
CS498: Applied Machine Learning Spring 2018

Machine Problem 8 - Mean Field Inference on Boltzman Machine

Professor David A. Forsyth Auto-graded assignment

Introduction

Mean-Field Approximation is a useful method for inference, that originated in statistical physics. The Ising

model in its two-dimensional form is difficult to solve exactly, and therefore the mean-field approximation

methodology was utilized. You can find the similarity of the ising model with the probabilistic models you

learned in this chapter.

This assignment will incorporate Mean field inference for denoising binary images. The MNIST dataset

consists of 60,000 images of handwritten digits, curated by Yann LeCun, Corinna Cortes, and Chris Burges.

You can find the dataset at http://yann.lecun.com/exdb/mnist/ together with a collection of statistics on

recognition, etc.

You will be using an autograder for this assignment. Therefore, we advise you to follow the steps

exactly.

Figure 1: A handful of images in the MNIST dataset

1

http://yann.lecun.com/exdb/mnist/

CS498: Applied Machine Learning 2

Setting up the machine

1. Obtaining the dataset

Obtain the MNIST training set, and binarize the first 20 images by mapping any value below .5 to -1

and any value above to 1.

Hint : The original dataset at http://yann.lecun.com/exdb/mnist/ is in compressed format. You can

utilize other people’s code at the web for converting this data to a usable matrix format. For instance,

we found some online code that can take care of this for you, but we do not guarantee that these

online code-pieces would be matching the original dataset. You should know that only

the original dataset is the reference for this assignment.

• https://github.com/datapythonista/mnist is a python package for downloading the dataset and

loading it into some numpy arrays.

• https://gist.github.com/brendano/39760 is some piece of code that could be used for processing

the MNIST data on R.

2. Adding pre-determined noise to the dataset

For each image, create a noisy version by flipping some of the pixels. The exact location of the pixels

you need to flip for each image is given to you in the supplementary file NoiseCoordinates.csv.

All values in this supplementary file are 0-based. In other words, the images are indexed as Image

0, 1, · · · , 19. Also, the top left pixel of an image is indexed as being in row 0 and column 0.

Description Noisy bit 0 Noisy bit 1 Noisy bit 2 Noisy bit 3 Noisy bit 4

Image 0 Row 21 3 10 27 19

...

Image 0 Column 17 17 22 9 20

Image 1 Row 26 9 4 0 20

Image 1 Column 17 3 20 22 6

Image 2 Row 13 24 24 11 0

Image 2 Column 27 1 21 3 13

Image 3 Row 10 16 25 15 27

Image 3 Column 3 22 6 12 23

Image 4 Row 6 14 23 16 7

Image 4 Column 9 22 17 12 14

Image 5 Row 9 13 14 20 26

Image 5 Column 27 5 20 25 20

. . .

Table 1: A sample of the noise location matrix as given in NoiseCoordinates.csv supplementary file. The

first flipping noise in image 0 happens at the pixel in row number 21 and column number 17. Please notice

that all values in this matrix are 0-based. For instance, the top left pixel of an image is indexed as

being in row 0 and column 0.

3. Building a Boltzman Machine for denoising the images and using Mean-Field Inference

http://yann.lecun.com/exdb/mnist/
https://github.com/datapythonista/mnist
https://gist.github.com/brendano/39760

CS498: Applied Machine Learning 3

Now denoise each image using a Boltzmann machine model and mean field inference. For this:

• Use θij = 0.8 for the Hi, Hj terms and θij = 2 for the Hi, Xj terms.

• The order in which you have to update for each image is given in the supplementary file

UpdateOrderCoordinates.csv. Please see table 2 as a sample of this matrix.

Description Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6

Image 0 Row 26 15 13 1 22 27 9

...

Image 0 Column 4 15 5 4 17 17 27

Image 1 Row 0 27 3 25 20 22 5

Image 1 Column 18 13 25 26 22 4 0

Image 2 Row 10 7 8 22 23 1 3

Image 2 Column 22 17 26 0 21 19 12

Image 3 Row 1 17 18 20 7 14 9

Image 3 Column 19 22 17 3 20 11 13

. . .

Table 2: A sample of the update order coordinates matrix as given in UpdateOrderCoordinates.csv sup-

plementary file. Please notice that all values in this matrix are 0-based, which means the top left

pixel of an image is indexed as being in row 0 and column 0. As an example, in image 0, the following order

of updating the distribution parameters should happen: First the pixel indexed at (26,4) row and column

respectively, then the pixel at (15,15), then the pixel at (13,5), then the pixel at (1,4), and so on.

• The initial parameters of the model can be found in the supplementary file named as

InitalParametersModel.csv. This file is the initial matrix Q stored as comma-separated values,

with a dimension of 28 × 28. Each entry of the matrix falls in the [0, 1] interval, and the Qr,c

entry denotes the qr,c[Hr,c = 1] initial probability. Here, a slight change of notation happened

with respect to what you have learned in the course; what you have been denoting as qi[Hi = 1]

through the course, is now named qr,c[Hr,c = 1] since we have a hidden state for each pixel at the

r row and c column index.

Please note that the same initial parameters are used for all the Boltzman machines built for each

image.

• You should run the Mean-Field inference for exactly 10 iterations, where in each iteration the Q

model distribution is updated with the same order shown and discussed in table 2.

4. Turning in the energy function values computed initially and after each iteration You have

to compute the variational free energy as given in the following.

EQ = EQ[logQ]− EQ[logP (H,X)]

where

logP (H,X) =
∑
i∈H

∑
j∈N (i)∩H

θijHiHj +
∑
i∈H

∑
j∈N (i)∩X

θijHiXj +K

Remember that we made a model assumption about the distribution

CS498: Applied Machine Learning 4

Q[H] =

28∏
r=1

28∏
c=1

qr,c[Hr,c]

Using this independence assumption, you can easily compute the entropy term

EQ[logQ] =

28∑
r=1

28∑
c=1

Eqr,c [log qr,c]

=

28∑
r=1

28∑
c=1

[
qr,c[Hr,c = 1] log(qr,c[Hr,c = 1] + ε) + qr,c[Hr,c = −1] log(qr,c[Hr,c = −1] + ε)

]
In order to avoid any computational complications in cases where you may need to compute 0× log 0,

we have added a very tiny value of ε = 10−10 insider the log.

Furthermore, we can simplify the log-likelihood term as well, thanks to the independence assumption

made when defining the Q distribution

EQ[logP (H,X)] = K + EQ

[∑
i∈H

∑
j∈N (i)∩H

θijHiHj +
∑
i∈H

∑
j∈N (i)∩X

θijHiXj

]

= K +
∑
i∈H

∑
j∈N (i)∩H

θijEQ[HiHj] +
∑
i∈H

∑
j∈N (i)∩X

θijEQ[Hi]Xj

= K +
∑
i∈H

∑
j∈N (i)∩H

θijEqi [Hi]Eqj [Hj] +
∑
i∈H

∑
j∈N (i)∩X

θijEqi [Hi]Xj

where

Eqk [Hk] = (qk[Hk = 1])× (1) + (1− qk[Hk = 1])× (−1) = 2qk[Hk = 1]− 1

Since the K value is intractable to compute and has no effect on the optimization process of mean field

approximation, we will ignore it by setting K = 0.

Compute the EQ energy, and evaluate it both initially and after each iteration of updating the Q

matrix. You will have to turn in a comma-separated values file which includes the variational free

energy values as defined below.

E =

[Initially After one iteration

Image 10 E
Q

(0)
10

E
Q

(1)
10

Image 11 E
Q

(0)
11

E
Q

(1)
11

]

where E
Q

(n)
m

denotes the variational free energy of the Boltzman Machine used for the image indexed

m after the nth iteration of mean field inference. Please note that the first column has the energy of

the initial Q matrix given in the supplementary file with respect to each image. Do not include any

headers or row names in the CSV file.

You can find a sample of the energy matrix we computed for the first ten images of the dataset in the

supplementary file EnergySamples.csv.

As you can follow in the textbook formulation, the θijHiHj term appears in the summation

twice; one time when your counting the neighbors of i node, and one time when you’re

counting the neighbors of the j node. We use the same formulation of the textbook in

this assignment. Make sure that you are following this formulation when computing the

Energy values, and the reconstructed images.

CS498: Applied Machine Learning 5

5. Displaying the reconstructed images

Run the mean-field approximation method for exactly 10 iterations (i.e. going over and updating the

hidden distribution of each pixel for exactly 100 times) on the images indexed 10, 11, · · · , 19. After

that, based on the approximated Q distribution, compute the MAP image, and store it in a binary

{0, 1} matrix format.

You should turn in a prediction matrix with a shape of 28 rows, and 280 columns as defined in the

following.

X̂ =

 X̂10 ∈ {0, 1}28×28 X̂11 ∈ {0, 1}28×28 · · · X̂19 ∈ {0, 1}28×28


As you can see X̂ ∈ {0, 1}28×280. Turn in this matrix as a binary CSV file with exactly 28 rows and

280 columns. You can find the denoised images of the first ten images of the dataset stored properly

in SampleDenoised.csv supplementary file.

In order to give you a hint of what the sample results look like, you can see figure 2, where we have

provided you with the result of the method on the first ten images of the dataset. Please note that

you have to report your results on the second ten images of the dataset as mentioned above. Those

images can be seen in figure 3.

Figure 2: A sample figure for the first ten digits in the training set of the MNIST dataset. The top row shows

the original images, the middle row shows the noisy version, and the bottom row shows the reconstructed

images. The leftmost digit is the image indexed 0 in the dataset. The second leftmost digit is the image

indexed 1 in the dataset, and the rightmost image is indexed 9 in the dataset.

6. Construction of an ROC curve

Assume that θij for the Hi, Hj terms takes a constant value c. We will investigate the effect of different

values of c on the performance of the denoising algorithm.

Think of your algorithm as a noise detection device that accepts an image, and for each pixel, predicts

1 (i.e. positive) whenever the pixel is flipped because of noise or -1 (i.e. negative) otherwise. You can

evaluate this in the same way we evaluate a binary classifier, because you know the right value of each

pixel. A receiver operating curve is a curve plotting the true positive rate against the false positive

rate for a predictor, for different values of some useful parameter. We will use c as our parameter.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

CS498: Applied Machine Learning 6

Figure 3: The ten images of the dataset that you have to report the results for. The top row shows the

original images, and the bottom row shows the noisy images by adding the predetermined noise. The leftmost

digit is the image indexed 10 in the dataset. The second leftmost digit is the image indexed 11 in the dataset,

and the rightmost image is indexed 19 in the dataset.

Compute the FPR and TPR statistics of this device for c ∈ {5, 0.6, 0.4, 0.35, 0.3, 0.1} using the images

indexed at 10, 11, · · · , 19 (again, this is a zero-based indexing which means that the image indexed at

10 is the eleventh actual image of the dataset). The first column must contain the FPR values, and

the second column must contain the TPR values. First row must correspond to c = 5, and the last

row must correspond to c = 0.1. Do not include any header or row names in your generated CSV file.

	Introduction

