefficients of a new model;
this iteration is guaranteed to converge to a local maximum of P (Y|θ̂).

Until θ̂(n+1) is the same as θ̂(n)

compute the forward variables α and β
using the procedures of algorithms 12.2 and 12.3

compute ξ
(u)
t (i) =

α
(u)
t (i)β

(u)
t (i)

∑

k

i=1
α

(u)
t (i)β

(u)
t (i)

compute the updated parameters using the procedures of procedure 12.4
end

Procedure: 12.2 Computing the Forward Variable for Fitting an HMM

α
(u)
1 (j) = π

(n)
j q

(n)
j (Y1)

α
(u)
t+1(j) =

[

S
∑

l=1

α
(u)
t (l)p

(n)
lj

]

q
(n)
j (Yt+1)

Procedure: 12.3 Computing the Backward Variable for Fitting an HMM

β
(u)
N(u)(j) = 1

β
(u)
t (j) = βt+1(j)

(

S
∑

l=1

[

q
(n)
l (Y

(u)
t+1)p

(n)
lj

]

)

Section 12.3 You should 292

Procedure: 12.4 Updating Parameters for Fitting an HMM

π̂i
(n+1) =

∑R
u=1 ξ

(u)
1 (i)

R

P̂(n+1)
ij =

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)ξ

(u)
t+1(i)

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)

q̂j(k)
(n+1) =

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)δ(Y

(u)
t , yk)

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)

where δ(u, v) is one if its arguments are equal and zero otherwise.

12.3 YOU SHOULD

12.3.1 remember these definitions:

12.3.2 remember these terms:

emission distribution . 280
hidden Markov model . 280
phonemes . 281
trellis . 282
dynamic programming . 282
Viterbi algorithm . 282
cost to go function . 284
forward variable . 289
backward variable . 289

12.3.3 remember these facts:

12.3.4 be able to:

• Set up a simple HMM and use it to solve problems.

• Learn a simple HMM from data

C H A P T E R 13

Discriminative Learning for Sequence
Models

13.1 GRAPHICAL MODELS

We now adopt a convention that allows us to draw some kinds of model as a
graph. Assume we have a probability distribution over a collection of R variables,
U1, . . . UR. Now consider the probability distribution P (U1, . . . , UR). We assume
that this distribution can be factored into a set of terms where each term depends
on some pair of variables. This means that there are some functions φ so that

− logP (U1, . . . , UR) =
∑

(i,j)∈pairs

φ(Ui, Uj) +K

whereK is the log of the normalizing constant, and is of no interest to us at present.
A model of this form can be drawn as a graph. One draws a vertex for each variable,
and an edge for each φ. It is usual to draw a circle for vertices, rather than a dot
(this comes in useful in the next paragraph). These models are known as graphical
models.

Notice that an HMM has this form. The variables are the hidden and the
observed states in the HMM. We will fill the circle if the variable’s value is ob-
served, and add arrowheads to the edges in this graph according to the following
rule. If φ(Ui, Uj) = − logP (Ui|Uj) + C, then we add an arrowhead from the node
representing Uj to the node representing Ui (the arrow points toward the variable
that is “generated”). This yields a drawing of an HMM as Figure 13.1.

The advantage of drawing models this way is that it exposes what is important
in inference. There are no proofs here (though if you’ve done a good algorithms
course you could likely fill in the details) but we will encounter this point here
and in chapter ??. The drawing helps understand why inference in an HMM is
efficient. I showed how dynamic programming could be used both by reasoning
about trellises and by reasoning about recursion. I demonstrated this in the context
of a probabilistic model that factored in a particular way. We had

P (Y1, Y2, . . . , YN , X1, X2, . . . , XN) = P (X1)P (Y1|X1)

P (X2|X1)P (Y2|X2)

. . .

P (XN |XN−1)P (YN |XN).

293

Section 13.1 Graphical Models 294

X

Y1

1 X

Y2

2
X

YN

N
...

FIGURE 13.1: An HMM is an example of a graphical model. The joint probability
distribution of the hidden variables Xi and the observations Yi factors as in the
text. Each variable appears as a vertex. There is an edge between pairs of variables
that appear in the factorization. These edges have an arrowhead drawn according to
conventions about conditional probability. Finally, the observed values are shaded.

so that

− logP (Y1, Y2, . . . , YN , X1, X2, . . . , XN) = − logP (X1)− logP (Y1|X1)−
logP (X2|X1)− logP (Y2|X2)−
. . .

logP (XN |XN−1)− logP (YN |XN).

For the trellis reasoning, I drew a trellis representing the sequence, then transferred
the log probabilities as costs to the nodes and edges. We used dynamic program-
ming to find the directed path through the trellis with the largest sum of costs.
Nothing in the reasoning about dynamic programming required the costs to actu-
ally be log probabilities. You should revisit chapter 287 to check this point. All
that matters is that one can recursively update costs.

Now assume we have a graphical model. We partition the U variables into two
groups. The Xi are unknown and we need to recover them by inference, and the
Yj are known. In turn, this means that some of the phi become constants because
both arguments are fixed; these are of no interest, and we can drop them from the
drawing. Others of the φ become effectively functions of a single argument, because
the value of the other argument is known and fixed. It is usual to keep these edges
in the drawing, but shade the known argument. In turn, inference involves solving
for the values of a set of discrete variables to minimize the value of an objective
function f(X1, . . . , Xn).

This objective function is a sum of two kinds of term. There are unary terms

or vertex terms which are functions that take one argument, and which we write
V (Xi). These are the φ for which we know the value of one argument. Notice that
the variable identifies which vertex function we are talking about; the convention
follows probability notation. There are binary terms or edge terms which are
functions that take two arguments, and which we write E(Xi, Xj), using the same
convention. For example, in the case of the HMM, the variables would be the

Section 13.1 Graphical Models 295

hidden states, the unary terms would be the negative logs of emission probabilities,
and binary terms would be the negative logs of transition probabilities.

13.1.1 Graphical Models that allow Easy Inference

It is helpful to represent a probability model as a graph if you can, because doing so
gives some insight into how easy or hard inference will be. We know that inference
for an HMM is easy (i.e. can be done in polynomial time). It turns out that, if the
graph for the probability model is a forest, then inference will be easy. I will sketch
this point here.

Start with a graphical model where the graph is a chain graph. A chain
graph looks like a chain (hence the name), and is the graph that arises from an
HMM (Figure 287; remember that the shaded nodes correspond to known values,
and produce the vertex functions). The objective function for inference is then

f(X1, . . . , Xn) =

i=n
∑

i=1

V (Xi) +

i=n−1
∑

i=1

E(Xi, Xi+1)

and we wish to minimize this function. This is actually a family of functions (one
function for each n), but it is clear which one is intended, because you just have
to count the arguments. Now we define a new function, the cost-to-go function,
with a recursive definition. Write

f
(n−1)

cost-to-go(Xn−1) = min
Xn

E(Xn−1, Xn) + V (Xn).

This function represents the effect of a choice of value for Xn−1 on the terms that
involve Xn, where one chooses the best possible choice of Xn. This means that

min
X1, . . . , Xn

f(X1, . . . , Xn)

is equal to

min
X1, . . . , Xn−1

(

f(X1, . . . , Xn−1) + f
(n−1)

cost-to-go(Xn−1)
)

,

which means that we can eliminate the nth variable from the optimization by
replacing the term E(Xn−1, Xn) + V (Xn) with a function of Xn−1. This function
is obtained by minimizing this term with respect to Xn. Equivalently, assume
we must choose a value for Xn−1. The cost-to-go function tells us the value of
E(Xn−1, Xn) + V (Xn) obtained by making the best choice of Xn conditioned on
our choice of Xn−1. Because any other choice would not lead to a minimum, if
we know the cost-to-go function at Xn−1, we can now compute the best choice of
Xn−1 conditioned on our choice of Xn−2. This yields that

min
Xn−1,Xn

[E(Xn−2, Xn−1) + V (Xn − 1) + E(Xn−1, Xn) + V (Xn)]

is equal to

min
Xn−1

[

E(Xn−2, Xn−1) + V (Xn − 1) +

(

min
Xn

E(Xn−1, Xn) + V (Xn)

)]

.

Section 13.1 Graphical Models 296

But all this can go on recursively, yielding

f
(k)

cost-to-go(Xk) = min
Xk+1

E(Xk, Xk+1) + V (Xk) + f
(k+1)

cost-to-go(Xk+1).

This is basically what we did with a trellis in Section 12.1.2. Notice that

min
X1, . . . , Xn

f(X1, . . . , Xn)

is equal to

min
X1, . . . , Xn−1

(

f(X1, . . . , Xn−1) + f
(n−1)

cost-to-go(Xn−1)
)

which is equal to

min
X1, . . . , Xn−2

(

f(X1, . . . , Xn−2) + f
(n−2)

cost-to-go(Xn−2)
)

,

and we can apply the recursive definition of the cost-to-go function to get

min
X1, . . . , Xn

f(X1, . . . , Xn) =
min
X1

(

f(X1) + f1
cost-to-go(X1)

)

,

which yields an extremely powerful maximization strategy. We start at Xn, and

construct f
(n−1)

cost-to-go(Xn−1). We can represent this function as a table, giving the

value of the cost-to-go function for each possible value of Xn−1. We build a second
table giving the optimum Xn for each possible value of Xn−1. From this, we can

build f
(n−2)

cost-to-go(Xn−2), again as a table, and also the best Xn−1 as a function of

Xn−2, again as a table, and so on. Now we arrive at X1. We obtain the solution for

X1 by choosing the X1 that yields the best value of
(

fchain(X1) + f1
cost-to-go(X1)

)

.

But from this solution, we can obtain the solution for X2 by looking in the table
that gives the best X2 as a function of X1; and so on. It should be clear that this
process yields a solution in polynomial time; in the exercises, you will show that, if
each Xi can take one of k values, then the time is O(nK2).

This strategy will work for a model with the structure of a forest. The proof
is an easy induction. If the forest has no edges (i.e., consists entirely of nodes),
then it is obvious that a simple strategy applies (choose the best value for each Xi

independently). This is clearly polynomial. Now assume that the algorithm yields
a result in polynomial time for a forest with e edges, and show that it works for a
forest with e+1 edges. There are two cases. The new edge could link two existing
trees, in which case we could re-order the trees so the nodes that are linked are
roots, construct a cost-to-go function for each root, and then choose the best pair of
states for these roots from the cost-to-go functions. Otherwise, one tree had a new
edge added, joining the tree to an isolated node. In this case, we reorder the tree
so that this new node is the root and build a cost-to-go function from the leaves to
the root. Passing from one tree to a forest is straightforward, as you can do each
tree separately. The fact that the algorithm works is a combinatorial insight. In

Section 13.2 Conditional Random Field Models for Sequences 297

section 287, we will see graphical models that do not admit easy inference because
their graph is not a forest. In those cases, we will need to use approximation
strategies for inference.

When easy inference is available, there is a natural and important learning
strategy which is very different from using EM. Assume we have a collection of
example sequences of observations (write Y(u) for the u’th such sequence) and of
hidden states (write X(u) for the u’th such sequence). We construct a family of cost
functions C(X,Y ; θ) parametrized by θ. We then choose the θ so that inference
applied to the cost function yields the right answer. So we want to choose θ so that

argmin
X

C(Y(u),X; θ)

is X(u) or “close to” it. The details require quite a lot of work, which we do
below. What is important now is that this strategy applies to any model where
easy inference is available. This means we can generalize quite significantly from
HMM’s, which is the next step.

13.2 CONDITIONAL RANDOM FIELD MODELS FOR SEQUENCES

HMM models have been widely used, but have one odd feature that is inconsis-
tent with practical experience. Recall Xi are the hidden variables, and Yi are the
observations. HMM’s model

P (Y1, . . . , Yn|X1, . . . , Xn) ∝ P (Y1, . . . , Yn, X1, . . . , Xn),

which is the probability of observations given the hidden variables. This is modelled
using the factorization

P (Y1, Y2, . . . , YN , X1, X2, . . . , XN) = P (X1)P (Y1|X1)

P (X2|X1)P (Y2|X2)

. . .

P (XN |XN−1)P (YN |XN).

In much of what we will do, this seems unnatural. For example, in the case of
reading written text, we would be modelling the probability of the observed ink
given the original text. But we would not attempt to find a single character by
modelling the probability of the observed ink given the character (I will call this a
generative strategy). Instead, we would search using a classifier, which is a model
of the probability of the character conditioned on the observed ink (I will call this
a discriminative strategy). The two strategies are quite different in practice. A
generative strategy would need to explain all possible variants of the ink that a
character could produce, but a discriminative strategy just needs to judge whether
the ink observed is the character or not.

Section 13.2 Conditional Random Field Models for Sequences 298

13.2.1 MEMM’s and Label Bias

One alternative would be to look for a model that factors in a different way. For
example, we could consider

P (X1, X2, . . . , XN |Y1, Y2, . . . , YN) = P (X1|Y1)×
P (X2|Y2, X1)×
P (X3|X2, Y2)×
. . .×

P (XN |XN−1, YN).

This means that

− logP (X1, X2, . . . , XN |Y1, Y2, . . . , YN) = − logP (X1|Y1)

− logP (X2|Y2, X1)

− logP (X3|X2, Y2)

. . .

− logP (XN |XN−1, YN).

This is still a set of edge and vertex functions, but notice there is only one vertex
function (− logP (X1|Y1)). All the remaining terms are edge functions. Models of
this form are known as maximum entropy markov models or MEMM’s.

These models are deprecated. You should not use one without a special jus-
tification. Rather than just ignoring these models, I have decribed them because
the reason they are deprecated is worth understanding. These models very often
ignore measurements, as a result of their structure. To see this, assume we have
fitted a model, and wish to recover the best sequence of Xi corresponding to a given
sequence of observations Yi. We must minimize

− logP (X1, X2, . . . , XN |Y1, Y2, . . . , YN) = − logP (X1|Y1)

− logP (X2|Y2, X1)

− logP (X3|X2, Y2)

. . .

− logP (XN |XN−1, YN).

by choice of X1, . . . , XN . We can represent this cost function on a trellis, as for the
HMM, but now notice that the costs on the trellis behave differently. For an HMM,
each state (circle) in a trellis had a cost, corresponding to − logP (Yi|Xi), and each
edge had a cost (− logP (Xi+1|Xi)), and the cost of a particular sequence was the
sum of the costs along the implied path. But for an MEMM, the representation is
slightly different. There is no term associated with each state in the trellis; instead,
we associate the edge going from the state Xi = U to the state Xi+1 = V with
the cost − logP (Xi+1 = V |Xi = U, Yi). Again, the cost of a sequence of states is
represented by the sum of costs along the corresponding path. This may look to
you like a subtle change, but it has nasty effects.

Look at the example of Figure 13.2. Notice that when the model is in state
1, it can only transition to state 2. In turn, this means that − logP (Xi+1 =

Section 13.2 Conditional Random Field Models for Sequences 299

1 2

34 1

2

3

1

2

3

1

2

3

4 4 4

FIGURE 13.2:

2|Xi = 1, Yi) = 0 whatever the measurement Yi is. Furthermore, either P (Xi+1 =
3|Xi = 2, Yi) ≥ 0.5 or P (Xi+1 = 1|Xi = 2, Yi) ≥ 0.5 (because there are only two
options leaving state 2). Here the measurement can determine which of the two
options has higher probability. That figure shows a trellis corresponding to three
measurements. In this trellis, the path 2 1 4 will be the lowest cost path unless the
first measurement overwhelmingly disfavors the transition 2 → 1. This is because
most other paths must share weights between many outgoing edges; but 1 → 4 is
very cheap, and 2 → 1 will be cheap unless there is an unusual measurement. Paths
which pass through many states with few outgoing edges are strongly favored. This
is known as the label bias problem. There are some fixes that can be applied,
but it is better to reengineer the model.

13.2.2 Conditional Random Field Models

We want a model of sequences that is discriminative, but doesn’t have the label bias
problem. We’d also like that model to be as tractable as an HMM for sequences.
We can achieve this by ensuring that the graphical representation of the model is a
chain graph. We’d like the resulting model to be discriminative in form — i.e. we
should be able to interpret the vertex functions as − logP (Xi|Yi) — but we don’t
want an MEMM.

We start with the cost functions. Write Ei(a, b) for the cost of the edge
from Xi = a to Xi+1 = b, and write Vi(a) for the cost of assigning Xi = a. We
will use Vi(a) = − logP (Xi = a|Yi) as a vertex cost function. We will assume
that Ei(a, b) and Vi(a) are bounded (straightforward, because the variables are all
discrete anyhow), but we will not apply any direct probabilistic interpretation to

Section 13.3 Discriminative Learning of CRFs 300

this function. Instead, we interpret the whole model as

− logP (X1 = x1, X2 = x2, . . . , XN = xn|Y1, Y2, . . . , YN) = [V1(x1) + E1(x1, x2) + V2(x2) + E2(x2, x3) + . . . VN (

where K is the log of the normalizing constant, chosen to ensure the probability
distribution sums to 1. There is a crucial difference with the MEMM; there are
now node as well as edge costs but we can’t interpret the edge costs as transition
probabilities. A model with this structure is known as a conditional random

field.
Notice the minus sign. This means that the best sequence has the smallest

value of








V1(x1) + E1(x1, x2)+
V2(x2) + E2(x2, x3)+
. . .
VN (xn)









,

and we can think of this expression as a cost. Inference is straightforward by
dynamic programming, as above, if we have known Ei and Vi terms.

What is much more interesting is learning a CRF. We don’t have a proba-
bilistic interpretation of Ei, so we can’t reconstruct an appropriate table of values
by (say) counting. There must be some set of parameters, θ that we are trying to
adjust. However, we need some principle to drive the choice of θ. We can’t simply
collect some observations Yi, then choose θ to maximize

P (Y1, . . . , YN , |θ)
because we don’t know P (Y1, . . . , YN , |θ). Instead, our model encodes P (X |Y). To
use Bayes rule, we’d need to know P (Y), which brings us back where we started.
Rather than wrestle with this issue, we restate the problem.

13.3 DISCRIMINATIVE LEARNING OF CRFS

A really powerful strategy for learning a CRF follows by obtaining both the obser-
vations and the state for a set of example sequences. Different sequences in this

set might have different lengths; this doesn’t matter. Now write Y
(k)
i for the i’th

element of the k’th sequence of observations, etc. For any set of parameters, we
can recover a solution from the observations using dynamic programming (write

Inference(Y1, . . . , Y
(k)
N , θ) for this). Now we will choose a set of parameters θ̂ so

that
Inference(Y

(k)
1 , . . . , Y

(k)
N , θ̂) is close to X

(k)
1 . . .X

(k)
N .

In words, the principle is this: Choose parameters so that, if you infer a sequence
of hidden states from a set of training observations, you will get the hidden states
that are (about) the same as those observed.

13.3.1 Representing the Model

We need a parametric representation of Vi and Ei; we’ll then search for the param-
eters that yield the right model. For the V , we will assume that Vi and Vj differ

Section 13.3 Discriminative Learning of CRFs 301

only if Yi 6= Yj . We then construct a set of functions φ
(v)
j (X,Y), and a vector of

parameters θ
(v)
j . Finally, we choose V to be a weighted sum of these basis func-

tions, so that Vi(x) =
∑

j θ
(v)
j φ

(v)
j (x, Yi). Similarly, for Ei we will construct a set

of functions φ
(v)
j (U, V), and have Ei(U, V) =

∑

j θ
(v)
j φ

(v)
j (U, V).

I give some sample constructions below, but you may find them somewhat
involved at first glance. What is important is that (a) we have some parameters θ
so that, for different choices of parameter, we get different cost functions; and (b)

for any choice of parameters (say θ̂) and any sequence of Yi we can label each vertex
and each edge on the trellis with a number representing the cost of that vertex or
edge. Assume we have these properties. Then for any particular θ̂ we can construct
the best sequence of Xi using dynamic programming (as above). Furthermore, we

can try to adjust the choice of θ̂ so that for the i’th training sequence, y(i), inference
yields x(i) or something close by.

Worked example 13.1 Constructing V for sequences of digits

Construct φ
(v)
j (X,Y) for sequences of digits, assuming that the observations

are inked numerals (like MNIST), and that they appear in a window of fixed
size (like MNIST).

Solution: There are a variety of possible approaches. Here are three.

• Multinomial logistic regression works quite well on MNIST using just
the pixel values as features. This means that you can compute 10 linear
functions of the pixel values (one for each numeral) such that the linear
function corresponding to the right numeral is smaller than any other of

the functions, at least most of the time. Each of these functions is a φ
(v)
j .

• For each possible numeral x and each pixel location p build a feature
function φ(X,Y) = I[X=x]I[Y (p)=0]. This is 1 ifX = x (i.e. for a particular
numeral, x) and the ink at pixel location p is dark, and otherwise zero.
We index these feature functions in any way that seems convenient to get

φ
(v)
j .

• For each class x, we will build several different classifiers each of which
can tell that class from all the others. We obtain different classifiers by
using different training sets; or different features; or different classifier
architectures; or all of these. Write gi,x(Y) for the i’th classifier for class
x. We ensure that gi,x(Y) is small if Y is of class x, and large otherwise.
Then for each classifier and each class we can build a feature function by
φ(v)(X,Y) = gi,X(Y). We index these feature functions in any way that
seems convenient.

Building E: We must now build Ei(a, b). There are several possibilities. I
will use U and V as dummy variables; each could take the value of any state. I will

Section 13.3 Discriminative Learning of CRFs 302

assume the states are labelled with counting numbers, without any loss of generality,
and will write a, b for particular values of the state. One simple construction is

to build a set of feature functions φ
(e)
ab (U, V) = I[U=a]I[V=b]. There is one feature

function for each possible pair of states, so if there are S possible states, there will
be S2 of these feature functions. Each one takes the value 1 when U and V take
the corresponding state values, otherwise is 0. Now we construct a vector of S2

parameters θ
(e)
ab , and construct E(U, V) =

∑

a,b θ
(e)
ab φ

(e)
ab (U, V). This construction

will allow us to represent any possible cost for any transitions, as long as this doesn’t
depend on the observations.

We can build a set of feature functions that depend on the observed states,

which I will write φ
(e)
ab (U, V ;Yi, Yi+1). The construction would depend on the appli-

cation. For example, in the case of reading numerals, we could build a collection of
classifiers that look at the ink corresponding to a pair of numerals together. Write
gj,ab(Yi, Yi+1) for these classifiers. Here j is an index that identifies the partic-
ular classifier. We require that gj,ab(Yi, Yi+1) give a small response for examples
where Yi is the ink for numeral a and Yi+1 is the ink for numeral b; otherwise, the

response should be large. Then we construct a vector of parameters θ
(e)
j , and con-

struct E(U, V) =
∑

j θ
(e)
j gj,UV (Yi, Yi+1). This yields a function that is small when

the ink is consistent with the two states in the argument, and large otherwise.
General notation: We now have a model of the cost. I will write sequences

like vectors, so x is a sequence, and xi is the i’th element of that sequence. Write
C(x;y, θ) for the cost of a sequence x of hidden variables, conditioned on observed
values y and parameters θ. I’m suppressing the number of items in this sequence
for conciseness, but will use N if I need to represent it. We have

C(x;y, θ) =

N
∑

i=1





∑

j

θ
(v)
j φ

(v)
j (xi, yi)



+

N−1
∑

i=1

[(

∑

l

θ
(e)
l φ

(e)
l (xi, xi+1)

)]

.

Notice that this cost function is linear in θ. We will use this to build a search for
the best setting of θ.

13.3.2 Setting Up the Learning Problem

I will write x(i) for the i’th training sequence of hidden states, and y(i) for the i’th

training sequence of observations. I will write x
(i)
j for the hidden state at step j

in the i’th training sequence, etc. The general principle we will adopt is that we
should train a model by choosing θ such that, if we apply inference to y(i), we will
recover x(i) (or something very similar).

For any sequence x, we would like to have C(x(i);y(i), θ) ≤ C(x;y(i), θ).
This inequality is much more general than it seems, because it covers any available
sequence. Assume we engage in inference on the model represented by θ, using y(i)

as observed variables. Write x+,i for the sequence recovered by inference, so that

x+,i =
argmin

x
C(x;y(i), θ)

(i.e. x+,i is the sequence recovered from the model by inference if the parameters

Section 13.3 Discriminative Learning of CRFs 303

take the value θ). In turn, the inequality means that

C(x(i);y(i), θ) ≤ C(x+,i;y(i), θ).

It turns out that this is not good enough; we would also like the cost of solutions
that are further from the true solution to be higher. So we want to ensure that the
cost of a solution grows at least as fast as its distance from the true solution. Write
d(u,v) for some appropriate distance between two sequences u and v. We want to
have

C(x(i);y(i), θ) + d(x,x(i)) ≤ C(x;y(i), θ).

Again, we want this inequality to be true for any sequence x. This means that

C(x(i);y(i), θ) ≤ C(x;y(i), θ)− d(x,x(i))

for any x. Now write

x(∗,i) =
argmin

x
C(x;y(i), θ)− d(x,x(i)).

The inequality becomes

C(x(i);y(i), θ) ≤ C(x(∗,i);y(i), θ)− d(x(∗,i),x(i)).

This constraint is likely to be violated in practice. Assume that

ξi = max(C(x(i);y(i), θ)− C(x(∗,i);y(i), θ) + d(x(∗,i),x(i)), 0)

so that xii measures the extent to which the constraint is violated. We would like
to choose θ so that we have the smallest possible set of constraint violations. It is
natural to want to minimize the sum of ξi over all training data. But we also want
to ensure that θ is not “too large”, for the same reasons we regularized a support
vector machine. Choose a regularization constant λ. Then we want to choose θ to
minimize the regularized cost

∑

i∈examples

ξi + λθT θ

where ξi is defined as above. This problem is considerably harder than it might
look, because each ξi is a (rather strange) function of θ.

13.3.3 Evaluating the Gradient

We will solve the learning problem by stochastic gradient descent, as usual. First,
we obtain an initial value of θ. Then we repeatedly choosing a minibatch of exam-
ples at random, evaluate the gradient for that minibatch, update the estimate of θ,
and go again. There is the usual nuisance of choosing a steplength, etc. which is
handled in the usual way. The important question is evaluating the gradient.

Imagine we have chosen the u’th example. We must evaluate ∇θξu. Recall

ξu = max(C(x(u);y(u), θ)− C(x(∗,u);y(u), θ) + d(x(∗,u),x(u)), 0)

Section 13.3 Discriminative Learning of CRFs 304

and assume that we know x(∗,u). We will ignore the concern that ξu may not be
differentiable in θ as a result of the max. If ξu = 0, we will say the gradient is zero.
For the other case, recall that

C(x;y, θ) =

N
∑

i=1





∑

j

θ
(v)
j φ

(v)
j (xi, yi)



+

N−1
∑

i=1

[(

∑

l

θ
(e)
l φ

(e)
l (xi, xi+1)

)]

and that this cost function is linear in θ. The distance term d(x(∗,u),x(u)) doesn’t
depend on θ, so doesn’t contribute to the gradient. So if we know x∗,i, the gradient
is straightforward because C is linear in θ.

To be more explicit, we have

∂C

∂θ
(v)
j

=

N
∑

i=1

[

φ
(v)
j (x

(u)
i , y

(u)
i)− φ

(v)
j (x

(∗,u)
i , y

(u)
i)
]

and

∂C

∂θ
(e)
l

=
N−1
∑

i=1

[

φ
(e)
l (x

(u)
i , x

(u)
i+1)− φ

(e)
l (x

(∗,u)
i , x

(∗,u)
i+1)

]

.

The problem is that we don’t know x(∗,u) because it could change each time
we change θ. Recall

x(∗,u) =
argmin

x
C(x;y(u), θ)− d(x,x(u)).

So, to compute the gradient, we must first run an inference on the example to
obtain x(∗,u). But this inference could be hard, depending on the form of

C(x;y(u), θ)− d(x,x(u))

(which is often known as the loss augmented constraint violation). We would
like to choose d(x,x(u)) so that we get a distance that doesn’t make the inference
harder. One good, widely used example is the Hamming distance.

The Hamming distance between two sequences is the number of locations in
which they disagree. Write diff(m,n) = 1− I[m=n](m,n) for a function that returns
zero if its arguments are the same, and one otherwise. Then we can express the
Hamming distance as

dh(x,x
(u)) =

∑

k

diff(xk, x
(u)
k).

We could scale the Hamming distance, to express how quickly we expect the cost
to grow. So we will choose a non-negative number ǫ, and write

d(x,x(u)) = ǫdh(x,x
(u)).

The expression for Hamming distance is useful, because it allows us to represent
the distance term on a trellis. In particular, think about the trellis corresponding
to the u’th example. Then to represent the cost

C(x;y(u), θ)− d(x,x(u))

Section 13.3 Discriminative Learning of CRFs 305

we adjust the node costs on each column. For the k’th column, we subtract ǫ from
each of the node costs except the one corresponding to the k’th term in x(u). Then
the sum of edge and node terms along any path will correspond to C(x;y(u), θ) −
d(x,x(u)). In turn, this means we can construct x(∗,u) by dynamic programming
to this offset trellis.

Now we can compute the gradient for any example, so learning is (conceptu-
ally) straightforward. In practice, computing the gradient at any example involves
finding the best sequence predicted by the loss augmented constraint violation, then
using this to compute the gradient. Every gradient evaluation involves a round of
inference, making the method slow.

Section 13.4 You should 306

13.4 YOU SHOULD

13.4.1 remember these definitions:

13.4.2 remember these terms:

graphical models . 293
unary terms . 294
vertex terms . 294
binary terms . 294
edge terms . 294
chain graph . 295
cost-to-go function . 295
generative . 297
discriminative . 297
maximum entropy markov models 298
MEMM . 298
label bias problem . 299
conditional random field . 300
loss augmented constraint violation 304
Hamming distance . 304

13.4.3 remember these facts:

13.4.4 remember these procedures:

C H A P T E R 14

Mean Field Inference

Bayesian inference is an important and useful tool, but it comes with a serious
practical problem. It will help to have some notation. Write X for a set of observed
values, H for the unknown (hidden) values of interest, and recall Bayes’ rule has

P (H |X) =
P (X |H)P (H)

P (X)
=

Likelihood× Prior

Normalizing constant
.

The problem is that it is usually very difficult to form posterior distributions,
because the normalizing constant is hard to evaluate for almost every model. This
point is easily dodged in first courses. For MAP inference, we can ignore the
normalizing constant. A careful choice of problem and of conjugate prior can make
things look easy (or, at least, hide the real difficulty). But most of the time we
cannot compute

P (X) =

∫

P (X |H)P (H)dX.

Either the integral is too hard, or – in the case of discrete models – the marginal-
ization requires an unmanageable sum. In such cases, we must approximate.

Warning: The topics of this chapter allow a great deal of room for mathe-
matical finicking, which I shall try to avoid. Generally, when I define something
I’m going to leave out the information that it’s only meaningful under some cir-
cumstances, etc. None of the background detail I’m eliding is difficult or significant
for anything we do. Those who enjoy this sort of thing can supply the ifs ands and
buts without trouble; those who don’t won’t miss them. I will usually just write
an integral sign for marginalization, and I’ll assume that, when the variables are
discrete, everyone’s willing to replace with a sum.

14.1 USEFUL BUT INTRACTABLE EXAMPLES

14.1.1 Boltzmann Machines

Here is a formal model we can use. A Boltzmann machine is a distribution model
for a set of binary random variables. Assume we have N binary random variables
Ui, which take the values 1 or −1. The values of these random variables are not
observed (the true values of the pixels). These binary random variables are not
independent. Instead, we will assume that some (but not all) pairs are coupled.
We could draw this situation as a graph (Figure 14.1), where each node represents
a Ui and each edge represents a coupling. The edges are weighted, so the coupling
strengths vary from edge to edge.

Write N (i) for the set of random variables whose values are coupled to that

307

Section 14.1 Useful but Intractable Examples 308

FIGURE 14.1: On the left, a simple Boltzmann machine. Each Ui has two possible
states, so the whole thing has 16 states. Different choices of the constants coupling
the U ’s along each edge lead to different probability distributions. On the right,
this Boltzmann machine adapted to denoising binary images. The shaded nodes
represent the known pixel values (Xi in the text) and the open nodes represent the
(unknown, and to be inferred) true pixel values Hi. Notice that pixels depend on
their neighbors in the grid.

of i – these are the neighbors of i in the graph. The joint probability model is

logP (U |θ) =





∑

i

∑

j∈N (i)

θijUiUj



− logZ(θ) = −E(U |θ)− logZ(θ).

Now UiUj is 1 when Ui and Uj agree, and −1 otherwise (this is why we chose Ui

to take values 1 or −1). The θij are the edge weights; notice if θij > 0, the model
generally prefers Ui and Uj to agree (as in, it will assign higher probability to states
where they agree, unless other variables intervene), and if θij < 0, the model prefers
they disagree.

Here E(U |θ) is sometimes referred to as the energy (notice the sign - higher
energy corresponds to lower probability) and Z(θ) ensures that the model normal-
izes to 1, so that

Z(θ) =
Σ

all values of U
[exp (−E(U |θ))] .

14.1.2 Denoising Binary Images with Boltzmann Machines

Here is a simple model for a binary image that has been corrupted by noise. At
each pixel, we observe the corrupted value, which is binary. Hidden from us are the
true values of each pixel. The observed value at each pixel is random, but depends
only on the true value. This means that, for example, the value at a pixel can
change, but the noise doesn’t cause blocks of pixels to, say, shift left. This is a
fairly good model for many kinds of transmission noise, scanning noise, and so on.
The true value at each pixel is affected by the true value at each of its neighbors –
a reasonable model, as image pixels tend to agree with their neighbors.

Section 14.1 Useful but Intractable Examples 309

We can apply a Boltzmann machine. We split the U into two groups. One
group represents the observed value at each pixel (I will use Xi, and the convention
that i chooses the pixel), and the other represents the hidden value at each pixel
(I will use Hi). Each observation is either 1 or −1. We arrange the graph so that
the edges between the Hi form a grid, and there is a link between each Xi and its
corresponding Hi (but no other - see Figure 14.1).

Assume we know good values for θ. We have

P (H |X, θ) =
exp(−E(H,X|θ))/Z(θ)

ΣH [exp(−E(H,X|θ))/Z(θ)]
=

exp (−E(H,X |θ))
ΣH exp (−E(H,X |θ))

so posterior inference doesn’t require evaluating the normalizing constant. This
isn’t really good news. Posterior inference still requires a sum over an exponential
number of values. Unless the underlying graph is special (a tree or a forest) or very
small, posterior inference is intractable.

14.1.3 MAP Inference for Boltzmann Machines is Hard

You might think that focusing on MAP inference will solve this problem. Recall
that MAP inference seeks the values of H to maximize P (H |X, θ) or equivalently,
maximizing the log of this function. We seek

argmax
H

logP (H |X, θ) = (−E(H,X |θ))− log [ΣH exp (−E(H,X |θ))]

but the second term is not a function of H , so we could avoid the intractable
sum. This doesn’t mean the problem is tractable. Some pencil and paper work
will establish that there is some set of constants aij and bj so that the solution is
obtained by solving

argmax
H

(

∑

ij aijhihj

)

+
∑

j bjhj

subject to hi ∈ {−1, 1}
.

This is a combinatorial optimization problem with considerable potential for un-
pleasantness. How nasty it is depends on some details of the aij , but with the right
choice of weights aij , the problem is max-cut, which is NP-complete.

14.1.4 A Discrete Markov Random Field

Boltzmann machines are a simple version of a much more complex device widely
used in computer vision and other applications. In a Boltzmann machine, we took
a graph and associated a binary random variable with each node and a coupling
weight with each edge. This produced a probability distribution. We obtain a
Markov random field by placing a random variable (doesn’t have to be binary,
or even discrete) at each node, and a coupling function (almost anything works)
at each edge. Write Ui for the random variable at the i’th node, and θ(Ui, Uj) for
the coupling function associated with the edge from i to j (the arguments tell you
which function; you can have different functions on different edges).

Section 14.1 Useful but Intractable Examples 310

We will ignore the possibility that the random variables are continuous. A
discrete Markov random field has all Ui discrete random variables with a finite
set of possible values. Write Ui for the random variable at each node, and θ(Ui, Uj)
for the coupling function associated with the edge from i to j (the arguments tell
you which function; you can have different functions on different edges). For a
discrete Markov random field, we have

logP (U |θ) =





∑

i

∑

j∈N (i)

θ(Ui, Uj)



− logZ(θ).

It is usual – and a good idea – to think about the random variables as indicator
functions, rather than values. So, for example, if there were three possible values
at node i, we represent Ui with a 3D vector containing one indicator function for
each value. One of the components must be one, and the other two must be zero.
Vectors like this are sometimes know as one-hot vectors. The advantage of this
representation is that it helps keep track of the fact that the values that each
random variable can take are not really to the point; it’s the interaction between
assignments that matters. Another advantage is that we can easily keep track of
the parameters that matter. I will adopt this convention in what follows.

I will write ui for the random variable at location i represented as a vector.
All but one of the components of this vector are zero, and the remaining component
is 1. If there are #(Ui) possible values for Ui and #(Uj) possible values for Uj , we
can represent θ(Ui, Uj) as a #(Ui) × #(Uj) table of values. I will write Θ(ij) for

the table representing θ(Ui, Uj), and θ
(ij)
mn for the m, n’th entry of that table. This

entry is the value of θ(Ui, Uj) when Ui takes its m’th value and Uj takes its n’th

value. I write Θ(ij) for a matrix whose m, n’th component is θ
(ij)
mn . In this notation,

I write
θ(Ui, Uj) = uT

i Θ
(ij)uj .

All this does not simplify computation of the normalizing constant. We have

Z(θ) =
Σ

all values of u



exp





∑

i

∑

j∈N (i)

uT
i Θ

(ij)uj







 .

Note that the collection of all values of u has rather nasty structure, and is very
big – it consists of all possible one-hot vectors representing each U .

14.1.5 Denoising and Segmenting with Discrete MRF’s

A simple denoising model for images that aren’t binary is just like the binary
denoising model. We now use a discrete MRF. We split the U into two groups, H
and X . We observe a noisy image (the X values) and we wish to reconstruct the
true pixel values (the H). For example, if we are dealing with grey level images
with 256 different possible grey values at each pixel, then each H has 256 possible
values. The graph is a grid for the H and one link from an X to the corresponding
H (like Figure 14.1). Now we think about P (H |X, θ). As you would expect, the
model is intractable – the normalizing constant can’t be computed.

Section 14.1 Useful but Intractable Examples 311

Worked example 14.1 A simple discrete MRF for image denoising.

Set up an MRF for grey level image denoising.

Solution: Construct a graph that is a grid. The grid represents the true value
of each pixel, which we expect to be unknown. Now add an extra node for each
grid element, and connect that node to the grid element. These nodes represent
the observed value at each pixel. As before, we will separate the variables U
into two sets, X for observed values and H for hidden values (Figure 14.1). In
most grey level images, pixels take one of 256 (= 28) values. For the moment,
we work with a grey level image, so each variable takes one of 256 values. There
is no reason to believe that any one pixel behaves differently from any other
pixel, so we expect the θ(Hi, Hj) not to depend on the pixel location; there’ll
be one copy of the same function at each grid edge. By far the most usual case
has

θ(Hi, Hj) =

[

0 if Hi = Hj

c otherwise

where c > 0. Representing this function using one-hot vectors is straightfor-
ward. There is no reason to believe that the relationship between observed and
hidden values depends on the pixel location. However, large differences between
observed and hidden values should be more expensive than small differences.
Write Xj for the observed value at node j, where j is the observed value node
corresponding to Hi. We usually have

θ(Hi, Xj) = (Hi −Xj)
2.

If we think of Hi as an indicator function, then this function can be represented
as a vector of values; one of these values is picked out by the indicator. Notice
there is a different vector at each Hi node (because there may be a different
Xi at each).

Now write hi for the hidden variable at location i represented as a vector, etc.
Remember, all but one of the components of this vector are zero, and the remaining
component is 1. The one-hot vector representing an observed value at location i is

xi. I write Θ(ij) for a matrix who’s m, n’th component is θ
(ij)
mn . In this notation, I

write
θ(Hi, Hj) = hT

i Θ
(ij)hj

and
θ(Hi, Xj) = hT

i Θ
(ij)xj = hT

i βi.

In turn, we have

log p(H |X) =









∑

ij

hT
i Θ

(ij)hj



+
∑

i

hT
i βi



+ logZ.

Section 14.1 Useful but Intractable Examples 312

Worked example 14.2 Denoising MRF - II

Write out Θ(ij) for the θ(Hi, Hj) with the form given in example 14.1 using the
one-hot vector notation.

Solution: This is more a check you have the notation. cI is the answer.

Worked example 14.3 Denoising MRF - III

Assume that we have X1 = 128 and θ(Hi, Xj) = (Hi −Xj)
2. What is β1 using

the one-hot vector notation? Assume pixels take values in the range [0, 255].

Solution: Again, a check you have the notation. We have

β1 =













1282 first component
. . .

(i − 128)2 i’th component
. . .
1272













FIGURE 14.2: The graph of an MRF adapted to image segmentation. The shaded
nodes represent the known pixel values (Xi in the text) and the open nodes represent
the (unknown, and to be inferred) labels Hi. A particular hidden node may depend
on many pixels, because we will use all these pixel values to compute the cost of
labelling that node in a particular way.

Segmentation is another application that fits this recipe. We now want to
break the image into a set of regions. Each region will have a label (eg “grass”,
“sky”, “tree”, etc.). The Xi are the observed values of each pixel value, and the
Hi are the labels. In this case, the graph may have quite complex structure (eg

Section 14.1 Useful but Intractable Examples 313

figure 14.2). We must come up with a process that computes the cost of labelling
a given pixel location in the image with a given label. Notice this process could
look at many other pixel values in the image to come up with the label, but not at
other labels. There are many possibilities. For example, we could build a logistic
regression classifier that predicts the label at a pixel from image features around
that pixel (if you don’t know any image feature constructions, assume we use the
pixel color; if you do, you can use anything that pleases you). We then model
the cost of a having a particular label at a particular point as the negative log
probability of the label under that model. We obtain the θ(Hi, Hj) by assuming
that labels on neighboring pixels should agree with one another, as in the case of
denoising.

14.1.6 MAP Inference in Discrete MRF’s can be Hard

As you should suspect, focusing on MAP inference doesn’t make the difficulty go
away for discrete Markov random fields.

Worked example 14.4 Useful facts about MRF’s.

Show that, using the notation of the text, we have: (a) for any i, 1Thi = 1;
(b) the MAP inference problem can be expressed as a quadratic program, with
linear constraints, on discrete variables.

Solution: For (a) the equation is true because exactly one entry in hi is 1,
the others are zero. But (b) is more interesting. MAP inference is equivalent
to maximizing log p(H |X). Recall logZ does not depend on the h. We seek

max
h1,...,hN









∑

ij

hT
i Θ

(ij)hj



+
∑

i

hT
i βi



+ logZ

subject to very important constraints. We must have 1Thi = 1 for all i.
Furthermore, any component of any hi must be either 0 or 1. So we have a
quadratic program (because the cost function is quadratic in the variables),
with linear constraints, on discrete variables.

Example 14.4 is a bit alarming, because it implies (correctly) that MAP
inference in MRF’s can be very hard. You should remember this. Gradient descent
is no use here because the idea is meaningless. You can’t take a gradient with
respect to discrete variables. If you have the background, it’s quite easy to prove
by producing (eg from example 14.4) an MRF where inference is equivalent to
max-cut, which is NP hard.

Section 14.2 Variational Inference 314

Worked example 14.5 MAP inference for MRF’s is a linear program

Show that, using the notation of the text, the MAP inference for an MRF prob-
lem can be expressed as a linear program, with linear constraints, on discrete
variables.

Solution: If you have two binary variables zi and zj both in {0, 1}, then write
qij = zizj. We have that qij ≤ zi, qij ≤ zj , qij ∈ {0, 1}, and qij ≥ zi + zj − 1.
You should check (a) these inequalities and (b) that qij is uniquely identified by
these inequalities. Now notice that each hi is just a bunch of binary variables,
and the quadratic term hT

i Θ
(ij)hj is linear in qij .

Example 14.5 is the start of an extremely rich vein of approximation math-
ematics, which we shall not mine. If you are of a deep mathematical bent, you
can phrase everything in what follows in terms of approximate solutions of linear
programs. For example, this makes it possible to identify MRF’s for which MAP
inference can be done in polynomial time; the family is more than just trees. We
won’t go there.

14.2 VARIATIONAL INFERENCE

We could just ignore intractable models, and stick to tractable models. This isn’t a
good idea, because intractable models are often quite natural. The discrete Markov
random field model of an image is a fairly natural model. Image labels should
depend on pixel values, and on neighboring labels. It is better to try and deal with
the intractable model. One really successful strategy for doing so is to choose a
tractable parametric family of probability models Q(H ; θ), then adjust θ to find
an element that is “close” in the right sense to P (H |X). This process is known as
variational inference.

14.2.1 The KL Divergence: Measuring the Closeness of Probability Distributions

Assume we have two probability distributions P (X) and Q(X). A measure of their
similarity is the KL-divergence (or sometimes Kullback-Leibler divergence)
written

D(P || Q) =

∫

P (X) log
P (X)

Q(X)
dX

(you’ve clearly got to be careful about zeros in P and Q here). This likely strikes
you as an odd measure of similarity, because it isn’t symmetric. It is not the case
that D(P || Q) is the same as D(Q || P), which means you have to watch your P’s
and Q’s. Furthermore, some work will demonstrate that it does not satisfy the
triangle inequality, so KL divergence lacks two of the three important properties of
a metric.

KL divergence has some nice properties, however. First, we have

D(P || Q) ≥ 0

Section 14.2 Variational Inference 315

with equality only if P and Q are equal almost everywhere (i.e. except on a set of
measure zero).

Second, there is a suggestive relationship between KL divergence and maxi-
mum likelihood. Assume that Xi are IID samples from some unknown P (X), and
we wish to fit a parametric model Q(X |θ) to these samples. This is the usual situ-
ation we deal with when we fit a model. Now write H(P) for the entropy of P (X),
defined by

H(P) = −
∫

P (X) logP (X)dx = −EP [logP].

The distribution P is unknown, and so is its entropy, but it is a constant. Now we
can write

D(P || Q) = EP [logP]− EP [logQ]

Then

L(θ) =
∑

i

logQ(Xi|θ) ≈
∫

P (X) logQ(X |θ)dX = EP (X)[logQ(X |θ)]

= −H(P)− D(P || Q)(θ).

Equivalently, we can write

L(θ) + D(P || Q)(θ) = −H(P).

Recall P doesn’t change (though it’s unknown), so H(P) is also constant (though
unknown). This means that when L(θ) goes up, D(P || Q)(θ) must go down. When
L(θ) is at a maximum, D(P || Q)(θ) must be at a minimum. All this means that,
when you choose θ to maximize the likelihood of some dataset given θ for a para-
metric family of models, you are choosing the model in that family with smallest
KL divergence from the (unknown) P (X).

14.2.2 The Variational Free Energy

We have a P (H |X) that is hard to work with (usually because we can’t evaluate
P (X)) and we want to obtain a Q(H) that is “close to” P (H |X). A good choice
of “close to” is to require that

D(Q(H) || P (H |X))

is small. Expand the expression for KL divergence, to get

D(Q(H) || P (H |X)) = EQ[logQ]− EQ[logP (H |X)]

= EQ[logQ]− EQ[logP (H,X)] + EQ[logP (X)]

= EQ[logQ]− EQ[logP (H,X)] + logP (X)

which at first glance may look unpromising, because we can’t evaluate P (X). But
logP (X) is fixed (although unknown). Now rearrange to get

logP (X) = D(Q(H) || P (H |X))− (EQ[logQ]− EQ[logP (H,X)])

= D(Q(H) || P (H |X))− EQ.

Section 14.3 Example: Variational Inference for Boltzmann Machines 316

Here
EQ = (EQ[logQ]− EQ[logP (H,X)])

is referred to as the variational free energy. We can’t evaluate D(Q(H) || P (H |X)).
But, because logP (X) is fixed, when EQ goes down, D(Q(H) || P (H |X)) must
go down too. Furthermore, a minimum of EQ will correspond to a minimum of
D(Q(H) || P (H |X)). And we can evaluate EQ.

We now have a strategy for building approximateQ(H). We choose a family of
approximating distributions. From that family, we obtain the Q(H) that minimises
EQ (which will take some work). The result is theQ(H) in the family that minimizes
D(Q(H) || P (H |X)). We use that Q(H) as our approximation to P (H |X), and
extract whatever information we want from Q(H).

14.3 EXAMPLE: VARIATIONAL INFERENCE FOR BOLTZMANN MACHINES

We want to construct a Q(H) that approximates the posterior for a Boltzmann
machine. We will choose Q(H) to have one factor for each hidden variable, so
Q(H) = q1(H1)q2(H2) . . . qN (HN). We will then assume that all but one of the
terms in Q are known, and adjust the remaining term. We will sweep through the
terms doing this until nothing changes.

The i’th factor in Q is a probability distribution over the two possible values
of Hi, which are 1 and −1. There is only one possible choice of distribution. Each
qi has one parameter πi = P ({Hi = 1}). We have

qi(Hi) = (πi)
(1+Hi)

2 (1− πi)
(1−Hi)

2 .

Notice the trick; the power each term is raised to is either 1 or 0, and I have used
this trick as a switch to turn on or off each term, depending on whether Hi is 1
or −1. So qi(1) = πi and qi(−1) = (1 − πi). This is a standard, and quite useful,
trick. We wish to minimize the variational free energy, which is

EQ = (EQ[logQ]− EQ[logP (H,X)]).

We look at the EQ[logQ] term first. We have

EQ[logQ] = Eq1(H1)...qN (HN)[log q1(H1) + . . . log qN (HN)]

= Eq1(H1)[log q1(H1)] + . . .EqN (HN)[log qN (HN)]

where we get the second step by noticing that

Eq1(H1)...qN (HN)[log q1(H1)] = Eq1(H1)[log q1(H1)]

(write out the expectations and check this if you’re uncertain).
Now we need to deal with EQ[logP (H,X)]. We have

log p(H,X) = −E(H,X)− logZ

=
∑

i∈H

∑

j∈N (i)∩H

θijHiHj +
∑

i∈H

∑

j∈N (i)∩X

θijHiXj +K

Section 14.3 Example: Variational Inference for Boltzmann Machines 317

(where K doesn’t depend on any H and is so of no interest). Assume all the q’s are
known except the i’th term. Write Qî for the distribution obtained by omitting qi
from the product, so Q1̂ = q2(H2)q3(H3) . . . qN (HN), etc. Notice that

EQ[logP (H,X)] =

(

qi(−1)EQî
[logP (H1, . . . , Hi = −1, . . . , HN , X)]+

qi(1)EQî
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

)

.

This means that if we fix all the q terms except qi(Hi), we must choose qi to minimize

qi(−1) log qi(−1) + qi(1) log qi(1) −
qi(−1)EQî

[logP (H1, . . . , Hi = −1, . . . , HN , X)] +

qi(1)EQî
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

subject to the constraint that qi(1) + qi(−1) = 1. Introduce a Lagrange multiplier
to deal with the constraint, differentiate and set to zero, and get

qi(1) =
1

c
exp

(

EQî
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

)

qi(−1) =
1

c
exp

(

EQî
[logP (H1, . . . , Hi = −1, . . . , HN , X)]

)

where c = exp
(

EQî
[logP (H1, . . . , Hi = −1, . . . , HN , X)]

)

+

exp
(

EQî
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

)

.

In turn, this means we need to know EQî
[logP (H1, . . . , Hi = −1, . . . , HN , X)], etc.

only up to a constant. Equivalently, we need to compute only log qi(Hi)+K for K
some unknown constant (because qi(1) + qi(−1) = 1). Now we compute

EQî
[logP (H1, . . . , Hi = −1, . . . , HN , X)].

This is equal to

EQî





∑

j∈N (i)∩H

θij(−1)Hj +
∑

j∈N (i)∩X

θij(−1)Xj + terms not containing Hi





which is the same as

∑

j∈N (i)∩H

θij(−1)EQî
[Hj] +

∑

j∈N (i)∩X

θij(−1)Xj +K

and this is the same as

∑

j∈N (i)∩H

θij(−1)((πj)(1) + (1 − πj)(−1)) +
∑

j∈N (i)∩X

θij(−1)Xj +K

and this is

∑

j∈N (i)∩H

θij(−1)(2πj − 1) +
∑

j∈N (i)∩X

θij(−1)Xj +K.

Section 14.3 Example: Variational Inference for Boltzmann Machines 318

If you thrash through the case for

EQî
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

(which works the same) you will get

log qi(1) = EQî
[logP (H1, . . . , Hi = 1, . . . , HN , X)] +K

=
∑

j∈N (i)∩H

[θij(2πj − 1)] +
∑

j∈N (i)∩X

[θijXj] +K

and

log qi(−1) = EQî
[logP (H1, . . . , Hi = −1, . . . , HN , X)] +K

=
∑

j∈N (i)∩H

[−θij(2πj − 1)] +
∑

j∈N (i)∩X

[−θijXj] +K

All this means that

πi =
e

(

∑

j∈N(i)∩H
[θij(2πj−1)]+

∑

j∈N(i)∩X
[θijXj]

)

e

(

∑

j∈N(i)∩H
[θij(2πj−1)]+

∑

j∈N(i)∩X
[θijXj]

)

+ e

(

∑

j∈N(i)∩H
[−θij(2πj−1)]+

∑

j∈N(i)∩X
[−θijXj]

) .

After this blizzard of calculation, our inference algorithm is straightforward. We
visit each hidden node in turn, set the associated πi to the value of the expression
above assuming all the other πj are fixed at their current values, and repeat until
convergence. We can test convergence by evaluating the variational free energy; an
alternative is to check the size of the change in each πj .

We can now do anything to Q(H) that we would have done to P (H |X).
For example, we might compute the values of H that maximize Q(H) for MAP
inference. It is wise to limit ones ambition here, because Q(H) is an approximation.
It’s straightforward to set up and describe, but it isn’t particularly good. The main
problem is that the variational distribution is unimodal. Furthermore, we chose a
variational distribution by assuming that each Hi was independent of all others.
This means that computing, say, covariances will likely lead to the wrong numbers
(although it’s easy — almost all are zero, and the remainder are easy). Obtaining
an approximation by assuming that Hi is independent of all others is often called
a mean field method.

P A R T S I X

DEEP NETWORKS

319

C H A P T E R 15

Classification with Neural Networks

15.1 UNITS AND CLASSIFICATION

We will build complex classification systems out of simple units. A unit takes a
vector x of inputs and uses a vector w of parameters (known as the weights), a
scalar b (known as the bias), and a nonlinear function F to form its output, which
is

F (wTx+ b).

Over the years, a wide variety of nonlinear functions have been tried. Current best
practice is to use the RELU (for rectified linear unit), where

F (u) = max (0, u).

For example, if x was a point on the plane, then a single unit would represent a
line, chosen by the choice of w and b. The output for all points on one side of the
line would be zero. The output for points on the other side would be a positive
number that is larger for points that are further from the line.

Units are sometimes referred to as neurons, and there is a large and rather
misty body of vague speculative analogy linking devices built out of units to neu-
roscience. I deprecate this practice; what we are doing here is quite useful and
interesting enough to stand on its own without invoking biological authority. Also,
if you want to see a real neuroscientist laugh, explain to them how your neural
network is really based on some gobbet of brain tissue or other.

15.1.1 Building a Classifier out of Units: The Cost Function

We will build a multiclass classifier out of units by modelling the class posterior
probabilities using the outputs of the units. Each class will get the output of a
single unit. Write oi for the output of the i’th unit, and θ for all the parameters in
all the units. We will organize these units into a vector o, whose i’th component
is oi. We want to use that unit to model the probability that the input is of class
j, which I will write p(class = j|x, θ). To build this model, I will use the softmax

function. This is a function that takes a C dimensional vector and returns a C
dimensional vector. I will write s(u) for the softmax function, and the dimension
C will always be the number of classes. We have

s(u) =

(

1
∑

k e
uk

)









eu1

eu2

. . .
euC









(recall ui is the i’th component of u). We then use the model

p(class = i|x, θ) = si(o(x, θ)).

320

Section 15.1 Units and Classification 321

O
1

O
2

Components of x

ww
1 2

1 2
b b

1
O

O
2

0 side 0 side

Either class

Class 1

Class 2Class 1

Class 2

FIGURE 15.1: On the left, two units observing an input vector, and providing out-
puts. On the right, the decision boundary for two units classifying a point on
the plane into one of two classes. The angle of the dashed line depends on the
magnitudes of w1 and w2.

Notice that this expression passes important tests for a probability model. Each
value is between 0 and 1, and the sum over classes is 1.

In this form, the classifier is not super interesting. For example, imagine that
the features x are points on the plane, and we have two classes. Then we have two
units, one for each class. There is a line corresponding to each unit; on one side
of the line, the unit produces a zero, and on the other side, the unit produces a
positive number that increases as with perpendicular distance from the line. We
can get a sense of what the decision boundary will be like from this. When a point
is on the 0 side of both lines, the class probabilities will be equal (and so both 1

2 –
two classes, remember). When a point is on the positive side of the i’th line, but
the zero side of the other, the class probability for class i will be

eoi(x,θ)

1 + eoi(x,θ)
,

and the point will always be classified in the i’th class (remember, oi ≥ 0). Finally,
when a point is on the positive side of both lines, the classifier boils down to
choosing the i that has the largest value of oi(x, θ). All this leads to the decision
boundary shown in figure ??. Notice that this is piecewise linear, and somewhat
more complex than the boundary of an SVM. It’s quite helpful to try and draw
what would happen for three or more classes with x a 2D point.

15.1.2 Building a Classifier out of Units: Strategy

The essential difficulty here is to choose θ that results in the best behavior. We will
do so by writing a cost function that estimates the error rate of the classification,
then choosing a value θ̂ that minimises that function. We have a set of N examples
xi and for each example we know the class. There are a total of C classes. We
encode the class of an example using a one hot vector yi, which is C dimensional.

Section 15.1 Units and Classification 322

If the i’th example is from class j, then the j’th component of yi is 1, and all other
components in the vector are 0. I will write yij for the j’th component of yi.

A natural cost function looks at the log likelihood of the data under the
probability model produced from the outputs of the units. If the i’th example is
from class j, we would like − log p(class = j|xi, θ) to be small (notice the sign here;
it’s usual to minimize negative log likelihood). I will write log s to mean the vector
whose components are the logarithms of the components of s. This yields a loss
function

1

N

∑

i∈data

[{

−yT
i log s(o(xi, θ))

}]

.

Notice that this loss function is written in a clean way that may lead to a poor
implementation. I have used the yij values as “switches”, as in the discussion of
EM. This leads to clean notation, but hides fairly obvious computational efficiencies
(when taking the gradient, you need to deal with only one term in the sum over
classes). As in the case of the linear SVM (section 287), we would like to achieve a
low cost with a “small” θ, and so form an overall cost function that will have loss
and penalty terms.

There are a variety of possible penalties. For now, we will penalize large sets
of weights, but we’ll look at other possibilities below. Remember, we have C units
(one per class) and so there are C distinct sets of weights. Write the weights for
the u’th unit wu. Our penalty becomes

∑

u∈units

wT
uwu.

As in the case of the linear SVM (section 287), we write λ for a weight applied to
the penalty. Our cost function is then

S(θ,x;λ) =
1

N

∑

i∈data

[{

−yT
i log s(o(xi, θ))

}]

+
λ

2

∑

u∈units

wT
uwu

(misclassification loss) (penalty)

15.1.3 Building a Classifier out of Units: Training

I have described a simple classifier built out of units. We must now train this
classifier, by choosing a value of θ that results in a small loss. It may be quite hard
to get the true minimum, and we may need to settle for a small value. We use
stochastic gradient descent, because we have seen it before; because it is effective;
and because it is the algorithm of choice when training more complex classifiers
built out of units.

For the SVM, we selected one example at random, computed the gradient
at that example, updated the parameters, and went again. For neural nets, it
is more usual to use minibatch training, where we select a subset of the data
uniformly and at random, compute a gradient using that subset, update and go
again. This is because in the best implementations many operations are vectorized,
and using a minibatch can provide a gradient estimate that is clearly better than
that obtained using only one example, but doesn’t take longer to compute. The size

Section 15.1 Units and Classification 323

of the minibatch is usually determined by memory or architectural considerations.
It is often a power of two, for this reason.

Now imagine we have chosen a minibatch of M examples. We must compute
the gradient of the cost function. This is mainly an exercise in notation, but there’s
a lot of notation. Write θu for a vector containing all the parameters for the
u’th unit, so that θu = [wu, bu]

T . Recall sk(o(xi, θk)) is the output of the softmax
function for the k’th unit for input xi. This represents the probability that example
i is of class k under the current model. Then we must compute

∇θu

1

M

∑

i∈minibatch

[{

−yT
i log s(o(xi, θ))

}]

+
λ

2

∑

j∈classes

wT
j wj .

The gradient is easily computed using the chain rule. The term

λ

2

∑

j∈classes

wT
j wj

presents no challenge, but the other term is more interesting. We must differentiate
the softmax function by its inputs, then the units by their parameters. More
notation: assume we have a vector valued function of vector inputs, for example,
s(o). Here s is the function and o are the inputs. I will write #(o) to mean
the number of components of o, and oi for the i’th component. The matrix of first
partial derivatives is extremely important (we will see a lot of these; pay attention).
I will write Js;o to mean







∂s1
∂o1

. . . ∂s1
∂o#(o)

.
∂s#(s)

∂o1
. . .

∂s#(s)

∂o#(o)







and refer to such a matrix of first partial derivatives as a Jacobian.
Now we can use the chain rule to write

∇θu

1

M

∑

i∈minibatch

[{

−yT
i log s(xi, θ)

}]

=
1

M

∑

i∈minibatch

[{

−yT
i Jlog s;oJo;θu

}]

.

This isn’t particularly helpful without knowing the relevant Jacobians. They’re
quite straightforward.

Write I[u=v](u, v) for the indicator function that is 1 when u = v and zero
otherwise. We have

∂ log su
∂ov

= I[u=v] −
eov

∑

k e
ok

= I[u=v] − sv.

To get the other Jacobian, we need yet more notation (but this isn’t new, it’s a
reminder). I will write wu,i for the i’th component of wu, and I[ou>0](ou) for the
indicator function that is 1 if its argument is greater than zero. Then

∂ou
∂wu,i

= xiI[ou>0](ou)

Section 15.1 Units and Classification 324

and
∂ou
∂bu

= I[ou>0](ou).

Notice that if v 6= u,
∂ou
∂wv,i

= 0 and
∂ou
∂bv

= 0.

At least in principle, we can build a multiclass classifier in a straightforward
way using minibatch gradient descent. We use one unit per class, each one using
each component of the feature vector. We obtain training data, and then iterate
computing a gradient from a minibatch, and taking a step along the negative of
the gradient. If you try, you may run into some of the important small practical
problems that cause networks to work badly. Here are some of the ones you may
encounter.

Initialization: You need to choose the initial values of all of the parameters.
There are many parameters; in our case, with a d dimensional x and C classes, we
have (d+1)×C parameters. If you initialize each parameter to zero, you will find
that the gradient is also zero, which is not helpful. This occurs because all the ou
will be zero (because the wu,i and the bu are zero). It is usual to initialize to draw
a sample of a zero mean normal random variable for each initial value (appropriate
choices of variance get interesting; more below).

Learning rate: Each step will look like θ(n+1) = θ(n) − ηn∇θcost. You need
to choose ηn for each step. This is widely known as the learning rate; an older
term is steplength (neither term is a super-accurate description). It is not usual
for the learning rate to be the same throughout learning. We would like to take
“large” steps early, and “small” steps late, in learning, so we would like ηn to be
“large” for small n, and “small” for large n. It is tough to be precise about a good
choice. As in stochastic gradient descent for a linear SVM, breaking learning into
epochs (e(n) is the epoch of the n’th iteration), then choosing two constants a and
b to obtain

ηn =
1

a+ be(n)

is quite a good choice. The constants, and the epoch size, will need to be chosen by
experiment. As we build more complex collections of units, the need for a better
process will become pressing; two options appear below.

Ensuring learning is proceeding: We need to keep track of what is going
on inside the system as we train it. One way is to plot the loss as a function of the
number of steps. These plots can be very informative (Figure ??). If the learning
rate is small, the system will make very slow progress but may (eventually) end up
in a good state. If the learning rate is large, the system will make fast progress
initially, but will then stop improving, because the state will change too quickly
to find a good solution. If the learning rate is very large, the system might even
diverge. If the learning rate is just right, you should get fast descent to a good
value, and then slow but fairly steady improvement. Of course, just as in the case
of SVMs, the plot of loss against step isn’t a smooth curve, but rather noisy. There
is an amusing collection of examples of training problems at lossfunctions.tumblr.
com It is quite usual to plot the error rate, or the accuracy, on a validation dataset

lossfunctions.tumblr.com
lossfunctions.tumblr.com

Section 15.2 Layers and Networks 325

while training. This will allow you to compare the training error with the validation
error. If these are very different, you have a problem: the system is overfitting, or
not generalizing well. You should increase the regularization constant.

Dead units: Imagine the system gets into a state where for some unit u,
ou = 0 for every training data item. This could happen, for example, if the learning
rate was too large. Then it can’t get out of this state, because the gradient for that
unit will be zero for every training data item, too. Such units are referred to as
dead units. This problem can be contained by keeping the learning rate small
enough. In more complex architectures (below), it is also contained by having a
large number of units.

Gradient problems: There are a variety of important ways to have gradient
problems. By far the most important is making a simple error in code (i.e you com-
pute the Jacobian elements wrong). This is surprisingly common; everybody does it
at least once; and one learns to check gradients. Checking is fairly straightforward.
You compute a numerical derivative, and compare that to the exact derivative. If
they’re too different, you have a gradient problem you need to fix. We will see a
second important gradient problem when we see more complex architectures.

Choosing the regularization constant: This follows the recipe we saw for
a linear SVM. Hold out a validation dataset. Train for several different values of λ.
Evaluate each system on the validation dataset, and choose the best. Notice this
involves many rounds of training, which could make things slow.

Does it work? Evaluating the classifier we have described is like evaluating
any other classifier. You evaluate the error on a held-out data set that wasn’t used
to choose the regularization constant, or during training.

15.2 LAYERS AND NETWORKS

We have built a multiclass classifier out of units by using one unit per class, then
interpreting the outputs of the units as probabilities using a softmax function.
This classifier is at best only mildly interesting. The way to get something really
interesting is to ask what the features for this classifier should be. To date, we
have not looked closely at features. Instead, we’ve assumed they “come with the
dataset” or should be constructed from domain knowledge. Remember that, in the
case of regression, we could improve predictions by forming non-linear functions of
features. We can do better than that; we could learn what non-linear functions to
apply, by using the output of one set of units to form the inputs of the next set.

We will focus on systems built by organizing the units into layers; these layers
form a neural network (a term I dislike, for the reasons above, but use because
everybody else does). There is an input layer, consisting of the units that receive
feature inputs from outside the network. There is an output layer, consisting of
units whose outputs are passed outside the network. These two might be the same,
as they were in the previous section. The most interesting cases occur when they
are not the same. There may be hidden layers, whose inputs come from other
layers and whose outputs go to other layers. In our case, the layers are ordered, and
outputs of a given layer act as inputs to the next layer only (as in Figure 15.2 - we
don’t allow connections to wander all over the network). For the moment, assume
that each unit in a layer receives an input from every unit in the previous layer;

Section 15.2 Layers and Networks 326

Input layer

Output layer

Input layer

Output layer

Hidden layer

FIGURE 15.2: On the left, an input layer connected to an output layer. The units
in the input layer take the inputs and compute features; the output layer turns
these features into output values that will be turned into class probabilities with the
softmax function. On the right, there is a hidden layer between input and output
layer. This architecture means that the features seen by the output layer can be
trained to be a significantly more complex function of the inputs.

this means that our network is fully connected. Other architectures are possible,
but right now the most important question is how to train the resulting object.

15.2.1 Notation

Inevitably, we need yet more notation. There will be L layers. The input layer is
layer 1, and the output layer is L. I will write ul

i for the i’th unit in the l’th layer.
This unit has output oli and parameters wl

i and bli, which I will stack into a vector
θli. I write θ

l to refer to all the parameters of layer l. If I do not need to identify the
layer in which a unit sits (for example, if I am summing over all units) I will drop
the superscript. The vector of inputs to this unit is xl

i. These inputs are formed
by choosing from the outputs of layer l − 1. I will write ol for all the outputs of
the l’th layer, stacked into a vector. I will represent the connections by a matrix
Cl
i, so that xl

i = Cl
io

l−1. The matrix Cl
i contains only 1 or 0 entries, and in the case

of fully connected layers, it is the identity. Notice that every unit has its own Cl
i.

I will write L(yi, s(o
L(xi, θ))) for the loss of classifying the i’th example using

softmax. We will continue to use

L(yi, s(o
L(xi, θ))) = −yT

i log s(oL(xi, θ)))

but in other applications, other losses might arise.
Generally, we will train by mini batch gradient descent, though I will describe

some tricks that can speed up training and improve results. But we must compute

Section 15.2 Layers and Networks 327

In
p

u
t

s(o)
L o

L
x

L o
L-1

C
L-1 x

L-1
x

1

L
ay

er 1

L
ay

er L

L
ay

er L
-1

... o
1

W , b =θ
1 1L-1 L-1L L L

W , b =θ
L-1

W , b =θ
1

FIGURE 15.3: Notation for layers, inputs, etc.

the gradient. The output layer of our network has C units, one per class. We will
apply the softmax to these outputs, as before. Writing E for the cost of error on
training examples and R for the regularization term, we can write the cost of using
the network as

cost = E +R = (1/N)
∑

i∈examples

L(yi, s(o
L(xi, θ))) +

λ

2

∑

k∈units

wT
k wk.

You should not let this compactified notation let you lose track of the fact that oL

depends on xi through oL−1, . . . ,o1. What we really should write is

oL(oL−1(. . . (o1(x, θ1), θ2), . . .), θL).

Equivalently, we could stack all the Cl
i into one linear operator Cl and write

oL(xL, θL) where

xL = CLoL−1(xL−1, θL−1)

. . . = . . .

x2 = C2o1(x1, θ1)

x1 = C1x

This is important, because it allows us to write an expression for the gradient.

15.2.2 Training, Gradients and Backpropagation

Now consider ∇θE. We have that E is a sum over examples. The gradient of the
loss at a particular example is of most interest, because we will usually train with
minibatches. So we are interested in

∇θEi = ∇θL(yi, s(o
L(xi, θ))) = ∇θ

[

−yT
i log s(oL(xi, θ)))

]

and we can extend our use of the chain rule from section 15.1.3, very aggressively.
We have

∇θLL(yi, s(o
L(xi, θ))) = −yT

i Jlog s;oLJoL;θL

Section 15.2 Layers and Networks 328

In
p

u
t

C
L-1

L
ay

er 1

L
ay

er L

L
ay

er L
-1

...

J
s ; oL J

o ; θ
L L

X

Δ

s
E X

v
L

s(o)
L o

L
x

L o
L-1

x
L-1

x
1o

1

W , b =θ
1 1L-1 L-1L L L

W , b =θ
L-1

W , b =θ
1

FIGURE 15.4: Constructing the gradient with respect to θL.

as in that section. Differentiating with respect to θL−1 is more interesting. Layer L
depends on θL−1 in a somewhat roundabout way; layer L− 1 uses θL−1 to produce
its outputs, and these are fed into layer L as its inputs. So we must have

∇θL−1Ei = −yT
i Jlog s;oLJoL;xLJxL;θL−1

(look carefully at the subscripts on the Jacobians). These Jacobians have about
the same form as those in section 15.1.3 if you recall that xL = CLoL−1. In turn,
this means that

JxL;θL−1 = CLJoL−1;θL−1

and the form of JoL−1;θL−1 appears in section 15.1.3. But oL depends on θL−2

through xL which is a function of xL−1 which is a function of θL−2, so that

∇θL−2Ei = −yT
i Jlog s;oLJoL;xLJxL;xL−1JxL−1;θL−2

(again, look carefully at the subscripts on each of the Jacobians). Because xL =
CLoL−1, we have that

JxL;xL−1 = CLJoL−1;xL−1

We can now get to the point. We have a recursion, which can be made more

Section 15.2 Layers and Networks 329

In
p

u
t

C
L-1

L
ay

er 1

L
ay

er L

L
ay

er L
-1

...

J
s ; oL

X

Δ

s
E X

v
L

s(o)
L o

L
x

L o
L-1

x
L-1

x
1o

1

W , b =θ
1 1L-1 L-1L L L

W , b =θ
L-1

W , b =θ
1

J
o ; x

L L

v
L-1

J
x ; θ

L L-1
X

FIGURE 15.5: Constructing the gradient with respect to θL−1.

obvious with some notation. We have

vL =
(

∇L
oEi

)

∇θLEi = vLJoL;θL

∇θL−1E = vLJoL;xLJxL;θL−1

. . .

∇θi−1E = vLJoL;xL . . .Jxi+1;xiJxi;θi−1

. . .

But look at the form of the products of the matrices. We don’t need to remultiply
all those matrices; instead, we are attaching a new term to a product we’ve already

Section 15.2 Layers and Networks 330

FIGURE 15.6: On the left, a cartoon of the error rate encountered during training
a multilayer network and the main phenomena you might observe. On the right,
an actual example. Each of these figures is from the excellent course notes for
the Stanford class cs231n Convolutional Neural Networks for Visual Recognition,
written by Andrej Karpathy. You can find these notes at: http://cs231n.stanford.
edu.

computed. All this is more cleanly written as:

vL =
(

∇L
oEi

)

∇θLEi = vLJoL;θL

vL−1 = vLJoL;xL

∇θL−1E = vL−1JxL;θL−1

. . .

vi−1 = viJxi+1;xi

∇θi−1E = vi−1Jxi;θi−1

. . .

Remember here that

Jxi;xi−1 = CiJoi−1;xi−1

Jxi;θi−1 = CLJoi−1;θi−1

I have not added notation to keep track of the point at which the partial
derivative is evaluated (it should be obvious, and we have quite enough notation al-
ready). When you look at this recursion, you should see that, to evaluate vi−1, you
will need to know xk for k ≥ i− 1. This suggests the following strategy. We com-
pute the x’s (and, equivalently, o’s) with a “forward pass”, moving from the input
layer to the output layer. Then, in a “backward pass” from the output to the input,
we compute the gradient. Doing this is often referred to as backpropagation.

http://cs231n.stanford.edu
http://cs231n.stanford.edu

Section 15.2 Layers and Networks 331

15.2.3 Training Multiple Layers

A multilayer network represents an extremely complex, highly non-linear function,
with an immense number of parameters. Training such networks is not easy. Neural
networks are quite an old idea, but have only relatively recently had impact in
practical applications. Hindsight suggests the problem is that networks are hard to
train successfully. There is now a collection of quite successful tricks — I’ll try to
describe the most important — but the situation is still not completely clear.

The simplest training strategy is minibatch gradient descent. At round r, we
have the set of weights θ(r). We form the gradient for a minibatch ∇θE, and update
the weights by taking a small step η(r) (usually referred to as the learning rate)
backwards along the gradient, yielding

θ(r+1) = θ(r) − η(r)∇θE.

The most immediate difficulties are where to start, and what is η(r).
Initialization: As for a single layer of units, it is a bad idea to initialize each

parameter to zero. It is usual to draw a sample of a zero mean normal random
variable for each initial value. However, in a multilayer network, we may well have
some units receiving input from more (or fewer) units than others (this is referred
to as the fan in of the unit). Now assume that we have two units: one with
many inputs, and one with few. If we initialize each units weights using the same
zero mean normal random variable, the unit with more inputs will have a higher
variance output (I’m ignoring the nonlinearity). This tends to lead to problems,
because units at the next level will see unbalanced inputs. Experiment has shown
that it is a good idea to allow the variance of the random variable you sample to
depend on the fan in of the unit whose parameter you are initializing. Write n for
the fan in of the unit in question, and ǫ for a small non-negative number. Current
best practice appears to be that one initializes each weight with an independent
sample of a random variable with mean 0 and variance

ǫ

√
2

n
.

Choosing ǫ too small or too big can lead to trouble, but I’m not aware of any recipe
for coming up with a good choice. Typically, biases are initialized either to 0, or to
a small non-negative number; there is mild evidence that 0 is a better choice.

Learning rate: The remarks above about learning rate apply, but for more
complicated networks it is usual to apply one of the methods of section 15.2.4,
which adjust the gradient to get better optimization behavior.

Ensuring learning is proceeding: We need to keep track of what is going
on inside the system as we train it. One way is to plot the loss as a function of the
number of steps. These plots can be very informative (Figure 15.6). If the learning
rate is small, the system will make very slow progress but may (eventually) end up
in a good state. If the learning rate is large, the system will make fast progress
initially, but will then stop improving, because the state will change too quickly
to find a good solution. If the learning rate is very large, the system might even
diverge. If the learning rate is just right, you should get fast descent to a good
value, and then slow but fairly steady improvement. Of course, just as in the case

Section 15.2 Layers and Networks 332

of SVMs, the plot of loss against step isn’t a smooth curve, but rather noisy. There
is an amusing collection of examples of training problems at lossfunctions.tumblr.
com It is quite usual to plot the error rate, or the accuracy, on a validation dataset
while training. This will allow you to compare the training error with the validation
error. If these are very different, you have a problem: the system is overfitting, or
not generalizing well. You should increase the regularization constant.

Dead units: The remarks above apply.
Gradient problems: The remarks above apply.
Choosing the regularization constant: The remarks above apply, but

for more complex networks, it is usual to use the more sophisticated regularization
described in section ?? (at considerable training cost).

Does it work? Evaluating the classifier we have described is like evaluating
any other classifier. You evaluate the error on a held-out data set that wasn’t used
to choose the regularization constant, or during training.

15.2.4 Gradient Scaling Tricks

Everyone is surprised the first time they learn that the best direction to travel in
when you want to minimize a function is not, in fact, backwards down the gradi-
ent. The gradient is uphill, but repeated downhill steps are often not particularly
efficient. An example can help, and we will look at this point several ways because
different people have different ways of understanding this point.

We can look at the problem with algebra. Consider f(x, y) = (1/2)(ǫx2+ y2),
where ǫ is a small positive number. The gradient at (x, y) is [ǫx, y]. For simplicity,
use a fixed learning rate η, so we have

[

x(r), y(r)
]

=
[

(1 − ǫη)x(r−1), (1− η)y(r−1)
]

.

If you start at, say, (x(0), y(0)) and repeatedly go downhill along the gradient,
you will travel very slowly to your destination. You can show that

[

x(r), y(r)
]

=
[

(1 − ǫη)rx(0), (1− η)ry(0)
]

. The problem is that the gradient in y is quite large
(so y must change quickly) and the gradient in x is small (so x changes slowly).
In turn, for steps in y to converge we must have |1− η | < 1; but for steps in x
to converge, we require only the much weaker constraint |1− ǫη | < 1. Imagine we
choose the largest η we dare for the y constraint. The y value will very quickly
have small magnitude, though its sign will change with each step. But the x steps
will move you closer to the right spot only extremely slowly.

Another way to see this problem is to reason geometrically. Figure 15.7 shows
this effect for this function. The gradient is at right angles to the level curves of
the function. But when the level curves form a narrow valley, the gradient points
across the valley rather than down it. The effect isn’t changed by rotating and
translating the function (Figure 15.8).

You may have learned that Newton’s method resolves this problem. This is
all very well, but to apply Newton’s method we would need to know the matrix
of second partial derivatives. A network can easily have thousands to millions
of parameters, and we simply can’t form, store, or work with matrices of these
dimensions. Instead, we will need to think more qualitatively about what is causing
trouble.

One useful insight into the problem is that fast changes in the gradient vector
are worrying. For example, consider f(x) = (1/2)(x2 + y2). Imagine you start

lossfunctions.tumblr.com
lossfunctions.tumblr.com

Section 15.2 Layers and Networks 333

FIGURE 15.7: A plot of the level curves (curves of constant value) of the function
f(x, y) = (1/2)(ǫx2 + y2). Notice that the value changes slowly with large changes
in x, and quickly with small changes in y. The gradient points mostly toward
the x-axis; this means that gradient descent is a slow zig-zag across the “valley”
of the function, as illustrated. We might be able to fix this problem by changing
coordinates, if we knew what change of coordinates to use.

far away from the origin. The gradient won’t change much along reasonably sized
steps. But now imagine yourself on one side of a valley like the function f(x) =
(1/2)(x2+ǫy2); as you move along the gradient, the gradient in the x direction gets
smaller very quickly, then points back in the direction you came from. You are not
justified in taking a large step in this direction, because if you do you will end up
at a point with a very different gradient. Similarly, the gradient in the y direction
is small, and stays small for quite large changes in y value. You would like to take
a small step in the x direction and a large step in the y direction.

You can see that this is the impact of the second derivative of the function
(which is what Newton’s method is all about). But we can’t do Newton’s method.
We would like to travel further in directions where the gradient doesn’t change
much, and less far in directions where it changes a lot. There are several methods
for doing so.

Momentum: We should like to discourage parameters from “zig-zagging” as
in the example above. In these examples, the problem is caused by components of
the gradient changing sign from step to step. It is natural to try and smooth the

Section 15.2 Layers and Networks 334

FIGURE 15.8: Rotating and translating a function rotates and translates the gradient;
this is a picture of the function of figure 15.7, but now rotated and translated. The
problem of zig-zagging remains. This is important, because it means that we may
have serious difficulty choosing a good change of coordinates.

gradient. We could do so by forming a moving average of the gradient. Construct a
vector v, the same size as the gradient, and initialize this to zero. Choose a positive
number µ < 1. Then we iterate

v(r+1) = µ ∗ v(r) + η∇θE

θ(r+1) = θ(r) − v(r+1)

Notice that, in this case, the update is an average of all past gradients, each weighted
by a power of µ. If µ is small, then only relatively recent gradients will participate
in the average, and there will be less smoothing. Larger µ lead to more smoothing.
A typical value is µ = 0.9. It is reasonable to make the learning rate go down with
epoch when you use momentum, but keep in mind that a very large µ will mean
you need to take several steps before the effect of a change in learning rate shows.

Adagrad: We will keep track of the size of each component of the gradient.
In particular, we have a running cache c which is initialized at zero. We choose a

small number α (typically 1e-6), and a fixed η. Write g
(r)
i for the i’th component

Section 15.2 Layers and Networks 335

of the gradient ∇θE computed at the r’th iteration.Then we iterate

c
(r+1)
i = c

(r)
i + (g

(r)
i)2

θ
(r+1)
i = θ

(r)
i − η

g
(r)
i

(c
(r+1)
i)

1
2 + α

Notice that each component of the gradient has its own learning rate, set by the
history of previous gradients.

RMSprop: This is a modification of Adagrad, to allow it to “forget” large

gradients that occurred far in the past. Again, write g
(r)
i for the i’th component of

the gradient ∇θE computed at the r’th iteration. We choose another number, ∆,
(the decay rate; typical values might be 0.9, 0.99 or 0.999), and iterate

c
(r+1)
i = ∆c

(r)
i + (1−∆)(g

(r)
i)2

θ
(r+1)
i = θ

(r)
i − η

g
(r)
i

(c
(r+1)
i)

1
2 + α

Adam: This is a modification of momentum that rescales gradients, tries
to forget large gradients, and adjusts early gradient estimates to correct for bias.

Again, write g
(r)
i for the i’th component of the gradient ∇θE computed at the r’th

iteration. We choose three numbers β1, β2 and ǫ (typical values are 0.9, 0.999 and
1e-8, respectively), and some steplength or learning rate η. We then iterate

v(r+1) = β1 ∗ v(r) + (1 − β1) ∗ ∇θE

c
(r+1)
i = β2 ∗ c(r)i + (1− β2) ∗ (gri)2

v̂ =
v(r+1)

1− βt
1

ĉi =
ĉ
(r+1)
i

1− βt
2

θ
(r+1)
i = θ

(r)
i − η

v̂i√
ĉi + ǫ

As of writing, Adam seems to be the most widely used method, and is likely the
method of choice.

15.2.5 Dropout

Regularizing by the square of the weights is all very well, but quite quickly we
will have problems because there are so many weights. An alternative, and very
useful, regularization strategy is to try and ensure that no unit relies too much on
the output of any other unit. One can do this as follows. At each training step,
randomly select some units, set their outputs to zero (and reweight the inputs of
the units receiving input from them), and then take the step. Now units are trained
to produce reasonable outputs even if some of their inputs are randomly set to zero
— units can’t rely too much on one input, because it might be turned off. Notice

Section 15.2 Layers and Networks 336

x

yd

X
Y

D

.

.

.

.

.

.

...

...

...

...

Slice

FIGURE 15.9: Terminology for building a convolutional layer. On the left, a layer
turns one block of data into another. The x and y coordinates index the position of
a location in the block, and the d coordinate identifies the data item at that point.
A natural example of a block is a color image, which usually has three layers (d=3);
then x and y identify the pixel, and d chooses the R, G, or B slice. The dimensions
x and y are the spatial dimensions. On the right right, a unit in a convolutional
layer forms a weighted sum of set of locations, adds a bias, then applies a RELU.
There is one unit for each (X, Y, D) location in the output block. For each (X,
Y) in the output block, there is a corresponding window of size (wx, wy) in the (x,
y) space. Each of the D units whose responses form the D values at the (X, Y)
location in the output block forms a weighted sum of all the values covered by that
window. These inputs come from each slice in the window below that unit (so the
number of inputs is d×wx ×wy). Each of the units that feed the a particular slice
in the output block has the same set of weights, so you should think of a unit as a
form of pattern detector; it will respond strongly if the block below it is “similar” to
the weights.

that this sounds sensible, but it isn’t quite a proof that the approach is sound; that
comes from experiment. The approach is known as dropout.

There are some important details we can’t go into. Output units are not
subject to dropout, but one can also turn off inputs randomly. At test time, there
is no dropout. Every unit computes its usual output in the usual way. This creates
an important training issue. Write p for the probability that a unit is dropped
out, which will be the same for all units subject to dropout. You should think of
the expected output of the i’th unit at training time as (1 − p)oi (because with
probability p, it is zero). But at test time, the next unit will see oi; so at training
time, you should reweight the inputs by 1/(1−p). In exercises, we will use packages
that arrange all the details for us.

Section 15.3 Convolutional Neural Networks 337

15.2.6 It’s Still Difficult..

All the tricks above are helpful, but training a multilayer neural network is still
difficult. Fully connected layers have many parameters. It’s quite natural to take
an input feature vector of moderate dimension, build one layer that produces a much
higher dimensional vector, then stack a series of quite high dimensional layers on top
of that. There is quite good evidence that having many layers can improve practical
performance if one can train the resulting network. Such an architecture has been
known for a long time, but hasn’t been particularly successful until recently.

There are several structural obstacles. Without GPU’s, evaluating such a
network can be slow, making training slow. The number of parameters in just one
fully connected layer is high, meaning that multiple layers will need a lot of data
to train, and will take many training batches. There is some reason to believe that
multilayer neural networks were discounted in application areas for quite a long
time because people underestimated just how much data and how much training
was required to make them perform well.

One obstacle that remains technically important has to do with the gradient.
Look at the recursion I described for backpropagation. The gradient update at the
L’th (top) layer depends pretty directly on the parameters in that layer. But now
consider a layer close to the input end of the network. The gradient update has
been multiplied by several Jacobian matrices. The update may be very small (if
these Jacobians shrink their input vectors) or unhelpful (if layers close to the output
have poor parameter estimates). For the gradient update to be really helpful, we’d
like the layers higher up the network to be right; but we can’t achieve this with
lower layers that are confused, because they pass their outputs up. If a layer low in
the network is in a nonsensical state, it may be very hard to get it out of that state.
In turn, this means that adding layers to a network might improve performance,
but also might make it worse because the training turns out poorly.

There are a variety of strategies for dealing with this problem. We might
just train for a very long time, possibly using gradient rescaling tricks. We might
reduce the number of parameters in the layers, by passing to convolutional layers
(below) rather than fully connected layers. We might use various tricks to initialize
each layer with a good estimate. This is a topic of widespread current interest, but
one I can’t deal with in any detail here. Finally, we might use architectural tricks
(section 287) to allow inputs to bypass layers, so that poorly trained layers create
fewer difficulties.

15.3 CONVOLUTIONAL NEURAL NETWORKS

One area where neural networks have had tremendous impact is in image under-
standing. Images have special properties that motivate special constructions of
features. These constructions yield a layer architecture that has a significantly re-
duced number of parameters in the layer. This architecture has proven useful in
other applications, but we will work with images.

Section 15.3 Convolutional Neural Networks 338

FIGURE 15.10: Figure 15.9 shows units taking an input block and creating an output
block. Each unit is fed by a window on the spatial dimensions of the input block.
The window is advanced by the stride to feed the next unit. On the left, two units
fed by 3x3 windows with a stride of 1. I have shaded the pixels in the window to
show which pixels go to which unit; notice the units share 6 pixels. In this case, the
spatial dimensions of the output block will be either the same as those of the input
block (if we find some values to feed pixels in windows that hang over the edge of
the image), or only slightly smaller (if we ignore units whose windows hang over
the edges of the image). On the right, two units fed by 3x3 windows with a stride
of 2. Notice the units share fewer pixels, and the output block will be smaller than
the input block.

15.3.1 Images and Convolutional Layers

Using the output of one layer to form features for another layer is attractive. The
natural consequence of this idea is that the input to the network would be the
image pixels. But this presents some important difficulties. There are an awful lot
of pixels in most images, and that means it’s likely that there will be an awful lot
of parameters.

For a variety of reasons, it doesn’t make much sense to have an input layer
consisting of units each of which sees all the image pixels. There would be a
tremendous number of weights to train. It would be hard to explain why units
have different values for the weights. Instead, we can use some intuitions from
computer vision.

First, we need to build systems that can handle different versions of what is
essentially the same image. For example, imagine you turn the camera slightly to
one side, or raise it or lower it when taking the image. If every input unit sees
every pixel, this would constrain the form of the weights. Turning the camera up a
bit shifts the image down a bit; the representation shouldn’t be severely disrupted
by this. Second, long experience in computer vision has produced a (very rough)
recipe for building image features: you construct features that respond to patterns
in small, localized neighborhoods; then other features look at patterns of those
features; then others look at patterns of those, and so on (big fleas have little fleas
upon their backs to bite ’em; and little fleas have smaller ones, and so ad infinitum).

We will assume that images are 3D. The first two dimensions will be the x
and y dimensions in the image, the third (for the moment!) will identify the color
layer of the image (for example, R, G and B). We will build layers that take 3D

Section 15.3 Convolutional Neural Networks 339

objects like images (which I will call blocks) and make new blocks (Figure 15.9;
notice the input block has dimension x× y× d and the output block has dimension
X × Y ×D). Each block is a stack of slices, which — like color layers in an image
— have two spatial dimensions.

These layers will draw from a standard recipe for building an image feature
that describes a small neighborhood. We construct a convolution kernel, which
is a small block. This is typically odd sized, and typically from 3× 3 to a few tens
by a few tens in size along the spatial dimensions, and is always of size d in the
other dimension.

Write I for a block (for example, an image), K for the kernel, b for a bias
term (which might be zero; some, but not all, convolutional layers use a bias term),
and Iijk for the i, j’th pixel in the k’th slice of the block. Write F for the function
implemented by a RELU, so that F (x) = max(0, x). Now we form a slice O, whose
u, v’th entry is

Ouv = F (Wuv + b) = F (
∑

ijk

Iu+i,v+j,kKijk + b),

where I am assuming the sum goes over all values of i and j, and if the indices
to either I or K go outside the domain, then the reported value is zero. There is
room for some confusion here, because one can use a variety of different indexing
schemes, and different authors use different ones (usually for compatibility with the
history of convolution); this is of no significance. Figure 15.9 illustrates the process
that produces a slice from a block.

The operation that produces W from I and K is known as convolution, and
it is usual to write W = K∗I. We will not go into all the properties of convolution,
but you should notice one extremely important property. We obtain the value at a
pixel by centering K on that pixel. We now have a patch sitting over all the layers
of the image at some location; we multiply the pixels in that patch (by layer) by the
corresponding image pixels (in layers), then accumulate the products — the result
goes into O. This is like a dot-product — we will get a large positive value in O at
that pixel if the image window around that pixel looks like K, and a small negative
value if they’re the same up to a sign change. You should think of a convolution
kernel as being an example pattern.

Now when you convolve a kernel with an image, you get, at each location, an
estimate of how much that image looks like that kernel at that point. The output
is the response of a collection of simple pattern detectors, one at each pixel, for the
same pattern. We may not need every such output; instead, we might look at every
second (third, etc.) pixel in each direction. This choice is known as the stride. A
stride of 1 corresponds to looking at every pixel; of 2, every second pixel; and so
on (Figure 15.10)

A slice can be interpreted as a map, giving the response of a local feature
detector at every (resp. every second; every third; etc.) pixel. At each pixel
of interest (i.e. every pixel; every second, etc. depending on stride), we place a
window (which should be odd-sized, to make indexing easier). Every pixel in that
window is an input to a unit that corresponds to the window, which multiplies
each pixel by a weight, sums all these terms, then applies a RELU. What makes a
slice special is that each unit uses the same set of weights. The size of this object

Section 15.3 Convolutional Neural Networks 340

depends a little on the software package you are using. Assume the input image is
of size nx × ny × nz, and the kernel is of size 2kx + 1 × 2ky + 1 × nz. At least in
principle, you cannot place a unit over a pixel that is too close to the edge, because
then some of its inputs are outside the image. You could pad the image (either
with constants, or by reflecting it, or by attaching copies of the columns/rows at
the edge) and supply these inputs; in this case, the output could be nx × ny × nz.
Otherwise, you could place units only over pixels where all of the unit’s inputs are
inside the image. Then you would have an output of size nx− 2kx×ny − 2ny ×nz.
The kernel is usually small, so the difference in sizes isn’t that great. Most software
packages are willing to set up either case.

A slice finds locations in the image where a particular pattern (identified by
the weights) occurs. We could attach many slices to the image. They should all
have the same stride, so they’re all the same size. The output of this collection of
slices would be one vector at each pixel location, where the components of the vector
represent the similarity between the image patch centered at that location and a
particular pattern. A collection of slices is usually referred to as a convolutional

layer. You should think of a convolutional layer as being like a color image. There
are now may different color layers (the slices), so that dimension has been expanded.

15.3.2 Convolutional Layers upon Convolutional Layers

Now the output of the initial convolutional layer is a set of slices, registered to the
input image, forming a block of data. That looks like the input of that layer (a set
of slices — color layers) forming a block of data. This suggests we could use the
output of the first convolutional layer could be connected to a second convolutional
layer, a second to a third, and so on. Doing so turns out to be an excellent idea.

Think about the output of the first convolutional layer. Each location receives
inputs from pixels in a window about that location. Now if we put a second layer
on top of the first, each location in the second receives inputs from first layer values
in a window about that location. This means that locations in the second layer
are affected by a larger window of pixels than those in the first layer. You should
think of these as representing “patterns of patterns”. If we place a third layer on
top of the second layer, locations in that third layer will depend on an even larger
window of pixels. A fourth layer will depend on a yet larger window, and so on.

15.3.3 Pooling

If you have several convolutional layers with stride 1, then each block of data has
the same spatial dimensions. This tends to be a problem, because the pixels that
feed a unit in the top layer will tend to have a large overlap with the pixels that
feed the unit next to it. In turn, the values that the units take will be similar, and
so there will be redundant information in the output block. It is usual to try and
deal with this by making blocks get smaller. One natural strategy is to occasionally
have a layer that has stride 2.

An alternative strategy is to use max pooling. A pooling unit reports the
largest value of its inputs. In the most usual arrangement, a pooling layer will
take an (x, y, d) block to a (x/2, y/2, d) block. For the moment, ignore the entirely
minor problems presented by a fractional dimension. The new block is obtained

Section 15.4 Example: Building an Image Classifier 341

.

.

.

.

.

.

Input block

Output block

FIGURE 15.11: In a pooling layer, pooling units compute the largest value of their
inputs, then pass it on. The most common case is 2x2, illustrated here. We tile
each slice with 2x2 windows that do not overlap. Pooling units compute the max,
then pass that on to the corresponding location in the corresponding slice of the
output block. As a result, the spatial dimensions of the output block will be about
half those of the input block (details depend on how one handles windows that hang
over the edge.

by pooling units that pool a 2x2 window at each slice of the input block to form
each slice of the output block. These units are placed so they don’t overlap, so the
output block is half the size of the input block (for some reason, this configuration
is hard to say but easy to see; Figure 15.11). If x or y or both are odd, there are
two options; one could ignore the odd pixel on the boundary, or one could build
a row (column; both) of imputed values, most likely by copying the row (column;
both) on the edge. These two strategies yield, respectively, floor(x/2) and ceil(x/2)
for the new dimension. Pooling seems to be falling out of favor, but not so much
or so fast that you will not encounter it.

15.4 EXAMPLE: BUILDING AN IMAGE CLASSIFIER

There are two problems that lie at the core of image understanding. The first is
image classification, where we decide what class an image of a fixed size belongs
to. The taxonomy of classes is provided in advance, but it’s usual to work with a
collection of images of objects. These objects will be largely centered in the image,
and largely isolated. Each image will have an associated object name. There
are many collections with this structure. The best known, by far, is ImageNet,

Section 15.4 Example: Building an Image Classifier 342

which can be found at http://www.image-net.org. There is a regular competition to
classify ImageNet images. Be aware that, while this chapter tries to give a concise
description of best practice, you might need to do more than read it to do well in
the competition.

The second problem is object detection, where we try to find the locations
of objects of a set of classes in the image. So we might try to mark all cars, all cats,
all camels, and so on. As far as anyone knows, the right way to think about object
detection is that we search a collection of windows in an image, apply an image
classification method to each window, then resolve disputes between overlapping
windows. How windows are to be chosen for this purpose is an active and quickly
changing area of research. We will regard image classification as the key building
block, and ignore the question of deciding which window to classify.

We have most of the pieces to build an image classifier. Architectural choices
will make a difference to its performance. So will a series of tricks.

15.4.1 An Image Classification Architecture

We can now put together an image classifier. A convolutional layer receives image
pixel values as input. The output is fed to a stack of convolutional layers, each
feeding the next. The output of the final layer is fed to one or more fully connected
layers, with one output per class. The whole is trained by batch gradient descent,
or a variant, as above.

There are a number of architectural choices to make, which are typically made
by experiment. The main ones are the choice of the number of convolutional layers;
the choice of the number of slices in each layer; and the choice of stride for each
convolutional layer. There are some constraints on the choice of stride. The first
convolutional layer will tend to have stride 1, so that we see all the resolution of
the image. But the outputs of that layer are likely somewhat correlated, because
they depend on largely the same set of pixels. Later layers might have larger stride
for this reason. In turn, this means the spatial dimensions of the representation
will get smaller.

Notice that different image classification networks differ by relatively straight-
forward changes in architectural parameters. Mostly, the same thing will happen
to these networks (variants of batch gradient descent on a variety of costs; dropout;
evaluation). In turn, this means that we should use some form of specification
language to put together a description of the architecture of interest. Ideally, in
such an environment, we describe the network architecture, choose an optimization
algorithm, and choose some parameters (dropout probability, etc.). Then the en-
vironment assembles the net, trains it (ideally, producing log files we can look at)
and runs an evaluation. Several such environments exist.

15.4.2 Useful Tricks - 1: Preprocessing Data

It usually isn’t possible to simply feed any image into the network. We want each
image fed into the network to be the same size. We can achieve this either by
resizing the image, or by cropping the image. Resizing might mean we stretch or
squash some images, which likely isn’t a great idea. Cropping means that we need
to make a choice about where the crop box lies in the image. Practical systems

http://www.image-net.org

Section 15.4 Example: Building an Image Classifier 343

quite often apply the same network to different croppings of the same image. For
our purposes, we will assume that all the images we deal with have the same size.

It is usually wise to preprocess images before using them. This is because
two images with quite similar content might have rather different pixel values. For
example, compare image I and 1.5I. One will be brighter than the other, but
nothing substantial about the image class will have changed. There is little point
in forcing the network to learn something that we know already. There are a variety
of preprocessing options, and different options have proven to be best for different
problems. I will sketch some of the more useful ones.

You couldwhiten pixel values. You would do this for each pixel in the image
grid independently. For each pixel, compute the mean value at that pixel across
the training dataset. Subtract this, and divide the result by the standard deviation
of the value at that pixel across the training dataset. Each pixel location in the
resulting stack of images has mean zero and standard deviation one. Reserve the
offset image (the mean at each pixel location) and the scale image (ditto, standard
deviation) so that you can normalize test images.

You could contrast normalize the image by computing the mean and stan-
dard deviation of pixel values in each training (resp. test) image, then subtracting
the mean from the image and dividing the result by the standard deviation.

You could contrast normalize pixel values locally. To do so, you compute
a smoothed version of the image (convolve with a Gaussian, for insiders; everyone
else should skip this paragraph, or perhaps search the internet). You can think of
the result as a local estimate of the image mean. At each pixel, you subtract the
smoothed value from the image value.

Section 15.4 Example: Building an Image Classifier 344

Useful Facts: 15.1 Whitening a dataset

For a dataset {x}, compute:

• U , the matrix of eigenvectors of Covmat ({x});

• and mean ({x}).

Now compute {n} using the rule

ni = UT (xi −mean ({x})).

Then mean ({n}) = 0 and Covmat ({n}) is diagonal.
Now write Λ for the diagonal matrix of eigenvalues of Covmat ({x}) (so
that Covmat ({x})U = UΛ). Assume that each of the diagonal entries
of Λ is greater than zero (otherwise there is a redundant dimension in
the data). Write λi for the i’th diagonal entry of Λ, and write Λ−(1/2)

for the diagonal matrix whose i’th diagonal entry is 1/
√
λi. Compute

{z} using the rule

zi = Λ(−1/2)UT (xi −mean ({x})).

We have that mean ({z}) = 0 and Covmat ({z}) = I. The dataset {z}
is often known as whitened data.

You could whiten the image as in section 15.1. It turns out this doesn’t usually
help all that much. Instead, you need to use ZCA-whitening. I will use the same
notation as chapter 287, but I reproduce the useful facts box here as a reminder.
Notice that, by using the rule

zi = Λ(−1/2)UT (xi −mean ({x})),
we have rotated the data in the high dimensional space. In the case of images,
this means that the image corresponding to zi will likely not look like anything
coherent. Furthermore, if there are very small eigenvalues, the scaling represented
by Λ−(1/2) may present serious problems. But notice that the covariance matrix of
a dataset is unaffected by rotation. We could choose a small non-negative constant
ǫ, and use the rule

zi = U(Λ + ǫI)(−1/2)UT (xi −mean ({x}))
instead. The result looks significantly more like an image, and will have a covariance
matrix that is the identity (or close, depending on the value of ǫ). This rule is ZCA
whitening.

15.4.3 Useful Tricks - 2: Enhancing Training Data

Datasets of images are never big enough to show all effects accurately. This is
because an image of a horse is still an image of a horse even if it has been through

Section 15.4 Example: Building an Image Classifier 345

a small rotation, or has been resized to be a bit bigger or smaller, or has been
cropped differently, and so on. There is no way to take account of these effects
in the architecture of the network. Generally, a better approach is to expand the
training dataset to include different rotations, scalings, and crops of images.

Doing so is relatively straightforward. You take each training image, and
generate a collection of extra training images from it. You can obtain this collection
by: resizing and then cropping the training image; using different crops of the same
training image (assuming that training images are a little bigger than the size of
image you will work with); rotating the training image by a small amount, resizing
and cropping; and so on. You can’t crop too much, because you need to ensure
that the modified images are still of the relevant class, and an aggressive crop
might cut out the horse, etc. When you rotate then crop, you need to be sure that
no “unknown” pixels find their way into the final crop. All this means that only
relatively small rescales, crops, rotations, etc. will work. Even so, this approach is
an extremely effective way to enlarge the training set.

15.4.4 Useful Tricks - 3: Batch Normalization

There is good experimental evidence that large values of inputs to any layer within a
neural network lead to problems. One source of the problem could be this. Imagine
some input to some unit has a large absolute value. If the corresponding weight is
relatively small, then one gradient step could cause the weight to change sign. In
turn, the output of the unit will swing from one side of the RELU’s non-linearity
to the other. If this happens for too many units, there will be training problems
because the gradient is then a poor prediction of what will actually happen to the
output. So we should like to ensure that relatively few values at the input of any
layer have large absolute values. We will build a new layer, sometimes called a
batch normalization layer, which can be inserted between two existing layers.

Write xb for the input of this layer, and ob for its output. The output has the
same dimension as the input, and I shall write this dimension d. The layer has two
vectors of parameters, γ and β, each of dimension d. Write diag(v) for the matrix
whose diagonal is v, and with all other entries zero. Assume we know the mean
(m) and standard deviation (s) of each component of xb, where the expectation is
taken over all relevant data. The layer forms

xn = [diag(s+ ǫ)]
−1 (

xb −m
)

ob = [diag(γ)]xn + β.

Notice that the output of the layer is a differentiable function of γ and β. Notice
also that this layer could implement the identity transform, if γ = diag(s + ǫ) and
β = m. We adjust the parameters in training to achieve the best performance.
It can be helpful to think about this layer as follows. The layer rescales its input
to have zero mean and unit standard deviation, then allows training to readjust
the mean and standard deviation as required. In essence, we expect that large
values encountered between layers are likely an accident of the difficulty training a
network, rather than required for good performance.

The difficulty here is we don’t know either m or s, because we don’t know the
parameters used for previous layers. Current practice is as follows. First, start with

Section 15.4 Example: Building an Image Classifier 346

FIGURE 15.12: This figure from Deep Residual Learning for Image Recognition
Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun, ICCV 2016, illustrates the
difficulties presented by training a deep network.

m = 0 and s = 1 for each layer. Now choose a minibatch, and train the network
using that minibatch. Once you have taken enough gradient steps and are ready
to work on another minibatch, reestimate m as the mean of values of the inputs
to the layer, and s as the corresponding standard deviations. Now obtain another
minibatch, and proceed. Remember, γ and β are parameters that are trained, just
like the others (using gradient descent, momentum, adagrad, or whatever). Once
the network has been trained, one then takes the mean (resp. standard deviation)
of the layer inputs over the training data for m (resp. s). Most neural network
implementation environments will do all the work for you. It is quite usual to place
a batch normalization layer between each layer within the network.

There is a general agreement that batch normalization improves training, but
some disagreement about the details. Experiments comparing two networks, one
with batch normalization the other without, suggest that the same number of steps
tends to produce a lower error rate when batch normalized. Some authors suggest
that convergence is faster (which isn’t quite the same thing). Others suggest that
larger learning rates can be used.

15.4.5 Useful Tricks - 4: Residual Networks

A randomly initialized deep network can so severely mangle its inputs that only a
wholly impractical amount of training will cause the latest layers to do anything
useful. As a result, there have been practical limits on the number of layers that
can be stacked (Figure 15.12). One recent strategy for avoiding this difficulty is
to build a residual layer. Figure 15.13 sketches the idea in the form currently
best understood. Remember, F (x) is a RELU. Our usual layers produce xl+1 =
F(xl; θ) = F (Wxl + b) as its output. This layer could be anything, but is most

Section 15.4 Example: Building an Image Classifier 347

FIGURE 15.13: This figure, which is revised from Deep Residual Learning for Im-
age Recognition Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun, ICCV 2016,
conveys the intention of a residual network.

likely a fully connected or a convolutional layers. Then we can replace this layer
with one that produces

xl+1 = F (xl +W1q+ b1)

q = F (W2x
l + b2).

It is usual, if imprecise, to think of this as producing an output that is x+F(x; θ)
— the layer passes on its input with a residual added to it. The point of all this
is that, at least in principle, this residual layer can represent its output as a small
offset on its input. If it is presented with large inputs, it can produce large outputs
by passing on the input. Its output is also significantly less mangled by stacking
layers, because its output is largely given by its input plus a non-linear function.

Very recently, an improvement on this strategy has surfaced, in Identity Map-
pings in Deep Residual Networks by Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun (which you can find on ArXiV using a search engine). Rather than use
the expression above (corresponding to Figure 15.13), we use a layer that produces

xl+1 = xl +W1q+ b1

q = F (W2F (xl) + b2).

It is rather more informative to think of this as producing an output that is x +
F(x; θ) — the layer passes on its input with a residual added to it. There is good
evidence that such layers can be stacked very deeply indeed (the paper I described
uses 1001 layers to get under 5% error on CIFAR-10; beat that if you can!). One
reason is that there are useful components to the gradient for each layer that do
not get mangled by previous layers. You can see this by considering the Jacobian
of such a layer with respect to its inputs. You will see that this Jacobian will have
the form

Jxl+1;xl = (I +Ml)

where I is the identity matrix and Ml is a set of terms that depend on W and b.
Now remember that, when we construct the gradient at the k’th layer, we evaluate

Section 15.5 Adversarial Examples 348

FIGURE 15.14: This figure is revised from Identity Mappings in Deep Residual Net-
works by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (which you can
find on ArXiV using a search engine). On the left, (a) shows the original residual
network architecture, also described in Figure 15.13; (b) shows the current best ar-
chitecture. On the right, train (dashed) and test (full) curves for the old and new
architectures on CIFAR-10. Notice the significant improvement in performance.

by multiplying a set of Jacobians corresponding to the layers above. This product
in turn must look like

Jo;θk = Jo;xk+1Jxk+1;θk = (I +M1 + . . .)Jxk+1;θk

which means that some components of the gradient at that layer do not get mangled
by being passed through a sequence of poorly estimated Jacobians. One reason I
am having trouble making a compelling argument explaining why this architecture
is better is that the argument doesn’t seem to be known in any tighter form (it
certainly isn’t to me). There is overwhelming evidence that the architecture is,
in practice, better; it has produced networks that are (a) far deeper and (b) far
more accurate than anything produced before. But why it works remains somewhat
veiled.

15.5 ADVERSARIAL EXAMPLES

Adversarial examples are a curious experimental property of neural network image
classifiers. Here is what happens. Assume you have an image x that is correctly
classified with label l. The network will produce a probability distribution over
labels P (L|x). Choose some label k that is not correct. It is possible to use modern

Section 15.5 Adversarial Examples 349

Car NotCar Difference

FIGURE 15.15: This figure is from “Intriguing properties of neural networks”, by
Christian Szegedy et al.. The left column shows images classified as car; the mid-

dle column shows modified versions of those images classified as not car; and the
right column shows the difference.

optimization methods to search for a modification to the image δx such that

δx is small

and

P (k|x+ δx) is large.

You might expect that δx is “large”; what is surprising is that mostly it is so tiny
as to be imperceptible to a human observer. For example, the labels might be
car and not-car. Figure 15.15 shows two images correctly labelled car, and the
revisions required to make the image get the label not-car. The changes can’t be
detected by eye. Similarly, figure 15.16 shows what is required to turn a panda into
a nematode. Again, the changes can’t be detected by eye.

The property of being an adversarial example seems to be robust to im-
age smoothing, simple image processing, and printing and photographing (see
figure 15.17). The existence of adversarial examples raises the following, rather
alarming, prospect: You could make a template that you could hold over a stop
sign, and with one pass of a spraypaint can, turn that sign into something that is
interpreted as a minimum speed limit sign by current computer vision systems. I
haven’t seen this demonstration done yet, but it appears to be entirely within the
reach of modern technology, and it and activities like it offer significant prospects

Section 15.5 Adversarial Examples 350

FIGURE 15.16: This figure is from “EXPLAINING AND HARNESSING ADVER-
SARIAL EXAMPLES”, by Ian Goodfellow et al.. The left column shows a panda;
the middle column shows a modification (which has been exaggerated to make it
non-grey; note the multiplier); and the right column shows a nematode.

for mayhem.
What is startling about this behavior is that it is exhibited by networks that

are very good at image classification, assuming that no-one has been fiddling with
the images. So modern networks are very accurate on untampered pictures, but
may behave very strangely in the presence of tampering. One can (rather vaguely)
identify the source of the problem, which is that neural network image classifiers
have far more degrees of freedom than can be pinned down by images. This ob-
servation doesn’t really help, though, because it doesn’t explain why they (mostly)
work rather well, and it doesn’t tell us what to do about adversarial examples.
There have been a variety of efforts to produce networks that are robust to adver-
sarial examples, but evidence right now is based only on experiment (some networks
behave better than others) and we are missing clear theoretical guidance.

Section 15.5 Adversarial Examples 351

FIGURE 15.17: This figure is from “ADVERSARIAL EXAMPLES IN THE PHYS-
ICAL WORLD”, by Alexey Kurakin et al.. The authors photographed the washing
machine on the left. They then prepared clean and adversarial versions of that im-
age and printed them. Finally, they photographed them with a cell-phone camera,
producing the images with overprinting. The first is a photo of the printed washing
machine, and is correctly classified as a washer; the second and third are photos of
printed adversarial examples, and are (respectively) a safe (or perhaps a washer)
and a safe (or perhaps a loudspeaker).

C H A P T E R 16

More Neural Networks

16.1 LEARNING TO MAP

Imagine we have a high dimensional dataset. As usual, there are N d-dimensional
points x, where the i’th point is xi. We would like to build a map of this dataset, to
try and visualize its major features. We would like to know, for example, whether
it contains many or few blobs; whether there are many scattered points; and so on.
We might also want to plot this map using different plotting symbols for different
kinds of data points. For example, if the data consists of images, we might be
interested in whether images of cats form blobs that are distinct from images of
dogs, and so on. I will write yi for the point in the map corresponding the xi.
The map is an M dimensional space (though M is almost always two or three in
applications).

We have seen one tool for this exercise (section 287). This used eigenvectors to
identify a linear projection of the data that made low dimensional distances similar
to high dimensional distances. I argued that the choice of map should minimize

∑

i,j

(

||yi − yj ||2 − ||xi − xj ||2
)2

then rearranged terms to produce a solution that minimized

∑

i,j

(

yT
i yj − xT

i xj

)2
.

The solution produces a yi that is a linear function of xi, just as a by-product of
the mathematics. There are two problems with this approach (apart from the fact
that I suppressed a bunch of detail). If the data lies on a curved structure in the
high dimensional space, then a linear projection can distort the map very badly.
Figure ??) sketches one example.

You should notice that the original choice of cost function is not a particularly
good idea, because our choice of map is almost entirely determined by points that
are very far apart. This happens because squared differences between big numbers
tend to be a lot bigger than squared differences between small numbers, and so
distances between points that are far apart will be the most important terms in the
cost function. In turn, this could mean our map does not really show the structure
of the data – for example, a small number of scattered points in the original data
could break up clusters in the map (the points in clusters are pushed apart to get a
map that places the scattered points in about the right place with respect to each
other).

352

Section 16.1 Learning to Map 353

16.1.1 Sammon Mapping

Sammon mapping is a method to fix these problems by modifying the cost func-
tion. We attempt to make the small distances more significant in the solution by
minimizing

C(y1, . . . ,yN) =

(

1
∑

i<j ||xi − xj ||

)

∑

i<j

[

(||yi − yj || − ||xi − xj ||)2
||xi − xj ||

]

.

The first term is a constant that makes the gradient cleaner, but has no other effect.
What is important is we are biasing the cost function to make the error in small
distances much more significant. Unlike straightforward multidimensional scaling,
the range of the sum matters here – if i equals j in the sum, then there will be a
divide by zero.

No closed form solution is known for this cost function. Instead, choosing
the y for each x is by gradient descent on the cost function. You should notice
there is no unique solution here, because rotating, translating or reflecting all the
yi will not change the value of the cost function. Furthermore, there is no reason
to believe that gradient descent necessarily produces the best value of the cost
function. Experience has shown that Sammon mapping works rather well, but has
one annoying feature. If one pair of high dimensional points is very much closer
together than any other, then getting the mapping right for that pair of points is
extremely important to obtain a low value of the cost function. This should seem
like a problem to you, because a distortion in a very tiny distance should not be
much more important than a distortion in a small distance.

16.1.2 T-SNE

We will now build a model by reasoning about probability rather than about dis-
tance (although this story could likely be told as a metric story, too). We will build
a model of the probability that two points in the high dimensional space are neigh-
bors, and another model of the probability that two points in the low dimensional
space are neighbors. We will then adjust the locations of the points in the low
dimensional space so that the KL divergence between these two models is small.

We reason first about the probability that points in the high dimensional
space are neighbors. Write the conditional probability that xj is a neighbor of xi

as pj|i. Write

wj|i = exp

(

||xj − xi ||2
2σ2

i

)

We use the model
pj|i =

wj|i
∑

k wk|i
.

Notice this depends on the scale at point i, written σi. For the moment, we assume
this is known. Now we define pij the joint probability that xi and xj are neighbors
by assuming pii = 0, and for all other pairs

pij =
pj|i + pi|j

2N
.

Section 16.1 Learning to Map 354

FIGURE 16.1: A Sammon mapping of 6,000 samples of a 1,024 dimensional data
set. The data was reduced to 30 dimensions using PCA, then subjected to a Sammon
mapping. This data is a set of 6, 000 samples from the MNIST dataset, consisting
of a collection of handwritten digits which are divided into 10 classes (0, . . . 9).
The class labels were not used in training, but the plot shows class labels. This
helps determine whether the visualization is any good – you could reasonably expect
a visualization to put items in the same class close together and items in very
different classes far apart. As the legend on the side shows, the classes are quite well
separated. Figure from Visualizing Data using t-SNE Journal of Machine Learning
Research 9 (2008) 2579-2605 Laurens van der Maaten and Geoffrey Hinton, to be
replaced with a homemade figure in time.

This is an N ×N table of probabilities; you should check that this table represents
a joint probability distribution (i.e. it’s non-negative, and sums to one).

We use a slightly different probability model in the low dimensional space. We
know that, in a high dimensional space, there is “more room” near a given point
(think of this as a base point) than there is in a low dimensional space. This means
that mapping a set of points from a high dimensional space to a low dimensional
space is almost certain to move some points further away from the base point than
we would like. In turn, this means there is a higher probability that a distant point
in the low dimensional space is still a neighbor of the base point. Our probability
model needs to have “long tails” – the probability that two points are neighbors
should not fall off too quickly with distance. Write qij for the probability that yi

and yj are neighbors. We assume that qii = 0 for all i. For other pairs, we use the
model

qij(y1, . . . ,yN) =
1/1+||yi−yj||2

∑

k,l,k 6=l
1/1+||yi−yk||2

(where you might recognize the form of Student’s t-distribution if you have seen

Section 16.2 Encoders, decoders and auto-encoders 355

that before). You should think about the situation like this. We have a table
representing the probabilities that two points in the high dimensional space are
neighbors, from our model of pij . The values of the y can be used to fill in an
N × N joint probability table representing the probabilities that two points are
neighbors. We would like this tables to be like one another. A natural metric of
similarity is the KL-divergence, of section 287. So we will choose y to minimize

Ctsne(y1, . . . ,yN) =
∑

ij

pij log
pij

qij(y1, . . . ,yN)
.

Remember that pii = qii = 0, so adopt the convention that 0 log 0/0 = 0 to avoid
embarrassment (or, if you don’t like that, omit the diagonal terms from the sum).
Gradient descent with a fixed steplength and momentum was be sufficient to mini-
mize this in the original papers, though likely the other tricks of section 287 might
help.

There are two missing details. First, the gradient has a quite simple form
(which I shall not derive). We have

∇yiCtsne = 4
∑

j

[

(pij − qij)
(yi − yj)

1 + ||yi − yj ||2

]

.

Second, we need to choose σi. There is one such parameter per data point, and
we need them to compute the model of pij . This is usually done by search, but
to understand the search, we need a new term. The perplexity of a probability
distribution with entropy H(P) is defined by

Perp(P) = 2H(P).

The search works as follows: the user chooses a value of perplexity; then, for each i,
a binary search is used to choose σi such that pj|i has that perplexity. Experiments
currently suggest that the results are quite robust to wide changes in the users
choice.

In practical examples, it is quite usual to use PCA to get a somewhat reduced
dimensional version of the x. So, for example, one might reduce dimension from
1,024 to 30 with PCA, then apply t-SNE to the result.

16.2 ENCODERS, DECODERS AND AUTO-ENCODERS

An encoder is a network that can take a signal and produce a code. Typically,
this code is a description of the signal. For us, signals have been images and I
will continue to use images as examples, but you should be aware that all I will
say can be applied to sound and other signals. The code might be “smaller” than
the original signal – in the sense it contains fewer numbers – or it might even be
“bigger” – it will have more numbers, a case referred to as an overcomplete

representation. You should see our image classification networks as encoders. They
take images and produce short representations. A decoder is a network that can
take a code and produce a signal. We have not seen decoders to date.

An auto-encoder is a learned pair of coupled encoder and decoder; the
encoder maps signals into codes, and the decoder reconstructs signals from those

Section 16.2 Encoders, decoders and auto-encoders 356

FIGURE 16.2: A t-sne mapping of 6,000 samples of a 1,024 dimensional data
set. The data was reduced to 30 dimensions using PCA, then subjected to a t-sne
mapping. This data is a set of 6, 000 samples from the MNIST dataset, consisting
of a collection of handwritten digits which are divided into 10 classes (0, . . . 9).
The class labels were not used in training, but the plot shows class labels. This
helps determine whether the visualization is any good – you could reasonably expect
a visualization to put items in the same class close together and items in very
different classes far apart. As the legend on the side shows, the classes are quite well
separated. Figure from Visualizing Data using t-SNE Journal of Machine Learning
Research 9 (2008) 2579-2605 Laurens van der Maaten and Geoffrey Hinton, to be
replaced with a homemade figure in time.

codes. Auto-encoders have great potential to be useful, which we will explore in
the following sections. You should be aware that this potential has been around
for some time, but has been largely unrealized in practice. One application is in
unsupervised feature learning, where we try to construct a useful feature set from
a set of unlabelled images. We could use the code produced by the auto-encoder
as a source of features. Another possible use for an auto-encoder is to produce a
clustering method – we use the auto-encoder codes to cluster the data. Yet another
possible use for an auto-encoder is to generate images. Imagine we can train an
auto-encoder so that (a) you can reconstruct the image from the codes and (b) the
codes have a specific distribution. Then we could try to produce new images by
feeding random samples from the code distribution into the decoder.

Section 16.2 Encoders, decoders and auto-encoders 357

16.2.1 Auto-encoder Problems

Assume we wish to classify images, but have relatively few examples from each
class. We can’t use a deep network, and would likely use an SVM on some set of
features, but we don’t know what feature vectors to use. We could build an auto-
encoder that produced an overcomplete representation, and use that overcomplete
representation as a set of feature vectors. The decoder isn’t of much interest, but
we need to train with a decoder. The decoder ensures that the features actually
describe the image (because you can reconstruct the image from the features). The
big advantage of this approach is we could train the auto-encoder with a very large
number of unlabelled images. We can then reasonably expect that, because the
features describe the images in a quite general way, the SVM can find something
discriminative in the set of features.

We will describe one procedure to produce an auto-encoder. The encoder is a
layer that produces a code. For concreteness, we will discuss grey-level images, and
assume the encoder is one convolutional layer. Write Ii for the i’th input image.
All images will have dimension m×m× 1. We will assume that the encoder has r
distinct units, and so produces a block of data that is s× s× r. Because there may
be stride and convolution edge effects in the encoder, we may have that s is a lot
smaller than m. Alternatively, we may have s = m. Write E(I, θe) for the encoder
applied to image I; here θe are the weights and biases of the units in the encoder.
Write Zi = E(Ii, θe) for the code produced by the encoder for the i’th image. The
decoder must accept the output of the encoder and produce an m×m× l image.
Write D(Z, θd) for the decoder applied to a code Z.

We have Zi = E(Ii, θe), and would like to have D(Zi, θd) close to Ii. We
could enforce this by training the system, by stochastic gradient descent on θe, θd,
to minimize ||D(Zi, θd)− Ii||2. One thing should worry you. If s × s × r is larger
than m×m, then there is the possibility that the code is redundant in uninteresting
ways. For example, if s = m, the encoder could consist of units that just pass on
the input, and the decoder would pass on the input too – in this case, the code is
the original image, and nothing of interest has happened.

16.2.2 The denoising auto-encoder

There is a clever trick to avoid this problem. We can require the codes to be robust,
in the sense that if we feed a noisy image to the encoder, it will produce a code that
recovers the original image. This means that we are requiring a code that not only
describes the image, but is not disrupted by noise. Training an auto-encoder like
this results in a denoising auto-encoder. Now the encoder and decoder can’t
just pass on the image, because the result would be the noisy image. Instead, the
encoder has to try and produce a code that isn’t affected (much) by noise, and the
decoder has to take the possibility of noise into account while decoding.

Depending on the application, we could use one (or more) of a variety of
different noise models. These impose slightly different requirements on the behavior
of the encoder and decoder. There are three natural noise models: add independent
samples of a normal random variable at each pixel (this is sometimes known as
additive gaussian noise); take randomly selected pixels, and replace their values
with 0 (masking noise); and take randomly selected pixels and replace their values

Section 16.2 Encoders, decoders and auto-encoders 358

with a random choice of brightest or darkest value (salt and pepper noise).
In the context of images, it is natural to use the least-squares error as a loss

for training the auto-encoder. I will write noise(Ii) to mean the result of applying
noise to image Ii. We can write out the training loss for example i as

||D(Zi, θd)− Ii||2 where Zi = E(noise(Ii), θe)

You should notice that masking noise and salt and pepper noise are different
to additive gaussian noise, because for masking noise and salt and pepper noise only
some pixels are affected by noise. It is natural to weight the least-square error at
these pixels higher in the reconstruction loss – when we do so, we are insisting that
the encoder learn a representation that is really quite good at predicting missing
pixels. Training is by stochastic gradient descent, using one of the gradient tricks
of section 287. Note that each time we draw a training example, we construct a
new instance of noise for that version of the training example, so the encoding and
decoding layer may see the same example with different sets of pixels removed, etc.

16.2.3 Stacking Denoising Auto-encoders

An encoder that consists of a single convolutional layer likely will not produce a
rich enough representation to do anything useful. After all, the output of each unit
depends only on a small neighborhood of pixels. We would like to train a multi-
layer encoder. Experimental evidence over many years suggests that just building
a multi-layer encoder network, hooking it to a multi-layer decoder network, and
proceeding to train with stochastic gradient descent just doesn’t work well. It is
tough to be crisp about the reasons, but the most likely problem seems to be that
interactions between the layers make the problem wildly ambiguous. For example,
each layer could act to undo much of what the previous layer has done.

Here is a strategy that works for several different types of auto-encoder (though
I will describe it only in the context of a denoising auto-encoder). First, we build
a single layer encoder E and decoder D using the denoising auto-encoder strat-
egy to get parameters θe1 and θd1. The number of units, stride, support of units,
etc. are chosen by experiment. We train this auto-encoder to get an acceptable
reconstruction loss in the face of noise, as above.

Now I can think of each block of data Zi1 = E(Ii, θe1) as being “like” an
image; it’s just s× s× r rather than m×m× 1. Notice that Zi1 = E(Ii, θe1) is the
output of the encoder on a real image (rather than a real image with noise). I could
build another denoising auto-encoder that handles Z1’s. In particular, I will build
single layer encoder E and decoder D using the denoising auto-encoder strategy
to get parameters θe2 and θd2. This encoder/decoder pair must auto-encode the
objects produced by the first pair. So I fix θe1, θd1, and the loss for image i as a
function of θe2, θd2 becomes

||D(Zi2, θd2)− Zi1||2 where Zi2 = E(noise(Zi1), θe2)

and Zi1 = E(I1, θe1)

Again, training is by stochastic gradient descent using one of the tricks of sec-
tion 287.

Section 16.2 Encoders, decoders and auto-encoders 359

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Image i Z’ Z’ Z O
i1 i2 i1 i

θ θ θ θ
e1 e2 d2 d1

FIGURE 16.3: Two layers of denoising auto-encoder, ready for fine tuning. This
figure should help with the notation in the text.

We can clearly apply this approach recursively, to stack train multiple layers.
But more work is required to produce the best auto-encoder. In the two layer
example, notice that the error does not take into account the effect of the first
decoder on errors made by the second. We can fix this once all the layers have
been trained if we need to use the result as an auto-encoder. This is sometimes
referred to as fine tuning. We now train all the θ’s. So, in the two layer case, the
image passes into the first encoder, the result passes into the second encoder, then
into the second decoder, then into the first decoder, and what emerges should be
similar to the image. This gives a loss for image i in the two layer case as

||D(Zi1, θd1)− Ii||2 where Zi1 = D((Z ′
i2), θd2)

and Z ′
i2 = E(Z ′

i1, θe2)

and Z ′
i1 = E(Ii, θe1)

(Figure 16.3 might be helpful here).

16.2.4 Current practice with autoencoders

As training methods have become better, it is less usual to use the stacking pro-
cedure described above. One can build quite effective autoencoders with a set of
convolutional layers, using stride to make the blocks smaller. This is the encoder,
and its output is the code. The decoder is a set of convolutional layers using stride
to make the blocks larger (Figure 287). This structure is often referred to as an
hourglass network (by gross visual analogy!).

It remains tricky to get really nice images from the decoder. We will discuss
some of the tricks later, but using sum of squared errors as a reconstruction loss
tends to produce somewhat blurry images (eg Figure 16.4). This is because the
square of a small number is very small. As a result, the sum of squared error loss
tends to prefer errors that are small, but somewhat widely distributed. At an edge
in an image, an error like this will tend to result in a smoothed edge (Figure ??).

Some extreme training tricks are possible, and sometimes justified. Figure 287
illustrates an autoencoder trained to fill in large blocks of an image (an inpainting

Section 16.2 Encoders, decoders and auto-encoders 360

FIGURE 16.4: Top: shows three batches of face images from the widely used Celeb-A
dataset, which you can find at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
Bottom: shows the output of a simple autoencoder on these images. You should
notice that the autoencoder does not preserve high spatial frequency details (the faces
have been slightly blurred), but that it mostly reproduces the faces rather well. It is
traditional to evaluate image autoencoders on face datasets, because mild blurring
often makes a face look more attractive. Figure courtesy of Anand Bhattad, of
UIUC.

autoencoder). This can work for, say, faces, because the missing piece of face can
be predicted moderately well from the remaining face.

16.2.5 Classification using an Auto-encoder

It isn’t usually the case that we want to use an auto-encoder as a compression
device. Instead, it’s a way to learn features that we hope will be useful for some
other purpose. One important case occurs when we have little labelled image data.
There aren’t enough labels to learn a full convolutional neural network, but we
could hope that using an auto-encoder would produce usable features. The process
involves: fit an auto-encoder to a large set of likely relevant image data; now discard
the decoders, and regard the encoder stack as something that produces features;
pass the code produced by the last layer of the stack into a fully connected layer;

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Section 16.3 Making Images from Scratch with Variational Auto-encoders 361

FIGURE 16.5: On the left, a stylized image edge with one possible reconstruction
error. The top graph shows the image intensity along some line (x is distance along
the line); the middle graph shows one possible reconstruction, with the edge correctly
reproduced but in the wrong place; and the lower graph shows the resulting error.
This error will have a large sum of squares, because it consists of large values. On
the right, a stylized image edge with a different reconstruction error, which makes
the edge blurry. Notice how the error is small and spread out; as a result, the sum
of squared errors is small. We can safely assume that an autoencoder will make
some kind of error. This argument suggests that autoencoders trained with a sum
of squared error loss will quite strongly prefer to make errors that result in rather
blurry images.

and fine-tune the whole system using labelled training data. There is good evidence
that denoising auto-encoders work rather well as a way of producing features, at
least for MNIST data.

16.3 MAKING IMAGES FROM SCRATCH WITH VARIATIONAL AUTO-ENCODERS

*** This isn’t right - need to explain why I would try to generate from scratch? ***
we talk about himages here, but pretty much everything applies to other signals
too

16.3.1 Auto-Encoding and Latent Variable Models

There is a crucial, basic difficulty building a model to generate images. There is
a lot of structure in an image. For most pixels, the colors nearby are about the
same as the colors at that pixel. At some pixels, there are sharp changes in color.
But these edge points are very highly organized spatially, too – they (largely)
demarcate shapes. There is coherence at quite long spatial scales in images, too.
For example, in an image of a donut sitting on a table, the color of the table
inside the hole is about the same as the color outside. All this means that the
overwhelming majority of arrays of numbers are not images. If you’re suspicious,
and not easily bored, draw samples from a multivariate normal distribution with
unit covariance and see how long it will take before one of them even roughly looks
like an image (hint: it won’t happen in your lifetime, but looking at a few million
samples is a fairly harmless way to spend time).

Section 16.3 Making Images from Scratch with Variational Auto-encoders 362

FIGURE 16.6: Three batches of face images from the widely used Celeb-A dataset,
which you can find at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html , with
black boxes over the faces where the inpainting autoencoder is required to recon-
struct the image without seeing it. Results in figure 16.7. Figure courtesy of Anand
Bhattad, of UIUC.

The structure in an image suggests a strategy. We could try to decode “short”
codes to produce images. Write X for a random variable representing an image,
and z for a code representing a compressed version of the image. Assume we can
find a “good” model for P (X |z, θ). This might be built using a decoder network
whose parameters are θ. Assume also that we can build codes and a decoder such
that anything that comes out of the decoder looks like an image, and the probability
distribution of codes corresponding to images is “easy”. Then we could model P (X)
as

∫

P (X |z, θ)P (z)dz.

Such a model is known as a latent variable model. The codes z are latent

variables – hidden values which, if known, would “explain” the image. In the first
instance, assume we have a model of this form. Then generating an image would
be simple in principle. We draw a sample from P (z), then pass this through the
network and regard the result as a sample from P (X). This means that, for the
model to be useful, we need to be able to actually draw these samples, and this
constrains an appropriate choice of models. It is very natural to choose that P (z)
be a distribution that is easy to draw samples from. We will assume that P (z) is
a standard multivariate normal distribution (i.e. it has mean 0, and its covariance
matrix is the identity). This is by choice – it’s my model, and I made that choice.

However, we need to think very carefully about how to train such a model.
One strategy might be to pass in samples from a normal distribution, then adjust
the network parameters (by stochastic gradient descent, as always) to ensure what
comes out is always an image. This isn’t going to work, because it remains a
remarkably difficult research problem to tell whether some array is an image or
not. An alternative strategy is to build an encoder to make codes out of example
images. We then train so that (a) the encoder produces codes that have a standard
normal distribution and (b) the decoder takes the code computed from the i’th

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Section 16.3 Making Images from Scratch with Variational Auto-encoders 363

FIGURE 16.7: Top: shows three batches of face images from the widely used Celeb-A
dataset, which you can find at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
Bottom: shows the output of an inpainting autoencoder on these images. You
should notice that the autoencoder does not preserve high spatial frequency details
(the faces have been slightly blurred), but that it mostly reproduces the faces rather
well. The inputs are in figure 16.6; notice there are large blocks of face missing,
which the autoencoder is perfectly capable of supplying. Figure courtesy of Anand
Bhattad, of UIUC.

image and turns it into the i’th image. This isn’t going to work either, because
we’re not taking account of the gaps between codes. We need to be sure that, if
we present the decoder with any sample from a standard normal distribution (not
just the ones we’ve seen), it will give us an image.

The correct strategy is as follows. We train an encoder and a decoder. Write
Xi for the i’th image, E(Xi) = zi for the code produced by the decoder applied to
Xi, D(z) for the image produced by the decoder on code z. For some image Xi, we
produce E(Xi) = zi. We then obtain z close to zi. Finally, we produce D(z). We
train the encoder by requiring that the z “look like” IID samples from a standard
normal distribution. We train the decoder by requiring that D(z) is close to Xi.
Actually doing this will require some wading through probability, but the idea is
quite clean.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Section 16.3 Making Images from Scratch with Variational Auto-encoders 364

16.3.2 Building a Model

Now, at least in principle, we could try to choose θ to maximize

∑

i

logP (Xi|θ).

But we have no way to evaluate the probability model, so this is hopeless. Recall
the variational methods of chapters 287 and 287. Now choose some variational
distribution Q(z|X). This will have parameters, too, but I will suppress these and
other parameters in the notation until we need to deal with them. Notice that

D(Q(z|X) || P (z|X)) = EQ[logQ(z|X)− logP (z|X)]

= EQ[logQ(z|X)]− EQ[logP (X |z) + logP (z)− logP (X)]

= EQ[logQ(z|X)]− EQ[logP (X |z) + logP (z)] + logP (X))

where the last line works because logP (X) doesn’t depend on z. Recall the defini-
tion of the variational free energy from chapter 287. Write

EQ = EQ[logQ]− EQ[logP (X |z) + logP (z)]

and so we have

logP (X)− D(Q(z|X) || P (z|X)) = −EQ.

We would like to maximize logP (X) by choice of parameters, but we can’t because
we can’t compute it. But we do know that D(Q(z|X) || P (z|X)) ≥ 0. This means
that −EQ is a lower bound on logP (X). If we maximize this lower bound (equiva-
lently, minimize the variational free energy), then we can reasonably hope that we
have a large value of logP (X). The big advantage of this observation is that we
can work with −EQ.

16.3.3 Turning the VFE into a Loss

The best case occurs when Q(z|X) = P (z|X) (because then D(Q(z|X) || P (z|X)) =
0, and the lower bound is tight). We don’t expect this to occur in practice, but it
suggests a way of thinking about the problem. We can build our model of Q(z|X)
around an encoder that predicts a code from an image. Similarly, our model of
P (X |z) would be built around a decoder that predicts an image from a code.

We can simplify matters by rewriting the expression for the variational free
energy. We have

−EQ = −EQ[logQ] + EQ[logP (X |z) + logP (z)]

= EQ[logP (X |z)]− D(Q(z|X) || P (z)).

We want to build a model of Q(z|X), which is a probability distribution, using a
neural network. This model accepts an image, X , and needs to produce a random
code z which depends on X . We will do this by using the network to predict the
mean and covariance of a normal distribution, then drawing the code z from a
normal distribution with that mean and covariance. I will write µ(X) for the mean

Section 16.3 Making Images from Scratch with Variational Auto-encoders 365

and Σ(X) for the covariance, where the (X) is there to remind you that these are
functions of the input, and they are modelled by the neural network. We choose
the covariance to be diagonal, because the code might be quite large and we do not
wish to try and learn large covariance matrices.

Now consider the term D(Q(z|X) || P (z)). We get to choose the prior on
the code, and we choose P (z) to be a standard normal distribution (i.e. mean 0,
covariance matrix the identity; I’ll duck the question of the dimension of z for the
moment). We can write

Q(z|X) = N (µ(X); Σ(X)).

We need to compute the KL-divergence between this distribution and a standard
normal distribution. This can be done in closed form. For reference (if you don’t feel
like doing the integrals yourself, and can’t look it up elsewhere), the KL-divergence
between two multivariate normal distributions for k dimensional vectors is

D(N (µ0; Σ0) || N (µ1; Σ1)) =
1

2

(

Tr
(

Σ−1
1 Σ0

)

+ (µ1 − µ0)
T
σ−1
1 (µ1 − µ0)

−k + log
(

Det(Σ1)
Det(Σ0)

)

)

.

In turn, this means that

D(N (µ(X); Σ(X)) || N (0; I)) =
1

2

(

Tr (Σ(X)) + µ(X)Tµ(X)
−k − log (Det (Σ))

)

.

At this point, we are close to having an expression for a loss that we can
actually minimize. We must deal with the term EQ[logP (X |z)]. Recall that we
modelled Q(z|X) by drawing z from a normal distribution with mean µ(X) and
covariance Σ(X). We can obtain such a z by drawing from a standard normal
distribution, then multiplying by Σ(X)1/2 and adding back the mean µ(X). In
equations, we have

u ∼ N (0; I)
z = µ(X) + Σ(X)1/2u

logP (X |z) = logP (X |µ(X) + Σ(X)1/2u).

Our dataX consists of a collection of images which we believe are IID samples
from P (X). I will write Xi for the i’th image. Originally, we wanted to choose
parameters to maximize

logP (X) =
∑

i

logP (Xi)

= D(Q(z|X) || P (z|X))− EQ(z|X)

=
∑

i

[

D(Q(z|Xi) || P (z|Xi))− EQ(z|Xi)

]

.

It’s usual to train networks to minimize losses. We can write the loss as

EQ = −EQ[logQ] + EQ[logP (X |z) + logP (z)]

= D(Q(z|X) || P (z))− EQ[logP (X |z)]
=

∑

i

[

D(Q(z|Xi) || P (z))− EQ(z|Xi)[logP (Xi|z)]
]

.

Section 16.3 Making Images from Scratch with Variational Auto-encoders 366

I am now going to insert parameters. I will write parameters θ, with a sub-
script that tells you what the parameters are for. Recall we modelled Q with
a network that took an image Xi and produced a mean µ(Xi; θµ) and a covari-
ance Σ(Xi; θΣ). This network is an encoder - it makes codes (the means) from
images. We will need a decoder to model P (X |z). We will write D(z; θD) for a
network that produces an image from a code. We assume that images are given by
P (X |z) = N (D(z; θD); I), so that

logP (Xi|z) =
−
(

||Xi −D(z; θD) ||2
)

2
.

So the loss becomes

EQ =
∑

i

[

D(Q(z|Xi) || P (z))− EQ(z|Xi)[logP (Xi|z)]
]

=
∑

i









1
2

(

Tr (Σ(Xi; θΣ)) + µ(Xi; θµ)
Tµ(Xi; θµ)

−k − log (Det (Σ(Xi; θΣ)))

)

−EQ(z|Xi)

[

−
(

||Xi−D(z;θD)||2
)

2

]









.

The expectation term is a nuisance. We will approximate the expectation by draw-
ing one sample from Q(z|X) and averaging over that one sample. Assume ui is an
IID sample of N (0; I). Then we write

EQ =
∑

i

[

D(Q(z|Xi) || P (z))− EQ(z|Xi)[logP (Xi|z)]
]

≈
∑

i







1
2

(

Tr (Σ(Xi; θΣ)) + µ(Xi; θµ)
Tµ(Xi; θµ)− k

− log (Det (Σ(Xi; θΣ)))

)

−−
(

||Xi−D(µ(Xi;θµ)+Σ(Xi;θΣ)1/2ui;θD)||2
)

2






.

This is a loss, and it can be differentiated in θµ, θΣ, and θD. To train a variational
auto-encoder, we use stochastic gradient descent with a variety of tricks on this
loss.

16.3.4 Some Caveats

As of writing, variational auto-encoders are the cutting edge of generative models.
They seem to be better at generating images than any other technology. However,
they are interesting because a really strong generative model for images would
be extremely useful, not because they’re particularly good at generating images.
There are a variety of important problems. Solutions to any, or all, of these problems
would be very exciting, because it is extremely useful to be able to generate images.

Training: Variational auto-encoders are notoriously hard to train. There’s a
strong tendency to get no descent in the initial stages of training. The usual way
to manage this is to weight the loss terms. You can break the loss into two terms.
One measures the similarity of the code distribution to the normal distribution,
the other measures the accuracy of reconstruction. Current practice weights the
reconstruction loss very high in the early stages of training, then reduces that weight

Section 16.4 Generative Adversarial Networks (GANs) 367

as training proceeds. This seems to help, for reasons I can’t explain and have never
seen explained.

Small images: Variational auto-encoders produce small images. Images
bigger than 64× 64 are tough to produce.

Mysterious code properties: There seems to be some limit to the com-
plexity of the family of images that a variational auto-encoder can produce. This
means that MNIST (for example) pretty much always works quite convincingly,
but auto-encoding all the images in (say) ImageNet doesn’t produce particularly
good results. There is likely some relationship between the size of the code and the
complexity of the family of images, but the effectiveness of training has something
to do with it as well.

Blurry reconstructions: Variational auto-encoders produce blurry images.
This is somewhat predictable from the loss and the training process. I know two
arguments, neither completely rigorous. First, the image loss is L2 error, which
always produces blurry images because it regards a sharp edge in the wrong place as
interchangeable with a slower edge in the right place. Second, the code distributions
predicted by the encoder for two similar images must overlap; this means that the
decoder is being trained to produce two distinct images for the same z, which must
mean it averages and so loses detail.

Gaps in the code space: Codes are typically 32 dimensional. Expecting to
produce a good estimate of an expectation with a single sample in a 32 dimensional
space is a bit ambitious. This means that, in turn, there are many points in the
code space that have never been explored by the encoder, or used in training the
decoder. As a result, it is likely that a small search around a code can produce
another code that generates a truly awful image. Of course, this result will only
appear during an important live demo...

16.4 GENERATIVE ADVERSARIAL NETWORKS (GANS)

Here is a strategy for generating specialized images, for example, images of faces.
Construct a decoder. Feed it with a stream of random codes, drawn as IID sam-
ples from some convenient distribution. Now train the decoder by requiring that
(a) the outputs are “like” images of faces and (b) any image of a face “could be”
an output. In this scheme, the decoder is usually called a generator, and net-
works trained with these requirements are usually called generative adversarial

networks or GANs. Actually imposing these requirements involves important
technical difficulties, and I describe two strategies below.

16.4.1 Using a Discriminator

We know how to build classifiers, so we could require that any image made by
the generator fools a classifier that is trained to tell the difference between syn-
thetic face images and real ones. In this scheme, the classifier is usually called a
discriminator.

Write G(z) for an image generated from a code z; write D(x) for the discrim-
inator applied to some image x. We assume the discriminator produces a number
between 0 and 1, and we would like it to produce a 1 for any real image, and a 0

Section 16.4 Generative Adversarial Networks (GANs) 368

for any synthetic image. Now consider the cost function

C(D,G) =
1

Nr

∑

xi∈real images

log (D(xi)) +
1

Ns

∑

zj∈codes

log (1−D(G(zj))) .

If the discriminator works very well (i.e. can tell the difference between real and
synthetic images) this will be large. If the generator works very well (i.e. can fool
the discriminator), the cost will be small. So we could try and find D̂ and Ĝ that
are obtained as

argmin
G

argmax
D

C(D,G).

Here G would be some form of decoder, and D would be some form of classifier.
It seems natural to try using stochastic gradient descent/ascent on this problem.
One scheme is to repeatedly: fix the G, and take some uphill steps in D; now fix D,
and take some downhill steps in G. This is where the term adversarial comes from:
the generator and the discriminator are adversaries, trying to beat one another in
a game.

This apparently simple scheme is fraught with practical and technical difficul-
ties. Here is one important difficulty. Imagine G isn’t quite right, but D is perfect,
and so reports 1 for every possible true image and 0 for every possible synthetic
image. This means that we may want a D that isn’t very good. Then there is no
gradient to train G, because any small update of G will still produce images that
aren’t quite right. In fact, we are requiring that D has an important property:
if you make an image “more real”, then D will produce a larger value, and if you
make it “less real”, D will produce a smaller value. This is a much more demanding
requirement than requiring D is a classifier.

Here is a second difficulty. Imagine there are two clusters of faces that are
quite different. I will use “glasses” and “no glasses” as an example. In principle, if
the generator does not produce “glasses” faces, then the discriminator has an easier
job (any face with “glasses” can be classified as real). But there may be no way
for the generator to use this information to produce “glasses” faces, because there
aren’t easy intermediates between “glasses” faces and “no glasses” faces.

Despite these caveats, it has been possible to train networks like this. There is
good evidence that they are capable of producing rather good images (Figure 16.8),
if the contents are specialized (i.e. one can produce images of faces, of rooms, or
of lungs as below, but not some generic image of anything). There is also good
evidence that the general idea of an adversarial loss can be used to tune other
generators rather well. For example, efforts to improve VAE-like networks or au-
toencoders by imposing an adversarial loss are often successful. The discriminator
can easily spot that real images aren’t fuzzy; and the caveats above are mitigated
by the use of other losses to ensure the generator starts in about the right place.

16.4.2 Comparing Distributions

Here is an alternative view of our training requirements. You can see the generated
images as samples of a probability distribution P (R) (R for reconstruct). The true
images are samples of another probability distribution, P (X). We would like to
adjust the generator so that P (R) is “the same” as P (X).

Section 16.4 Generative Adversarial Networks (GANs) 369

FIGURE 16.8: Three batches of face images generated by a variant of the GAN
strategy described in section ??, using the Celeb-A dataset (which you can find at
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) as training data. You should
notice that these images really look like faces “at a glance”, but if you attend you’ll
see various slightly creepy eyes, small global distortions of the face shape, odd mouth
shapes, and the like. Figure courtesy of Anand Bhattad, of UIUC.

One way to test whether two distributions are “the same” is to look at ex-
pectations. For example, think about two probability distributions P (x) and Q(x)
on the closed interval from 0 to 1. Choose a sufficiently large set of functions φk,
indexed by k. As a concrete example, you could think of the monomials, where
φ0 = 1, φ1 = x, φ2 = x2, and so on. Now assume Eφk

[P (x)] = Eφk
[Q(x)] for all of

these functions. This implies that, for any other function f(x), Ef [P (x)] must be
arbitrarily close to Ef [Q(x)]. This is because you can represent f(x) with a series
to arbitrary precision, so that

f(x) = aoφo(x) + a1φ1(x) + . . .+ arbitrarily small error.

In turn, P (x) and Q(x) are “the same” for all practical purposes. If you’ve seen a
lot of formal analysis and probability, you’ll notice that I’ve fudged on some details
here, but you’ll be able to fill them in.

This all suggests the following strategy. Come up with a collection of test
functions φk. Choose the generator to force

∑

k





1

Nr

∑

xi∈real images

φk(xi)−
1

Ns

∑

zj∈codes

φk(G(zj))





2

to be small. There are difficulties here, too. First, the collection of test functions
might need to be very large, creating problems with gradients and the like. Second,
these test functions will need to be “useful” in some reasonable way. So, for example,
a test function that extracts the value of a single pixel is unlikely to be much help.
Again, it is possible to overcome these problems, but one must use kernel methods,
which are outside our scope.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Section 16.4 Generative Adversarial Networks (GANs) 370

FIGURE 16.9: Images of rooms generated by a GAN using the optimal transportation
theory method sketched in the text. Figure courtesy of Ishan Deshpande and Alex
Schwing, of UIUC.

An alternative method for comparing distributions reasons about nearby points.
We will think about two sets of samples {Ri} and {Xj} in one dimension. For sim-
plicity, we will reason about sample sets that have the same size. If these samples
come from the same distribution, there should be an X close to any R, and an R
close to any X . In particular, a reasonable measure of similarity is to pair X ’s with
R’s, then sum the distance between pairs. We choose pairs so that: each X (resp.
R) has exactly one R (resp. X); and the sum of the distances is minimized. It
turns out that one can evaluate this particular distance in an easy way. Sort the
Ri in descending order; sort the Xj in descending order; then obtain the pairs by
pairing the first Ri with the first Xj, the second with the second, and so on. We
now sum the squared distances between pairs.

This trick extends to multiple dimensions in a simple way. Assume we have
high dimensional Ri (resp. Xj). Now choose some random direction in this high
dimensional space, and project the Ri (resp. Xj) onto that direction. If the dis-
tributions are the same, the projected distributions are the same. So we should
obtain a “small” value of the sum for that – and any – projection. In turn, this
justifies averaging the distances over many random projections.

One can use this (sketched!) line of reasoning to construct a distance be-
tween sample sets that have different numbers of samples in them, and in multiple
dimensions. The general theory is known as optimal transportation theory

or Monge-Kantorovich theory depending on taste, and is rather off our path.
However, the line of reasoning leads to rather good generative models, as figures 287
suggest.

Section 16.4 Generative Adversarial Networks (GANs) 371

FIGURE 16.10: Images of faces generated by a GAN using the optimal transportation
theory method sketched in the text. Figure courtesy of Ishan Deshpande and Alex
Schwing, of UIUC.

FIGURE 16.11: Images of chest X-Rays generated by a GAN using the optimal
transportation theory method sketched in the text. Figure courtesy of Ishan Desh-
pande and Alex Schwing, of UIUC. I can show these images because they’re not
medical images of real humans - they were made by a computer program!

P A R T S E V E N

BOOSTING

372

C H A P T E R 17

Boosting

The following idea may have occurred to you after reading the chapter on
classification. Imagine you have trained a classifier. You could try to train a second
classifier to fix errors made by the first. There doesn’t seem to be any reason to
stop there, and you might try and train a third classifier to fix errors made by the
first and the second, and so on. It turns out this idea is fruitful, and (once all the
details have been filled in) is usually known as boosting.

The details take some work, as you would expect. It isn’t enough to just fix
errors. You need some procedure to decide what the overall prediction of the system
of classifiers is, and you need some way to be confident that the overall prediction
will be better than the prediction produced by the initial classifier.

The idea may also have occurred to you after reading the chapter on regression.
Imagine you have a regression that makes errors. You could try to produce a
second regression that fixes those errors. You may have dismissed this idea, though,
because if one uses only linear regressions trained using least squares, it’s hard to
see how to build a second regression that fixes the first regression’s errors.

It turns out that one can boost a regressor as well as a classifier. The key idea
is now a predictor – a function that accepts features and produces predictions.
A classifier is a predictor that produces labels. A regressor is a predictor that
produces numbers (or, sometimes, more complicated objects like vectors or trees,
though we haven’t talked about that much). This predictor is trained using a loss.

Now assume we would like to produce an optimal predictor. We could see
this optimal predictor as a sum of less ambitious predictors, obtained using a form
of gradient descent. Doing this cleanly will take some work, but the framework
makes it possible to boost a very wide range of classifiers and regressors. Boosting
is particularly attractive when one has a classifier (resp. regressor) that is simple
and easy to train; one can often produce a boosted classifier (resp. regressor) that
can be evaluated very fast.

17.1 GREEDY AND STAGEWISE METHODS

17.1.1 Example: Greedy Stagewise Linear Regression

We wish to build a linear regression of y against some high dimensional vector x.
Using the notation of chapter 287, we will need to solve

X TXβ = X Ty

but this might be hard to do if X was really big. You’re unlikely to see many
problems where this really occurs, because modern software and hardware are very
efficient at dealing with even enormous linear algebra problems.

However, thinking about this case is very helpful. What we could do is choose
some subset of the features to work with, to obtain a smaller problem. We will do

373

Section 17.1 Greedy and Stagewise Methods 374

this repeatedly, so we need some notation. Write x(i) for the i’th subset of features.
For the moment, we will assume this is a small set of features and worry about
how to choose the set later. Write X (i) for the matrix constructed out of these
features, etc. Now we regress y against X (1). This chooses the β̂(1) that minimizes
the squared length of the residual vector

e(1) = y −X (1)β̂(1).

We obtain this β̂(1) by solving

(

X (1)
)T

X (1)β̂(1) =
(

X (1)
)T

y.

Now assume we regress the residual vector e(1) against a new set of features, X (2).
Doing so will choose the β̂(2) that minimizes the squared length of the new residual
vector

e(2) = e(1) −X (2)β̂(2)

We obtain this β̂(1) by solving

(

X (2)
)T

X (2)β̂(2) =
(

X (2)
)T

e(1).

So far, this is all pretty routine. But notice that

e(2) = y −X (1)β̂(1) −X (2)β̂(2).

Because our choice of β̂(2) minimizes the squared length of this vector, we have that

e(2)
T
e(2) ≤ e(1)

T
e(1)

with equality only if X (2)β̂(2) = 0. In turn, the second round did not make the
residual worse. If the features in X (2) aren’t all the same as those in X (1), it is very
likely to have made the residual better.

Extending all this to an R’th round is just a matter of notation; you can write
an iteration with e(0) = y. Then you regress e(i−1) against the features in X (i) to
get β̂(i), and

e(i) = e(i−1) −X (i)β̂(i) = e(0) −
i
∑

u=1

X (u)β̂(u).

The residual never gets bigger (at least if your arithmetic is exact). This procedure
is referred to as greedy stagewise linear regression. It’s stagewise, because we
build up the model in steps. It’s greedy, because we do not adjust our estimate of
β̂(1) when we compute β̂(2), etc.

This process won’t work for a linear regression when we use all the features
in X (1). It’s worth understanding why. Consider the first step. We will choose
β to minimize (y − Xβ)T (y − Xβ). But there’s a closed form solution for this β

(which is β̂ = (X TX)−1X Ty; remind yourself if you’ve forgotten by referring to
chapter 287), and this is a global minimizer. So to minimize

([

y −X β̂
]

− Xγ
)T ([

y −X β̂
]

−Xγ
)

Section 17.1 Greedy and Stagewise Methods 375

by choice of γ, we’d have to have Xγ = 0, meaning that the residual wouldn’t
improve. At this point, greedy stagewise linear regression may look like a method
of getting otherwise unruly linear algebra under control. But it’s also a model
recipe, exposed in the box below. As we shall see, this recipe admits substantial
generalization.

Procedure: 17.1 Greedy stagewise linear regression

We choose to minimize the squared length of the residual vector, so

write E(r(i−1) −X (i)β̂(i)) = ||(r(i−1) −X (i)β̂(i))||2. Write r(0) = y. Now
iterate:

• choose a set of features to form X (i);

• construct β̂(i) by minimizing E(r(i−1) − X (i)β̂(i)). Do this by

solving the linear system
(

X (i)
)T X (i)β̂(i) =

(

X (i)
)T

r(i−1).

• form r(i) = r(i−1) −X (i)β̂(i)).

17.1.2 Regression Trees

We wish to build a regression of y against some high dimensional vector x, and we
believe that a linear regression won’t work. A regression tree is a natural solution.
We have not used regression trees before, but they are straightforward regression
models. One builds a tree by splitting on coordinates, so each leaf represents a cell
in space where the coordinates satisfy some inequalities. For the simplest regression
tree, each leaf contains a single value representing the value the predictor takes in
that cell (one can place other prediction methods in the leaves; we won’t bother).
The splitting process parallels the one we used for classification, but now we can
use the error in the regression to choose the split instead of the information gain.

Section 17.1 Greedy and Stagewise Methods 376

142.5143

Catch score 1

143.5144-12
-11.5

1

-1

0

3

2

-11 143.0 143.2 143.4 143.6 143.8

−
11

.8
−

11
.6

−
11

.4
−

11
.2

Prawn catch regressed with a single regression tree
 no test−train split

 using rpart.control(minsplit=20, cp=0.01)

Longitude

La
tit

ud
e

FIGURE 17.1: On the left, a 3D scatter plot of score 1 of the prawn trawls data
from http://www.statsci.org/data/oz/ reef.html , plotted as a function of latitude
and longitude. On the right, a regression using a single regression tree, to help
visualize the kind of predictor these trees produce. You can see what the tree does:
carve space into boxes, then predict a constant inside each.

Worked example 17.1 Regressing prawn scores against location

Build a regression tree predicting prawn score 1 (whatever that is!) against
latitude and longitude using the prawn trawls dataset from http://www.statsci.
org/data/oz/reef.html.

Solution: We will use this data set several times, because it is easy to
visualize interesting predictors. Figure ?? shows a 3D scatter plot of score 1
against latitude and longitude. There are good packages for building such trees
(I used R’s rpart). Figure ?? shows a regression tree fitted with that package,
as an image. This makes it easy to visualize the function. The darkest points
are the smallest values, and the lightest points are the largest. You can see what
the tree does: carve space into boxes, then predict a constant inside each.

17.1.3 Greedy Stagewise Regression with Trees

The recipe for greedy stagewise linear regression applies to regression trees as well,
with very little change. We regress y against x; construct the residuals; and regress
the residuals against x. Of course, this could be repeated, perhaps indefinitely. It
is helpful to change notation. Write f(x; θk) for a regression tree that accepts x

and produces a prediction (here θk are parameters internal to the tree; where to
split; what is in the leaves; and so on). Once all trees have been chosen, we can

http://www.statsci.org/data/oz/reef.html
http://www.statsci.org/data/oz/reef.html
http://www.statsci.org/data/oz/reef.html

Section 17.1 Greedy and Stagewise Methods 377

write the regression as

F (x) =
∑

k

f(x; θk)

where there might be quite a lot of trees indexed by k. Now we must fit this
regression model to the data. We could fit the model by minimizing

∑

i

(yi − F (xi))
2

as a function of the θ’s. This is unattractive, because we may need to solve a very
large minimization problem.

Here is an alternative strategy for fitting a model using the recipe for greedy

stagewise linear regression. Start with a F0 = 0. Write r
(n)
i for the residual at the

n’th round and the i’th example. Set r
(0)
i = yi.

Now iterate the following step: Choose θn to minimize

∑

i

(

r
(n−1)
i − f(xi; θn)

)2

and then set
r
(n)
i = r

(n−1)
i − f(xi; θn).

This is sometimes referred to as greedy stagewise regression. Notice that there
is no particular reason to stop, unless (a) the residual is zero at all data points or
(b) for some reason, it is clear that no future progress would be possible.

We estimate θn using a regression tree. We regress the residual r
(n−1)
i against

x, to get a tree f(x; θn) that minimizes

∑

i

(

r
(n−1)
i − f(xi; θn)

)2

.

Worked example 17.2 Greedy stagewise regression for prawns

Construct a stagewise regression of score 1 against latitude and longitude, using
the prawn trawls dataset from http://www.statsci.org/data/oz/reef.html. Use a
regression tree.

Solution: There are good packages for building such trees (I used R’s rpart).
Stagewise regression is straightforward. I started with a current prediction of
zero. Then I iterated: form the current residual (score 1 - current prediction);
regress that against latitude and longitude; then update the current residual.
Figure ?? shows the result. For this example, I used a function of two dimen-
sions so I could plot the regression function in a straightforward way. It’s easy
to visualize a regression tree in 2D. The root node of the tree splits the plane in
half, usually with an axis aligned line. Then each node splits its parent into two
pieces, so each leaf is a rectangular cell on the plane (which might stretch to
infinity). The value is constant in each leaf. You can’t make a smooth predictor
out of such trees, but the regressions are quite good (Figure ??).

http://www.statsci.org/data/oz/reef.html

Section 17.1 Greedy and Stagewise Methods 378

143.0 143.2 143.4 143.6 143.8

−
11

.8
−

11
.6

−
11

.4
−

11
.2

Prawn catch regressed with 1 trees
 train MSE: 0.442 test MSE: 0.008

Longitude

La
tit

ud
e

143.0 143.2 143.4 143.6 143.8

−
11

.8
−

11
.6

−
11

.4
−

11
.2

Prawn catch regressed with 4 trees
 train MSE: 0.301 test MSE: 0.252

Longitude

La
tit

ud
e

FIGURE 17.2: Score 1 of the prawn trawls data from http://www.statsci.org/data/
oz/ reef.html , regressed against latitude and longitude (I did not use depth, also in
that dataset; this means I could plot the regression easily). The smallest value in
the data is full dark; and the largest value is full light. The figure shows results of
a greedy stagewise regression using regression trees using 1 and 4 trees. The figure
on the left is different from the tree of figure 17.1 because I used a test-train split
in this case, and different settings for rpart. Notice that both train and test error
go down, and the model gets more complex as we add trees. Further stages appear
in figure 17.3, which uses the same intensity scale.

Procedure: 17.2 Greedy stagewise regression with regression trees

We choose to minimize the least square error of the predictions, so

write E(i)(θ) =
∑

j

(

r
(i−1)
j − f(xj ; θ)

)2

, set r
(0)
i = yi, and write f(x; θ)

for a regression tree. Here θ encodes internal parameters (where to
split, thresholds, and so on). We will build a regression F (x; θ, a) =
∑

i f(x; θi). Now iterate:

• construct θ̂(i) by minimizing E(i−1)(θ). Do this using regression
tree software; expect that you will obtain an approximate mini-
mizer.

• form r
(i)
j = r

(i−1)
j − f(xj ; θ

(i)).

None of this would be helpful if the regression using trees 1 . . . i − 1 is worse
than the regression using trees 1 . . . i. Here is an argument that establishes that
greedy stagewise regression will make progress in the training error. Assume that,

http://www.statsci.org/data/oz/reef.html
http://www.statsci.org/data/oz/reef.html

Section 17.1 Greedy and Stagewise Methods 379

143.0 143.2 143.4 143.6 143.8

−
11

.8
−

11
.6

−
11

.4
−

11
.2

Prawn catch regressed with 50 trees
 train MSE: 0.073 test MSE: 0.032

Longitude

La
tit

ud
e

143.0 143.2 143.4 143.6 143.8

−
11

.8
−

11
.6

−
11

.4
−

11
.2

Prawn catch regressed with 100 trees
 train MSE: 0.042 test MSE: 0.012

Longitude

La
tit

ud
e

FIGURE 17.3: Score 1 of the prawn trawls data from http://www.statsci.org/data/
oz/ reef.html , regressed against latitude and longitude (I did not use depth, also in
that dataset; this means I could plot the regression easily). The smallest value in
the data is full dark; and the largest value is full light. The figure shows results of
a greedy stagewise regression using regression trees using 50 and 100 trees. Notice
that both train and test error go down, and the model gets more complex as we add
trees.

if there is any tree that reduces the residual, the software will find one such tree; if

not, it will return a tree that is a single leaf containing 0. Then ||r(i)||2 ≤ ||r(i−1)||2,
because the tree was chosen to minimize ||r(i)||2 = E(r(i−1) −X (i)β̂(i)).

In practice, greedy stagewise regression is well-behaved. One could reasonably
fear overfitting. Perhaps only the training error goes down as you add trees, but
the test error will go up. This can happen, but it tends not to happen (see the
examples). We can’t go into the reasons here (and they have some component of
mystery, anyhow).

http://www.statsci.org/data/oz/reef.html
http://www.statsci.org/data/oz/reef.html

Section 17.2 Boosting a Classifier 380

Worked example 17.3 Predicting the quality of education of a university

You can find a dataset of measures of universities at https://www.kaggle.com/
mylesoneill/world-university-rankings/data. These measures are used to predict
rankings. From these measures, but not using the rank or the name of the
university, predict the quality of education using a stagewise regression. Use a
regression tree.

Solution: Ranking universities is a fertile source of light entertainment for
assorted politicians, bureaucrats, and journalists. I have no idea what any
of the numbers in this dataset mean (and I suspect I may not be the only
one). Anyhow, one could get some sense of how reasonable they are by trying
to predict the quality of education score from the others. I used R’s rpart,
and the strategy in the preceeding example. More interesting is interpreting
the results (Figure 17.4). Notice how the residual from the model with one
predictor is really quite structured; but once there are more predictors, the
residual is more noise-like. Both test and training residuals go down with more
predictors, but there is a big gap. Notice how universities with strong quality
of education (i.e. low rank) are fairly easy to predict, but for universities with
weaker quality (i.e. further down the pool) the predictions are poor. It would
be interesting to see whether the regression was improved by incorporating the
total rank.

17.2 BOOSTING A CLASSIFIER

The recipes I have given above are manifestations of a general approach. This ap-
proach applies to both regression and classification. The recipes seem more natural
in the context of regression (which is why I did those versions first). But in both
regression and classification we are trying to build a predictor – a function that
accepts features and reports either a number (regression) or a label (classification).
Notice we can encode the label as a number, meaning we could classify with re-
gression machinery. In particular, we have some function F (x), where x. For both
regression and classification, we apply F to example x to obtain a prediction. The
regressor or classifier is learned by choosing a function that gets good behavior on
a training set. This notation is at a fairly high level of abstraction (so, for example,
the procedure we’ve used in classification where we take the sign of some function
is represented by F).

17.2.1 The Loss

In early chapters, it seemed as though we used different kinds of predictor for
classification and regression. But you might have noticed that the predictor used
for linear support vector machines bore a strong similarity to the predictor used for
linear regression, though we trained these two in quite different ways. There are
many kinds of predictor – linear functions; trees; and so on. We now take the view
that the kind of predictor you use is just a matter of convenience (what package

https://www.kaggle.com/mylesoneill/world-university-rankings/data
https://www.kaggle.com/mylesoneill/world-university-rankings/data

Section 17.2 Boosting a Classifier 381

0 100 200 300 400

0
10

0
20

0
30

0
40

0

Predicted against true values with 1 trees
 train MSE: 34.828 test MSE: 72.744

Quality (true)

Q
ua

lit
y

(p
re

di
ct

ed
)

0 100 200 300 400

0
10

0
20

0
30

0
40

0

Predicted against true values with 30 trees
 train MSE: 0.007 test MSE: 78.431

Quality (true)

Q
ua

lit
y

(p
re

di
ct

ed
)

0 100 200 300 400

0
10

0
20

0
30

0
40

0

Predicted against true values with 50 trees
 train MSE: 0.001 test MSE: 78.431

Quality (true)

Q
ua

lit
y

(p
re

di
ct

ed
)

0 100 200 300 400

−
20

0
−

10
0

0
10

0
20

0

Training residual against true values with 1 trees
 test residual train MSE: 34.828 test MSE: 72.744

Quality

R
es

id
ua

l

0 100 200 300 400

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Training residual against true values with 30 trees
 test residual train MSE: 0.007 test MSE: 78.431

Quality

R
es

id
ua

l

0 100 200 300 400

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Training residual against true values with 50 trees
 test residual train MSE: 0.001 test MSE: 78.431

Quality

R
es

id
ua

l

0 100 200 300 400

−
20

0
−

10
0

0
10

0
20

0

Test residual against true values with 1 trees
 train MSE: 34.828 test MSE: 72.744

Quality

R
es

id
ua

l

0 100 200 300 400

−
20

0
−

10
0

0
10

0
20

0

Test residual against true values with 30 trees
 train MSE: 0.007 test MSE: 78.431

Quality

R
es

id
ua

l

0 100 200 300 400

−
20

0
−

10
0

0
10

0
20

0

Test residual against true values with 50 trees
 train MSE: 0.001 test MSE: 78.431

Quality

R
es

id
ua

l

FIGURE 17.4: Diagnostic data from a stagewise regression of rank of quality of educa-
tion against all other variables except overall rank and name for the data of https://
www.kaggle.com/mylesoneill/world-university-rankings/data. Top row: Model pre-
dictions against true values; middle row: residual against true values, training
examples; bottom row: residuals against true values, test examples. Details in
the worked example.

you have available; what math you feel like doing; etc.). Once you know what kind
of predictor you will use, you must choose the parameters of that predictor. In our
view, the really important difference between classification and regression is the
loss that you use to choose these parameters. The loss is the cost function used to
evaluate errors, and so to train the predictor. Training a classifier involves using a
loss that penalizes errors in class prediction in some way, and training a regressor
means using a loss that penalizes prediction errors.

The empirical loss is the average loss on the training set. Different predictors
F produce different losses at different examples, so the loss depends on the predictor
F . Notice the kind of predictor isn’t what’s important; instead, the loss scores the
difference between what a predictor produced and what it should have produced.

https://www.kaggle.com/mylesoneill/world-university-rankings/data
https://www.kaggle.com/mylesoneill/world-university-rankings/data

Section 17.2 Boosting a Classifier 382

Now write L(F) for this empirical loss. There are many plausible losses that apply
to different prediction problems. Here are some examples:

• For least squares regression, we minimized the least squares error:

Lls(F) =
1

N

∑

i

(yi − F (xi))
2

(though the 1/N term sometimes was dropped as irrelevant; section 287).

• For a linear SVM, we minimized the hinge loss:

Lh(F) =
1

N

∑

i

max(0, 1− yiF (xi))

(assuming that labels are 1 or -1; section 287).

• For logistic regression, we minimized the logistic loss:

Llr(F) =
1

N

∑

i

[

log
(

e
−(ŷi+1)

2 F (xi) + e
1−ŷi

2 F (xi)
)]

(again, assuming that labels are 1 or -1; section 10.3.1).

We construct a loss by taking the average over the training data of a point-

wise loss – a function l that accepts three arguments: a y-value, a vector x, and a
prediction F (x). This average is an estimate of the expected value of that pointwise
loss over all data.

• For least squares regression,

lls(y,x, F) = (y − F (x))
2
.

• For a linear SVM,

lh(y,x, F) = max(0, 1− yF (x)).

• For logistic regression,

llr(y,x, F) =
[

log
(

e
−(ŷ+1)

2 F (x) + e
1−ŷ
2 F (x)

)]

.

We often used a regularizer with these losses; this will not change anything impor-
tant in what follows.

17.2.2 Recipe: Stagewise Reduction of Loss

Now we peek under the hood of the notation, to apply our earlier stagewise recipe.
Write

Fm = Fm(x; θ) =

m
∑

j=1

ajfj(x; θj)

Section 17.2 Boosting a Classifier 383

This is a sum of predictors, as in the stagewise regression case. Assume we have
some Fr−1, and want to compute a new predictor that improves it, yielding Fr.
Whatever the particular choice of loss L, we need to minimize

1

N

∑

i

l (yi,xi, Fr−1(xi) + arfr(xi; θr)).

For most reasonable choices of loss, we can differentiate l and we write

∂l

∂F

∣

∣

∣

∣

r−1,i

to mean the partial derivative of that function with respect to the F argument,
evaluated at the point (yi,xi, Fr−1(xi). Then a Taylor series gives us

1

N

∑

i

l (yi,xi, Fr−1(xi) + arfr(xi; θr)) ≈ 1

N

∑

i

l (yi,xi, Fr−1(xi)) +

ar
1

N

∑

i

[(

∂l

∂F

∣

∣

∣

∣

r−1,i

)

fr(xi; θr)

]

.

In turn, this means that we can minimize by finding a predictor fr such that

1

N

∑

i

(

∂l

∂F

∣

∣

∣

∣

r−1,i

)

fr(xi; θr)

is negative. We do this by choosing θr. This predictor should cause the loss to go
down, at least for small values of ar. Now assume we have chosen an appropriate
predictor, represented by θ̂r (the estimate of the predictor’s parameters). Then we
can obtain ar by minimizing

Φ(ar) = L(Fr−1(xi) + arfr(·; θ̂r))

which is a one-dimensional problem (remember, Fr−1 and θ̂r are known, only ar is
unknown). It is natural to use a line search method from an optimization package
(or just minimize this function with an optimization package). This recipe, which
is extremely general, is known as gradient boost; I have put it in a box, below.

Section 17.2 Boosting a Classifier 384

Procedure: 17.3 Gradient boost

We wish to choose a predictor F that minimizes a loss

L(F) =
1

N

∑

i

l (yi,xi, F).

We will do so iteratively by searching for a predictor of the form
Fr(x; θ) =

∑

u αufu(x; θu). Our search will be greedy. We start with
F0 = 0. Now iterate:

• form a set of weights, one per example, where

wr−1,i =
∂l

∂F

∣

∣

∣

∣

r−1,i

• choose θr (and so the predictor fr) so that

∑

i

wr−1,ifr(xi; θr)

is negative;

• now form Φ(ar) = L(Fr + arfr) and search for the best value of
ar using a line search method.

The important problem here is finding a predictor fr such that

1

N

∑

i

(

∂l

∂F

∣

∣

∣

∣

r−1,i

)

fr(xi; θr)

is negative. For some predictors, this can be done in a straightforward way. For
others, this problem can be rearranged into a regression problem. We will do
examples of each case.

17.2.3 Weak Learners and Decision Stumps

The predictor used for a boosted classifier is often known as a weak learner. This
name comes from the considerable body of theory covering when and how boosting
should work. An important fact from that theory is that the predictor Fr needs
only to be a descent direction for the loss — i.e. we need to ensure that adding
some positive amount of Fr to the prediction will result in an improvement in the
loss. This is a very weak constraint in the two-class classification case (it boils
down to requiring that the learner can do slightly better than a 50% error rate on
a weighted version of the dataset), so that it is reasonable to use quite a simple
classifier for the predictor.

Section 17.2 Boosting a Classifier 385

One very natural classifier is a decision stump, which tests one linear projec-
tion of the features against a threshold. The name follows, rather grossly, because
this is a highly reduced decision tree. There are two common strategies. In one, the
stump tests a single feature against a threshold. In the other, the stump projects
the features onto some vector chosen during learning, and tests that against a
threshold.

Decision stumps are useful because they’re easy to learn, though not in them-
selves a particularly strong classifier. We have examples (xi, yi). We will assume
that yi are 1 or −1. Write f(x; θ) for the stump, which will predict −1 or 1. For
gradient boost, we will receive a set of weights hi (one per example), and try to
learn a decision stump that maximizes the sum

∑

i hif(xi). We use a straightfor-
ward search, looking at each feature and for each, checking a set of thresholds to
find the one that maximises the sum. If we seek a stump that projects features, we
project the features onto a set of random directions first. The box below gives the
details.

Procedure: 17.4 Learning a decision stump

We have examples (xi, yi). We will assume that yi are 1 or −1, and
xi have dimension d. Write f(x; θ) for the stump, which will predict
−1 or 1. We receive a set of weights hi (one per example), and wish
to learn a decision stump that maximizes the sum

∑

i hif(xi; θ). If the
dataset is too large (for your computational resources), obtain a subset
by sampling uniformly at random without replacement. The parameters
will be a projection, a threshold and a sign. Now for j = 1 : d

• Set vj to be either a random d-dimensional vector or the j’th
basis vector (i.e. all zeros, except a one in the j’th component).

• Compute ri = vT
j xi.

• Sort these r’s; now construct a collection of thresholds t from
the sorted r’s where each threshold is halfway between the sorted
values.

• For each t, construct two predictors. One reports 1 if r > t, and
−1 otherwise; the other reports −1 if r > t and 1 otherwise. For
each of these predictors, compute the value

∑

i hif(xi; θ). If this
value is larger than any seen before, keep vj , t, and the sign of
the predictor.

Now report the vj , t, and sign that obtained the best value.

Section 17.2 Boosting a Classifier 386

17.2.4 Gradient Boost with Decision Stumps

We will work with two-class classification (it turns out that boosting multiclass
classifiers can be tricky; more below). One can apply gradient boost to any loss that
appears convenient. However, there is a strong tradition of using the exponential

loss. Write yi for the true label for the i’th example. We will label examples with
1 or −1 (it is easy to derive updates for the case when the labels are 1 or 0 from
what follows). Then the exponential loss is

le(y,x, F (x)) = e[−yF (x)].

Notice if F (x) has the right sign, the loss is small; if it has the wrong sign, the loss
is large.

We will use a decision stump. Decision stumps report a label (i.e. 1 or −1).
Notice this doesn’t mean that Fr−1 reports only 1 or −1, because Fr−1 is a weighted
sum of predictors. Assume we know Fr−1, and seek ar and fr. We then form

wr−1,i = −yie
[−yiFr−1(xi)].

Notice there is one weight per example. The weight will have the same sign as the
example’s label. If Fr−1 gets the example right, the weight will have small magni-
tude, and if Fr−1 gets the example wrong, the weight will have large magnitude.
We want to choose fr so that

∑

i

wr−1,ifr(xi).

is negative. Notice that the fr that does that will try to report the same sign as the
example’s label, but will concentrate on examples that Fr−1 got very badly wrong
(and so have wr−1,i with large magnitude). It is easy to choose a decision stump
that minimizes this expression. The weights are fixed, and the stump reports either
1 or -1, so all we need to do is search for a split that achieves a minimum. You
should notice that the minimum is always negative (unless all weights are zero,
which can’t happen). This is because you can multiply the stump’s prediction by
-1 and so flip the sign of the score.

Section 17.2 Boosting a Classifier 387

Worked example 17.4 Predicting whether a prawn catch will have above
median score

You will find a dataset giving two scores for prawn trawls, as a function of
the location at which the trawling occurred, at http://www.statsci.org/data/
oz/reef.html. Use a gradient boosted classifier to predict whether the first score
will be greater than, or less than, the median over all points as a function of
the x and y coordinates. Use a decision stump.

Solution: This isn’t a particularly good use of a classifier (you’d really want
to regress), but it does allow you to visualize how the predictors behave. In
this case, the predictor formed by one stump cuts the region into two halves
with a line; on one side of the line, it takes one constant value, and on the
other, it takes a different constant value. One predictor isn’t much good, but
a large number of predictors give quite good results, and reasonably accurate
prediction is possible. Figures 287 show the actual maps.

143.0 143.2 143.4 143.6 143.8

−
11

.8
−

11
.6

−
11

.4
−

11
.2

pptr[, 2]

pp
tr

[,
1]

0 200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

1.
0

Training error as a function of rounds, prawn data

Training error

R
ou

nd
s

0 200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

1.
0

Test error as a function of rounds, prawn data

Test error

R
ou

nd
s

FIGURE 17.5: On the left, a scatter plot of the prawn data. The circles are locations
where the prawn catch exceeded the median; the stars are locations where the catch
was below median. Center shows the training error for a boosted classifier using
decision stumps, as a function of the number of stumps. Notice how adding a stump
causes the training error to falls slowly but reliably even when we already have many
predictors. Right shows the test error, which settles close to a fixed value fairly
quickly. This isn’t typical behavior – it is common to observe the test error falling
reliably as well. Figure ?? visualizes the predictors.

17.2.5 Gradient Boost with other Predictors

A decision stump makes it easy to construct a predictor such that

∑

i

wr−1,ifr(xi; θr)

is negative. For other predictors, it may not be so easy. It turns out that this
criterion can be modified, making it straightforward to use other predictors. There

http://www.statsci.org/data/oz/reef.html
http://www.statsci.org/data/oz/reef.html

Section 17.2 Boosting a Classifier 388

143.0 143.2 143.4 143.6 143.8

−
11

.8
−

11
.6

−
11

.4
−

11
.2

Prawn catch regressed with 10 stumps
 train MSE: 0.306 test MSE: 0.238

Longitude

La
tit

ud
e

143.0 143.2 143.4 143.6 143.8

−
11

.8
−

11
.6

−
11

.4
−

11
.2

Prawn catch regressed with 100 stumps
 train MSE: 0.231 test MSE: 0.143

Longitude

La
tit

ud
e

143.0 143.2 143.4 143.6 143.8

−
11

.8
−

11
.6

−
11

.4
−

11
.2

Prawn catch regressed with 1000 stumps
 train MSE: 0.082 test MSE: 0.286

Longitude

La
tit

ud
e

FIGURE 17.6: Visualizations of the predictor for the prawn data of worked example
17.4. Mid-grey is zero; white is positive (and so any shade in the range mid-grey
to white predicts a score greater than the median); black is negative (and so any
shade in the range mid-grey to black predicts a score less than the median). The
predictor formed by one stump cuts the region into two halves with a line; on one
side of the line, it takes one constant value, and on the other, it takes a different
constant value. Adding many of these together results in a function that is constant
in each cell of an arrangement of lines. Predictors that use more stumps produce
more complicated functions of this form, with improvements in training error and
some improvement in test error (Figure 17.6).

are two ways to think about these modifications, which end up in the same place:
choosing fr to minimize

∑

i

(wr−1,i − fr(xi; θr))
2

is as good (or good enough) for gradient boost to succeed. This is an extremely
convenient result, because many different regression procedures can minimize this
loss. I will give both derivations, as different people find different lines of reasoning
easier to accept.

Reasoning about minimization: Notice that

∑

i

(wr−1,i − fr(xi; θr))
2 =

∑

i





w2
r−1,i

+(fr(xi; θr))
2

−2(wr−1,ifr(xi; θr))



 .

Now assume that
∑

i(fr(xi; θr))
2 is not affected by θr. For example, fr could be

a decision tree that reports either 1 or -1. In fact, it is usually sufficient that
∑

i(fr(xi; θr))
2 is not much affected by θr. In this case, one way to obtain a small

value of
∑

i

wr−1,ifr(xi; θr)

is to obtain an fr that matches the values of wr−1,i as closely as possible at each
data point. So we seek fr that minimizes

∑

i

(wr−1,i − fr(xi; θr))
2

Section 17.2 Boosting a Classifier 389

0 50 100 150

0.
00

0.
05

0.
10

0.
15

0.
20

Training error against number of trees

Number of trees

E
rr

or
 r

at
e

0 50 100 150

0.
00

0.
05

0.
10

0.
15

0.
20

Test error against number of trees

Number of trees

E
rr

or
 r

at
e

0 50 100 150

0.
0

0.
2

0.
4

0.
6

Loss against number of trees

Number of trees

Lo
ss

FIGURE 17.7: Models for a boosted decision tree classifier predicting whether a given
prescriber will write more than 10 opioid prescriptions in a year, using the data
of https://www.kaggle.com/apryor6/us-opiate-prescriptions. Left: training error
against number of trees; center: test error against number of trees; right: expo-
nential loss against number of trees. Notice that both test and train error go down,
but there is a test-train gap. Notice also a characteristic property of boosting; con-
tinuing to boost after the training error is zero (about 50 trees in this case) still
results in improvements in the test error. Note also that lower exponential loss
doesn’t guarantee lower training error.

Reasoning about descent directions: You can think of L as a function
that accepts a vector of prediction values, one at each data point. Write v for this
vector. The values are produced by the current predictor. In this model, we have
that

∇vL ∝ wr−1,i.

In turn, this suggests we should minimize L by obtaining a new predictor fr which
takes values as close as possible to ∇vL – that is, choose fr that minimizes

∑

i

(wr−1,i − fr(xi; θr))
2.

17.2.6 Example: Is a Prescriber an Opiate Prescriber?

You can find a dataset of prescriber behavior focusing on opiate prescriptions at
https://www.kaggle.com/apryor6/us-opiate-prescriptions. One column of this data
is a 0-1 answer, giving whether the individual prescribed opiate drugs more than
10 times in the year. The question here is: does a doctors pattern of prescribing
predict whether that doctor will predict opiates? We will assume that there are
no prescribers engaging in deliberate fraud (e.g. prescribing drugs that aren’t nec-
essary, for extra money). You can argue this question either way. For example,
it is possible that doctors who see many patients who need opiates also see many
patients who need other kinds of drug for similar underlying conditions. This would
mean the pattern of drugs prescribed would suggest whether the doctor prescribed
opiates. The other possibility is that patients who need opiates attend doctors
randomly, so that the pattern of drugs prescribed isn’t predictive.

https://www.kaggle.com/apryor6/us-opiate-prescriptions
https://www.kaggle.com/apryor6/us-opiate-prescriptions

Section 17.2 Boosting a Classifier 390

We will predict the ’Opioid.Prescriber’ column from the other entries, using
a boosted decision tree and the exponential loss function. Confusingly, the column
is named “Opioid.Prescriber” but all the pages, etc. use the term “opiate”; the
internet suggests that “opiates” come from opium, and “opioids” are semi-synthetic
or synthetic materials that bind to the same receptors. Quite a lot of money rides
on soothing the anxieties of internet readers about these substances, so I’m inclined
to assume that easily available information is unreliable; for us, they will mean the
same thing.

This is a fairly complicated classification problem. It is natural to try gra-
dient boost using a regression tree. Doing so produces quite good classification
(figure 287). You should notice there is a relatively large number of predictors
here, and it’s reasonable to wonder if one could get good results with fewer.

This is a good question. When you construct a set of boosted predictors,
there is no guarantee they are all necessary to achieve a particular error rate. Each
new predictor is constructed to cause the loss to go down. But the loss could go
down without causing the error rate to go down. Here is an example. Assume you
are using the exponential loss for a classifier. You can force the loss to go down
by forcing the predictor to have larger magnitude for many examples that you get
right already. This improves the loss, but doesn’t improve the error rate. There
may be a real benefit to doing this, because you ensure that predictions for points
“close” to training points have larger magnitude, and this means there is a good
chance the test error will go down. This isn’t just an abstract possibility. Boosting
classifiers with zero training error — where the loss may go down, but the training
error certainly won’t — sometimes results in improvements in test error in practice.
You can see this effect in Figure 17.7. However, there is a reasonable prospect that
some of the predictors are redundant.

Whether this matters depends somewhat on the application. It may be im-
portant to evaluate the minimum number of predictors. Furthermore, having many
predictors could (but doesn’t always) create generalization problems. One strategy
to remove redundant predictors is to use the Lasso. For a two-class classifier, one
uses a generalized linear model (logistic regression) applied to the values of the
predictors at each example. Figure 17.8 shows the result of using a Lasso (from
glmnet) to the predictors used to make Figure 17.7. Notice that reducing the size
of the model seems not to result in significant loss of classification accuracy here.

There is one point to be careful about. You must have a training set to fit
the boosted model and obtain the predictors for the Lasso method. It isn’t wise to
then attach the test set, and compute a cross-validated estimate of error on all data.
This is because that estimate of error will be biased low, because you are using some
data on which the predictors were trained. There are two options: you could fit a
Lasso on the training data, then evaluate on test; or you could use cross-validation
to evaluate a fitted Lasso on the test set alone. Neither strategy is perfect. If you
fit a Lasso to the training data, you may not make the best estimate of coefficients,
because you are not taking into account variations caused by test-train splits. But
if you use cross-validation on the test set alone, you will be omitting quite a lot
of data. This is a large dataset (25,000 prescribers) so I tried both approaches
(Figure 17.8). A better option would be to apply the Lasso during the boosting
process, but this is beyond our scope.

Section 17.2 Boosting a Classifier 391

-8 -6 -4 -2

0
.0

0
.1

0
.2

0
.3

0
.4

log(Lambda)

M
is

c
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

128 126 124 122 119 117 114 113 108 99 90 83 73 63 52 41 32 17 9 3 1

-8 -6 -4 -2

0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0

log(Lambda)

M
is

c
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

139 138 137 134 132 122 114 105 98 78 62 52 41 31 23 17 13 10 6 4 3 1

FIGURE 17.8: Left: a cross-validation plot from cv.glmnet for the lasso applied to
predictions on training data obtained from all 150 trees from the boosting of figure
17.7. A model with about 113 trees obtains zero error here. Recall from figure 17.7
that training error can be zero; it is here. But this estimate is biased because the
trees have been chosen to fit the training data. Right: a cross-validation plot
from cv.glmnet using the lasso to choose predictors on data not used to choose the
predictors (ie test data). Notice how quite a small model (about 30 trees) achieves
the minimum error. This cross-validated estimate of error is not biased, because
the trees weren’t chosen to fit the data. Notice that this implies a lasso fitted to test
must have significantly higher error (it would use about 100 predictors, and you can
see what the best such model on training data would do in this curve).

THEORY

392

C H A P T E R 18

A Little Learning Theory

A crucial question in applied machine learning is: how well will this work on
test data? There is a body of theory that helps with this question, by providing a
variety of bounds.

18.1 HELD-OUT LOSS PREDICTS TEST LOSS

Here is the simplest setup. Assume we have used training data to construct some
predictor F . We have a pointwise loss l (y,x, F). We have N pairs (xi, yi) of
held-out data items. We assume that none of these were used in constructing the
predictor, and we assume that these pairs are IID samples from the distribution of
test data, which we write P (X,Y). We now evaluate the held-out error

1

N

∑

i

l (yi,xi, F).

Under almost all circumstances, this is a rather good estimate of the true expected
loss on all possible test data, which is

EP (X,Y)[l].

In particular, quite simple methods yield bounds on how often the estimate will be
very different from the true value. In turn, this means that the held-out loss is a
good estimate of the test loss.

18.1.1 Sample Means and Expectations

Write L for the random variable whose value is obtained by drawing a sample (xi, yi)
from P (X,Y) and then evaluating l (yi,xi, F). We will study the relationship
between the expected value, E[L], and the approximation obtained by drawing N
IID samples from P (L) and computing 1

N

∑

i Li. The value of the approximation is
a random variable, because we would get a different value if we drew a different set
of samples. We write L(N) for this random variable. Now we are interested in the
mean of that random variable E

[

L(N)
]

and its variance var
[

L(N)
]

= E
[

(L(N))2
]

−
E
[

L(N)
]2
. We will assume that the variance is finite.

The mean: Because expectations are linear, we have that

E

[

L(N)
]

=
1

N
E

[

L(1) + . . .+ L(1)
]

(where there are N copies of L(1))

= E

[

L(1)
]

= E[L]

393

Section 18.1 Held-out Loss Predicts Test Loss 394

The variance: Write Li for the i’th sample used in computing L(N). We
have L(N) = 1

N

∑

i Li, so

E

[

(L(N))2
]

=
1

N2
E





∑

i

L2
i +

∑

i

∑

j 6=i

LiLj





but E
[

L2
i

]

= E
[

L2
]

. Furthermore, Li and Lj are independent, and E[Li] = E[L] so
we have

E

[

(L(N))2
]

=

(

NE
[

L2
]

+N(N − 1)E[L]
2
)

N2

In turn,

E

[

(L(N))2
]

− E

[

L(N)
]2

=

(

E
[

L2
]

− E[L]
2
)

N
.

There is an easier way to remember this. Write var[L] = E
[

L2
]

− E[L]
2
for the

variance of the random variable L. Then we have

var
[

L(N)
]

=
var[L]

N
.

This should be familiar. It is the standard error of the estimate of the mean. If it
isn’t, it’s worth remembering. The more samples you use in computing the estimate
of the mean, the better the estimate.

Useful Fact: 18.1 Expressions for mean and variance of an expectation
estimated from samples

Write X for some random variable. Write X(N) for the mean of N IID
samples of that random variable. We have that:

E

[

X(N)
]

= E[X]

var
[

X(N)
]

=
var[X]

N

Already, we have two useful facts. First, the held-out loss is the value of a
random variable whose expected value is the test loss. Second, the variance of this
random variable could be quite small, if we compute the held-out loss on enough
held-out examples. If a random variable has small variance, you should expect to
see values that are close to the mean with high probability (otherwise the variance
would be bigger). The next step is to determine how often the held-out loss will be
very different from the test loss.

Section 18.1 Held-out Loss Predicts Test Loss 395

18.1.2 Using Chebyshev’s Inequality

Chebyshev’s inequality links the observed value, the expected value and the variance
of a random variable. You should have seen this before (if you haven’t, look it up,
for example, in chapter *** of ****); it appears in a box below.

Definition: 18.1 Chebyshev’s inequality

For a random variable X with finite variance, Chebyshev’s inequal-

ity states

P ({|X − E[X]| ≥ a}) ≤ var[X]

a2
.

Combining Chebyshev’s inequality and the remarks above about sample mean,
we have the result in the box below.

Useful Fact: 18.2 Held-out error predicts test error, from Chebyshev

There is some constant C so that

P
({

|L(N) − E[L]| ≥ a
})

≤ C

a2N
.

18.1.3 A Generalization Bound

Most generalization bounds give a value of E[L] that will not be exceeded with
probability 1− δ. The usual form of bound states that, with probability 1− δ,

E[L] ≤ L(N) + g(δ,N, . . .).

Then one studies how g grows as δ shrinks or N grows. It is straightforward to
rearrange the Chebyshev inequality into this form. We have

P
({

|L(N) − E[L]| ≥ a
})

≤ C

a2N
= δ.

Now solve for a in terms of δ. This yields that, with probability 1− δ,

E[L] ≤ L(N) +

√

C
(

1
δ

)

N
.

Notice this bound is likely rather weak, because it makes the worst case assumption
that all of the probability occurs when E[L] is larger than L(N) + w. It does so

Section 18.2 Test and Training Error for a Classifier from a Finite Family 396

because we don’t know where the probability is, and so have to assume it is in the
worst place. I have put this bound in a box for convenience.

Useful Fact: 18.3 Held-out error predicts test error, usual version, from
Chebyshev

There is some constant C depending on the loss and the test data so
that with probability 1− δ,

E[L] ≤ L(N) +

√

C
(

1
δ

)

N
.

This result tells us roughly what we’d expect. The held-out error is a good
guide to the test error. Evaluating the held-out error on more data leads to a better
estimate of the test error. The bound is very general, and applies to almost any
form of pointwise loss. The “almost” here is because we must assume that the loss
leads to an L with finite variance, but I have never encountered a loss that does
not. This means the bound applies to both regression and classification problems,
and you can use any kind of classification loss.

There are two problems. First, the bound assumes we have held-out error,
but what we’d really like to do is think about test error in terms of training error.
Second, the bound is quite weak, and we will do better in the next section. But
our better bounds will apply only to a limited range of classification losses.

18.2 TEST AND TRAINING ERROR FOR A CLASSIFIER FROM A FINITE FAMILY

The test error of many classifiers can be bounded using the training error. I have
never encountered a practical application for such bounds, but they are reassuring.
They suggest that our original approach (choose a classifier with small training
error) is legitimate, and they cast some light on the way that families of classifiers
behave. However, these bounds are harder to obtain than bounds based on test
error, because the predictor you selected minimizes the training error (at least
approximately). This means that you should expect the training error to be an
estimate of the test error that is too low – the classifier was chosen to achieve low
training error. Equivalently, the training error is a biased estimate of the test error.

The predictor you selected came from a family of predictors, and the bias
depends very strongly on the family you used. One example of a family of pre-
dictors is all linear SVM’s. If you’re using a linear SVM, you chose a particular
set of parameter values that yields the SVM you fitted over all the other possible
parameter values. As another example, if you’re using a decision tree, you chose a
tree from the family of all decision trees that have the depth, etc. limits that you
imposed. Rather loosely, if you choose a predictor from a “big” family, then you
should expect the bias is large. You are more likely to find a predictor with low
training error and high test error when you search a big family.

Section 18.2 Test and Training Error for a Classifier from a Finite Family 397

The problem is to distinguish in a sensible way between “big” and “small”
families of predictors. A natural first step is to consider only finite collections of
predictors – for example, you might choose one of 10 fixed linear SVM’s. Although
this isn’t a realistic model of learning in practice, it sets us up to deal with more
difficult cases. Some rather clever tricks will then allow us to reason about contin-
uous families of predictors, but these families need to have important and delicate
properties exposed by the analysis.

From now on, we will consider only a 0-1 loss, because this will allow us to
obtain much tighter bounds. We will first construct a bound on the loss of a given
predictor, then consider what happens when that predictor is chosen from a finite
set.

18.2.1 Hoeffding’s Inequality

Chebyshev’s inequality is general, and holds for any random variable with finite
variance. If we assume stronger properties of the random variable, it is possible to
prove very much tighter bounds.

Definition: 18.2 Hoeffding’s inequality for Bernoulli random variables

Assume that X is a Bernoulli random variable that takes the value
1 with probability θ, and otherwise the value 0. Write X(N) for the
random variable obtained by averaging N IID samples of X . Then
Hoeffding’s inequality states

P
(

|θ −X(N) | ≥ ǫ
)

≤ 2e−2Nǫ2

Notice there is not an absolute value in the inequality. The proof is more
elaborate than is really tolerable here, and I have isolated it below.

Now assume that our loss is 0-1. This is fairly common for classifiers, where
you lose 1 if the answer is right, and 0 otherwise. The loss at any particular example
is then a Bernoulli random variable, with probability E[L] of taking the value 1.
This means we can use Hoeffding’s inequality to tighten the bound of 396. Doing
so yields

Section 18.2 Test and Training Error for a Classifier from a Finite Family 398

Useful Fact: 18.4 Held-out error predicts test error, usual version, from
Hoeffding

With probability 1− δ,

E[L] ≤ L(N) +

√

log
(

1
δ

)

2N
.

This bound is tighter than the previous bound, because log
(

1
δ

)

≤
(

1
δ

)

. The
difference becomes very important when δ is small, which is the interesting case.

18.2.2 Test from Training for a Finite Family of Predictors

Assume we choose a predictor from a finite set P of M different predictors. We
will consider only a 0-1 loss. Write the expected loss of using predictor F as
EF = EP (X,Y)[l (y,x, F)]. One useful way of thinking of this loss is that it is the

probability that an example will be mislabelled. Write L
(N)
F for the estimate of this

loss obtained from the training set for predictor F . From the Hoeffding inequality,
we have

P
({

EF − L
(N)
F ≥ ǫ

})

≤ e−2Nǫ2

for any predictor F .
What we’d like to know is the generalization error for the predictor that we

pick. This will be difficult to get. Instead, we will consider the worst generalization
error in all the predictors — our predictor must be at least as good as this. Now
consider the event G that at least one predictor has generalization error greater
than ǫ. We have

G =
{

EF1 − L
(N)
F1

≥ ǫ
}

∪
{

EF2 − L
(N)
F2

≥ ǫ
}

∪
. . .
{

EFM − L
(N)
FM

≥ ǫ
}

.

Recall that, for two events A and B, we have P (A∪B) ≤ P (A)+P (B) with equality
only if the events are disjoint. The events that make up G may not be disjoint. But

Section 18.2 Test and Training Error for a Classifier from a Finite Family 399

by assuming that they are disjoint, we have an upper bound on P (G). In particular,

P (G) ≤ P
({

EF1 − L
(N)
F1

≥ ǫ
})

+

P
({

EF2 − L
(N)
F2

≥ ǫ
})

+

. . .

P
({

EFM − L
(N)
FM

≥ ǫ
})

≤ Me−2Nǫ2

by Hoeffding’s inequality.

This is sometimes known as a union bound.
Now notice that P (G) is the probability that at least one predictor F in P

has EF − L
(N)
F ≥ ǫ. Equivalently, it is the probability that the largest value of

EF − L
(N)
F is greater than or equal to ǫ. So we have

P (G) = P ({at least one predictor has generalization error > ǫ})

= P

({

sup
F ∈ P

[

EF − L
(N)
F

]

≥ ǫ

})

≤ Me−2Nǫ2.

It is natural to rearrange this, yielding the bound in the box below. You should
notice this bound does not depend on the way that the predictor was chosen.

Useful Fact: 18.5 Training error predicts test error for a finite set of
predictors, from Hoeffding

Assume a 0-1 loss. Choose a predictor F from M different pre-
dictors, write the expected loss of using predictor F as EF =

EP (X,Y)[l (y,x, F)], and write L
(N)
F for the estimate of this loss obtained

from the training set for predictor F . With probability 1− δ,

EF ≤ L
(N)
F +

√

logM + log
(

1
δ

)

2N

for any predictor F chosen from a set of M predictors.

18.2.3 Number of Examples Required

Generally, we expect it is easier to find a predictor with good training error but
bad test error (a bad predictor) when we search a large family of predictors, and
the M in the bound reflects this. Similarly, if there are relatively few examples, it
should be easy to find such a predictor as well; and if there are many examples, it

Section 18.3 An Infinite Collection of Predictors 400

should be hard to find one, so there is an N in the bound, too. We can reframe the
bound to ask how many examples we need to ensure that the probability of finding
a bad predictor is small.

A bad predictor F is one where EF − L
(N)
F > ǫ. The probability that at

least one predictor in our collection of M predictors is bad is bounded above by
Me−2Nǫ2. Now assume we wish to bound the failure probability above by δ. We
can bound the number of examples we need to use to achieve this, by rearranging
expressions, yielding the bound in the box.

Useful Fact: 18.6 The number of examples required to bound the prob-
ability that at least one predictor is bad.

A predictor F is bad if EF − L
(N)
F > ǫ. Write Pbad for the probability

that at least one predictor in the collection (and so perhaps the predictor
we select) is bad. To ensure that Pbad ≤ δ, it is enough to use

N ≥ 1

2ǫ2

(

logM + log

(

1

δ

))

examples.

18.3 AN INFINITE COLLECTION OF PREDICTORS

Mostly, we’re not that interested in choosing a predictor from a small discrete set.
All the predictors we have looked at in previous chapters come from infinite families.
The bounds in the previous section are not very helpful in this case. With some
mathematical deviousness, we can obtain bounds for infinite sets of predictors, too.

We bounded the generalization error for a finite family of predictors by bound-
ing the worst generalization error in that family. This was straightforward, but it
meant the bound had a term in the number of elements in the family. If this is
infinite, we have a problem. There is an important trick we can use here. It turns
out that the issue to look at is not the number of predictors in the family. Instead,
we think about predictors as functions that produce binary strings (section 18.3.1).
This is because, at each example, the predictor either gets the example right (0) or
wrong (1). Order the examples in some way; then you can think of the predictor as
producing an N element binary string of 0’s and 1’s, where there is one bit for each
of the N examples in the training set. Now if you were to use a different predictor
in the family, you might get a different string. What turns out to be important
is the number s of different possible strings that can appear when you try every
predictor in the family. This number must be finite — there are N examples, and
each is either right or wrong — but might still be as big as 2N .

There are two crucial facts that allow us to bound generalization error. First,
and suprisingly, there are families of predictors where s is small, and grows slowly

Section 18.3 An Infinite Collection of Predictors 401

with N (section ??). This means that, rather than worrying about infinite collec-
tions of predictors, we can attend to small finite sets of strings. Second, it turns
out that we can bound generalization error using the difference between errors for
some predictor given two different training datasets (section ??). Because there
are relatively few strings of errors, it becomes relatively straightforward to reason
about this difference. These two facts yield a crucial bound on generalization error
(section ??).

Most of the useful facts in this section are relatively straightforward to prove
(no heavy machinery is required), but the proofs take some time and trouble. Rel-
atively few readers will really need them, and I have confined them to the next
section.

18.3.1 Predictors and Binary Functions

A predictor is a function that takes an independent variable and produces a pre-
diction. Because we are using a 0-1 loss, choosing a predictor F is equivalent to
a choice of a binary function (i.e. a function that produces either 0 or 1). The
binary function is obtained by making a prediction using F , then scoring it with
the loss function. This means that the family of predictors yields a family of binary
functions.

We will study binary functions briefly. Assume we have some binary function
b in a family of binary functions B. Take some sample of N points xi. Our function
b will produce a binary string, with one bit for each point. We consider the set BN

which consists of all the different binary strings that are produced by functions in
B for our chosen set of sample points. Write #(BN) for the number of different
elements in this set. We could have #(BN) = 2N , because there are 2N strings in
BN .

In many cases, #(BN) is much smaller than 2N . This is a property of the
family of binary functions, rather than of (say) an odd choice of data points. The
thing to study is the growth function

s(B, N) =
sup

sets of N points
#(BN).

This is sometimes called the shattering number of B. For some interesting cases,
the growth function can be recovered with elementary methods.

Section 18.3 An Infinite Collection of Predictors 402

Worked example 18.1 s(B, 3) for a simple linear classifier on the line

Assume that we have a 1D independent variable x, and our family of classifiers
is sign(ax + b) for parameters a, b. These classifiers are equivalent to a family
of binary functions B. What is s(B, 3)?

Solution: The predictor produces a sign at each point. Now think about the
sample. It should be clear that the largest set of strings isn’t going to occur
unless the three points are distinct. The predictor produces a string of signs
(one at each point), and the binary function is obtained by testing if the label
is equal to, or different from, the sign the predictor produces. This means that
the number of binary strings is the same as the number of distinct strings of
signs. In particular, the actual values of the labels don’t matter. Now order
the three points along the line so x1 < x2 < x3. Notice there is only one sign
change at s = −b/a; we can have s < x1, x1 < s < x2, x2 < s < x3, x3 < s
(we will deal with s lying on a point later). All this means the predictor can
produce only six sign patterns at most (−−−, −−+, −++, + ++, + +−,
+ − −). Now imagine that s lies on a data point; the rule is to choose a sign
at random. It is straightforward to check that this doesn’t increase the set of
sign patterns (and you should). So s(B, 3) = 6 < 23.

Worked example 18.2 s(B, 4) for a simple linear classifier on the plane

Assume that we have a 2D independent variable x, and our family of classifiers
is sign(ax + b) for parameters a, b. These classifiers are equivalent to a family
of binary functions B. What is s(B, 4)?

Solution: The predictor produces a sign at each point. Now think about
the sample. The predictor produces a string of signs (one at each point), and
the binary function is obtained by testing if the label is equal to, or different
from, the sign the predictor produces. This means that the number of binary
strings is the same as the number of distinct strings of signs. It should be clear
that the largest set of strings isn’t going to occur unless the points points are
distinct. If they’re collinear, we know how to count (example 18.1), and obtain
10. You can check the case where three points are collinear easily, to count 12.
There are two remaining cases. Either x4 is inside the convex hull of the other
three, or it is outside. Figure ?? shows the case where it is outside. Notice
that a linear predictor cannot predict + for points 1 and 3, and - for points 2
and 4. This means there are 14 strings of signs possible. If x4 is inside, then
you cannot see + + +− or − − −+, so there are no more than 14 strings. So
s(B, 4) = 14.

The point of these examples is that an infinite family of predictors may yield
a small family of binary functions. But s(B, N) can be quite hard to determine for

Section 18.3 An Infinite Collection of Predictors 403

arbitrary families of predictors. One strategy is to use what is known as the VC

dimension of P (after the inventors, Vapnik and Chervonenkis).

Definition: 18.3 The VC dimension

The VC dimension of a class of binary functions B is

VC (B) = sup
{

N : s(B, N) = 2N
}

Worked example 18.3 The VC dimension of the binary functions produced
by a linear classifier on the line

Assume that we have a 1D independent variable x, and our family of classifiers
is sign(ax + b) for parameters a, b. These classifiers are equivalent to a family
of binary functions B. What is VC (B)?

Solution: From example 18.1 this number is less than three. It’s easy to show
that s(B, 2) = 4, so VC (B) = 2.

Worked example 18.4 The VC dimension of the binary functions produced
by a linear classifier on the plane

Assume that we have a 2D independent variable x, and our family of classifiers
is sign(aTx+ b) for parameters a, b. These classifiers are equivalent to a family
of binary functions B. What is VC (B)?

Solution: From example 18.1 this number is less than four. It’s easy to show
that s(B, 3) = 8, so VC (B) = 3.

Talking about the VC dimension of the binary functions produced by a family
of predictors is a bit long-winded. Instead, we will refer to the VC dimension of
the family of predictors. So the VC dimension of linear classifiers on the plane is
3, etc.

Section 18.3 An Infinite Collection of Predictors 404

Useful Fact: 18.7 VC dimension of linear classifiers

Write P for the family of linear classifiers on d-dimensional vectors,
sign(aTx+ b). Then

VC (P) = d+ 1.

There are d + 1 parameters in a linear classifier on d-dimensional vectors,
and the VC dimension is d + 1. Do not let this coincidence mislead you – you
cannot obtain VC dimension by counting parameters. There are examples of one
parameter families of predictors with infinite VC dimension (there is one in the
exercises). Instead, you should think of VC dimension as measuring some form of
“wiggliness”. For example, linear predictors aren’t wiggly because if you prescribe
a sign on a small set of points, you know the sign on many others. But if a family
of predictors has high VC dimension, then you can take a large set of points at
random, prescribe a sign at each point, and find a member of the family that takes
that sign at each point.

Useful Fact: 18.8 The growth number of a family of finite VC dimension

Assume VC (B) = d, which is finite. Then for all N ≥ d, we have

s(B, N) ≤
(

N

d

)d

ed

18.3.2 Symmetrization

A bad predictor F is one where EF − L
(N)
F > ǫ. For a finite set of predictors, we

used Hoeffding’s inequality to bound the probability a particular predictor was bad.
We then argued that the probability that at least one predictor in our collection of
M predictors is bad is bounded above by M times that bound. This won’t work
for an infinite set of predictors.

Assume we have a family of predictors which has finite VC dimension. Now
draw a sample of N points. Associated with each predictor is a string of N binary
variables (whether the predictor is right or wrong on each point). Even though there
may be an infinite number of predictors, there is a finite number of distinct strings,
and we can bound that number. We need a result that bound the generalization
error in terms of the behavior of these strings.

Now assume we have a second IID sample of N points, and compute the

average loss over that second sample. Write L̃
(N)
F for this new average loss. This

Section 18.3 An Infinite Collection of Predictors 405

second sample is purely an abstraction (we won’t need a second training set) but it
allows us to use an extremely powerful trick called symmetrization to get a bound.
The result appears in two forms, in boxes, below.

Useful Fact: 18.9 The variation of sample means yields a bound

For any particular predictor F , we have

P
({

L
(N)
F − LF > ǫ

})

≤ 2P
({

L
(N)
F − L̃

(N)
F >

ǫ

2

})

Useful Fact: 18.10 The largest variation of sample means yields a bound

P

({

sup
F ∈ P | L(N)

F − LF |> ǫ

})

≤ 2P

({

sup
F ∈ P

[

| L(N)
F − L̃

(N)
F |

]

>
ǫ

2

})

The proof of this result isn’t particularly difficult, but it’ll be easier to swallow
with some sense of why the result is important. Notice that the left hand side,

P

({

sup
F ∈ P

[

| L(N)
F − L̃

(N)
F |

]

>
ǫ

2

})

is expressed entirely in terms of the values that predictors take on data. To see
why this is important, remember the example of the family of linear predictors for
1D independent variables. For N = 3 data points, an infinite family of predictors
could make only six distinct predictions. This means that the event

{

sup
F ∈ P

[

| L(N)
F − L̃

(N)
F |

]

>
ǫ

2

}

is quite easy to handle. Rather than worry about the supremum over an infinite
family of predictors, we can attend to a supremum over only 36 predictions (which

is six for L
(N)
F and another six for L̃

(N)
F).

18.3.3 Bounding the Generalization Error

Section 18.3 An Infinite Collection of Predictors 406

Useful Fact: 18.11 Generalization bound in terms of VC dimension

Let P be a family of predictors with VC dimension d. With probability
at least 1− ǫ, we have

| L(N) − L |≤
√

8

N

(

log

(

4

ǫ

)

+ d log

(

Ne

d

))

Proving this fact is straightforward with the tools at hand. We start by
proving

Section 18.3 An Infinite Collection of Predictors 407

Quick statement: Generalization bound for an infinite family of predictors

Formal Proposition: Let P be a family of predictors, and t ≥
√

2
N . We have

P

({

sup
F ∈ P | L(N)

F − LF |> ǫ

})

≤ 4s(F , 2N)e−Nǫ2/8

Proof: Write b for a binary string obtained by computing the error for a predictor
p ∈ P at 2N sample points, and bi for it’s i’th element. Write B for the set of all

such strings. For a string b, write L
(N)
b = 1

N

∑N
i=1 bi and L̃

(N)
b = 1

N

∑2N
i=N+1 bi.

Now we have

P

({

sup
F ∈ P | L(N)

F − LF |> ǫ

})

≤ 2P

({

sup
F ∈ P | L(N)

F − L̃
(N)
F |> ǫ/2

})

using the symmetrization idea

= 2P
({

max (b ∈ B, |)L(N)
b − L̃

(N)
b |> ǫ/2

})

which is why symmetrization is useful

≤ 2
∑

b∈B
P
({

| L(N)
b − L̃

(N)
b |> ǫ/2

})

union bound

≤ 2
∑

b∈B
2e−Nǫ2/8

Hoeffding

≤ 4s(B, 2N)e−Nǫ2/8

Section 18.4 An Infinite Collection of Predictors: Most Proofs 408

Quick statement: Generalization bound for family of predictors with finite
VC dimension

Formal Proposition: Let P be a family of predictors with VC dimension d.
With probability at least 1− ǫ, we have

sup
F ∈ P | L(N)

F − LF |≤
√

8

N

(

log

(

4

ǫ

)

+ d log

(

Ne

d

))

Proof: From above, we have

P

({

sup
F ∈ P | L(N)

F − LF |> ǫ

})

≤ 4s(B, 2N)e−Nǫ2/8

so with probability 1− ǫ,

LF ≤ LN +

√

8

N

(

log

(

4s(B, N)

ǫ

))

.

But we have that s(B, N) ≤
(

N
d

)d
ed, so

log
4s(B, N)

ǫ
≤ log

4

ǫ
+ d log

(

Ne

d

)

.

18.4 AN INFINITE COLLECTION OF PREDICTORS: MOST PROOFS

18.4.1 Hoeffding’s Inequality

Chebyshev’s inequality is a manifestation of Markov’s inequality. You should have
seen this before (if you haven’t, look it up, for example, in chapter *** of ****); it
appears in a box below.

Definition: 18.4 Markov’s inequality

For a non-negative random variable X with finite mean, Markov’s

inequality states

P (X ≥ ǫ) ≤ E[X]

ǫ2
.

Markov’s inequality can be used in a variety of ways. Here is Chernoff’s

Section 18.4 An Infinite Collection of Predictors: Most Proofs 409

method.

Quick statement: A Chernoff bound

Formal Proposition: Let X be a random variable with finite expectation. Then

P (X > ǫ) ≤ inf
t ≥ 0

e−tǫ
E
[

etX
]

Proof: For any t > 0 and X a random variable with finite mean,

P (X ≥ ǫ) = P
(

eX ≥ eǫ
)

= P
(

e(tX) ≥ e(tǫ)
)

≤ E
[

e(tX)
]

e(tǫ)
by Markov’s inequality

= e−(tǫ)
E

[

e(tX)
]

and now maximize over t

Hoeffding’s lemma is a tool to prove Hoeffding’s inequality. The proof of Hoeffding’s
lemma uses Jensen’s inequality.

Section 18.4 An Infinite Collection of Predictors: Most Proofs 410

Quick statement: Jensen’s inequality

Formal Proposition: For φ(x) a convex function and X a random variable,
we have

φ(E[X]) ≤ E[φX]

Proof: I will prove this only for discrete random variables, but it works for contin-
uous random variables too. To start, assume that X can take two values x1 (with
probability p1) and x2 (with probability p2). Because φ is convex,

φ(p1x1 + p2x2) ≤ p1φ(x1) + p2φ(x2)

so we are done for two values. Induction supplies the rest. Assume that n values
work; then

φ(

n+1
∑

i=1

pixi) = φ(p1x1 +

n+1
∑

i=2

pixi)

= φ(p1x1 + (1− p1)

n+1
∑

i=2

pi
1− p1

xi)

≤ p1φ(x1) + (1 − p1)φ(

n+1
∑

i=2

pi
1− p1

xi)

but
∑n+1

i=2
pi

1−p1
= 1, meaning you can expand the last term by the induction hy-

pothesis.

Section 18.4 An Infinite Collection of Predictors: Most Proofs 411

Quick statement: Hoeffding’s lemma

Formal Proposition: Let X1, . . . , XN be IID samples of a random variable,
such that P (a ≤ X ≤ b) = 1, and E[X] = 0; let s > 0. Then

E
[

esX
]

≤ e
s(b−a)2

8

Proof: It is enough to prove this for E[X] = 0 (you can add a constant and adjust
a and b as required). Now

P (X(N) > ǫ) = P (tX(N) > tǫ)

= P (etX
(N)

> etǫ

≤ e−tǫ
E

[

etX
(N)
]

= e−tǫ
∏

i

E

[

e(t/N)Xi

]

because the Xi are independent

This yields Hoeffding’s inequality.

Quick statement: Hoeffding’s inequality

Formal Proposition: Let X1, . . . , XN be IID samples of a random
such that P (a ≤ X ≤ b) = 1, and E[X] = θ. Write X(N) for (1/N
for any t > 0,

P
(

|X(N) − θ | > ǫ
)

≤ 2e−2Nǫ2

Proof: It is enough to prove this for E[X] = 0 (you can add a constan
a and b as required). Now

P (X(N) > ǫ) = P (tX(N) > tǫ)

= P (etX
(N)

> etǫ

≤ e−tǫ
E

[

etX
(N)
]

= e−tǫ
∏

i

E

[

e(t/N)Xi

]

because the Xi are independent

18.4.2 Predictors and Binary Functions

18.4.3 Symmetrization

Section 18.5 You should 412

18.5 YOU SHOULD

18.5.1 remember these definitions:

Chebyshev’s inequality . 395
Hoeffding’s inequality for Bernoulli random variables 397
The VC dimension . 403
Markov’s inequality . 408

18.5.2 remember these terms:

union bound . 399
growth function . 401
shattering number . 401
VC dimension . 403
Chernoff’s method . 409

18.5.3 remember these facts:

Expressions for mean and variance of an expectation estimated from samples394
Held-out error predicts test error, from Chebyshev 395
Held-out error predicts test error, usual version, from Chebyshev . . 396
Held-out error predicts test error, usual version, from Hoeffding . . . 398
Training error predicts test error for a finite set of predictors, from Hoeffding399
The number of examples required to bound the probability that at least one predictor is bad.400
VC dimension of linear classifiers . 404
The growth number of a family of finite VC dimension 404
The variation of sample means yields a bound 405
The largest variation of sample means yields a bound 405
Generalization bound in terms of VC dimension 406

18.5.4 use these procedures:

18.5.5 be able to:

• ?

Index

L2 norm, 213

encoder, 355
overcomplete, 355

absorbing state, 259
accuracy, 11
additive, zero-mean, independent gaus-

sian noise, 95
affine transformation, 69
affinity, 154
agglomerative clustering

procedure, 145
AIC, 231
albedo, 137
all-vs-all, 40
approximate nearest neighbor, 15
auto-encoder, 355

backpropagation, 330
Backward stagewise regression, 234
backward variable, 289
bag, 49
bag-of-words, 117
bagging, 49
baselines, 11
batch, 34
batch normalization layer, 345
batch size, 34
Bayes risk, 11
bernoulli random variable

definition, 240
bias, 229, 320
biased random walk, 257
BIC, 232
bigram models, 266
bigrams, 266
binary terms, 294

block, 340
blocks, 339
Boltzmann machine, 307
boosting, 373
Box-Cox transformation, 198
building a decision forest

procedure, 49
building a decision forest using bagging

procedure, 49
building a decision tree: overall

procedure, 47

canonical correlation analysis
procedure, 133

canonical correlations, 132
canonical variables, 132
chain graph, 295
chebyshev’s inequality

definition, 395
Chernoff’s method, 409
class conditional probability, 17
class confusion matrix, 12
class error rate, 12
classification with a decision forest

procedure, 50
classifier, 10

definition, 10, 29
nearest neighbors, 14

clustering, 145
complete-link clustering, 146
dendrogram, 146, 147
group average clustering, 146
grouping and agglomeration, 145
partitioning and division, 145
single-link clustering, 146
using K-means, 150

clusters, 75
coefficients, 89

413

INDEX 414

color constancy, 98
comparing to chance, 11
computing cook’s distance

procedure, 206
computing the backward variable for fit-

ting an hmm
procedure, 292

computing the forward variable for fit-
ting an hmm

procedure, 291
condition number, 226
conditional random field, 300
convolution, 339
convolution kernel, 339
convolutional layer, 340
Cook’s distance, 206
cosine distance, 118
cost to go function, 284
cost-to-go function, 295
covariance

definition, 65
covariance ellipses, 78
covariance matrix

definition, 66
cross-validation, 13

folds, 233

dead units, 325
decay rate, 335
decision boundary, 29
decision forest, 41
decision function, 42
decision stump, 385
decision tree, 41
decoder, 355
decorrelation, 147
definition

bernoulli random variable, 240
chebyshev’s inequality, 395
classifier, 11
covariance, 65
covariance matrix, 66
hoeffding’s inequality for bernoulli

random variables, 397
linear regression, 192
markov’s inequality, 408
poisson distribution, 242

regression, 191
the vc dimension, 403

dendrogram, see clustering
denoising auto-encoder, 357
dependent variable, 187, 191
descent direction, 33
descriptive statistics, 78
deviance, 242
diagonalizing a symmetric matrix

procedure, 72
discrete Markov random field, 310
discriminative, 297
discriminator, 367
distributional semantics, 123
divisive clustering

procedure, 146
document-term matrix, 119
dropout, 336
dynamic programming, 282

E step, 177
edge points, 361
edge terms, 294
eigenvalue, 71
eigenvector, 71
elastic net, 247
EM, 172, 177
emission distribution, 280
empirical distribution, 79
empirical loss, 381
energy, 308
epoch, 34
error, 11
error cost, 243
expectation maximization, 172, 177
explanatory variables, 187, 191
exponential loss, 386
expressions for mean and variance of an

expectation estimated from sam-
ples

useful facts, 394

false negative rate, 12
false positive rate, 12
fan in, 331
feature vector, 11
fitting hidden markov models with em

INDEX 415

procedure, 291
fold, 14
folds, see cross-validation
forward stagewise regression, 234
forward variable, 289
Frobenius norm, 92
fully connected, 326

GAN, 367
generalization bound in terms of vc di-

mension
useful facts, 406

generalizing badly, 13
generative, 297
generative adversarial networks, 367
generator, 367
gradient boost, 383

procedure, 384
gradient descent, 33
graphical models, 293
greedy stagewise linear regression, 374

procedure, 375
greedy stagewise regression, 377
greedy stagewise regression with regres-

sion trees
procedure, 378

growth function, 401

Hamming distance, 304
hat matrix, 205
held-out error predicts test error, from

chebyshev
useful facts, 395

held-out error predicts test error, usual
version, from chebyshev

useful facts, 396
held-out error predicts test error, usual

version, from hoeffding
useful facts, 398

hidden layers, 325
hidden Markov model, 280
hinge loss, 31
hoeffding’s inequality for bernoulli ran-

dom variables
definition, 397

hourglass network, 359
Huber loss, 236

Huber’s proposal 2, 239

image classification, 341
information gain, 45
inlier, 236
inpainting autoencoder, 360
intensity, 242
irreducible, 263
irreducible error, 229
iteratively reweighted least squares, 238

Jacobian, 323

k-means, see clustering, 151
k-means clustering

procedure, 152
k-means with soft weights

procedure, 156
KL-divergence, 314
Kullback-Leibler divergence, 314

L2 regularized error, 243
label bias problem, 299
lasso, 246
latent semantic analysis, 119
latent variable model, 362
latent variables, 362
layers, 325
learning a decision stump

procedure, 385
learning curves, 35
learning rate, 34, 324, 331
leave-one-out cross-validation, 14
leverage, 205
likelihood, 17
Likert scales, 117
line search, 33
linear regression

definition, 192
linear regression using least squares

procedure, 201
link function, 239
loadings, 89
logistic regression, 240
logit function, 240
loss, 381
loss augmented constraint violation, 304
low rank approximation, 108

INDEX 416

M step, 177
M-estimator, see robustness
MAD, 239
many markov chains have stationary dis-

tributions
useful facts, 264

Markov chain, 257
markov chains

useful facts, 261
Markov random field, 309
markov’s inequality

definition, 408
max pooling, 340
max-cut, 309
maximum entropy markov models, 298
mean field method, 318
mean square error, 195
median absolute deviation, 239
MEMM, 298
minibatch training, 322
mixing weights, 173
mixture of normal distributions, 173
Monge-Kantorovich theory, 370
multidimensional scaling, 114

n-gram models, 266
n-grams, 266
neural network, 325
neurons, 320

object detection, 342
obtaining some principal components with

nipals
procedure, 95

one hot, 321
one-hot vectors, 310
one-vs-all, 40
optimal transportation theory, 370
orthonormal matrices are rotations

useful facts, 72
outliers, 203
overfitting, 13

parameters of a multivariate normal dis-
tribution

useful facts, 76
PCA, 89

perplexity, 355
phonemes, 281
pointwise loss, 382
poisson distribution

definition, 242
posterior, 17
predictor, 373, 380
principal components, 89
principal components analysis, 89

procedure, 91
principal coordinate analysis, 114

procedure, 115
prior, 17
procedure

agglomerative clustering, 145
building a decision forest, 49
building a decision forest using bag-

ging, 49
building a decision tree: overall, 47
canonical correlation analysis, 133
classification with a decision forest,

50
computing cook’s distance, 206
computing the backward variable for

fitting an hmm, 292
computing the forward variable for

fitting an hmm, 291
diagonalizing a symmetric matrix,

72
divisive clustering, 146
fitting hidden markov models with

em, 291
gradient boost, 384
greedy stagewise linear regression,

375
greedy stagewise regression with re-

gression trees, 378
k-means clustering, 152
k-means with soft weights, 156
learning a decision stump, 385
linear regression using least squares,

201
obtaining some principal components

with nipals, 95
principal components analysis, 91
principal coordinate analysis, 115
singular value decomposition, 109

INDEX 417

splitting a non-ordinal feature, 48
splitting an ordinal feature, 47
training an svm: estimating the ac-

curacy, 36
training an svm: overall, 36
training an svm: stochastic gradient

descent, 37
updating parameters for fitting an

hmm, 292
vector quantization - building a dic-

tionary, 163
vector quantization - representing a

signal, 163
properties of the covariance matrix

useful facts, 66

raw Google matrix, 275
recurrent, 259
Regression, 187
regression

definition, 191
useful facts, 196

regularization, 32
regularization parameter, 32
regularizer, 32
RELU, 320
residual, 190, 194
residual layer, 346
ridge regression, 212
robust regression, 236
robustness

M-estimator, 236
influence function, 236

M-estimators
scale, 238

Sammon mapping, 353
scale, 236

of an M-estimator, 238
scores, 89
selection bias, 13
sensitivity, 12
shading, 137
shattering number, 401
singular value decomposition, 108

procedure, 109
singular values, 109

slices, 339
smooth, 97
smoothing, 267
softmax function, 320
sparse models, 243
specificity, 12
splitting a non-ordinal feature

procedure, 48
splitting an ordinal feature

procedure, 47
standardizing, 207
stationary distribution, 263
stem, 118
step size, 34
steplength, 34, 324
steplength schedule, 34
Stochastic gradient descent, 33
stochastic matrices, 261
stop words, 118
stride, 339
support vector machine, 31
SVD, 108
SVM, 31
symmetric, 71

term frequency-inverse document frequency,
126

term-document matrix, 119
test error, 13
test examples, 187, 191
TF-IDF, 126
the growth number of a family of finite

vc dimension
useful facts, 404

the largest variation of sample means yields
a bound

useful facts, 405
the number of examples required to bound

the probability that at least one
predictor is bad.

useful facts, 400
the properties of simulations

useful facts, 272
the variation of sample means yields a

bound
useful facts, 405

the vc dimension

INDEX 418

definition, 403
topic, 174
topic model, 175
total error rate, 11
training an svm: estimating the accu-

racy
procedure, 36

training an svm: overall
procedure, 36

training an svm: stochastic gradient de-
scent

procedure, 37
training error, 13
training error predicts test error for a fi-

nite set of predictors, from ho-
effding

useful facts, 399
training examples, 187, 191
transition probabilities, 257
transition probability matrices

useful facts, 263
trellis, 282
trigram models, 266
trigrams, 266

unary terms, 294
unbiased, 13
unigram models, 266
unigrams, 266
union bound, 399
unit, 320
updating parameters for fitting an hmm

procedure, 292
useful facts

expressions for mean and variance
of an expectation estimated from
samples, 394

generalization bound in terms of vc
dimension, 406

held-out error predicts test error, from
chebyshev, 395

held-out error predicts test error, usual
version, from chebyshev, 396

held-out error predicts test error, usual
version, from hoeffding, 398

many markov chains have station-
ary distributions, 264

markov chains, 261
orthonormal matrices are rotations,

72
parameters of a multivariate normal

distribution, 76
properties of the covariance matrix,

66
regression, 196
the growth number of a family of

finite vc dimension, 404
the largest variation of sample means

yields a bound, 405
the number of examples required to

bound the probability that at
least one predictor is bad., 400

the properties of simulations, 272
the variation of sample means yields

a bound, 405
training error predicts test error for

a finite set of predictors, from
hoeffding, 399

transition probability matrices, 263
vc dimension of linear classifiers, 404
weak law of large numbers, 79
whitening a dataset, 344
you can transform data to zero mean

and diagonal covariance, 73

validation set, 13
variance, 229
variational free energy, 316
variational inference, 314
VC dimension, 403
vc dimension of linear classifiers

useful facts, 404
vector quantization, 163
vector quantization - building a dictio-

nary
procedure, 163

vector quantization - representing a sig-
nal

procedure, 163
vertex terms, 294
Viterbi algorithm, 282

weak law of large numbers, 79
useful facts, 79

INDEX 419

weak learner, 384
weights, 320
whitened data, 344
whitening, 15, 147
whitening a dataset

useful facts, 344
Wilks’ lambda, 139
word embedding, 123
word probabilities, 174
word vectors, 118

you can transform data to zero mean and
diagonal covariance

useful facts, 73

Zipf’s law, 198

	I Classification
	Learning to Classify
	Classification: The Big Ideas
	The Error Rate, and Other Summaries of Performance
	More Detailed Evaluation
	Overfitting and Cross-Validation

	Classifying with Nearest Neighbors
	Practical Considerations for Nearest Neighbors

	Naive Bayes
	Cross-Validation to Choose a Model
	Missing Data

	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	use these procedures:
	be able to:

	SVM's and Random Forests
	The Support Vector Machine
	The Hinge Loss
	Regularization
	Finding a Classifier with Stochastic Gradient Descent
	Searching for
	Example: Training an SVM with Stochastic Gradient Descent
	Multi-Class Classification with SVMs

	Classifying with Random Forests
	Building a Decision Tree
	Choosing a Split with Information Gain
	Forests
	Building and Evaluating a Decision Forest
	Classifying Data Items with a Decision Forest

	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	use these procedures:
	be able to:

	II High Dimensional Data
	High-dimensional Data
	Summaries and Simple Plots
	The Mean
	Stem Plots and Scatterplot Matrices
	Covariance
	The Covariance Matrix

	Using Mean and Covariance to Understand High Dimensional Data
	Mean and Covariance under Affine Transformations
	Eigenvectors and Diagonalization
	Diagonalizing Covariance by Rotating Blobs

	The Curse of Dimension
	The Curse: Data isn't Where You Think it is
	Minor Banes of Dimension

	The Multivariate Normal Distribution
	Affine Transformations and Gaussians
	Plotting a 2D Gaussian: Covariance Ellipses
	Descriptive Statistics and Expectations

	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	remember these procedures:

	Principal Component Analysis
	Representing Data on Principal Components
	Approximating Blobs
	Example: Transforming the Height-Weight Blob
	Representing Data on Principal Components
	The Error in a Low Dimensional Representation
	Extracting a Few Principal Components with NIPALS
	Principal Components and Missing Values
	PCA as Smoothing

	Example: Representing Colors with Principal Components
	Example: Representing Faces with Principal Components
	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	remember these procedures:
	be able to:

	Low Rank Approximations
	The Singular Value Decomposition
	SVD and PCA
	SVD and Low Rank Approximations
	Smoothing with the SVD

	Multi-Dimensional Scaling
	Choosing Low D Points using High D Distances
	Using a Low Rank Approximation to Factor
	Example: Mapping with Multidimensional Scaling

	Example: Text Models and Latent Semantic Analysis
	The Cosine Distance
	Smoothing Word Counts
	Mapping NIPS Documents
	Obtaining the Meaning of Words
	Mapping NIPS Words
	TF-IDF

	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	remember these procedures:
	be able to:

	Canonical Correlation Analysis
	Canonical Correlation Analysis
	Example: CCA of Words and Pictures
	Example: CCA of Albedo and Shading
	Are Correlations Significant?

	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	remember these procedures:
	be able to:

	III Clustering
	Clustering: Models of High Dimensional Data
	Agglomerative and Divisive Clustering
	Clustering and Distance

	The K-Means Algorithm and Variants
	How to choose K
	Soft Assignment
	Efficient Clustering and Hierarchical K Means
	K-Mediods
	Example: Groceries in Portugal
	General Comments on K-Means

	Describing Repetition with Vector Quantization
	Vector Quantization
	Example: Activity from Accelerometer Data

	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	remember these procedures:

	Clustering using Probability Models
	Mixture Models and Clustering
	A Finite Mixture of Blobs
	Topics and Topic Models

	The EM Algorithm
	Example: Mixture of Normals: The E-step
	Example: Mixture of Normals: The M-step
	Example: Topic Model: The E-Step
	Example: Topic Model: The M-step
	EM in Practice

	You should
	remember:

	IV Regression
	Regression
	Overview
	Regression to Spot Trends

	Linear Regression and Least Squares
	Linear Regression
	Choosing
	Residuals
	R-squared
	Transforming Variables
	Can you Trust Your Regression?

	Problem Data Points
	Problem Data Points have Significant Impact
	The Hat Matrix and Leverage
	Cook's Distance
	Standardized Residuals

	Many Explanatory Variables
	Functions of One Explanatory Variable
	Regularizing Linear Regressions
	Example: Weight against Body Measurements

	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	remember these procedures:

	Regression: Choosing and Managing Models
	Model Selection: Which Model is Best?
	Bias and Variance
	Choosing a Model using Penalties: AIC and BIC
	Choosing a Model using Cross-Validation
	A Search Process: Forward and Backward Stagewise Regression
	Significance: What Variables are Important?

	Robust Regression
	M-Estimators and Iteratively Reweighted Least Squares
	Scale for M-Estimators

	Generalized Linear Models
	Logistic Regression
	Multiclass Logistic Regression
	Regressing Count Data
	Deviance

	L1 Regularization and Sparse Models
	Dropping Variables with L1 Regularization
	Wide Datasets
	Using Sparsity Penalties with Other Models

	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	remember these procedures:

	V Graphical Models
	Markov Chains
	Markov Chains
	Transition Probability Matrices
	Stationary Distributions
	Example: Markov Chain Models of Text

	Estimating Properties of Markov Chains
	Simulation
	Simulation Results as Random Variables
	Simulating Markov Chains

	Example: Ranking the Web by Simulating a Markov Chain
	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	be able to:

	Hidden Markov Models
	Hidden Markov Models and Dynamic Programming
	Hidden Markov Models
	Picturing Inference with a Trellis
	Dynamic Programming for HMM's: Formalities
	Example: Simple Communication Errors

	Learning an HMM with EM
	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	be able to:

	Discriminative Learning for Sequence Models
	Graphical Models
	Graphical Models that allow Easy Inference

	Conditional Random Field Models for Sequences
	MEMM's and Label Bias
	Conditional Random Field Models

	Discriminative Learning of CRFs
	Representing the Model
	Setting Up the Learning Problem
	Evaluating the Gradient

	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	remember these procedures:

	Mean Field Inference
	Useful but Intractable Examples
	Boltzmann Machines
	Denoising Binary Images with Boltzmann Machines
	MAP Inference for Boltzmann Machines is Hard
	A Discrete Markov Random Field
	Denoising and Segmenting with Discrete MRF's
	MAP Inference in Discrete MRF's can be Hard

	Variational Inference
	The KL Divergence: Measuring the Closeness of Probability Distributions
	The Variational Free Energy

	Example: Variational Inference for Boltzmann Machines

	VI Deep Networks
	Classification with Neural Networks
	Units and Classification
	Building a Classifier out of Units: The Cost Function
	Building a Classifier out of Units: Strategy
	Building a Classifier out of Units: Training

	Layers and Networks
	Notation
	Training, Gradients and Backpropagation
	Training Multiple Layers
	Gradient Scaling Tricks
	Dropout
	It's Still Difficult..

	Convolutional Neural Networks
	Images and Convolutional Layers
	Convolutional Layers upon Convolutional Layers
	Pooling

	Example: Building an Image Classifier
	An Image Classification Architecture
	Useful Tricks - 1: Preprocessing Data
	Useful Tricks - 2: Enhancing Training Data
	Useful Tricks - 3: Batch Normalization
	Useful Tricks - 4: Residual Networks

	Adversarial Examples

	More Neural Networks
	Learning to Map
	Sammon Mapping
	T-SNE

	Encoders, decoders and auto-encoders
	Auto-encoder Problems
	The denoising auto-encoder
	Stacking Denoising Auto-encoders
	Current practice with autoencoders
	Classification using an Auto-encoder

	Making Images from Scratch with Variational Auto-encoders
	Auto-Encoding and Latent Variable Models
	Building a Model
	Turning the VFE into a Loss
	Some Caveats

	Generative Adversarial Networks (GANs)
	Using a Discriminator
	Comparing Distributions

	VII Boosting
	Boosting
	Greedy and Stagewise Methods
	Example: Greedy Stagewise Linear Regression
	Regression Trees
	Greedy Stagewise Regression with Trees

	Boosting a Classifier
	The Loss
	Recipe: Stagewise Reduction of Loss
	Weak Learners and Decision Stumps
	Gradient Boost with Decision Stumps
	Gradient Boost with other Predictors
	Example: Is a Prescriber an Opiate Prescriber?

	VIII Theory
	A Little Learning Theory
	Held-out Loss Predicts Test Loss
	Sample Means and Expectations
	Using Chebyshev's Inequality
	A Generalization Bound

	Test and Training Error for a Classifier from a Finite Family
	Hoeffding's Inequality
	Test from Training for a Finite Family of Predictors
	Number of Examples Required

	An Infinite Collection of Predictors
	Predictors and Binary Functions
	Symmetrization
	Bounding the Generalization Error

	An Infinite Collection of Predictors: Most Proofs
	Hoeffding's Inequality
	Predictors and Binary Functions
	Symmetrization

	You should
	remember these definitions:
	remember these terms:
	remember these facts:
	use these procedures:
	be able to:

