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Abstract. We develop a modified particle filter which is shown to be effective at searching the high-dimensional
configuration spaces (c. 30 + dimensions) encountered in visual tracking of articulated body motion. The algo-
rithm uses a continuation principle, based on annealing, to introduce the influence of narrow peaks in the fitness
function, gradually. The new algorithm, termed annealed particle filtering, is shown to be capable of recovering full
articulated body motion efficiently. A mechanism for achieving a soft partitioning of the search space is described
and implemented, and shown to improve the algorithm’s performance. Likewise, the introduction of a crossover
operator is shown to improve the effectiveness of the search for kinematic trees (such as a human body). Results
are given for a variety of agile motions such as walking, running and jumping.

8
9

10
11
12
13
14
15

Keywords: human motion capture, visual tracking, particle filtering, genetic algorithms16

1. Introduction17

A popular form of motion capture, for tasks such as18
gait analysis and computer animation, involves attach-19
ing a number of retro-reflective markers to a subject’s20
body and viewing the motion of the markers over time21
using a set of calibrated cameras. The easily-recovered22
image positions of the markers are transformed into 3D23
trajectories via triangulation of the measurements, and24
a parameterised representation of the subject’s move-25
ments can be calculated.26

The use of markers is intrusive and restrictive,27
and necessitates the use of potentially expensive, spe-28
cialised capture hardware. The goal of markerless mo-29
tion capture is to reproduce the performance of marker-30
based methods in a system using conventional cameras31
and without the use of special apparel or other equip-32
ment. For this reason recent years have seen a huge33
growth in research in the computer vision community34
with the aim of recovering motion data directly from35

images, without markers. However, full-body track- 36
ing from standard images is a challenging problem, 37
and markerless system presented to date rarely achieve 38
the following combination of capabilities of current 39
marker-based systems: full 3D motion recovery; robust 40
tracking of rapid, arbitrary movement; high accuracy; 41
easy application to new scenarios; on-line model ac- 42
quisition; real-time, or near real-time processing. 43

A major problem which confronts all attempts to 44
satisfy these criteria is the high dimensionality of the 45
configuration space, and the exponentially increasing 46
computational cost that results. A realistic articulated 47
model (see Fig. 4) of the human body usually has at 48
least 25 DOF. The model used in this paper for example 49
has between 29 and 34 DOF, and models employed for 50
commercial character animation usually have over 40. 51

In this paper we describe a multi-camera system for 52
markerless human motion capture which goes some 53
way to achieving the goals above. The work described 54
combines and extends our previous efforts published 55
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in short form in Deutscher et al. (2000, 2001). Our ap-56
proach is characterised by the following: 1. articulated57
body model, 2. weak dynamical modelling, 3. edge58
and background subtraction image measurements, and59
4. a particle-based stochastic search algorithm. The key60
contributions comprise:61

• The development of a novel, particle-based stochas-62
tic search algorithm, called annealed particle filter-63
ing. The method uses a continuation principle, based64
on annealing, to introduce the influence of narrow65
peaks in the fitness function gradually. This is intro-66
duced in Section 3.67

• The annealed particle filter is applied to the problem68
of markerless human motion capture, and shown to69
be more effective and efficient than, for example,70
Condensation (Blake and Isard, 1998), at localising71
the pose. Section 4 discusses implementation issues72
and Section 5 shows results.73

• We demonstrate how adaptive selection of the vari-74
ances/covariances which control the diffusion dur-75
ing annealing can lead to what can be thought of as a76
“soft” hierarchical partitioning of the configuration77
space, and hence to further gains in efficiency.78

• We introduce a crossover operator, analogous that79
that found in Genetic Algorithms, into the particle80
filtering framework. We demonstrate that this opera-81
tor improves the ability of the algorithm to search the82
configuration spaces of objects whose articulations83
can be modelled as a kinematic tree. In particular84
we show results for reliable and efficient tracking85
for walking, running and jumping with no special86
training of the dynamics of any activity.87

These latter two developments are discussed in88
Section 6.89

We begin with a review of relevant literature in90
Section 2, including a detailed discussion of the two91
most closely associated technologies: particle filtering92
and simulated annealing.93

2. Background94

2.1. Visual Tracking and Particle Filters95

Full-body motion capture is an example of model-96
based tracking; i.e. the process of sequentially esti-97
mating the parameters of a model of a target over98
time from visual data. Typically a priori knowledge99
about the target’s observable properties (such as its100

geometry) are compared with the visual data from an 101
image stream, to estimate a best fit for each frame in the 102
scene. Thus the principal components usually comprise 103
a target model, an image search method, and a dynam- 104
ical model. 105

The system of Plänkers and Fua (2003) represents 106
one of the best examples of this paradigm in its simplest 107
form. Their system does not have a (strong) model of 108
the person’s dynamics (in contrast to Sidenbladh et al. 109
(2000), e.g., see below) or have a sophisticated multi- 110
modal search algorithm such as we describe. Rather, 111
the key to the success of their system is in much more 112
careful modelling of the shape and appearance than in 113
most other work, and in the use of binocular disparity 114
maps as well as silhouette data. Unlike most other work 115
(including our own) their system estimates the size of 116
the body as well as the pose parameters. 117

In considering the role of the other two system com- 118
ponents, search and dynamics it is useful to discuss the 119
influential work of Harris (1992). He showed how rapid 120
motions can be tracked by constraining the search area 121
via a predicted motion of the object. Harris used rigid 122
polyhedral models (and simple surfaces of revolution) 123
and sought the 6 DOF pose of object. Given a predicted 124
location, the system searches from predicted edge lo- 125
cations along 1D profiles to find “actual” edges. These 126
1D measurements are then combined to obtain a pose 127
update. 128

Drummond and Cipolla (2001) showed how many 129
of the ideas in Harris’ system can be extended to artic- 130
ulated objects by effectively tracking body parts using 131
Harris’ method but enforcing global consistency via 132
kinematic constraints. 133

A second and arguably more important innovation in 134
Harris (1992) was to place the tracking system within 135
the framework of a Kalman Filter, a provably optimal 136
recursive estimator for linear systems which can be 137
thought of as an algorithm for sequential propagation 138
of Gaussian probability densities. 139

A natural step would be to consider the use of a 140
Kalman Filter, (or its extension to non-linear measure- 141
ments and/or dynamics, the Extended Kalman Filter 142
or EKF) for articulated body tracking. Wachter and 143
Nagel (1999) demonstrated this for single view track- 144
ing using image motion and edges (though the results 145
show only motion parallel to the image plane). More 146
recently Mikic et al. (2001) demonstrated the extrac- 147
tion and filtering of pose parameters from a volumetric 148
model obtained by “carving” space using silhouettes 149
from multiple cameras. 150
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While Gaussian uncertainty is sufficient for mod-151
elling many motion and measurement noise sources,152
the Kalman Filter has been shown to fail catastrophi-153
cally in cases where the true probability function has154
a very different shape. In particular attempts to track155
objects moving against a very cluttered background,156
where measurement densities include the chance of157
detecting erroneous image features and are therefore158
multi-modal, lead to tracking failure for Harris’ algo-159
rithm and many of its ilk.160

An alternative, more general approach is particle fil-161
tering, in which arbitrary densities are approximated.162
This was introduced in the context of visual tracking163
in the form of the Condensation algorithm (Isard and164
Blake, 1996). A posterior density p(X | Zt) represent-165
ing current knowledge about the model state X after166
incorporation of all measurements up to the current167
time-step t , Zt, is represented by a finite set of nor-168
malised weighted particles, or samples,169

{(
s(0)

t , π
(0)
t

) · · · (s(N )
t , π

(N )
t

)}
.

An estimate of the state Xt at each time-step t can170
easily be estimated by the sample mean of the posterior171
density, p(X | Zt),172

Xt = E[X] =
N∑

n=1

π
(n)
t s(n)

t (1)

or the mode

Xt = M[X] = s( j)
t , π

( j)
t = max

(
π

(n)
t

)
. (2)

Essentially, a smooth probability density function is173
approximated by a finite collection of weighted sam-174
ple points, and it can be shown that as the number of175
points tends to infinity the behaviour of the particle set176
is indistinguishable from that of the smooth function.177
Tracking with a particle filter works by:178

1. Resampling, in which a weighted particle set is179
transformed into a set of evenly weighted particles180
distributed with concentration dependent on proba-181
bility density;182

2. Stochastic movement and dispersion of the particle183
set in accordance with a motion model to represent184
the growth of uncertainty during movement of the185
tracked object;186

3. Measurement, in which the likelihood function is187
evaluated at each particle site, producing a new188

weight for each particle proportional to how well it 189
fits image data. The weighted particle set produced 190
represents the new (posterior) probability density 191
after movement and measurement. 192

Particle filtering works well for tracking in clutter 193
because it can represent arbitrary functional shapes 194
and propagate multiple hypotheses. Less likely model 195
configurations will not be thrown away immediately 196
but given a chance to prove themselves later on, re- 197
sulting in more robust tracking. In its original imple- 198
mentation, Condensation demonstrated robust tracking 199
in low-dimensional configuration spaces (up to about 200
10 DOF) in the presence of significant clutter. Even 201
in the absence of a cluttered background, the compli- 202
cated nature of the observation process during human 203
motion capture causes the posterior density to be non- 204
Gaussian and multi-modal as shown experimentally 205
by Deutscher et al (1999). Condensation has indeed 206
been implemented successfully for short human mo- 207
tion capture sequences (see Deutscher et al. (2000) 208
and Sidenbladh et al. (2000)), however, in the high- 209
dimensional configuration spaces occurring in human 210
motion capture and other domains, there are serious 211
problems with Condensation arising from the inabil- 212
ity of a manageable size particle set (of, say, a few 213
thousand particles), adequately to populate the space 214
and represent an arbitrary density. In fact it has been 215
shown by MacCormick and Isard (2000) that N ≥ Dmin

αd 216
where N is the number of particles required, d is the 217
number of dimensions. The survival diagnostic Dmin 218
and the particle survival rate α are both constants with 219
α � 1. Clearly when d is large normal particle filtering 220
becomes infeasible. 221

Cham and Rehg (1999) proposed the use of a mul- 222
tiple hypothesis tracker which represented the poste- 223
rior distribution as a piecewise Gaussian. As only local 224
modes are propagated between frames, the solution is 225
computationally much cheaper than Condensation, but 226
they avoid the pitfalls of a single hypothesis tracker. 227
Unlike our work, in which we explicitly model the joint 228
angles and overall pose degrees of freedom, they use a 229
so-called scaled prismatic model which explicitly mod- 230
els 2D in-plane translation and rotation, but models out 231
of plane rotation via a per-link independent scaling. 232

Partitioned sampling was developed by 233
MacCormick and Blake (1999) as a variation on 234
Condensation to reduce the number of particles 235
needed to track more than one object, and applied 236
by MacCormick and Isard (2000) to the problem 237
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of tracking articulated objects. Using partitioned238
sampling reduces the number of particles required239
to N >= Dmin

α
making the problem tractable. How-240

ever, this assumes that the configuration space can241
be sliced so that one can construct an observation242
densityp(Zt | xi ) for each dimension xi of the model243
configuration vector X = {x0 . . . xd}. This assumption,244
that it is possible independently to localise separate245
parts of an articulated model, is similar to that made246
by Gavrila and Davis (1996) to enable a hierarchical247
search.248

Another variation on the standard particle filter used249
to reduce the number of particles needed to effectively250
represent a posterior density has been developed by251
Sullivan et al. (1999). Called layered sampling it is252
centred around the concept of importance resampling.253
The technique we present in this paper bears some sim-254
ilarity to layered sampling, but experimental evidence255
suggests our technique is more effective at reducing the256
number of particles required when the dimensionality257
of the search space approaches 30.258

Two successful recent approaches which use parti-259
cle filtering are due to Sminchisescu and Triggs (2001)260
and Sidenbladh et al. (2000). Both are concerned with261
monocular tracking (in some important ways more dif-262
ficult than the multi-camera case) but in other respects263
problem is essentially the same: how can a high dimen-264
sional space be adequately populated with a particle set265
of manageable size? Their approaches to this problem266
are quite different and in some ways complementary.267

The former introduces the idea of covariance sam-268
pling, spreading particles in areas where there is least269
confidence in the localisation. This idea is very closely270
related to our soft partitioning approach developed in271
Section 6.1. More recently they have extended this272
work explicitly to take into account the particular ambi-273
guities that arise from human kinematics, “scattering”274
particles into areas of potential ambiguity and therefore275
making better use of the particle set Sminchisescu and276
Triggs (2003).277

The latter work (Sidenbladh et al., 2000, 2002) on278
the other hand, takes the approach that dynamical mod-279
elling can be used to obtain strong, predictive priors,280
reducing the search space to manageable proportions.281
Indeed in Sidenbladh et al. (2000) tracking was re-282
stricted, via the learnt dynamics, to the case of walk-283
ing people. More recently however (Sidenbladh et al.,284
2002) showed how a database of motions could be con-285
structed and efficiently indexed in order to obtain pre-286
dictions over a wide class of motions.287

In addition to the problems of representing PDFs 288
via particle sets in high dimensional spaces, a second 289
difficulty is associated with constructing a valid obser- 290
vation model p(Zt | X) as a normalised probability den- 291
sity distribution. Even if such a likelihood model can be 292
constructed the cost of evaluating it can be prohibitive.1 293
Often an intuitive weighting function w(Zt , X) can be 294
constructed that approximates the probabilistic likeli- 295
hood p(Zt | X) but which requires much less computa- 296
tional effort to evaluate. 297

In this paper we reduce the problem from propagat- 298
ing the conditional density p(X | Zt) using p(Z | X), 299
simply to finding the configurationXt which returns the 300
maximum value from a simple and efficient weighting 301
function w(Zt , X) at each time t , given Xt−1. By doing 302
this gains are made on two fronts: (i) it is possible to 303
make do with fewer likelihood (or weighting function) 304
evaluations because the function p(X | Zt ) no longer 305
has to be fully represented; and (ii) an evaluation of a 306
simple weighting function w(Zt , X) requires less com- 307
putational effort when compared to an evaluation of 308
the observation model p(Zt | X). The main disadvan- 309
tage is that we no longer work within a truly Bayesian 310
framework. 311

We retain the use of a particle based stochastic frame- 312
work because of its ability to handle multi-modal like- 313
lihoods, or in the case of a weighting function, one 314
with many local maxima. In order most effectively to 315
optimise the non-convex weighting function we use an 316
approach similar to that of simulated annealing. 317

2.2. Simulated Annealing 318

The Markov chain based method of simulated anneal- 319
ing was proposed by Kirkpatrick et al. (1983) as a 320
means to optimise a multi-modal objective function 321
U (x). It proceeds by defining a distribution over the 322
function values 323

P(x) = const e−λU (x)

The aim is then to generate samples xi from this dis- 324
tribution, in the knowledge that as λ → ∞, the prob- 325
ability mass concentrates on the minumum of U , and 326
hence the samples xi will cluster around the minimum 327
value state. 328

Samples from the distribution are generated in a 329
straightforward fashion using the Metropolis-Hastings 330
algorithm (Metropolis et al., 1953) which generates 331
a Markov sequence of points whose distribution will 332
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converge to P: a new candidate point x′ in a sequence is333
generated “at random”, and accepted with probability:334

min

(
1,

P(x′)
P(x)

)

i.e. the candidate point is accepted if it improves U or335
with probability e−λ[U (x)−U (x′)].336

Simply using a large value of λ and generating a337
sequence starting at a random x0 yields poor results if338
U has isolated minima since the sequence can easily339
become trapped in a local mode of P (e.g. the closest340
to x0).341

The annealing process is a heuristic for avoiding this.342
The initial value of λ is set to be small (or in more phys-343
ical language, the temperature, which is inversely pro-344
portional to λ, is initially high). This results in a broad345
distribution P and hence allows free exploration of the346
search space. Samples are generated from this distribu-347
tion, and then the value of λ increased. Samples are then348
generated from the new distribution starting from the349
final state of the previous sequence, and so on. Each350
increase of λ successively excludes (in a probabistic351
sense) regions that contain little of the probability mass352
of the distribution.353

The set of values for λ = λM . . . λ0 is known as354
the annealing schedule. This schedule needs to be de-355
signed as a compromise between speed and efficacy:356
slow annealing is more likely to find a globally optimal357
solution, but is also prohibitively expensive.358

The similarity with particle-based methods arises359
when we view this process one of generating samples360
from a sequence of distributions, PλM . . . Pλ0 , where361
Pλm (x) ∝ Pλ0 (x)βm , for 1 = β0 > β1 > · · · > βM ,362
and where βm = λm/λ0 (as described by Neal (2001)363
whose algorithm ours resembles). Moreover the algo-364
rithm exhibits exactly the kind of behaviour needed365
for the our purposes: one wants to move towards the366
global maximum of the weighting function w(Zt , X),367
using the overall trend of the matching function as a368
guide, without becoming misguided by local maxima369
as seen in Fig. 1. The idea of annealing for optimisation370
is now adapted to perform a particle based stochastic371
search within the framework of an annealed particle372
filter.373

3. Annealed Particle Filter374

A series of weighting functions w0(Z, X) to wM (Z, X)375
is employed in which each wm differs only slightly376

Figure 1. Illustration of the annealed particle filter with M =
1. Even though a large number of particles are used (so that an
equivalent number of weighting function evaluations are made as
in Fig. 2), the search is misdirected by local maxima. From the re-
sulting weighted set it is very hard to tell where the global maximum
of w0 lies.

from wm−1 (see Fig. 2, where M = 3). The function 377
wM is designed to be very broad, representing the over- 378
all trend of the search space while w0 should be very 379
peaked, emphasising local features. This is achieved by 380
setting 381

wm(Z, X) = w(Z, X)βm , (3)

for β0 > β1 > · · · > βM , where w(Z, X) is the original 382
weighting function, as suggested by the discussion in 383
Section 2.2. Because it is not the aim to sample from 384
w(Z, X), but only to find its maximum it is not required 385
that β0 = 1. 386

A large βm produces a peaked weighting function wm 387
resulting in a high rate of annealing. Small values of βm 388
will have the opposite effect. If the rate of annealing is 389
too high the influence of local maxima will distort the 390
estimate of Xt as seen in Fig. 1. If the rate is too low Xt 391
will not be determined with enough resolution (unless 392
more layers are used wasting computational resources). 393
The manner in which the rate of annealing is influenced 394
by the sequence βM , . . . β0 is discussed in Section 3.1. 395

One annealing run is performed at each time t using 396
image observations Zt . The state of the tracker after 397
each layer m of an annealing run is represented by a 398
set of N weighted particles 399

Sπ
t,m = {(

s(0)
t,m, π

(0)
t,m

) · · · (s(N )
t,m , π

(N )
t,m

)}
. (4)

An unweighted set of particles will be denoted 400

St,m = {(
s(0)

t,m

) · · · (s(N )
t,m

)}
. (5)

Each particle in the set Sπ
t,m is considered as an 401

(s(i)
t,m, π

(i)
t,m) pair in which s(i)

t,m is an instance of the 402



P1: xxx

International Journal of Computer Vision KL3179-05/5384380 September 29, 2004 20:18

UNCORRECTED
PROOF

190 Deutscher and Reid

Figure 2. Illustration of the annealed particle filter with M = 3.
With a multi-layered search the sparse particle set is able to migrate
gradually towards the global maximum without being distracted by
local maxima. The final set Sπ

t,0 provides a good indication of the
weighting function’s global maximum.

multi-variate model configuration X, and π
(i)
t,m is the403

corresponding particle weighting. Each annealing run404
can be broken down as follows (the process is illus-405
trated in Fig. 2).406

1. For every time step t an annealing run is started at407
layer M , with m = M .408

2. Each layer of an annealing run is initialised by a set409
of un-weighted particles St,m .410

3. Each of these particles is then assigned a weight411

π
(i)
t,m ∝ wm

(
Zt , s(i)

t,m

)
(6)

Figure 3. Annealed particle filter in progress. The sets St,m are
plotted here, taken while tracking the walking person as seen in
Fig. 9. Only the horizontal translation components x0 and x1 of the
model configuration vector X are shown. Starting with St−1,0 from
the previous time step the particles are diffused to form St,9 which
easily covers the expected range of translational movement of the
subject. The particles and are then slowly annealed over 10 layers
(the sets St,6 to St,4 are omitted for brevity) to produce St,0 which
is clustered around the maximum of the weighting function.

which are normalised so that
∑

N π
(i)
t,m = 1. The set 412

of weighted particles Sπ
t,m has now been formed.

Au: Pls. cite
Fig. 3 in text.

413
4. N particles are drawn randomly from Sπ

t,m with 414
replacement and with a probability equal to their 415
weighting π

(i)
t,m . As the nth particle s(n)

t,m is chosen it 416
is used to produce the particle s(n)

t,m−1 using 417

s(n)
t,m−1 = s(n)

t,m + Bm (7)

where Bm is a multi-variate Gaussian random vari- 418
able with covariance Pm and mean 0. 419
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5. The set St,m−1 has now been produced which can be420
used to initialise layer m−1. The process is repeated421
until we arrive at the set Sπ

t,0.422
6. Sπ

t,0 is used to estimate the optimal model configu-423
ration Xt using424

Xt =
N∑

i=1

s(i)
t,0π

(i)
t,0. (8)

7. The set St+1,M is then produced from Sπ
t,0 using425

s(n)
t+1,M = s(n)

t,0 + B0. (9)

This set is then used to initialise layer M of the next426
annealing run at tt+1.427

Note that Step 7, where the particle set for the next
time-step is generated, incorporates no dynamic model.
There is nothing in the algorithm that precludes the
use of dynamics: simply replace Eq. (9) with the more
general

s(n)
t+1,M = f

(
s(n)

t,0

) + B0 (10)

where the function f represents the dynamical model.428
We have not done so since our focus is on tracking429
previously unseen/unmodelled agile motions. While a430
dynamical model is certainly beneficial during “steady431
state” tracking, it can be a hindrance if the model is432
poor (as it often is for agile motions). The price we pay433
for this is a less economical use of particles than would434
be ideal, and the potential for jittery trajectories. The435
latter could be addressed by smoothing the recovered436
pose/joint trajectories.437

3.1. Setting the Tracking Parameters438

It remains to consider how best to set the free parame-439
ters of the algorithm, and in particular, to consider how440
to influence the annealing schedule. In Eq. (3) it is the441
value of βk

m that determines the rate of annealing at442
each layer.443

To see how and why this is so, first note that the444
equivalent of temperature in our particle-based frame-445
work is the particle survival rate: the ratio of effective446
particles to total number of particles. If the probabil-447
ity mass is all concentrated in a few particles then the448
number of effective particles is low, and conversely, an449
even distribution of probability mass amongst particles450
signals a large number of effective particles. A sensible451

measure of the effective number of particles that will be 452
chosen for propagation to the next layer is the survival 453
diagnostic D (taken from MacCormick (2000)) where 454

D =
(

N∑
n=1

(
π (n)

)2

)−1

(11)

and from this the particle survival rate α can be esti- 455
mated MacCormick (2000) 456

α = D
N

. (12)

In the case of traditional annealing, the temperature 457
acts like a barrier, restricting the movement of sam- 458
ples: the cooler the temperature, the fewer the number 459
of samples with a low function value U (x) (energy) that 460
will be generated. In the context of a particle set, a high 461
survival rate corresponds to an even spread probability 462
mass, while a low one suggests the mass is concen- 463
trated in a few particles. Hence decreasing the survival 464
rate has the same effect as cooling the temperature in 465
traditional annealing. 466

Now D is clearly a monotonic decreasing function 467
of βk

m . At a given layer, we therefore adjust the value 468
of βk

m to change the value of D(βk
m) so that α = D/N 469

approaches a desired value. This is trivially done by 470
searching over βk

m (using the value from the previous 471
time step βk−1

m as the starting point) to find the value 472
that solves the equation 473

αdesired = D
(
βk

m

)/
N

i.e. produces the desired rate of annealing. 474
Note that this does not mean the weights have to 475

be completely re-evaluated each time βk
m is adjusted 476

during the search. Since wm(Z, X) = w(Z, X)βm the 477
values w(Z, X = s(i)

t,m), i : 1 . . . N can be stored for 478
each set Sk,m and βk

m applied to each individual weight 479
as appropriate to produce Sπ

t,m . 480
How then are the appropriate values for α0 . . . αM 481

determined? There are also a number of other track- 482
ing parameters that need to be set before tracking can 483
begin, including the number of particles N , the num- 484
ber of annealing layers M and the diffusion covariance 485
matrices PM . . . P0. A tentative framework has been de- 486
veloped to allocate values to these parameters although 487
it is acknowledged that more work needs to be done in 488
this area. 489
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1. The first step is to decide on how many anneal-490
ing layers are needed. It was found that doubling491
the number of annealing layers reduces the number492
of particles needed for successful tracking by more493
than half. This will only work up to a point how-494
ever as there seems to be a minimum number (N )495
of particles needed for tracking no matter how many496
layers are used. Using a 30 DOF model it was found497
that setting M = 10 with N ≥ 200 worked well.498

2. Each diagonal element in P0 is allocated a value499
equal to half the maximum expected movement of500
the corresponding model configuration parameter501
over one time step. In this way the set St+1,M should502
cover all possible movements of the subject between503
time t and t + 1. The amount of diffusion added504
to each successive annealing layer should decrease505
at the same rate as the resolution of the set St,m506
increases. Our early experiments used507

Pm = αM × · · · × αm−1 × P0 (13)

and produced decent results, but a better, adaptive508
method for setting the P is described in Section 6.1.509

3. The appropriate rates of annealing αM . . . α1 are in-510
fluenced by the number of annealing layers used.511
With a higher number of annealing layers a lower512
rate of annealing can be used to obtain the desired513
resolution. It was found that while using 10 anneal-514
ing layers setting αM = . . . = α1 = 0.5 provided515
sufficient resolution of Xt .516

4. Implementation517

4.1. The Model518

The articulated model of the human body used in this519
paper is built around the framework of a kinematic tree,520
as seen in Fig. 4. Each limb is fleshed out using cones521
with elliptical cross-sections. Such a model has a num-522
ber of advantages including computational simplicity,523
high-level interpretation of output and compact repre-524
sentation.525

4.2. The Weighting Function526

The basic annealed particle filter is a general optimi-527
sation tool and can be used for a variety of purposes528
(for another application see Deutscher et al. (2002))529
with different weighting functions. In the present work530

Figure 4. The model is based on a kinematic tree consisting of 17
segments (a). Six degrees of freedom are given to base translation
and rotation. The shoulder and hip joints are treated as sockets with 3
degrees of freedom, the clavicle joints are given 2 degrees of freedom
(they are not allowed to rotate about their own axis and are assumed to
be coupled) and the remaining joints are modelled as hinges requiring
only one. This results in a model with 29 degrees of freedom and a
configuration vector X = {x1 . . . x29}. The model is fleshed out by
cones with elliptical cross-sections (b).

we have constructed the weighting function on the 531
basis of two image features—edges and foreground 532
silhouette—chosen for their joint virtues of simplic- 533
ity (i.e. easy and efficient to extract), and a degree 534
of invariance to imaging conditions. While these fea- 535
tures are not fully general (in particular the silhou- 536
ette relies on a knowledge of the background which 537
may not be available in more general environments) 538
they suffice for our purposes. Even without a large 539
degree of background clutter distracting edge mea- 540
surements, there remains a challenging, multi-modal 541
search problem because of self occlusions and fore- 542
ground clutter (i.e. unmodelled markings on the tar- 543
get). Other features such as optic flow could equally be 544
used. 545

4.2.1. Edges. The strongest continuous edges pro- 546
duced by a human subject in an image usually provide 547
a good outline of visible arms and legs and are mostly 548
invariant to colour, clothing texture, lighting and pose. 549
In severely cluttered environments or when the subject 550
is wearing very baggy clothes edges may lose some 551
of their usefulness, however in most situations they 552
provide a good basis for a weighting function. A gradi- 553
ent based edge detection mask is used to detect edges. 554
The result is thresholded to eliminate spurious edges, 555
smoothed with a Gaussian mask and remapped between 556
0 and 1. This produces a pixel map (Fig. 5(b)) in which 557
each pixel is assigned a value related to its proximity 558
to an edge. 559



P1: xxx

International Journal of Computer Vision KL3179-05/5384380 September 29, 2004 20:18

UNCORRECTED
PROOF

Articulated Body Motion Capture by Stochastic Search 193

Figure 5. Feature extraction. A gradient based edge detection mask
is used to find edges. The result is thresholded to eliminate spurious
edges and smoothed using a Gaussian mask to produce a pixel map
(b) in which the value of each pixel is related to it proximity to an
edge. The foreground is segmented using thresholded background
subtraction to produce the pixel map (c) used in the weighting func-
tion.

A sum-squared difference (SSD) function �e(X, Z)560
is then computed using561

�e(X, Z) = 1

N

N∑
i=1

(
1 − pe

i (X, Z)
)2

(14)

where X is the model’s configuration vector and Z is the562
image from which the pixel map is derived. pi (X, Z)563
are the values of the edge pixel map at the N sampling564
points taken along the model’s silhouette as seen in565
Fig. 6(a).566

Figure 6. Configurations of the pixel map sampling points pi (X, Z)
for the edge based measurements (a) and the foreground segmenta-
tion measurements (b). The sampling points for the edge measure-
ments are located along the occluding contours of the model’s trun-
cated cones that have been projected into the image. The sampling
points for the foreground segmentation measurements are taken from
a grid within these occluding contours.

4.2.2. Silhouette. The second feature extraction per- 567
formed on the image is foreground-background seg- 568
mentation. Thresholded background subtraction was 569
used here to separate the subject from the background 570
and typical results can be seen in Fig. 5(c). This may be 571
inappropriate in some environments with a lot of back- 572
ground movement where more sophisticated methods 573
may have to be employed. Most foreground segmenta- 574
tion techniques are largely invariant to clothing, light- 575
ing, pose motion and environment and as such provide 576
an excellent image feature for a general human mo- 577
tion capture system. Once again a pixel map is con- 578
structed, this time with foreground pixels set to 1 and 579
background to 0 (Fig. 5(b)), and an SSD is computed 580

�r (X, Z) = 1

N

N∑
i=1

(
1 − pr

i (X, Z)
)2

(15)

where pi (X, Z) are the values of the foreground pixel 581
map at the N sampling points taken from the interior 582
of the truncated cones as seen in Fig. 6(b). 583

To combine the edge and region measurements the 584
two SSD’s are added together and the result exponen- 585
tiated to give 586

w(X, Z) = exp −(�e(X, Z) + �r (X, Z)). (16)

An equal weighting to each component was determined 587
empirically. 588

When there is more than one camera the measure- 589
ments are combined in a similar way, giving 590

w(X, Z) = exp −
(

C∑
i=1

(
�e

i (X, Z) + �r
i (X, Z)

))

(17)

where C is the number of cameras and
∑∗

i (X) is from 591
camera i . An example of the output of this weighting 592
function can be seen in Fig. 7. 593

5. Results 594

Two examples illustrate the system: in the first a subject 595
walks in a circle as seen in Fig. 9; in the second the 596
subject steps over a box, turns 180◦ on the spot before 597
stepping over it again as seen in Fig. 10. 598

Three cameras were used to capture the motion and 599
all three views can be seen in the corresponding figures. 600
The same tracking parameters were used in all three 601
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Figure 7. Example output of the weighting function obtained
by varying only component x15 of X (the right knee angle) us-
ing the image and model configuration seen in (a). The func-
tion is highly peaked around the correct angle of −0.7 radians
(b).

Figure 8. A comparison of condensation with the annealed particle
filter. At top the results of tracking with 4000 particles using stan-
dard condensation can be seen. Tracking gradually deteriorates until
terminal failure after 1.2 seconds. Experiments with 40000 particles
were carried out taking over 30 hours to process just 4 seconds of
video, still with negative results. An annealed search using 4000 par-
ticles with one layer fairs little better (middle), also suffering terminal
failure after 1.2 seconds. An annealed search using 400 particles and
10 layers (i.e., 4000 weighting function evaluations per frame) tracks
very well.

Figure 9. Walking in a circle. Using three cameras (arrayed here
from top to bottom) a person is tracked over 4 seconds while walking
in a circle. The tracker maintains an accurate lock throughout. 10
annealing layers were used with 200 particles for this sequence.

sequences, which demonstrate the tracker’s ability to 602
follow a wide range of human movement. 603

A comparison of the annealed particle filter with 604
standard Condensation can be seen in Fig. 8. Direct 605
comparison is complicated by the fact that in Annealed 606
Particle Filtering we use a simplified weighting func- 607
tion rather than a “correct” likelihood taking expected 608
clutter into account (such as is derived in Blake and 609
Isard (1998)). For this experiment the likelihood for 610
Condensation comprised the edge based likelihood of 611
Blake and Isard (1998), fused with a silhouette obser- 612
vation. The pose shown in each frame is the sample 613
mean of the particle set. The one layer annealed search 614
represents a similar experiment. It differs from Con- 615
densation in using the simplified weighting function 616
(exactly the same as for the full Annealed Particle Fil- 617
ter experiment), and in propagating only the mode of 618
the distribution between frames. The former difference 619
accounts, remarkably, for a four-fold increase in speed 620
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Figure 10. Stepping over a box. Using three cameras (arrayed here
from top to bottom) a person is tracked over 5 seconds while stepping
over a box, turning around and stepping over the box again. The
tracker maintains an accurate lock throughout. 10 annealing layers
were used with 200 particles for this sequence.

of execution. The final part of the experiment shows621
tracking using the full Annealed Particle Filter.622

Each algorithm used a total of 4000 likelihood evalu-623
ations. In the final case this was divided as 400 particles624
over 10 layers. It was found in practice that good re-625
sults on this sequence could be achieved with as few as626
100 particles. While not being a strictly fair comparison627
between Condensation and the Annealed Particle Fil-628
ter, the experiment gives an indication of the improved629
tracking performance of the APF given equivalent630
computational resources.631

6. Algorithm Extensions: Hierarchical Search632

The Annealed particle filter (APF), introduced in the633
previous sections, directly addresses the problem of634
searching high-dimensional configuration spaces, and635
has been demonstrated to be an effective and robust636

tracking framework for Human Motion Capture. How- 637
ever it remains a computationally intensive technique. 638
The promise of further improvements is held out by the 639
fact that the model is structured as a kinematic tree. 640

One way to reduce the effective volume of the config- 641
uration space is to perform a hierarchical search. If one 642
part of an articulated model can be localised indepen- 643
dently then it can be used as a constraint for restricting 644
the rest of the search. This straightforward idea has 645
been applied in a heuristic fashion by (among others) 646
Gavrila and Davis (1996), who localised the torso us- 647
ing colour cues and used this information to constrain 648
the search for the limbs, and more recently by Mikic 649
et al., who first locate the head in order to limit their 650
subsequent search. Although this approach is usually 651
sound, without the assistance of colour cues (or other 652
labelling cues) it is often very hard independently and 653
reliably to localise specific body parts in realistic sce- 654
narios. Furthermore, failure of the first heuristic search 655
can easily lead to catastrophic, unrecoverable failure. 656

A more formal approach to hierarchical search was 657
proposed by MacCormick and Isard (2000). That work 658
applied partitioned sampling to tracking articulated ob- 659
jects, but crucially assumed that the configuration space 660
can be sliced so that one can construct an observation 661
density for each dimension of the model configuration 662
vector—effectively that it is possible independently to 663
localise separate parts of an articulated model. 664

When using all but the simplest kinematic models, 665
the optimal partitioning may not be obvious and it may 666
indeed change over time as the degree of interaction 667
between different segments of a model changes—such 668
as when the legs cross during walking. Rather than 669
impose a hierarchy on the search, we seek instead 670
to develop a method for soft or fuzzy partitioning 671
in which there is no need to commit to a particular 672
hierarchy. Cham and Rehg (1999) capture this spirit in 673
describing a search which is sequential in the degrees 674
of freedom of the body. Their crucial innovation is 675
to allow the order to be flexible: the search for body 676
parts is conducted on a “best”-first basis, where best 677
is defined as the component which can be found with 678
minimum effort, usually meaning minimum variance. 679

While motivated by similar desires, our solution is 680
rather different from theirs. Our approach improves 681
upon and extend the APF in two ways. First we in- 682
troduce a means to make the diffusion step in the APF 683
adaptive, so that effort is not wasted in those places 684
where the algorithm is already confident of doing well, 685
and is concentrated on localising parts whose location 686
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is uncertain. The effect of this can be interpreted as a687
hierarchical search strategy which automatically par-688
titions the search space in a soft way, without any ex-689
plicit representation of the partitions (Section 6.1). Sec-690
ond, we introduce a crossover operator (similar to that691
found in Genetic Algorithms) which improves the abil-692
ity of the tracker to search different partitions in parallel693
(Section 6.2).694

We present results for simple examples to demon-695
strate the new algorithm’s implementation and ef-696
fectiveness, and show that these measures together697
increase the tracker efficiency by a factor of 4 and in-698
crease agility of the motion that can be tracked.699

We apply the tracker to the complex problem of Hu-700
man Motion Capture with 34 degrees of freedom. Extra701
degrees of freedom have been added to the model in702
Fig. 4 in the back (2) to allow arching that would not703
normally be encountered in everday walking (and was704
not neceeary in our ealier experiments), in the neck (1)705
to account for head nodding, and the clavicles are given706
independent motion (2 each).707

6.1. Adaptive Diffusion708
and Hierarchical Partitioning709

Consider the simple task of tracking an articulated arm710
as seen in Fig. 11. The arm consists of four segments,711
each joined by a swivelling joint with one end rooted712

Figure 11. A planar articulated arm with 4 DOF is shown (a). It
consists of four links connected by swivelling joints and rooted at O.
The configuration of the arm is described by x = (x1, x2, x3, x4) as
seen in (b).

on the spot. A configuration of the arm is described by 713
an instance of the state variable x = (x1, x2, x3, x4). 714
The weighting function w(z, x) required for the APF 715
is computed by a Sum of Squared Differences (SSD) 716
measure between a model template and a silhouette 717
image (the detail to the regional correlation portion of 718
the observation model in Eq. (15)). 719

The set St,m is initialised with particles uniformly 720
distributed over a range of x that we know to con- 721
tain the actual position of the arm. This results in a 722
large and similar variance for each parameter of x over 723
all the particles in St,m as can be seen in Fig. 12(a). 724

Figure 12. Parameter variance over one annealing layer: new APF
vs. old APF. On the left graphs a, b and c plot the variance of each
parameter of x = (x1, x2, x3, x4) through the first annealing run of
the APF when tracking the articulated arm seen in Fig. 11. Graphs d, e
and f show the same information for the improved APF as described in
Section 6.1. Graphs a and d show the variances of the initial set St,m ,
displaying equal variances for each parameter. Graphs b and e show
the variances of the set St,m−1 before the addition of diffusion noise.
Note that in both b and e, x1 has a very small variance indicating
advanced localisation, however the variance of x2, x3 and x4 has
been reduced only a little. Up to this point the algorithms are the
same and any differences between b and e are random. After the
addition of noise in the original APF the localisation of x1 has been
greatly degraded as seen in graph c, however when noise is added
in proportion to each parameter’s variance the localisation of x1 is
preserved as seen in graph f.
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After calculating a weight π
(i)
t,m for each particle us-725

ing wm(zt , s(i)
t,m) we then proceed to Step 4 of the APF726

and draw N particles from Sπ
t,m with replacement and727

probability proportional to each particle’s weight.728
Consider the setSt,m so produced before the addition729

of any noise. In a typical annealing run the individual730
parameters of each particle were found to have variance731
as detailed in Fig. 12(b). Note here that the variance of732
x1 has been greatly reduced while the other parame-733
ters x2, x3 and x4 have been hardly reduced at all. The734
variance of any parameter can be considered (with a735
number of acceptable caveats) to be directly related to736
the degree to which the optimal value for that parame-737
ter has been localised. Figure 12(b) shows that x1 has738
been localised down to a very small area of its range739
simply because it dominates the topology of the search740
space whereas each particle’s values for x2, x3 and x4741
had very little influence on whether it was selected or742
not. In effect we see here an automatic partitioning of743
the state space into soft partitions according each pa-744
rameter’s topological dominance.745

The weakness of the original APF (indeed any par-746
ticle filter) arises with the addition of diffusion noise747
to each particle upon selection. According to Eqs. (7)748
and (13) an equal amount of noise should be added to749
each parameter. This results in a parameter variance750
profile like that seen in Fig. 12(c) with the localisa-751
tion of x1 seen in Fig. 12(b) all but wiped out by the752
excessive addition of noise.753

If instead the amount of randomness added to the754
parameters of each selected particle is proportional to755
the variance of that parameter over the entire set of756
particles, these gains will be protected from disruption.757
Instead we will arrive at the situation seen in Fig. 12(f)758
where enough noise has been added to each parameter759
to allow the thorough diffusion of the particles into the760
spaces between repeatedly selected particles, but not761
enough to increase the variance of any given parameter762
which would erase any localisation gains made up to763
that point.764

If this new method for determining the elements of765
Pi (the covariance matrix of B from Eq. (7)), is con-766
tinued through all the annealing layers we can see that767
each parameter is localised in turn, with some degree768
of overlap as seen in Fig. 13. This can be compared769
to the pattern of variance reduction for the original770
APF algorithm seen in Fig. 14. This is exactly the771
kind of hierarchical soft partitioning that was desired772
and no explicit partition boundaries or functions were773
required.774

Figure 13. Variance reduction with the improved APF. Here we
see the orderly reduction of each of the four parameter’s variances
from most dominant (x1) to least dominant (x4) over 6 layers of the
annealing process while tracking the simple articulated arm. Using
the improved APF results in a 2-fold increase in efficiency over the
classical APF. Tracker efficiency was measured by the minimum
number of particles needed to successfully track the articulated arm
over 40 frames.

Sminchisescu and Triggs (2001) independently ar- 775
rived at a very similar idea, although in that work they 776
were concerned with most effective use of particles be- 777
tween frames in order to recover from “ambiguous” 778
poses. 779

The changes to the APF are almost trivial, and can 780
be formalised as follows. Step 4 of the APF algorithm 781
described in Section 3 is amended so that at layer m, 782
Pm is set to be proportional to the covariance of the 783
particles in St,m as it exists before the addition of noise, 784
i.e.. 785

Pm ∝ 1

N

N∑
i=1

(
s(i)

t,m − sav
t,m

) · (
s(i)

t,m − sav
t,m

)T
. (18)

where sav
t,m is the sample mean of the particle set. 786

Using this modification enabled successful tracking 787
with the APF with fewer than half the number of par- 788
ticles; i.e. a 2-fold increase in efficiency. 789
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Figure 14. Variance reduction with the conventional APF. The even
reduction in variance over 6 layers of the annealing process is shown
in contrast to Fig. 13. There is little evidence of hierarchical parti-
tioning and more annealing layers will be required to find the optimal
configuration.

6.2. A Crossover Operator and Parallel Partitions790

Now consider the articulated object found in Fig. 15791
which consists of two articulated arms joined at a sta-792
tionary hinge. This configuration is a much simplified793
version of that found in Human Motion Capture when794
using a model with arms and legs.795

Figure 15. A pair of planar articulated arms consisting of 3 segments each and each rooted to point O (as seen in b) are used to demonstrate
the effectiveness of the crossover operator. The configuration of the arms is described by x = (x1, . . . , x6) as seen in (b).

The soft hierarchical partitioning described in 796
Section 6.1 provides some increase in efficiency over 797
conventional APF when applied to tracking this assem- 798
bly, localising x1 and x4 together, then x2 and x5 and 799
finally x3 and x6. However if we were to decouple the 800
search space and localise each arm independently the 801
computational effort required for tracking would be re- 802
duced considerably. 803

One possibility, of course, would be to introduce a 804
hard partition between the two arms and conduct two 805
separate searches. However, in keeping with our phi- 806
losophy of adaptive partitioning, we seek to avoid com- 807
mitment to specific partitions. 808

Many people comment on the similarity between 809
particle filters and Genetic Algorithms. Both employ 810
a set (population) of particles (individuals) coded by 811
a state vector (genetic sequence) from which the best 812
particles (individuals) are chosen to be propagated to 813
the next time-step (generation) in the hope of finding 814
the maximum of some function (fittest possible indi- 815
vidual). 816

One glaring difference between GA’s and a typical 817
particle filter is the lack of a crossover operator in the 818
particle filter which in a conventional GA is meant to 819
simulate the breeding of individuals and the sharing of 820
genetic information. The use of the crossover operator 821
encourages the survival of short, highly fit sections of 822
the parameter space known in some GA literature as 823
building blocks. This is done in the hope that when 824
highly fit building blocks are brought together they 825
will have a good chance of forming a very fit com- 826
plete individual. These building blocks are effectively 827
optimised in parallel without any specification of their 828
boundaries or appropriate building block (partition) 829
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weighting functions, exactly the kind of behaviour we830
are looking for.831

We now describe how to incorporate the crossover832
operator into the framework of the APF and examine833
the effect via a simple example.834

6.2.1. Inclusion of the Crossover Operator in the APF.835
The inclusion of the crossover operator can be for-836
malised as follows. In Step 4 of the APF (as described837
in Section 3) at annealing layer m, the i th particle838
of St,m−1 is created by drawing two particles from839
Sπ

t,m with probability proportional to their respective840
weights. Two parameter indices γ and ε are chosen ran-841
domly and the two selected particles s(a)

t,m = (xa
1 . . . xa

L )842
and s(b)

t,m = (xb
1 . . . xb

L ) are combined to form the new843
particle s(i)

t,m−1 where844

s(i)
t,m−1 = (

xa
1 , . . . , xa

γ , xb
γ+1, . . . xb

ε , xa
ε+1, . . . , xa

L

)
.

(19)

Noise is then added to each particle as detailed in845
Section 6.1.846

6.2.2. Testing the Crossover Operator. To assess the847
benefit to the crossover operator two articulated objects848
were tracked: the first (Fig. 11), was used in the experi-849
ment from Section 6.1, an un-branched articulated arm;850
the second as seen in Fig. 15 is two articulated arms851
rooted to the same position.852

As seen in Fig. 16, the object consisting of branched853
arms was more effectively localised by the APF that854
employed the crossover operator whereas there was no855
difference when it was applied to the non-branched ob-856
ject. A good graphical illustration of what the crossover857
operator is actually doing—i.e. partitioning sections of858
the search space which can be tracked in parallel—is859
evident in Figs. 17 and 18 where the parameters lo-860
calised best first are those closest to the root of the861
tree.862

A good indication of the increased speed provided863
by the crossover operator when tracking branched864
objects is again the number of particles needed for865
successful tracking. This number was reduced by a866
factor of 2 with the introduction of the crossover867
operator.868

6.3. Results for Full-Body Tracking869

Although less clear-cut than the results for the “toy”870
example in the previous section, Figs. 19 and 20871

Figure 16. The crossover operator in action. The Sum of Squared
Differences (SSD) match between model and image obtained after
a set number of annealing layers is plotted against the percentage
of particles generated using the crossover operator at each anneal-
ing layer. Graph (a) shows the result for the articulated arm seen
in Fig. 11 where no benefit to using the crossover operator is seen
although importantly no degradation in performance is seen either
(i.e. the SSD does not increase). Graph (b) shows the result for the
articulated arms seen in Fig. 15 where a steady improvement in track-
ing performance is seen when increasing the percentage of particles
produced using the crossover operator. This shows that the crossover
operator is able to decouple sections of the search space effectively
and enables the APF to search them in parallel, improving tracker
performance.

Figure 17. Variance reduction for the parallel arms. When the APF
with crossover operator is applied to the articulated arms seen in
Fig. 15 we get the pattern of variance reduction seen above. The
graphs show the parameters describing each arm (x1, x2, x3 and
x4, x5, x6) being localised in order of decreasing topological domi-
nance, from the fixed point of the articulated arms, progressing out-
ward.
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Figure 18. Particle distribution for the branched articulated arm
over 8 annealing layers. The entire set of particles is drawn at each
annealing layer. The hierarchical localisation of each model segment
from the hinge joint outwards is clearly seen.

Figure 19. Annealed particle filter particle variance for a fully-
body model. The difference in rates of variance reduction for each
parameter can clearly seen. As expected a more complicated pattern
of reduction than that seen for the simple articulated arm is evident.

Figure 20. Particle distribution for a full-body model. The
entire set of particles is drawn at each annealing layer for
one frame. The hierarchical reduction of each parameter from
torso rotation and translation out to the limb joint angles is
evident.

show a similar process of variance reduction when 872
the PAPF with crossover is applied to full-body 873
tracking. 874

The algorithm was applied to a variety of challeng- 875
ing sequences of human movement including walk- 876
ing with turns (Fig. 21), running around in a random 877
fashion (Fig. 22) and handstands (Fig. 23). The se- 878
quences for these experiments were generated using 879
three evenly spaced cameras, calibrated and hardware 880
synchronised. 881

We define successful tracking qualitatively as oc- 882
curring when the algorithm locks onto the body 883
and limbs for the duration of the sequence, return- 884
ing sensible values (i.e. ones that can be used for 885
re-animation, for example) for the pose and artic- 886
ulation parameters. Our tests measured the num- 887
ber of particles needed to achieve such successful 888
tracking. This number represents a sensible mea- 889
sure of algorithm speed since the number of like- 890
lihood evaluations dominates the processing time. 891
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Figure 21. Tracking a walking person.

We observed an improved by a factor of 4 when892
comparing the new PAPF to the original APF893
(i.e. successful tracking achieved with one quar-894
ter the number of particles). As a result the PAPF895

required on average 15 seconds to process one 896
frame whereas the APF required around 60 seconds 897
when run on a single processor 1 GHz pIII Linux 898
box. 899
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Figure 22. Tracking a running person.

We have also built a parallel implementation,900
in which particles are farmed out to indepen-901
dent processors which compute the weight/likelihood902
function. This achieves the sort of speed-ups903

that are to be expected, with processing time 904
decreasing linearly in the number of proces- 905
sors (with a constant of proportionality around 906
0.8). 907
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Figure 23. Tracking a person performing a hand-stand.

7. Discussion and Conclusion908

We have developed a general algorithm for searching909
large configuration spaces which is more efficient than910

traditional particle filters, but which retains a number 911
of their significant advantages. The algorithm has been 912
applied to the problem of visually tracking a person in 913
multiple cameras. In this context we have demonstrated 914
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reliable tracking of complex human motion using sim-915
ple image features, and without the need for a strong916
dynamic model of the motion.917

We have also introduced two novel improvements918
to the algorithm, soft hierarchical partitioning, and a919
crossover operator, which have the combined effect of920
improving performance and increasing efficiency.921

The results, especially Figs. 21–23, show a robust-922
ness of tracking human motion achieved by very few923
other algorithms. Of particular note in the sequences924
shown are the points where the subject turns rapidly925
on the spot (shown in both Figs. 21 and 22), and the926
unusual and rapid motion of a handstand.927

Our primary effort has been concentrated on the928
search technique. It seems clear that improvements in929
the modelling process, such as published in Plänkers930
and Fua (2003), and in dynamic modelling Sidenbladh931
et al. (2000), would improve tracking reliability and932
applicability further.933

Though in the experiments shown the background934
lacks a large degree of clutter (but is not entirely935
clean either), tracking agile motions, even with mul-936
tiple cameras, remains a difficult problem. We have937
performed experiments with other sequences with a938
greater amount of clutter with similar results, but the939
exact degree of clutter that can be tolerated is an open940
question. No doubt the use of background subtraction941
to obtain silhouette information assists in this signifi-942
cantly. The algorithm exhibits some robustness to er-943
rors in this data, but in cases where poor contrast results944
in poor silhouettes and a lack of edges we have observed945
tracker failure.946

Our results to date have made use of 3 cameras, and947
tracking using a single camera raises issues with re-948
gard to ambiguity. Experiments with using the APF949
monocularly (Lyons, 2002) suggest that in the monoc-950
ular case further sophistication in the placement of par-951
ticles is required to overcome the inherent ambiguities952
and avoid all associated local minima. Some progress953
in this respect has been made recently by Sminchisescu954
and Triggs (2002, 2003).955
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Note 962

1. Note, for example, that although (Blake and Isard, 1998) derives 963
the full multi-modal likelihood model for edge-normal observa- 964
tions in the presence of clutter, the implementation makes a much 965
simplified assumption of a unimodal likelihood for each individ- 966
ual observation.
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