Representing activities

- Requirements
- dynamical structure
- cope with sequencing, etc.
- logical structure
- cope with different orderings, etc.
- View
- probably tolerant to view changes
- Applications
- Sign language understanding
- Gesture based interfaces
- Surveillance

Absence of taxonomy

- Work with activities that have a taxonomy
- Detect "unusualness"
- Match (this is like that)
- Invent taxonomies
- Should there be intermediate levels of representation?

Appearance as a cue

- Many movements have quite characteristic appearances

Niyogi Adelson 94

Polana Nelson 93, 94

Bobick + Davis, 97

Bobick + Davis, 97

Haritaoglu, Cutler, Harwood, Davis

Boult et al 2001

Efros et al 03

6	5	S	S	s	s	5	4	4
4	है	8	A	3	6		\%	

Irani et al 05

Irani et al 05

Irani et al 05

HMM'S - core ideas

- Finite state machine maintains hidden state; there are stochastic state transitions at known time steps
- At each time step, a measurement is emitted with probability conditioned on the hidden state
- Inference
- Dynamic programming
- beam search
- Learning
- EM

HMM's in speech understanding

- A string of words is modelled at several levels, e.g.
- trigram word models
- pronunciation dictionary per word
- context dependence of phonemes
- acoustic model of context dependent phones
- Each is an FSM
- these are composed
- missing parameters can be supplied in a variety of ways
- count in text (trigrams)
- pronunciation dictionary
- learned from data (acoustics)
- Result: enormous state space model with relatively few pars to learn

HMM's in activity recognition

- Gesture
- No pronunciation dictionaries, trigram models, etc. available
- very difficult to learn with large state spaces
- various hacks
- Sign language
- No pronunciation dictionaries, trigram models, etc. available
- but (perhaps) lots of data
- no pooling phone data over examples
- data essentially discriminative
- Surveillance
- same story

Ivanov and Bobick 2000

The best-known system for sign matching is due to Starner and Pent land $[419,420]$. Features are image moments of the hand region; signers either wear coloured gloves, or hands are identified using a skin filter. A Hid den Markov Model (HMM) is used to model individual signs; signs are strung
together with a rigid language model (pronoun verbnoun adjective pronoun). Authors report a recognition rate of 90% with a vocabulary of 40 signs. Grobel and Assan recognize isolated signs under similar conditions for a 262-word vocabulary using HMM's [227]. This work was extended to recognize continuous German sign language with a vocabulary of 97 signs by Bauer and Hienz [34]. Vogler and Metaxas have built a system that uses estimates of arm position, recovered either from a physical sensor mounted on the body or from a system of three cameras that measures arm position fairly accurately [$455,456,459$]. For a vocabulary of 53 words, and an independent word language model, they report a word recognition accuracy of the order of 90%. A more recent system attempted to recognize phonemes with HMM's; Vogler and Metaxas were able to recognize signs from a 22 word vocabulary with similar recognition rates for phoneme and word models (without handshapes in [457], with handshapes in [458])

Kadous transduced isolated Australian sign language signs with a powerglove, reporting a recognition rate of 80% using decision trees [305]. Matsuo et al transduced Japanese sign language with stereo cameras, using decision tree methods to recognize a vocabulary of 38 signs [278]. Kim et al. transduce Korean sign language using datagloves, reporting 94% accuracy in recognition for 131 Korean signs [228]. A1-Jarrah and Halawani report high recognition accuracy for 30 Arabic manual alphabet signs recognized from monocular views of a signer using a fuzzy inference system [12]. Gao et al. describe recognizing isolated signs drawn from a vocabulary of 5177 using datagloves and an HMM model [141, 465]. Their system is not speaker-independent: they describe relatively high accuracy for the original signer, and a significant reduction in performance for other signers. Similarly, Zieren and Kraiss report high, but not speaker independent, accuracy for monocular recognition of German sign language drawn from a vocabulary of 152 signs [487]. Akyol and Canzler describe an information terminal which can recognize 16 signs with a high, user-independent, recognition rate; their system uses HMM's to infer signs from monocular views of users wearing coloured gloves [11] Bowden et al. use independent component analysis to obtain state estimates from a set of discriminative visual features; each sign is encoded as a Markov chain, learned from a single example [52]. They report high accuracy recognition from a lexicon of 49 signs using a very small training set

