
Representing activities

• Requirements
• dynamical structure  
• cope with sequencing, etc.
• logical structure
• cope with different orderings, etc.
• View
• probably tolerant to view changes

• Applications
• Sign language understanding
• Gesture based interfaces
• Surveillance



Absence of taxonomy

• Work with activities that have a taxonomy
• Detect “unusualness”
• Match (this is like that)
• Invent taxonomies

• Should there be intermediate levels of representation?



Appearance as a cue

• Many movements have quite characteristic appearances



Canonical spatiotemporal surface - Left leg Canonical walk - Both surfaces, viewed in XYT
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weights are the number of times that a pixel in is clas-

sified as a non-symmetric pixel during tracking. The initial

weights of are zero and are incremented each time

that the corresponding location (relative to the median tem-

plate coordinate) is detected as a foreground pixel in the in-

put image. Note that a temporal textural templates has two

components that can be used for subsequent identification:

a textural component which represents the appereance of

the object (Figure 7d,f); and a shape component ( ) which

represents weighted shape information (Figure 7c,e). Ex-

amples of temporal textural templates for the entire body

and for non-symmetric regions of a person while they are

walking with and without an object are shown in Figure 7.

Backpack segments the shape component of a temporal tex-

tural template to determine the regions where periodic mo-

tion analysis should be applied. Periodic motion analysis is

applied to a non-symmetric pixel if where

is the fundamental frequency of shape periodicity for the

entire body, and is a constant.

Non-symmetric pixels are group together into regions,

and the shape periodicity of each non-symmetric region is

computed individually. The horizontal projection histogram

segment bounded by a non-symmetric region is used to

compute the shape periodicity of the corresponding non-

symmetric region. A non-symmetric region which does not

exhibit significant periodicity is classified as an object car-

ried by a person, while a non-symmetric region which has

significant periodicity is classified as a body part. In Fig-

ure 8, the final classification results are shown for a walking

person who is not carrying an object, and a person who is

carrying an object.

In the first example, a person is walking with 1Hz fre-

quency (15 frames per half period with 100% confidence

value); the similarity plot of the vertical projection his-

togram for the entire body is shown in Figure 8(a)(right).

Note that the legs and arms of the person violate the sym-

metry constraint periodically during walking. The pixels

around the legs and arms are detected as non-symmetric

pixels and grouped into two non-symmetric regions (region

1 around legs, and region 2 around arms). Then, the simi-

larity plots for region 1 and region 2 are obtained as shown

in Figure 8(a). Note that the shape periodicity algorithm

is applied only to the horizontal projection histogram seg-

ments bounded by regions 1 and 2. Periodicity is detected

for region 1 at 1.1Hz and for region 2 at 1.03 Hz, which

are very similar to the shape periodicity of the entire body.

Therefore those regions are classified as body parts (shown

in green). In the second example, a person is walking and

carrying a bag with 0.85Hz frequency (17.9 frame per half

Haritaoglu, Cutler, Harwood, Davis



Fig. 3. Example showing LOTS interface for the Department of Defense (DoD) Smart Sensor Web
program. At left is the unwarping of the paraimage into a pair of panoramic images. The right shows
unwarpings of the top four targets, with only two targets in the scene (one entering a building). The
map shows the targets’ current and recent location history (larger dots are more recent). Dot color
matches the window color showing that target. See Section V for more discussion.

primary goal was the ability to track camouflaged soldiers

moving in woods and fields, the omnidirectional imaging

was a critical feature—in woods, visibility distance is

limited, usually to the 30–50 m range.

It is worth noting that the “spatial resolution” of the

paraimage is not uniform. While it may seem counterin-

tuitive, the spatial resolution of the paraimages is greatest

along the horizon, just where objects are most distant. In

[28], we show that along the horizon, the resolution of an

omnicamera is 4.2 pixels per horizontal degree, which is

about the same as three traditional cameras with 150 FOV

that would be needed to watch the same region. With either

an omnidirectional camera or many traditional cameras,

objects to be tracked in a wide field of view will cover only

a small number of pixels. With 4.2 pixels per degree, a target

of dimension 0.5 m by 2.0 m at 50 m is approximately two

pixels by eight pixels, yielding 16 pixels per target. At 30

m, it is 32 pixels. The numbers stated here presume an ideal

imaging of the target, while actual imaging, “edge” effects,

and partial pixel fills reduce the number of effective pixels

on target. When one considers that the targets will also be

wearing camouflage, as in Figs. 2 and 4, it is clear that

tracking in such a wide field of view requires the processing

of the full resolution (640 480) image with a sensitive, yet

robust, algorithm.

In the next two sections, we review in detail the change

detection and grouping components of the LOTS system. To

illustrate the effectiveness of LOTS, we will present running

examples based on some of the most difficult types of change

detection—the detection and tracking of a sniper.

Fig. 4. This image shows the tracking of soldiers moving in the
woods at Ft. Benning, GA. Each box is on a moving target and only
the small white box on the lower left shows a target at significant
distance (about 20 m). LOTS can detect soldiers at 30–40 m, but
this example uses closer targets so the reader can actually see them.

III. CHANGE DETECTION

One of the most common types of change detection is

based on subtraction of a background model (or models) fol-

lowed by thresholding. At the core of this type of change de-

tection is the modeling of an expected value of a pixel. This

section discusses said techniques.
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Abstract

Our goal is to recognize human actions at a distance,

at resolutions where a whole person may be, say, 30 pix-

els tall. We introduce a novel motion descriptor based on

optical flow measurements in a spatio-temporal volume for

each stabilized human figure, and an associated similarity

measure to be used in a nearest-neighbor framework. Mak-

ing use of noisy optical flow measurements is the key chal-

lenge, which is addressed by treating optical flow not as

precise pixel displacements, but rather as a spatial pattern

of noisy measurements which are carefully smoothed and

aggregated to form our spatio-temporal motion descriptor.

To classify the action being performed by a human figure

in a query sequence, we retrieve nearest neighbor(s) from a

database of stored, annotated video sequences. We can also

use these retrieved exemplars to transfer 2D/3D skeletons

onto the figures in the query sequence, as well as two forms

of data-based action synthesis “Do as I Do” and “Do as I

Say”. Results are demonstrated on ballet, tennis as well as

football datasets.

1. Introduction

Consider video such as the wide angle shot of a foot-

ball field seen in Figure 1. People can easily track individ-

ual players and recognize actions such as running, kicking,

jumping etc. This is possible in spite of the fact that the

resolution is not high – each player might be, say, just 30

pixels tall. How do we develop computer programs that can

replicate this impressive human ability?

It is useful to contrast this medium resolution regime

with two others: ones where the figures are an order of mag-

nitude taller (“near” field), or an order of magnitude shorter

(“far” field). In near field, we may have 300 pixel tall fig-

ures, and there is reasonable hope of being able to segment

and label parts such as the limbs, torso, and head, and thus

mark out a stick figure. Strategies such as [19, 12, 11] work

best when we have data that support figures of this resolu-

tion. On the other hand, in far field, we might have only

3 pixel tall figures – in this case the best we can do is to

track the figure as a “blob” without the ability to articulate

the separate movements of the different locations in it. Blob

Figure 1. A typical frame from the NTSC World Cup broad-

cast video that we use as our data. Humans are extremely good

at recognizing the actions of the football players, despite the low

resolution (each figure is about 30 pixels tall; see the zoomed in

player at the lower left corner).

tracking is good enough for applications such as measuring

pedestrian traffic, but given that the only descriptor we can

extract is the translation of the blob as a whole, we cannot

expect to discriminate among too many action categories.

In this paper, we develop a general approach to recog-

nizing actions in “medium” field. Figure 2 shows a flow di-

agram. We start by tracking and stabilizing each human fig-

ure – conceptually this corresponds to perfect smooth pur-

suit movements in human vision or a skillful panning move-

ment by a camera operator who keeps the moving figure in

the center of the field of view. Any residual motion within

the spatio-temporal volume is due to the relative motions of

different body parts: limbs, head, torso etc. We will char-

acterize this motion by a descriptor based on computing the

optical flow, projecting it onto a number of motion chan-

nels, and blurring. Recognition is performed in a nearest

neighbor framework. We have a stored database of previ-

ously seen (and labeled) action fragments, and by comput-

ing a spatio-temporal cross correlation we can find the one

most similar to the motion descriptor of the query action

fragment. The retrieved nearest neighbor(s) can be used for

other applications than action recognition – we can transfer

attached attributes such as appearance or 2D/3D skeletons

(a) (b) (c)
Figure 5. (a) A typical frame-to-frame similarity matrix Sff for

running, (b) the “Blurry I” kernelK (not shown to scale) used for

aggregating temporal information within the similarity matrix, (c)

the resulting motion-to-motion similarity matrix S.

Figure 6. Representative frames from the sixteen ballet actions

used for our experiments. The actions are (left to right): 1) 2nd

pos. plies, 2) 1st pos. plies, 3) releve, 4) down from releve, 5)

point toe and step right, 6) point toe and step left, 7) arms 1st pos.

to 2nd pos., 8) rotate arms in 2nd pos., 9) degage, 10) arms 1st

pos. forward and out to 2nd pos., 11) arms circle, 12) arms 2nd

to high fifth, 13) arms high fifth to 1st, 14) port de dras, 15) right

arm from high fifth to right, 16) port de bra flowy arms

channels, F̂ b
+

x , F̂ b
−
x , F̂ b

+

y , F̂ b
−
y , of the motion descriptor

for each frame (see Figure 4(e)). Alternative implementa-

tions of the basic idea could use more than 4 motion chan-

nels – the key aspect is that each channel be sparse and non-

negative.

The spatio-temporal motion descriptors are compared

using a version of normalized correlation. If the four mo-

tion channels for frame i of sequence A are ai
1,a

i
2,a

i
3, and

ai
4, and similarly for frame j of sequence B then the simi-

larity between motion descriptors centered at frames i and
j is:

S(i, j) =
∑

t∈T

4∑

c=1

∑

x,y∈I

ai+t
c (x, y)bj+t

c (x, y) (1)

where T and I are the temporal and spatial extents of the
motion descriptor respectively. To compare two sequences

A and B, the similarity computation will need to be done
for every frame of A and B so Eq. 1 can be optimized in

the following way. First, a frame-to-frame similarity ma-

trix of the blurry motion channels (the inner sums of the

equation) is computed between each frame of A and B.
Let us define matrix A1 as the concatenation of a1’s for

each frame stringed as column vectors, and similarly for the

other 3 channels. Then the frame-to-frame similarity matrix

Sff = AT
1 B1 + AT

2 B2 + AT
3 B3 + AT

4 B4. To obtain the

Figure 7. Best matches for classification (ballet, tennis, football).
The top row of each set shows a sequence of input frames, the

bottom row shows the best match for each of the frames. Our

method is able to match between frames of people performing the

same action yet with substantial difference in appearance.

final motion-to-motion similarity matrix S, we sum up the
frame-to-frame similarities over a T temporal window by

convolution with a T×T identity matrix, thus S = Sff !IT .

If motions are similar, but occur at slightly different rates

then the strong frame to frame similarities will occur along

directions close to diagonal but somewhat slanted (note the

angle of bands in Fig. 5a). In order to take advantage of this

fact, we look for strong responses along directions close to

diagonal in the frame to frame similarity matrix between

A and B. In practice this is achieved by convolving the
frame to frame similarity matrix Sff with the kernel shown

in Figure 5(b) instead of the identity matrix to obtain the

final similarity matrix. The kernel is a weighted sum of near

diagonal lines, with more weight put closer to the diagonal.

K(i, j) =
∑

r∈R

w(r)χ(i, rj) (2)

where w(r) weights values of r near one relatively more,
andR is the range of rates. (Note that we set χ(i, rj) to one
if i and rj round to the same value and zero otherwise). The
similarity between two sequences centered at two particular

frames can be read from the corresponding entry in the final

similarity matrix.
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HMM’S - core ideas 

• Finite state machine maintains hidden state; there are 
stochastic state transitions at known time steps
• At each time step, a measurement is emitted with probability 

conditioned on the hidden state
• Inference
• Dynamic programming
• beam search

• Learning
• EM



HMM’s in speech understanding

• A string of words is modelled at several levels, e.g.
• trigram word models
• pronunciation dictionary per word
• context dependence of phonemes
• acoustic model of context dependent phones

• Each is an FSM
• these are composed
• missing parameters can be supplied in a variety of ways
• count in text (trigrams)
• pronunciation dictionary
• learned from data (acoustics)

• Result:  enormous state space model with relatively few pars 
to learn



HMM’s in activity recognition

• Gesture
• No pronunciation dictionaries, trigram models, etc. available
• very difficult to learn with large state spaces
• various hacks

• Sign language
• No pronunciation dictionaries, trigram models, etc. available
• but (perhaps) lots of data
• no pooling phone data over examples
• data essentially discriminative

• Surveillance
• same story
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FIG. 12. FHMMs: The output is combined. O
(n)

i denotes the output of the nth channel at the i th frame.

• Finally, for each state Sj , pick maxi {toki j (t + 1)}, and update this token to denote
δ j (t + 1) = toki j (t + 1)b j (Ot+1).

The token-passing algorithm is equivalent to the Viterbi algorithm. The main difference

between the two algorithms is that the former updates the probabilities via the outgoing

transitions of a state, whereas the latter updates the probabilities via the ingoing transitions

of a state. Thus, only the order in which the probabilities are updated is different.

The advantage of token passing is that each token can easily be tagged with additional

information, such as the path through the network, or word-by-word probabilities. In

Section 4.3.2 we explain why carrying such additional information can be useful. This

functionality would be difficult to replicate with the Viterbi algorithm.

4.2. Extensions to HMMs

Regular HMMs are a poor choice for modeling sign language for two reasons: First, they

are capable of modeling only one single process that evolves over time. Thus, they require

that the different channels described in Section 3.3.2 evolve in lockstep, passing through the

same state at the same time. This lockstep property of regular HMMs is unsuitable for many

applications. Sign language consists of parallel, possibly interacting, channels as described

in Section 3.3.2. For example, if a one-handed sign precedes a two-handed sign, the weak

hand often moves to the location required by the two-handed sign before the strong hand

starts to perform it. If the channels evolved in lockstep, the movement of the weak hand

would be impossible to capture.

Second, as discussed in Section 3.3.2, the number of possible combinations of phonemes

occurring simultaneously is overwhelming. It is computationally infeasible to use on the

order of 108 HMMs, let alone to collect enough training data. For these two reasons, it is

necessary to extend the HMM framework for ASL recognition.

In past research, two fundamentally different methods of extending HMMs have been

described. The first method models the C channels3 in C separate HMMs, effectively

creating ametastate in anC-dimensional state space. It combines the output of theC HMMs

in a single output signal, such that the output probabilities depend on the C-dimensional

metastate (Fig. 12). Such models are called factorial hidden Markov models (FHMMs).

Because the output probabilities depend on the metastate, an optimal training method based

on expectation maximization would take time exponential in C . Ghahramani and Jordan

describe approximate polynomial-time training methods based on mean-field theory [7].

3 Note that in the following we use the term, “channel” exclusively to clarify the relationship between different

HMM extensions and ASL phonology (cf. Section 3.3.2). This does not mean that the algorithms we describe in

the following sections are restricted to modeling channels in ASL. They can model other processes that take place

in parallel, as long as they satisfy the same assumptions as we make for the channels in ASL.

Factorial HMM’s
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FIG. 13. CHMMs: The output is separate, but the states influence one another.

The second method consists of modeling the C channels in C HMMs, whose state

probabilities influence one another, and whose outputs are separate signals. That is, the

transition from state S
(i)
t to S

(i)
t+1 in the HMM for channel i does not only depend on the state

S
(i)
t , but on the S

( j)
t states in all channel, where 1≤ j ≤C (Fig. 13). Such HMMs are called

coupled hidden Markov models (CHMMs). Brand et al. describe polynomial-time training

methods and demonstrate the advantages of CHMMs over regular HMMs in [3].

Unfortunately, FHMMs or CHMMs only provide a solution to the problem that regu-

lar HMMs force the channels to evolve in lockstep. They do not help with making the

sheer number of possible phoneme combinations computationally tractable, because the

training methods still require a priori modeling of all combinations. Thus, we need a new

approach to modeling ASL with HMMs. We now describe parallel HMMs as a solution to

the aforementioned two problems.

4.3. A New Approach: Parallel HMMs

Parallel HMMs model the C channels with C independent HMMs with separate output

(Fig. 14). Unlike CHMMs, the state probabilities influence one another only within the

same channel. That is, PaHMMs are essentially regular HMMs that are used in parallel.

Hermansky et al., as well as Bourlard and Dupont, first suggested the use of PaHMMs

in the speech recognition field [10, 1]. They broke down the speech signal into subbands,

which they modeled independently, so as to be able to exclude noisy or corrupted subbands,

and merged the subbands during recognition with multilayered perceptrons. They demon-

strated that subband modeling can improve recognition rates. Note that the goal of subband

modeling differs from our goal of making ASL recognition methods scale. Subband model-

ing is concerned with eliminating unreliable parts of the speech signal, whereas we would

like to develop a computationally tractable method of modeling all aspects of ASL.

FIG. 14. PaHMMs: The output is separate, and the states of separate channels are independent. O
(n)

i denotes

the output of the nth channel at the i th frame.

Coupled HMM’s
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FIG. 13. CHMMs: The output is separate, but the states influence one another.

The second method consists of modeling the C channels in C HMMs, whose state

probabilities influence one another, and whose outputs are separate signals. That is, the

transition from state S
(i)
t to S

(i)
t+1 in the HMM for channel i does not only depend on the state

S
(i)
t , but on the S

( j)
t states in all channel, where 1≤ j ≤C (Fig. 13). Such HMMs are called

coupled hidden Markov models (CHMMs). Brand et al. describe polynomial-time training

methods and demonstrate the advantages of CHMMs over regular HMMs in [3].

Unfortunately, FHMMs or CHMMs only provide a solution to the problem that regu-

lar HMMs force the channels to evolve in lockstep. They do not help with making the

sheer number of possible phoneme combinations computationally tractable, because the

training methods still require a priori modeling of all combinations. Thus, we need a new

approach to modeling ASL with HMMs. We now describe parallel HMMs as a solution to

the aforementioned two problems.

4.3. A New Approach: Parallel HMMs

Parallel HMMs model the C channels with C independent HMMs with separate output

(Fig. 14). Unlike CHMMs, the state probabilities influence one another only within the

same channel. That is, PaHMMs are essentially regular HMMs that are used in parallel.

Hermansky et al., as well as Bourlard and Dupont, first suggested the use of PaHMMs

in the speech recognition field [10, 1]. They broke down the speech signal into subbands,

which they modeled independently, so as to be able to exclude noisy or corrupted subbands,

and merged the subbands during recognition with multilayered perceptrons. They demon-

strated that subband modeling can improve recognition rates. Note that the goal of subband

modeling differs from our goal of making ASL recognition methods scale. Subband model-

ing is concerned with eliminating unreliable parts of the speech signal, whereas we would

like to develop a computationally tractable method of modeling all aspects of ASL.

FIG. 14. PaHMMs: The output is separate, and the states of separate channels are independent. O
(n)

i denotes

the output of the nth channel at the i th frame.
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