852 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO.8, AUGUST 2000

Recognition of Visual Activities
and Interactions by Stochastic Parsing

Yuri A. lvanov, Student Member, IEEE Computer Society, and
Aaron F. Bobick, Member, IEEE Computer Society

Abstract—This paper describes a probabilistic syntactic approach to the detection and recognition of temporally extended activities
and interactions between multiple agents. The fundamental idea is to divide the recognition problem into two levels. The lower level
detections are performed using standard independent probabilistic event detectors to propose candidate detections of low-level
features. The outputs of these detectors provide the input stream for a stochastic context-free grammar parsing mechanism. The
grammar and parser provide longer range temporal constraints, disambiguate uncertain low-level detections, and allow the inclusion of
a priori knowledge about the structure of temporal events in a given domain. To achieve such a system we: 1) provide techniques for
generating a discrete symbol stream from continuous low-level detectors; 2) extend stochastic context-free parsing to handle
uncertainty in the input symbol stream; 3) augment a run-time parsing algorithm to enforce intersymbol constraints such as requiring
temporal consistency between primitives; and 4) extend the consistency filtering to maintain consistent multiobject interactions. We
develop a real-time system and demonstrate the approach in several experiments on gesture recognition and in video surveillance. In
the surveillance application, we show how the system correctly interprets activities of multiple, interacting objects.

Index Terms—Syntactic pattern recognition, action recognition, high level vision, video surveillance, gesture recognition, video

monitoring.

1 INTRODUCTION

1.1 Structure and Content
IN the last several years there has been tremendous growth
in the amount of computer vision research aimed at
understanding action. As noted by Bobick [5], these efforts
have ranged from the interpretation of basic movements,
such as recognizing someone walking or sitting, to the more
abstract task of providing a Newtonian physics description
of the motion of several objects.

In particular, there has been an emphasis on activities or
behaviors where the entity to be recognized may be
considered as a stochastically predictable sequence of states.
The greatest number of examples come from work in
gesture recognition [34], [6], [32], where analogies to speech
and handwriting recognition have inspired researchers to
devise Hidden Markov Model methods for the classification
of gestures. The basic premise of the approach is that the
visual phenomena observed can be considered Markovian
in some feature space and that sufficient training data exists
to automatically learn a suitable model to characterize the
data.

Our research interests lie in the area of computer vision
where observations span extended periods of time and

o YA Ivanov is with the Vision and Modeling Group, MIT Media
Laboratory, 20 Ames St., E15-368A, Cambridge, MA 02139.
E-mail: yivanov@media.mit.edu.

e AF. Bobick is with the College of Computing, Georgia Institute of
Technology, 801 Atlantic Dr., Atlanta, GA 30332.
E-mail: afb@cc.gatech.edu.

Manuscript received 21 Apr. 1999; revised 13 Dec. 1999; accepted 13 Dec.
1999.

Recommended for acceptance by R. Collins.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 109641.

there are particular semantically defined activities we
would like to be able to recognize. For example, consider
the task of the visual surveillance of a parking lot. We may
know a priori that we wish to detect whenever a person is
dropped-off or picked-up or if someone drives in but then
leaves the scene without first entering a building. These
high-level events are composed of primitives (e.g.,
car-enter, car-stop, person-exit) linked in a
spatio-temporal structure that satisfies particular con-
straints. For example, during a drop-off, the car-stop
event happens near where the corresponding person-
found detection occurs—where “near” is in both space and
time.

Or, consider a simple gesture example—we can draw a
square with a hand in the air in either clockwise or
counterclockwise direction. In either case, our square-
gesture recognition system should indicate that the square
is being drawn. This seemingly simple task requires
significant effort using only the statistical pattern recogni-
tion techniques because, although the two squares share
primitives, the overall patterns are statistically quite
distinct.

In these domains where the goal is to recognize
structurally defined relationships of primitives, purely
statistical approaches to recognition are less than ideal.
These situations can be characterized by one or more of the
following properties:

o Insufficient data: Complete data sets are not always
available, but component examples are easily found;

e Semantic ambiguity: Semantically equivalent
processes possess radically different statistical
properties;

0162-8828/00/$10.00 © 2000 IEEE

IVANOV AND BOBICK: RECOGNITION OF VISUAL ACTIVITIES AND INTERACTIONS BY STOCHASTIC PARSING 853

e Temporal ambiguity: Competing hypotheses can
absorb different lengths of the input stream, raising
the need for naturally supported temporal
segmentation;

e Known structure: Structure of the process is difficult
to learn but is explicit and a priori known.

When these conditions arise, it seems natural to divide the
problem in two—recognition of primitives and recognition
of structure. The goal then becomes to combine statistical
detection of primitives with a structural interpretation
method that organizes the data.

For many domains such a division is clear. When we
speak of many visual activities we often refer to them as
naturally segmented sequences of steps, implying some sort
of algorithmic structure where primitives are clearly
defined. For instance, in the surveillance examples, the
(statistical) primitives would be the temporally local
behaviors of the vehicles and people; the (structural)
patterns are the high-level activities. For a completely
different domain, consider ballroom dancing. There are a
small number of primitives (e.g., right-leg-back),
which are then structured into higher level units (e.g.,
box-step, quarter-turn, etc.). Typically, one will have
many examples of right-leg-back drawn from the
relatively few examples of each of the higher level
behaviors. Another example might be recognizing a car
executing a parallel parking maneuver. The higher level
activity can be described as first a car executes a
pull-along-side primitive followed by an arbitrary
number of cycles through the pattern turn-wheels-left,
back-up, turn-wheels-right, pull-forward. In
these instances, there is a natural division between atomic,
statistically abundant primitives and higher level coordi-
nated behavior.

We further motivate this decomposition by noting that
the decoupling of the detection of the low-level primitives
from the recognition of the higher level activities allows us
to create a generic method for the structural analysis. Our
only requirement will be that the low-level detectors be able
to generate detection events and be able to assign some
certainty to characterization of those events. In the results
section of this paper, we demonstrate the utility of such a
decoupling where, in two recognition systems, we use
entirely different techniques of detecting the primitive
components while the higher level structure analysis
algorithm remains completely unchanged.

In this paper, we propose a method which combines
statistical techniques used to detect primitive components
of an activity with syntactic recognition of the process’
structure. We combine results of the lower level component
detectors into a consistent maximally likely interpretation
using the Stochastic Context-Free Grammar parser. The
grammar provides a convenient means for encoding the
external knowledge about the problem domain, expressing
the expected structure of the activity.

Syntactic pattern recognition in machine vision has been
mostly applied to still images. In those applications, the
inherent sequentiality of syntactic parsing mechanisms has
been considered a limitation, requiring more sophisticated
forms of grammars to be employed. As machine vision

advances into the areas of action recognition, sequential
machines find progressively more uses. We have already
mentioned the growing popularity of Hidden Markov
Models (HMM) in computer vision which, in their essence,
are probabilistic finite state machines. The relation between
Stochastic Context-Free Grammars (SCFG) and HMMs is
very similar to that between CFGs and nonprobabilistic
Finite State Machines (FSM), where CFGs relax some of the
structural limitations imposed by FSMs. In this context,
using SCFGs is not a limitation, but, compared to FSMs, a
newly rediscovered freedom.

The outline of this paper is as follows: We begin with a
review of previous work, including not only work in
computer vision on the visual interpretation of activity, but
also results in SCFG parsing upon which some of this work
is built. We next present the basic SCFG parsing algorithm
and our extensions that permit the system to handle the
types of ambiguity found in perception problems. We also
provide a mechanism for handling streams of input events
generated by interacting agents, where not only the
behavior of each agent obeys syntactic constraints, but
where their interactions do as well. We conclude by
demonstrating the utility of the approach on simple but
interesting gesture recognition examples and then on a rich
visual surveillance task.

2 RELATED WORK

The work we describe in this paper is inspired by research
in two main areas—gesture recognition and natural
language processing, particularly in the area of stochastic
parsing. We attempt to extend these techniques to model
more complex structured gestures and activities. A variety
of techniques in these areas, which we discuss in the
following sections, are closely related to our work.

2.1 HMMs and FSMs in Visual Activity Recognition

Prediction and estimation of a temporally extended time
series has been addressed predominantly by state-space
models. Of this class of models, HMMs, because of their
success in the speech community, have received the most
attention in machine vision. Review of such methods as
applied to vision can be found in a recent paper by
Aggarwal and Cai [1].

One of the earlier attempts to use HMMs for recognition
of activities is found in the work by Yamato et al. [40],
where discrete HMMs are used to recognize six tennis
strokes, performed by three subjects. A 25 x 25 subsampled
camera image is directly used as a feature vector.

A large body of work has arisen from tackling the
problem of gesture recognition. The naturally sequential
characterization of the task was reflected in the sequential
structure of a statistical model, such as work by Darrell and
Pentland [16], where the recognition task is performed by a
time-warping technique, closely related to HMM metho-
dology. Bobick and Wilson [6] also used dynamic time
warping to match an input signal to a deterministic
sequence of states.

Examples of statistical representation of sequences are
seen in the recent work in understanding human gesture.
For instance, Schlenzig et al. [32] describe the results of their

854 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO.8, AUGUST 2000

experiments of using HMMs for recognition of continuous
gestures, which show to be a powerful gesture recognition
technique. Starner et al. [33] propose an HMM-based
approach to recognition of visual language. The task is
performed by a set of HMMs trained on several hand signs
of American Sign Language (ASL). At run time, HMMs
output probabilities of the corresponding hand sign
phrases. The strings are optionally checked by a regular
phrase grammar.

In related work, Wilson et al. [38] analyzed the explicit
structure of the gesture where the structure was imple-
mented by an equivalent of a finite state machine with no
learning involved. The distinction there was the use of
duration modeling that controlled dwell time in states and
the use of features that were relative to the current state of
the gesturer, for example, whether the hands were in a
“rest” state.

Oliver et al. [25] developed a system for detecting people
interactions which modeled interactions using Coupled
Hidden Markov Model [9]. In the course of the latter
research, a multiagent simulation was used to produce
synthetic training data to train the CHMM modeling the
interaction. The relation to our work is that their represen-
tation of the multiagent simulation can be viewed as a
structured, stochastic grammar-like description of the
interactions.

State-machine representations of action have also been
employed in higher level descriptions. Bremond and
Medioni [10] use hand-crafted deterministic automata to
recognize airborne surveillance scenarios. Their approach
has no mechanism for handling uncertain or incomplete
data.

2.2 Stochastic Parsing

The most definitive text on parsing theory still remains [2].
The authors present a thorough and broad treatment of the
parsing concepts and mechanisms. A vast amount of work
in syntactic pattern recognition has been devoted to the
areas of image and speech recognition. A review of
syntactic pattern recognition and related methods can be
found in [31].

For efficiency reasons, parsing algorithms often call for
the grammar to be formulated in a certain normal form.
This limitation was eliminated for context-free grammars by
Earley in the efficient parsing algorithm proposed in his
dissertation [17]. Earley developed a combined top-down/
bottom-up approach which is shown to perform at worst at
O(N?) for an arbitrary CFG formulation. We mention this
work as it was the basis of Stolcke’s work (see below),
which is an essential precursor to our own approach.

A simple introduction of probabilistic measures into
grammars and parsing was shown by Booth and Thompson
[7], Thomason [36], and others. The primary interest there is
in ambiguous grammars where the likelihood of the
derivation can be used to select the appropriate parse.

Aho and Peterson addressed the problem of ill-formed-
ness of the input stream. In [3], they described a modified
Earley’s parsing algorithm where substitution, insertion,
and deletion errors are corrected. The basic idea is to
augment the original grammar by error productions for
insertions, substitutions, and deletions such that any string

over the terminal alphabet can be generated by the
augmented grammar. Each such production has some cost
associated with it. The parsing proceeds in such a manner
as to make the total cost minimal. It has been shown that the
error-correcting Earley parser has the same time and space
complexity as the original version. Their approach is
utilized in this paper in the framework of uncertain input
and multivalued strings.

Syntactic approach to multiagent behaviors has been
addressed in [15]. Agent interactions are expressed in terms
of Parallel Communicating Grammar Systems (PC
Systems). The approach presented here extends a single
SCFG parser to handle simple concurrency within a single
parsing routine.

2.3 Syntactic Techniques in Speech

Probabilistic aspects of syntactic pattern recognition for
speech processing were presented in many publications, for
instance, in [19], [13]. The latter demonstrates some key
approaches to parsing sentences of natural language and
shows advantages of use of probabilistic CFGs. The text
shows a natural progression from HMM-based methods to
probabilistic CFGs, demonstrating the techniques of com-
puting the sequence probability characteristics, familiar
from HMMs, such as forward and backward probabilities
in the chart parsing framework.

An efficient probabilistic version of Earley parsing
algorithm was developed by Stolcke [35]. The author
develops techniques of embedding the probability compu-
tation and maximization into the Earley algorithm. He also
describes grammar structure, learning strategies, and the
rule probability learning technique, justifying usage of
Stochastic Context-Free Grammars for natural language
processing and learning. Our own work draws heavily on
work by Stolcke, as seen in Section 3.

Generally, the model of high-level constraints in speech
takes the form of a language model, which acts as a prior
probability distribution over sequences of spoken words.
Integration of the language model into the optimization
routine is straightforward if it is not exceedingly complex.
For instance, many algorithms address the case when such a
model is represented by a Finite State Network. Such a
network corresponds to a language complexity equivalent
to the Regular Grammar. For instance, Rabiner and Juang
[27] discuss several such models and ways of integrating
them with acoustic models. As a more recent reference, a
book by Jelinek [21] gives a number of examples of these
techniques.

As an example of integration of high- and low-level
evidence, one can examine a commercially available
system—HMM Tool Kit (HTK) developed by Entropic
Research Lab. In HTK, individual temporal feature detec-
tors can be tied together according to the expected syntax.
The syntactic model is expressed by a regular grammar in
extended Backus-Naur form. This grammar is used to build
a network of detectors and perform long sequence parse by
a Viterbi algorithm based on token passing [41].

The resulting grammar network is shown in Fig. 1a. The
structure of the incoming string can be described by a
nonrecursive, finite state model.

IVANOV AND BOBICK: RECOGNITION OF VISUAL ACTIVITIES AND INTERACTIONS BY STOCHASTIC PARSING 855

Parser | — ab

Fig. 1. lllustration of different parsing strategies. (a) Example of HTK—individual temporal feature detectors for symbols a, b,c, d, and e are combined
into a grammar network. (b) Proposed architecture which achieves further decoupling between the primitive detectors and the structural model

(probabilistic parser in this case).

In contrast, with approaches to integration of high- and
low-level evidence in speech, in this paper, we present a
method which further decouples high- and low-level
models, as shown in Fig. 1b. Such decoupling is desirable
in our applications because, in a number of them, low-level
events are not always characterized by the form of an object
trajectory in some state space, but rather by a momentary
measurement, such as its final position. For instance, in the
surveillance system demonstrated later in the paper, we
only use the end points of object trajectories to represent
primitives. Likelihoods of these primitives are simply
probabilities associated with object class memberships.
Sections 5 and 6 show that clear separation of the machinery
of the two levels allows us to use the same high-level model
with two different models of low-level components.
Potentially, one can imagine using a heterogeneous set of
low-level features within the proposed framework.

In addition, speech processing is typically not concerned
with detection and synchronization of parallel streams of
evidence, which is often a requirement for detecting
interactions in vision tasks.

2.4 Syntactic Techniques in Vision

The syntactic approach in Machine Vision has been studied
for more than 30 years (e.g., [23], [4]), mostly in the context
of pattern recognition in still images. Tsai and Fu [37]
employed attributed grammars to combine probability and
syntactic constraints in still image understanding. The work
by Bunke and Pasche [12] is built upon the previously
mentioned development by Aho and Peterson [3], expand-
ing it to multivalued input. The resulting method is suitable
for recognition of patterns in distorted input data and is
shown in applications to waveform and image analysis. The
work proceeds entirely in nonprobabilistic context.

More recent work by Sanfeliu and Sainz [30] is centered
around two-dimensional grammars and their applications
to image analysis. The authors pursue the task of automatic
traffic sign detection by a technique based on Pseudo
Bidimensional Augmented Regular Expressions (PSB-ARE).
AREs are regular expressions augmented with a set of
constraints that involve the number of instances in a string

of the operands to the star operator, alleviating the
limitations of the traditional FSMs and CFGs which cannot
count their arguments. A more theoretical treatment of the
approach is given in [29]. In the latter work, the authors
introduce a method of parsing AREs which describe a
subclass of context-sensitive languages, including the ones

defining planar shapes with symmetry.
An information theoretic approach to stochastic parsing

is demonstrated by Oomen and Kashyap in [26]. The
authors present a foundational basis for optimal and
information theoretic syntactic pattern recognition. They
develop a rigorous model for channels which permit
arbitrarily distributed substitution, deletion, and insertion
syntactic errors. The scheme is shown to be functionally

complete and stochastically consistent.
There are several examples of attempts to enforce

syntactic and semantic constraints in recognition of visual
data. For instance, Courtney [14] uses a graph-based
structural approach to interpreting action in a surveillance
setting. Courtney defines high-level discrete events, such as
“object appeared,” “object disappeared,” etc., which are
extracted from the visual data. The sequences of the events
are matched against a set of heuristically determined
sequence templates to make decisions about higher level
events in the scene, such as “object A removed from the
scene by object B.” Courtney’s approach does not consider
probabilistic detections and interpretations, instead relying

on perfect low-level sensing.
The grammatical approach to visual activity recognition

was used by Brand [8], who used a simple nonprobabilistic
grammar to recognize sequences of discrete events. In his
case, the events are based on blob interactions, such as
“objects overlap,” etc. The technique is used to annotate a
manipulation video sequence which has an a priori known
structure. Like in Courtney’s work, there is no consideration
of probability or error.

856 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO.8, AUGUST 2000

3 THEORETICAL FOUNDATIONS—STOCHASTIC
PARSING

This section presents a brief introduction of the stochastic
parsing algorithm developed by Stolcke in [35] based upon
[17]. In the next section, we extend the components
necessary to handle the types of uncertainty encountered
in visual recognition.

3.1 Stochastic Context-Free Grammar

The probabilistic aspect is introduced into syntactic
recognition tasks via Stochastic Context-Free Grammars
(SCEG), a probabilistic extension of a Context-Free Gram-
mar. The extension is implemented by adding a probability
measure to every production rule:

A — Ap|. (1)

The rule probability p is usually written as P(A — X).
This probability is a conditional probability of the produc-
tion being chosen, given that nonterminal A is up for
expansion (in generative terms). Saying that a stochastic
grammar is context-free essentially means that the rules are
conditionally independent and, therefore, the probability of
the grammar generating a particular complete derivation is
simply the product of the probabilities of rules participating
in the derivation.

3.2 Earley-Stolcke Parsing Algorithm

The method most generally and conveniently used in
stochastic parsing is based on an Earley parser [17],
extended in such a way as to accept probabilities.

In parsing stochastic sentences, we adopt a slightly
modified notation of [35]. The notion of a state is an
important part of the Earley parsing algorithm. A state, Sj,
is denoted by:

it Xy = AYp [o,], (2)

“

where X and Y are nonterminals, A and p are substrings,
is the marker of the current position in the input stream, i is
the index of the marker, and £ is the starting index of the
substring denoted by nonterminal X. Nonterminal X is said
to dominate substring wy, ... w; ... w; where, in the case of
the above state, w; is the last terminal of substring (.

In cases where the position of the dot and structure of the
state is not important, for brevity we will denote a state as .S},

For each position of the input stream, the parser keeps a
set of states, which denote all pending derivations. After
seeding the initial state set with the “dummy” start state,
0:9— .Z, expanding into a topmost symbol of the
grammar, Z, parsing proceeds as an iteration of three basic
steps—prediction, scanning, and completion. If, after k itera-
tions, the state k:o— Z. is reached, the corresponding
string is accepted. States produced by each of the parsing
steps are called, respectively, predicted, scanned, and com-
pleted. A state is called complete (not to be confused with
completed) if the dot is located in the rightmost position of
the state. A complete state is the one that “passed” the
grammaticality check and can now be used as a support for
further abstraction. A state “explains” a string that it
dominates as a possible interpretation of symbols wj . .. w;,

“suggesting” a possible continuation of the string if the state
is not complete.

In a probabilistic parsing algorithm, a state is augmented
by two variables which hold forward and inner probabil-
ities, denoted in (2) by « and 7. «, also called a prefix
probability, is the probability of the parsed string up to
position ¢ and v is a probability of the substring starting at k
and ending at i.

3.2.1 Prediction

In the parsing algorithm, the prediction step is used to
hypothesize the possible continuation of the input based on
the current position in the parse. Prediction essentially
expands one branch of the grammar down to the set of its
leftmost leaf nodes to predict the next possible input
terminal.

Using the state notation above, for each state ¢ : Xj; —
A.Yp and production Y — v, the algorithm produces a new
state:

i: X — AYu [o,9]
=i:Y — v [o,9] (3)
Y —v,

where o' is computed as a sum of probabilities of all the
paths, leading to the state i : X;, — A.Yp multiplied by the
probability of choosing the production ¥ — v, and «/ is the
rule probability, seeding the future substring probability
computations:

o = ali: X — NZp)Ry(Z,Y)P(Y — v)
At (4)
v =P —v).

Matrix Ry is a Reflexive Transitive Closure of a Left Corner
Relation between nonterminals in the grammar. Derivation
of the form of the matrix is given in Appendix A. It
compensates for recursive relations between the nonterm-
inals in the grammar for probability estimation.

3.2.2 Scanning

Scanning simply reads the input symbol and matches it
against all pending states for the next iteration. For each
state X;; — A.ap and the input symbol a we generate a state
i+ 1: X} — Aa.u for the next state set:

i: Xy — dap (o] =i+ 1: X, — dap [a,9], (5)

where o and v are forward and inner probabilities. The
forward and inner probabilities remain unchanged from the
state being confirmed by the input since no selections are
made at this step. The probability, however, may change if
there is a likelihood associated with the input terminal (see
Section 4.2). Any states that are not confirmed by the
scanned input symbol are discarded.

3.2.3 Completion

The completion step, given a set of states which have just
been confirmed by scanning, updates marker positions in
all pending derivations all the way up the derivation tree.
The marker position in expansion of a pending state j:
Xy — AYp is advanced if there is a state, starting at

IVANOV AND BOBICK: RECOGNITION OF VISUAL ACTIVITIES AND INTERACTIONS BY STOCHASTIC PARSING 857

position j, i:Y; — v, which consumed all the input
symbols related to it. Such a state can now be used to
confirm other states, expecting Y as their next nonterminal.
Since the index range is attached to Y, we can effectively
limit the search for the pending derivations to the state set,
indexed by the starting index of the completing state, j:

Ji X =AY [o,q]
=i: Xy =AY [d,%] (6)

i:Y;— v @]

New values of a and v are computed by multiplying the
corresponding probabilities of the state being completed by
the total probability of all paths, ending ati:Y; — v.:

o = ali: Xy — ANZp)Ry(Z,Y)'(i: Y — v.)

7 7
Y =D A Xp = AYWRu(Z, Y)Y (i : V) — v.). "

Matrix Ry is a Reflexive Transitive Closure of a Unit
Production Relation between nonterminals in the grammar.
Derivation of the form of the matrix is given in Appendix B.

Normally, computations of o and + are performed
incrementally. The closed form (4) and (7) are shown for
clarity.

3.2.4 Viterbi Algorithm

After the final state is reached, the sequence of terminals
forming the state, if needed, can be recovered by the Viterbi
algorithm. It is applied to the state sets in a chart parse in a
manner similar to HMMs. Viterbi probabilities are propa-
gated in the same way as inner probabilities, with the
exception that instead of summing the probabilities during
completion step, maximization is performed. That is, given
a complete state S, we can formalize the process of
computing Viterbi probabilities v; as follows:

vi(S}) = mSB}X(vi(Sﬁ)vj(Si)) (8)

J

and the Viterbi path would include the state:

Si = arg II?X(UL(S’;)D,(S@) 9)
J

The state S; keeps a back-pointer to the state S!, which
completes it with maximum probability, providing the path
for backtracking after the parse is complete. The computa-
tion proceeds iteratively within the normal parsing process.
After the final state is reached, it will contain pointers to its
immediate children, which can be traced to reproduce the
maximum probability derivation tree.

4 PARSING WITH PERCEPTUAL UNCERTAINTY

The SCFG formalism presented so far is primarily con-
cerned with generating and selecting uncertain derivations
in response to input streams of completely certain symbols.
In our decoupled setting, the source of the input symbols is
itself probabilistic. This calls for an extension to the
algorithm which allows for inclusion of uncertainties
present in input symbols.

Qutput probability
—— Sequence length

—_—
025+ :
—
]
o o2 ———————
.y
0.15F i

L T n T T T KR)
[e] 5 10 15 20 25 30 35
t

Fig. 2. Output of a component model. Here, at every sample, the activity
primitive, modeled by the HMM, outputs a model likelihood. Each point
of the probability plot is the normalized maximum likelihood of the HMM
at the current sample of the input signal; the maximum is taken over
possible starting points prior to the current point in time. The horizontal
lines correspond to the temporal interval that yields that maximum value.

4.1 Independent Primitive Detection

Our approach is to combine the detection of independent
components of activities in a framework of syntax-driven
structure recognition. Typically, these components are
detected “after the fact,” that is, detection of the primitive
only succeeds when the entire component is present in the
input signal. At the point when the primitive is detected by
the low-level recognizer, we require that the detection be
represented by both a likelihood, corresponding to the
probability that the data observed would be generated by
the model of the primitive, and an associated trace
characterization of the fragment of the input signal associated
with this detection. For many situations, the trace is simply
the temporal interval spanned by the primitive. We refer to
the likelihood as the terminal likelihood and to the temporal
span of the trace as the ferminal length.

Fig. 2 illustrates one example of primitive detection. The
value of the graph is the maximum normalized output
probability of a backward-looking HMM trained to respond
to some small sequence of input signal. The maximum is
taken over all possible starting points. The horizontal
segment extending backward from each point on the graph
corresponds to the the interval of input signal that yields
the maximum value. If a detection was reported at each
time step, the HMM likelihood would be the terminal
likelihood and the endpoints of the bar would be the trace.
In Section 5 we describe a procedure to convert the
temporally continuous output of the HMM into a set of
discrete temporal events.

Assumed in our framework is that each detector is
working independently, detecting primitives and assigning
likelihoods without knowledge of other detections. The task
of organizing the best set of detections into a coherent
interpretation is accomplished through parsing.

4.2 Uncertainty in the Input

The parsing algorithm, described in Section 3, does not
consider uncertainty about the input symbols. This is not
very convenient in the proposed architecture since the
lower level activity models are typically probabilistic. As
suggested in [35], the Earley-Stolcke framework can be
extended to incorporate this probabilistic data into the

858 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO.8, AUGUST 2000

T Ty
1 T ; T T
a
o5l T]
o DA T - .
o 1 | 2 3 4 3 6
1 ; e ; :
B .
0.5 N ,
° - P - R T
(o] 1 2 N 3 _a- 5 =
1 . e —
< ol
0.5 T .
o
o . . 1 .
o 1 2 3 4 5 6

Fig. 3. Example of the lattice parse input for three model vocabulary. Consider a grammar A — abc | acb. The dashed line shows a parse acb. The
two rectangles drawn around samples 2 and 4 show the “spurious symbols” for this parse which need to be ignored for the derivation to be
contiguous. We can see that if the spurious symbols are simply removed from the stream, an alternative derivation for the sequence—abc, shown by
the dotted line, will be interrupted. (Note sample 3 containing two concurrent symbols which are a case of substitution).

parsing process at the scanning step as follows: First, we
allow the scanning step to add several candidate symbols to
the chart at each state set. The likelihood of each input symbol
is incorporated into the parse by multiplying the inner and
forward probability of the state being confirmed by the
input likelihood.

Taking likelihoods into account the scanning step of (5) is
reformulated as follows: For each symbol a with nonzero
likelihood P(a) scanning produces the state:

i X — Aap [a,9]

=i+1: X — dap [@,7] (10)
Ya, s.t.P(a)>0
and computes new values of o/ and +' as:
o =ali: X — Xdap)P(a) (1)

v =70 : X — Aap)P(a).

The new values of forward and inner probabilities will
weigh competing derivations not only by the typicality of
corresponding production rules, but also by the certainty
about the input at each sample. This technique addresses the
correction of substitution errors by considering several
candidate inputs at each time step and only committing to
the particular value once the whole sequence has been
observed.

The input stream can now be viewed as a multivalued
string (a lattice) which has a vector of likelihoods, associated
with each time step. In Fig. 3, at each time step (labeled 1
to 5), a vector of likelihoods is generated where the
likelihood of each individual symbol (a, b, or ¢) is indicated
by the height of the spike. For example, at time step 2, only
terminal b has any nonnegligible likelihood, while, at time
step 3, both a and c are possible.

4.3 Insertion

Suppose that the recognition of the primitives of the
vocabulary is performed by a set of independent models.
This implies that the detections are not mutually exclusive.
At each such detection, the parser needs to select the one
which results in the highest probability parse. This issue has
been only partially addressed by considering substitution

errors. Indeed, the primitives are detected asynchronously,
which results in the appearance of insertion errors.

On one hand, the erroneous symbols have to be removed
from the stream, but, on the other, we need to preserve each
such symbol in the stream for considering it in other possible
derivations, perhaps even of a completely different string.

In our applications (recognition of structured visual
activities), there are two primary issues which dictate the
solution to this problem:

1. Misdetections. Since the models are treated indepen-
dently, they do not suppress one another, producing
erroneous symbols. However, until the whole
sequence is observed, no decision can be made
about whether these symbols are actual detections or
noise, as illustrated in Fig. 3.

2. Concurrent activities. A more interesting issue is
related to the possibility of using the same parsing
process to detect and label concurrent independent
activities. Suppose your input consists of events
abed. In this input, events ¢ and ¢ belong to one
entity, while events b and d the other. The parser can
produce correct parses if it is capable of correcting
insertion errors.

To address correction of insertion (and deletion) errors, the
activity grammar is converted to “robust” form which, in
addition to correcting errors, allows the inclusion of
additional constraints on the input stream easily, as will
be shown in later sections.

The robust form G of a grammar G is formed by the

following rules:

1. Each terminal, say b, appearing in productions of

grammar G is replaced by a preterminal, e.g., B, in G:

G = G : R
A—bC A — BC.

2. For each preterminal of ¢, a SKIP rule is formed:

s N

—b | b SKIP.

SKIP b |

IVANOV AND BOBICK: RECOGNITION OF VISUAL ACTIVITIES AND INTERACTI

ONS BY STOCHASTIC PARSING 859

AP
: [a] |
A S
: b |
— g
t
(@)
AP
S = ababab
: [a] |
R R -, B
: b |
— G g
t
(b)
AP
S=ab
: [a] |
I [b] I IEI: (b} |
! 'T‘]
—— =
t

v

Fig. 4. Example of temporal consistency. Data in (a) is produced by two component models—a and b. Recall that the right edge of each bar

designates the detection time (refer to Fig. 2). Given a production, A — ab |

abA, an unconstrained parse will attempt to consume maximum amount

of samples by non-SKIP productions. The resulting parse, ababab, is shown in (b), where rejected symbols are shown in gray. (c) Shows a
temporally consistent parse, ab, which includes only nonoverlapping terminals.

This is essentially equivalent to adding a production
B — SKIP b SKIP if SKIP is allowed to
expand to an empty string, e.

SKIP rule is added to G, which includes all
repetitions of all terminals:

¥
SKIP — b |
| b SKIP | c

c |
SKIP |

Again, if SKIP is allowed to expand to ¢, the last two steps
are equivalent to adding;:

G:
B — SKIP b SKIP
SKIP — ¢ | b SKIP

This conversion can be performed automatically as a
preprocessing step when the grammar is read in by the
parser so that no modifications to the grammar are
explicitly written.

It is easy to see that the robust grammar will consume
the erroneous symbols by the SKIP production. However,
we now have the additional concern of the value of
probability of the SKIP production. In our experiments,

we set it to a relatively low value to penalize derivations
that do not consume the maximum number of terminals.

4.4 Enforcing Internal Consistency

As noted earlier, the low-level primitive detections each
correspond to a particular temporal span of the input
signal; also, properties of the trace of the signal are
associated with the detection. If these data are available to
the parser, they can be easily used as additional constraints
on the input terminals. The goal of the parsing is to extract a
coherent single-stream sequence of primitives (observa-
tions). These primitives should be required to be consistent
and label nonoverlapping parts of the input signal. This
point is further illustrated in Fig. 4. If terminal length is not
considered, the data of Fig. 4a is parsed as ababab, as shown
in Fig. 4b, where only one terminal b is discarded. The
correct consistent parse shown in Fig. 4c, where no
overlapping terminals are accepted.

In the Earley framework, the completion step presents a
good opportunity to implement a general mechanism of
enforcing terminal consistency. When considering a pair of
states for joining at completion, the parser can reject or
penalize inconsistent states. The completion step would
work as an internal consistency filter, for example, keeping

860 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO.8, AUGUST 2000

track of the terminal lengths during scanning and
prediction.

To accomplish this, two additional state variables are
introduced—h for “high mark” and [for “low mark.” These
variables, in general vector-valued, contain all the data that
is available and necessary for the parser to compute the
distance penalty, that is, the penalty for asserting that one
particular instance of some terminal follows a particular
instance of another terminal. This mechanism is fairly
general and concrete examples of usage will be given in the
experimental section.

Each of the parsing steps is properly adjusted to
maintain the low and high marks:

1. Prediction
Prediction simply marks the expected beginning of
the substring with the initial values S;:

i Xy — A\Yyu [Lh]
=i:Y —.w [Sh Sf] (12)

Y - v

2. Scanning
Scanning reads a terminal from the input stream and
sets high marks of scanned states to the high mark of
the terminal, expanding the range of the state. In
addition, for all the predicted states expecting this
terminal, it sets the low mark to the low mark of the
scanned terminal:

i: Xy — Aap [Lh] =

{ 1+1: X, — dap [L,h], ifA=¢
1+ 1: X, — dap [Lh],

(13)
otherwise,

where 1, and h, are low and high mark attributes of
the terminal, respectively.

3. Completion
The completion step advances the high mark of the
completed state to that of the completing state,
thereby extending the range of the completed
nonterminal:

ji Xk —)\Y/J, [ll,hl]
=i: Xy — /\Y/L [117}12}
i:Y; — v [ly,hyl.
(14)

The completion is performed for all complete states
i:Y; — v, subject to consistency constraints en-
forced within the filtering routine.

4.4.1 Consistency Filtering

The consistency filtering routine is invoked from the
completion step. It is the routine which determines how
to handle the two states which are considered for joining.
The filtering routine computes the distance, d, between two
states based on I and h marks of the candidate states. Based
on this distance, the penalty according to which forward
and inner probabilities are computed. Assuming that the
penalty function f(d) has the range [0; 1], update equations
for a and y can be written as follows:

o = f(d) Y ali: Xi = MZpRu(Z,Y)i Y] = v.)
YA, u

Y = £(d)Y A X = MY WRe(Z,Y)Y'(i 1Y) — v).
VA u

(15)

In its simplest form, the function f(d) can be a step
function f(d) = ©(d). This choice of the penalty function
results in the absolute rejection of any states that violate the
internal consistency constraints. If the distance d is only
based upon the temporal endpoints of the states, then such
a rejection function eliminates interpretations in which any
components overlap in time.

An alternative, softer penalty can result in different
behavior. For instance, f(d) = Ce™ 7, where C is a normal-
izing constant and 0, a penalizing parameter, can be used to
weigh “overlap” and “spread” equally. Specific examples of
f(d) will be given in the experimental section.

4.5 Run-Time Incremental Parsing

At run time, the parser is presented with a potentially
infinite input stream. It limits the computational complexity
(O(n®)) by pruning the states which have probabilities
falling below a certain limit and only keeping a parsing
chart of a fixed but sufficient length. The parse performed
in this manner has two important features:

e The “correct” string, if exists, ends at the current
sample.
e The beginning sample of such a string is unknown,
but is within the window.
These observations call for the following modifications to
the algorithm, which make run-time computations possible:

1. A robust grammar can now only include the SKIP
productions of the form A — a | SKIP asincetheend
of the string is at the current sample, which means that
there will not be trailing noise, which is normally
accounted for by a production A — a SKIP.

2. Each new state set should be seeded with a
“dummy” starting state, k:;— .Z, where Z is the
topmost nonterminal of the grammar. This will
account for the unknown beginning of the string.
After performing a parse for the current time step,
Viterbi maximization will pick out the maximum
probability path, which can be followed back to the
starting sample exactly.

This technique is equivalent to a run-time version of
Viterbi parsing used in HMMs [16]. The exception is that no
“backward” training is necessary since we have an
opportunity to “seed” the state set with an axiom at an
arbitrary position.

Furthermore, the parser chart does not need to be
reparsed for each sample. In fact, the algorithm can be
conveniently sped up by performing the parse incremen-
tally. At every step, the current state of the parser encodes
all the history by the seed states within the window. The
task is now to just perform the next iteration with the new
sample, discarding the first state set of the chart. This
procedure effectively prunes derivations, which are longer
than the length of the chosen window. This also means that

IVANOV AND BOBICK: RECOGNITION OF VISUAL ACTIVITIES AND INTERACTIONS BY STOCHASTIC PARSING 861

f(d.)

- N

fd.)

- ~

fld) @)

(@)

Y

~ -

)
)

Fig. 5. Performing an interleaved consistency check on the serialized events. Class membership of each event in the plot is designated by a circle or
a square at the top of each sample. (a) Serialized events are penalized by the function f(d) computed on consecutive events. This is clearly an
incorrect measure. Interleaved consistency check in (b) shows a correct assignment of samples for the penalty function, where the predecessor of
the same class is found earlier in the stream and consistency with the predecessor is enforced.

an additional condition has to be added to the filtering
routine—all the states S',i,, having k < I;, where I; is the
index of the first state set of the chart, are rejected from
completion.’

4.6 Concurrency

Until now, we have presumed that, while there may be
spurious and incorrect symbols in the input stream, the goal
is to recover a single-stream interpretation. However,
actions and activities of interest often include multiobject
interactions. Here, we extend the approach to handle the
situation in which concurrent activities occur and where
interaction between the primitives of different objects is
required to instantiate a particular interpretation.

In the approach presented so far, there are three sources
of concurrency for which the parser has to account:

1. concurrent detections, which are due to probabilistic

nature of the low-level primitive detectors,

2. concurrent parses, which occur while tracing the

derivations of unrelated objects,

3. concurrent primitives, which are a part of an interac-

tion between multiple objects.

The parser extended to handle uncertainty in the input
stream already handles the first two points. Indeed,
concurrent detections, being simply the substitution errors,
are handled in the usual manner as a multivalued input
string. Concurrent parses are traced as an added benefit of
the error correction with the robust grammar [3].

New to our framework are concurrent tracks; these occur
in the derivation when the grammar describes interaction
between two or more objects; for instance, these could be
people and vehicles in the parking lot surveillance applica-
tions. The difficulty here is presented by the fact that the
primitives in the input stream correspond to different
entities. The entities should have internally consistent
terminals, but since the events related to both objects in
the input stream are interleaved, the consistency check
should account for that also. To accomplish that, we modify
the parser in three ways:

1. Assign a class label to each production rule of the
grammar. For example, in the parking lot monitoring

1. Note that the length of the chart is indexed by events, not time. The
value of the pruning threshold and the chart size are chosen such that
cutting the chart almost never prunes active states.

task (Section 6), productions related to cars willhave a
car class label.”

2. For generic consistency, implement a simple search
in the filtering routine (Section 4.4.1), which would
search the state being completed for the last child
state having the class attribute the same as the
completing state. The high mark is extracted from
the child state and the penalty function is computed
based on that attribute, instead of the high mark of
the state itself. Fig. 5 shows how the interleaved
consistency check is performed on a string of the
serialized primitives of two different classes.

3. To enforce interobject consistency, construct specia-
lized distance functions for filtering the combina-
tions of particular pairs of types of parsing states.
For example, if to see a PICK-UP, the CAR-STOP
position (as contained in its consistency parameter h)
needs to be close to the PERSON-LOST position
(maintained in its 1 parameter), then any completion
which joins those two symbols needs to use the
appropriate distance function.

5 EXPERIMENTS—STRUCTURED GESTURE

In this section, we introduce two gesture recognition
experiments, where recognition is performed by the system.
In these experiments, the system performs recognition of
structured single-stream gestures. The primitives of these
complex gestures are simple hand trajectories, which are
customarily modeled by Hidden Markov Models (HMMs).
To model the gesture, we describe its form as a Stochastic
Context-Free Grammar, where terminals of the alphabet
correspond to HMMs in the HMM bank. Each of the HMMs
picks out a part of the trajectory which is the most similar to
the primitive gesture on which it has been trained,
estimating the likelihood of the corresponding model. The
outputs of the HMMs are then mapped onto a set of discrete
events, which correspond to peaks in the HMM outputs and
are passed to the parser, which attempts to find the most
likely interpretation of the event set.

2. The rule class should not be confused with the object class. The rule
class is not necessarily related to the object class, although in our case it is.
For instance, if one needs to handle person-person interactions with the
same mechanism, different class labels should be attached to the rules
corresponding to each participant.

862 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO.8, AUGUST 2000

5.1 Recognition System

The recognition system for these experiments runs on an
R4400 200MHz SGI Indy, performing offline processing of
the data collected beforehand using the stereo vision
system.

5.1.1 Primitive Recognition

To recognize the components of the model vocabulary, we
train one HMM per atomic gesture. At run-time, each of
these HMMs performs a Viterbi parse [27] of the incoming
signal and computes the likelihood of the corresponding
gesture primitive. The run-time algorithm used by the
HMMs to recognize the words of the gesture vocabulary is a
version of [16] which performs a “backward” match of the
signal over a window of a reasonable size. At each time
step, the algorithm outputs the estimated likelihood of the
sequence which ends at the current sample, as well as the
length of this sequence. We will later exploit this property
to enforce temporal consistency: Only one low-level temporal
feature is happening at any one time.

All the HMMs are run in parallel, providing the parser
with maximum normalized probability and the correspond-
ing sequence length at each time step.® Fig. 2 shows the
output of a single HMM in a bank, illustrating the relation
between output probabilities and sequence lengths.

5.1.2 Event Generation

The continuous vector output of the HMM bank needs to be
mapped onto a discrete alphabet of the grammar, which
implies the necessity of converting the output to a series of
“events” which will be considered for probabilistic parsing.
At this step, no strong decisions about discarding any
events need to be made. The parser just needs a sufficient
stream of such events so that it can perform structural
rectification of these candidate events and find a plausible
interpretation which is structurally consistent (i.e., gram-
matical), is temporally consistent (uses nonoverlapping
sequence of primitives), and which has maximum like-
lihood given the grammar and the outputs of the low-level
feature detectors (HMMs).

For the tasks discussed here, a simple discretization
procedure provides good results. For each HMM in the
bank, a very small threshold is selected to cut off the noise
in the output and then a search for a maximum is
performed in each area of nonzero probability. Fig. 9a
shows an example of the output of the HMM bank,
superimposed with the results of discretization.

After discretization, the continuous time vector output of
the HMM bank is replaced with the discrete symbol stream
generated by discarding any interval of the discretized
signal in which all values are zero. Each event in this stream
is time stamped, so the time scale is not lost. Fig. 9b displays
an example of the resulting event sequence generated.

3. Alternatively, we can search for the position in the trellis where the
product of the probability and the sequence length is maximal. This will
result in finding the weighted maximum, which corresponds to the
maximum probability of the sequence of the maximum length.

5.1.3 Parser

For this system, the consistency is fully captured by the
timing of the signal. Consequently, we chose the consis-
tency parameters 1 and h (Section 4.4) to simply be the time
stamps of the beginning and the end of the corresponding
primitive

1=1¢

h=t,. (16)

Confirming consistency, the completion step will now
assure that the candidate parses only contain nonoverlap-
ping primitives. This is easily accomplished by choosing the
step function, ©(l; — hy), as the penalty function f(d) (15):

0, fd<0
fld) = { 1, otherwise,

where d =1, — h;. With this choice of the penalty function,
overlapping primitives are simply rejected.

(17)

5.2 Disambiguation by Context
In this experiment, we address recognition of a simple
structured gesture which can take several possible forms.
We define a SQUARE gesture (Fig. 6) as either lefthanded
(counterclockwise) or a righthanded (clockwise) gesture
which consists of four parts—TOP, BOTTOM, LEFT-SIDE,
and RIGHT-SIDE. In this formulation, TOP and BOTTOM,
for example, are ambiguous because both of them can be
formed by the same gesture. We note, however, that it can
never happen in the same context. That is, if it is a
righthanded square, TOP is a left-to-right movement and
BOTTOM is a right-to-left one. In the case of the lefthanded
square, the definitions are reversed. We attempt to
semantically disambiguate these definitions and recognize
a SQUARE regardless of the fact that it can be either the
righthanded or lefthanded.

To describe this structure, we use a grammar Gygare:
which reflects the ambiguity of the terminal meaning, with
SKIP rules omitted for simplicity:

quu,are :

SQUARE ~ — RH [0.5]
| LH [0.5]

RH — TOP up-down BOT down-up [1.0]

LH — BOT down-up TOP up-down [1.0]

TOP — left-right [0.5]
| right-left [0.5]

BOT — right-left [0.5]
| left-right [0.5].

The trajectory data is collected from a STIVE vision
system [39], shown in Fig. 8. The system uses stereo to
determine x-y-z position of person’s hands and head. At a
frame rate of approximately 20 frames per second, the
SQUARE data set consists of 150-200 samples for each
experiment.

For terminal recognition, four three-state HMMs are
trained on « and y velocities of 20 examples of each of the
primitive hand movements. After achieving reasonable
recognition rate, we performed several SQUARE gestures
determining candidate events as peaks in the likelihood.
The results were passed to the parser yielding the output,
presented in Fig. 7. Fig. 7a shows that the semantic structure

IVANOV AND BOBICK: RECOGNITION OF VISUAL ACTIVITIES AND INTERACTIONS BY STOCHASTIC PARSING 863

(d)

Left

(e) ()

Fig. 6. Example of the activity structure. (a)-(e) Frames of a video sequence showing a SQUARE gesture. (f) Shows the motion phases.

Segmentation <rsquare.dat>:
Label Segment
Right hand square [0 146]
Top [0 23]
Up down [23 66]
Bottom [66 94]
Down up [94 146]
Viterbi probability = 0.02400375
(@

Segmentation <lsquare.dat>:
Label Segment
Left hand square [0 173]
Bottom [0 49]
Down up [49 71 1]
Top [71 132]
Up down [132 173]
Viterbi probability = 0.01651770
(b)

Fig. 7. SQUARE sequence segmentation. (a) Righthanded square and (b) lefthanded square.

recovered was that of a righthand square and the whole
sequence was labeled as a SQUARE. Recognition results for a
lefthanded square sequence are shown in Fig. 7b. Note that
the left-right gesture was interpreted as TOP in the global
context in the first case and as BOTTOM in the second. The
figures show that timing constraints propagated through
the parse and formed consistent continuous coverage of the
input signal.

5.3 Semantic Segmentation

As a more complex test of our approach, we chose the
domain of musical conducting. It is easy to think of
conducting gestures as of complex gestures consisting of a
combination of simpler parts, for which we can write down
a grammar (coincidentally, a book describing baton
techniques, written by the famous conductor Max Rudolf
[28] is called “The Grammar of Conducting”). We capture
the data from a person who is a trained conductor and who
uses natural conducting gestures. The problem we are
attempting to solve is the following. A piece of music by
Sibelius* includes a part with complex 6/4 music beat
pattern. Instead of using this complex conducting pattern,
conductors often use 2/4 or 3/4 gestures by merging 6/4
beats into groups of three or two at will. Both 2/4 and 3/4

4. Jean Sibelius (1865-1957), Second Symphony, Opus 43, in D Major.

gestures are dramatically different from the original 6/4
one, but groups of them coincide with the original 6/4 at
bar boundaries. For the experiment, we collect the data
from a conductor conducting a few bars of the score,

Fig. 8. The Stereo Interactive Virtual Environment (STIVE) computer
vision system used to collect data.

864 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO.8, AUGUST 2000

100 T

~100 I L I I

05 50 100 150 200 250
N\ g

05 50 100 150 200 0
0 M WM/\/T

05 50 100 150 200 250
1 50 100 150 200 250

1 50 100 150 200 250
il M /T&‘@\]
0 ‘ e
o] 50 100 150 200 250

(@)

0.5 T T

Lo] { T | T i .
o. 50 ? 1‘0 1‘5 29 2|5 3‘0 35
0 T & T & T AT T & T T A\T
0.50 ? 1‘0 1‘5 29 2[5 3‘0 35
LIl T T Pt td

10 ? 1‘0 1‘5 29 2|5 3‘0 35
0.5 1
XOUUUR FUUOR IR SO0 T OUOUR Y

10 ? 1‘0 1‘5 29 2|5 3‘0 35
0.5+ B
. Tm Tm [...0 TA@ R

0 5 10 15 20 25 30 35

()

Fig. 9. Output of the HMM bank. (a) Top plot shows the vertical position of the hand throughout the sequence. The five plots below it show output of
each HMM in the bank superimposed with the result of discretization. (b) Corresponding discretized “compressed” sequence. Input vectors for the
probabilistic parser are formed by taking the samples of all sequences for each time step.

arbitrarily choosing 2/4 or 3/4 gestures, and attempt to
find bar segmentation, simultaneously identifying the beat
pattern used.

Experimental setup is essentially the same as in the
previous example. We trained five HMMs on two primitive
components of a 2/4 pattern and the three components of a
3/4 pattern. Some of the primitives in the set are very
similar to each other and, therefore, corresponding HMMs
show high likelihood at about the same time, which results
in a very “noisy” lattice (Fig. 9a). We parse the lattice with
the grammar G, (again, for simplicity omitting the SKIP
productions):

G, :

PIECE — BARPIECE [0.5]
| BAR [0.5]

BAR — WO [0.5]
| THREE [0.5]

THREE — down3 right3up3 [1.0]

TWO — down2 up2 [1.0].

The results of a run of the lower level detectors on a
conducting sequence 2/4-2/4-3/4-2/4 are shown in
Fig. 9 with the top plot of Fig. 9a displaying a y positional
component. Fig. 10 demonstrates output of the parsing
algorithm. The output is shown as a set of semantic labels
and corresponding sample index ranges, showing a great
deal of semantic filtering, where SKIP states account for
large portion of the input samples.

6 SURVEILLANCE

The approach we have presented is suitable for real-time
video processing. We present a system built for an online
parking lot monitoring task for automatic video surveil-
lance. In this application, our focus is on implementing a
technique for automatic detecting of multiobject interac-
tions. Such interactions include simple sequential interac-
tions, such as people driving into the parking lot and

leaving the parking lot on foot, as well as more complex
ones of people being dropped off or picked up by moving
vehicles. The system is capable of handling simple interac-
tions by means of enforcing interleaved consistency
between temporally extended primitives. We presently
describe the recognition system.

6.1 Recognition System

The recognition system consists of three main components:
a tracker, a tracking event generator, and a parser. The
system, in general, follows the same two-level architecture
as the gesture recognition system of the previous section.
The lower level detections in this application represent
independent object tracks, which are then mapped onto a
set of discrete events. These events form the basis of the
parser vocabulary and are processed according to the
activity grammar.

6.1.1 Tracker

The tracker used in the recognition system is fully described
in [18]. The tracker implements an adaptive background

Segmentation:
BAR:
2/4 start/end sample: [0 66]
Conducted as two gquarter beat pattern.
BAR:
2/4 start/end sample: [66 131]
Conducted as two quarter beat pattern.
BAR:
3/4 start/end sample: [131 194]
Conducted as three quarter beat pattern.
BAR:
2/4 start/end sample: [194 246]
Conducted as two quarter beat pattern.
Viterbi probability = 0.00423416

Fig. 10. Results of the segmentation of a long conducting gesture for the
bar sequence 2/4-2/4-3/4-2/4.

IVANOV AND BOBICK: RECOGNITION OF VISUAL ACTIVITIES AND INTERACTIONS BY STOCHASTIC PARSING 865
P
- - - ce t
Event Likelihood X y dx dy time

car-enter 0.5 0.454 T 001 005 10233 | 1023
person-enter 0.5 0454 1 -0.01 0.05 10.233 pe t

car-exit 1 1 0.784 0.1 0.1 382186 10.233

CX

t

38.216

Fig. 11. lllustration of the process of mapping tracks onto discrete events. The tracker reports beginning and the end of the track. In this example, the
beginning of the track corresponds to an object entering the scene. At that point, the class label of the object cannot be determined. This results in
the generation of two concurrent events—one per object class (cars and persons) with probability of the label being 0.5.

Gp:
TRACK — CAR-TRACK [0.5]

| PERSON-TRACK [0.5]
CAR-TRACK — CAR-THROUGH [0.25]

| CAR-PICKUP [0.25]

| CAR-OUT [0.25]

| CAR-DROP [0.25]
CAR-PICKUP — ENTER-CAR-B CAR-STOP PERSON-LOST B-CAR-EXIT [1.0]
ENTER-CAR-B — CAR-ENTER [0.5]

| CAR-ENTER CAR-HIDDEN [0.5]
CAR-HIDDEN — CAR-LOST CAR-FOUND [0.5]

| CAR-LOST CAR-FOUND CAR-HIDDEN [0.5]
B-CAR-EXIT — CAR-EXIT [0.5]

| CAR-HIDDEN CAR-EXIT [0.5]
CAR-EXIT — car-exit [0.7]

| SKIP car-exit [0.3]
CAR-LOST — car-lost [0.7]

| SKIP car-lost [0.3]
CAR-STOP — car-stop [0.7]

| SKIP car-stop [0.3]
PERSON-LOST — person-lost [0.7]

| SKIP person-lost [0.3]

Fig. 12. A CAR-PICKUP branch of a simplified grammar describing interactions in a parking lot.

model, which is tolerant to slow lighting changes. The
tracker detects objects in the scene by the presence of
motion in the camera view. If this motion persists for more
than some small predetermined number of frames, the
object is detected and a new track container is created for it
to accumulate the tracking data related to this object. The
tracker assigns a unique ID to each newly found object and
tracks changes in the object’s appearance, position, and
velocity, reporting them to the tracking event generator.
Based on appearance and trajectory properties, the tracker
probabilistically assigns to each object a class label (a car or
a person).

The primary difference between this system and the
gesture example is that, for the gesture primitives, the
actual motion of the object (hand) provided strong indica-
tion of primitive identity. In this surveillance application,
the exact trajectories are not as important and play no role
in the labeling of the primitives. However, the trajectory
data are passed to the parser and are available within the
general consistency mechanism and can be easily used for
computing the distance parameter of the penalty function.

6.1.2 Tracking Event Generator

We formulate interactions between objects in terms of
tracker states, rather than object trajectories, as described
below. The tracker can “lose” an object and then “find” it
again later, but it need not reason about the identity of the
newly found object. This set of primitive tracker states, such
as object-lost, object-found, forms the alphabet of
the interaction presented to the parser in form of a
grammar. In this formulation, preserving the identity of
an object throughout the scene is not important to the
parser. The identity is preserved by the tracker where it is
simple for it to do so, such as inside the consistent tracks.
Then, the task of associating the disjoint pieces of tracks

falls onto the parser.
The event generator performs a mapping of the tracks

onto a set of events, which are passed to the parser. The
events are generated based on a simple environment model

in the following way:

866 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO.8, AUGUST 2000

Event UID Avg. Size Class P X y t frame
ENTER 38 0.071757 0 0.5 0.958069 0.700315 921206196.9 105
STOPPED 38 0.071757 0 0.994145 0.741973 0.410192 9212062036 153
ENTER 58 0.027833 1 0.5 0.309444 0.206612 921206203.5 152
PERSON-LOST 58 0.029143 1 0.999875 0697794 0.3131 921206211.3 207
CAR-LOST 38 0.074138 0 0.992876 0.734908 0.378986 921206214.3 227
FOUND 116 0.088693 0 0.5 0.738265 0.397251 921206219 261
CAR-LOST 116 0.091532 0 0.990221 0.653375 0.333216 9212062211 276
FOUND 136 0.093981 0 0.5 0.577869 0.288348 9212062216 279
CAR-LEAVE 136 0.096201 0 0.989932 0.54037 0.991736 921206230.9 343

Fig. 13. A sequence of events corresponding to PICKUP, shown in Fig. 14. The car was lost twice after picking up the person.

- :

Person Picked Up

frames 105-343
car-enter car-stop person-enter person-lost car-lost
car-found car-lost car-found car-leave

(b)

Fig. 14. (a) Shows the iconic representation of PTCKUP and the resulting interpretation, generated by the parser. The reassembled tracks are shown
in the picture by white traces and correspond to a car and a person. Breaks in the track can clearly be seen. (b) Shows the temporal extent of the
action. Actions related to people are shown in white. Car primitives are drawn in black. In this figure, primitive events are abbreviated as follows:
ce—car-enter, cs—car-stop, cx—car-exit, pe—person-enter, pl—person-lost, and px—person-exit. The figure shows the
concurrency of the person and vehicle tracks and the fact that they are internally consistent.

1. If the track began in an area where objects tend to
enter the scene, car-enter and person-enter
events are generated.

2. If the track did not begin in one of the “entry” areas,
car-found and person-found events are
generated.

3. If the track ended in one of the “exit” areas, car-
exit and person-exit events are produced.

4. If the track did not end in one of the “exit” areas,
car-lost and person-lost events are posted.

5. If an object’s velocity dropped below a certain
threshold, an object-stopped event is generated.

The process of generating events is illustrated in Fig. 11.
All events are marked with corresponding likelihoods. To
account for errors in classification, events related to object
type always simultaneously generate events related to the
other object type. For instance, if a beginning of a person
track is reported by the tracker and the likelihood of that
event is 0.7, a person-enter event with likelihood 0.7 is
posted to the parser. Along with it, a complementary event
car-enter is posted in the same time slot with the
likelihood of 0.3. Such coupling allows the parser to treat
the classification errors introduced by the tracker as
substitution errors and treat them syntactically— the parser
will select one or the other, depending on which one results
in the overall parse with maximum probability. Typically,

at the beginning of each track, the tracker has not observed
the object long enough to be certain about its class
membership. Therefore, X-enter and X-found events
have likelihoods close to 0.5. In contrast, by the time the
object disappears or is lost, there is enough data to make
more accurate classification decision. Consequently, class
likelihoods of X-exit and X-lost events are typically
more committal than those of X-enter and X-found.

6.1.3 Parser

In accordance with the general consistency filtering
mechanism (Section 4.4.1), consistency parameters of the
tracks and the form of the penalty function need to be
chosen. In the case of surveillance application, actual spatio-
temporal distance between endpoints of object tracks can be
computed for which the parser needs object position,
velocity, and timing data. These data are readily available
from the tracker. Then, we chose 1 and h to be:

fl fh,
12 th
I h=| " |, (18)
Ui Yn
dwl d;z:h
dyl dyh

IVANOV AND BOBICK: RECOGNITION OF VISUAL ACTIVITIES AND INTERACTIONS BY STOCHASTIC PARSING

867

Event UID Avg. Size Class P X y t frame

ENTER 3526 0.028702 1 0.5 0.970261 0.663102 921204143.9 955 |

- STOPPED 3543 0 0 0.081111 0.150413 9212041549 1031

s PERSON-LOST _ 3526 0.030199 1 0.999873 0.403637 0.573237 921204156.6 1043
& ENTER 3557 0.038266 1 0.5 0434028 0.980888 921204157.2 1047 -
FOUND 3556 0.030252 1 0.5 0.383918 0.569378 921204157 1046 :
PERSON-LEAVE 3556 0.03178 1_0.999999 0.007068 0.289859 921204166.1 1108 5
PERSON-LEAVE 3557 0.034484 1_0.999994 0.321716_0.029368 921204182.6 1224 n

Fig. 15. Events generated for Fig. 16. Two people take part in the sequence of the evnts shown here, as can be seen from the UID column of the

table.

Person Passed Through
frames 955-1108

person-enter SKIP person-lost

SKIP person-found person-exit

Person Passed Through
frames 1047-1224
person-enter SKIP person-exit

(©)

Fig. 16. (a) The track and the labeling of the first person. The broken track is mended by the parser. (b) The track and the labeling of the second
person. (c) Temporal extent of the events. pe—person-enter, pl—person-lost, pf—person-found, and px—person-exit.

Event UID Avg. Size Class P X y t frame
— ENTER 724 0.122553 0 0.5 0.450094 0.938069 917907137.8 1906 |—
ENTER 665 0.046437 1 0.5 0.6107 0.94674 9179071225 1799
™ PERSON-LEAVE 665 0.045869 1 0.997846 0.648089 0.98855 917907142.7 1938 o
T — STOPPED 724 0 0.995784 0.348569 0.345513 9179071465 1964 |— 2
@) ENTER 780 0.034293 1 0.5 0.74188 0.980292 917907151.3 1998 <
g ENTER 790 0.069093 0 0.5 0.814565 0.032611 917907153.4 2012 m
o —{ FOUND 787 0.033573 1 0.5 0.297585 0.357887 917907153.1 2010 |— =
o CAR-LEAVE 790 0.061263 0 0.997285 0.975971 0.211984 917907155.3 2025 P
o PERSON-LEAVE 780 0.038616 1 0.999923 0.974494 0.865237 917907158.6 2047
- [PERSON-LEAVE 787 0.032045 1_0.999997 0.296519 0.183704 917907158.7 2048 |—
ENTER 813 0.034776 1 0.5 0.012821 0.348379 917907160.9 2063
ENTER 816 0.093513 0 0.5 0.960425 0.793899 917907161.9 2070
L—] CAR-LEAVE 724 0.097374 0 0.993211 0.972272 0.693728 917907165.2 2091 |
CAR-LEAVE 816 0.089424 0 0.99023 0.693699 0.990798 917907165.2 2091

Fig. 17. Results of track mapping on one of the runs of the system.
DROP-OFF. Interpretation of this data is shown in Fig. 18.

where 1is a “low mark” attribute group and h is the “high
mark” group. The attributes contain the frame number, the
time-stamp, the position of the object in the image, and its

velocity.
As a cost function, we chose a one-sided exponential

which “softly” penalizes tracks separated by large spatial
distance, but completely rejects fragments overlapping in
time. First, we predict position of the object, r,, based on the
h attribute of the state being completed and the 1 attribute of
the completing state:

r, =11 +dri(ts — t1), (19)
where r; = (21, yl)T and dry = (dzq, dyl)T—position and
velocity at the end of the first track, ¢; the time at the end of

the first track, and t,, the time at the start of the second.

Two subsets of events, outlined in the picture, correspond to DRIVE-IN and

The penalty function is then computed, based on the
distance between the predicted position, r,, and the
position of the object as indicated by the low mark of the
candidate completing state, r:

0, if (t2 —t1) <0
T
exp (7&2_”’)&(”_”)) , o/w.

The scale parameter, 6, was found experimentally.
A partial listing of the grammar employed by our system

f(ep,ra) = { (20)

is shown in Fig. 12. The high-level nonterminals are
CAR-THROUGH, PERSON-THROUGH, PERSON-IN, CAR-OUT,
CAR-PICK, and CAR-DROP. The production rule probabil-
ities have been manually set to plausible values for this
domain. In the conclusion, we discuss the sensitivity of the
system to the settings of these probabilities.

868 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO. 8, AUGUST 2000

Car Passed Through
frames 2012-2025
car-enter SKIP car_exit
person-exit

(@)

Person Passed Through
frames 1998-2047
person-enter SKIP

(b)

Person Drove In
frames 1906-2048
car-enter SKIP
car-stop SKIP
person-found
person-exit

(©)

Person Drop Off
frames 1908-2091
car-enter SKIP
car-stop SKIP
person-found SKIP
car-exit
(d

Car Passed Through
frames 2070-2091
car-enter SKIP car-exit

(e)

Fig. 18. (a) A car passed through the scene while DROP-OFF was performed. Corresponding track is shown by sequence of white pixels. (b) Person
passing through. (c) A person left the car and exited the scene. At this moment, the system has enough information to emit the DRIVE-1IN label.
(d) The car leaves the scene. The conditions for DROP-OFF are now satisfied and the label is emitted. (e) Before the car performing the DROP-OFF
exits the scene, it yields to another car passing through, which is shown here. (f) Temporal extent of actions shown in (a)-(e). Again, actions related
to people are shown in white, while vehicle-related primitives are shown in black. Top line of the picture corresponds to the (a), the bottom one to (e).
The figure clearly demonstrates concurrency of events. In this figure, primitive events are abbreviated as follows: ce—car-enter, cs—car-stop,
cx—car-exit, pe—person-enter, pf—person-found, and px—person-exit.

6.2 Detecting Interactions

We show results of the system run on a data collected on a
parking lot at Carnegie Mellon University. The system runs
in realtime processing data from a live video feed or a video
tape. The tracker and the event generator run on a 175 MHz
R10000 SGI O2 machine. The parser runs on a 200 MHz
R4400 SGI Indy.

The tracker runs at approximately 12 fps on
160 x 120 images. It generally exhibited unbroken tracks
except in cases of occlusions and rapid lighting changes.
The events were mapped using a hand-coded, probabilistic
classifier for object type (e.g., car or person), which
primarily considers the aspect ratio of the object.

The test data consisted of approximately 15 minutes of
video, showing several high-level events such as DROP-OFF
and PICKUP. The events were staged in the real environ-
ment where the real traffic was present concurrently with
the staged events. The only reason for staging the events
was to have more examples within 15 minutes of video. The
drop-offs and pickups were performed by people unfami-
liar with the system. The resulting parses were output in
real time.

Fig. 13 shows the event sequence for a PICKUP event,
which contains an interaction between a person and a car.
Fig. 14a shows the resulting interpretation. Note that, due to
lighting changes and video noise, the car was twice lost by

IVANOV AND BOBICK: RECOGNITION OF VISUAL ACTIVITIES AND INTERACTIONS BY STOCHASTIC PARSING 869

the tracker. The partial tracks are reassembled by the parser
to form a consistent interpretation. The bottom row of
Fig. 14b displays the temporal extent of the interaction and
illustrates that the person and vehicle activities are
concurrent, yet are interpreted as parts of one interaction.

A different problem is shown in Figs. 15 and 16. Here,
two people crossed the scene. A tracker momentarily lost a
person while another one was entering the scene. The
concurrent tracks are interpreted as separate noninteracting
objects and the break in the complete track is recovered.

The system performs well in a cluttered scene. To
demonstrate this, we show a sequence of interpretations
which the system produced while observing a DROP-OFF.
The sequence shown in Figs. 17 and 18a-18e, demonstrates
the capability of the system to parse concurrent activities
and interactions in a relatively “busy” environment. While
monitoring the scene, the system detected a DROP-OFF as
well as several other activities: two instances of
CAR-THROUGH and a PERSON-THROUGH event. Fig. 18f
shows the temporal extent of activities, shown iconically in
Figs. 18a-18e.

All of these parses can be traced down to primitives,
which hold the track data. Consequently, the complete track
is reconstructed, as shown by white traces in Figs. 18a-18e.
In the longest segment of the video, the event generator
produces between 150 and 200 events; the exact count
depends upon the reaction of the tracker to video noise.
After tuning the environment model used by the event
generator to convert tracks to events, all high-level interac-
tions were correctly detected.

7 CONCLUSION

7.1 Summary

This paper describes a probabilistic syntactic approach to
the detection and recognition of temporally extended
activities and interactions between multiple agents. The
fundamental idea is to divide the recognition problem into
two levels. The lower level is performed using standard
independent probabilistic temporal event detectors, such as
hidden Markov models, to propose candidate detections of
low-level temporal features. Outputs of these detectors
provide the input stream for the stochastic context-free
parser. The grammar and parser provide longer range
temporal constraints, disambiguate uncertain low-level
detections, and allow the inclusion of a priori knowledge
about the structure of temporal events in a given domain.
Primary technical contributions of this work are:

1. Extending stochastic context-free parsing to handle
uncertainty in the input symbol stream;

2. Providing a general consistency filtering mechanism
to enforce intersymbol constraints, such as requiring
temporal consistency between primitives; and

3. Extending the consistency filtering to maintain
consistent multiobject interactions.

We have developed a real-time system and demon-
strated the approach in several experiments on gesture
recognition and in visual surveillance. In the surveillance
application, we show how the system correctly interprets
activities of multiple, interacting objects.

p2
pl
p3 p4
G12
0
- CB [p] b
B - AB [PS] D3 y2!
0O 0 O
- C [P4]
C = a [ps]

Fig. 19. Left Corner Relation graph of the grammar G,. Matrix P, is
shown on the right of the productions of the grammar.

7.2 Comment on Rule Probabilities

This paper does not directly address the problem of
computing rule probabilities for SCFGs used in experi-
ments. In all experiments, values of rule probabilities were
set to some values that we found plausible. In setting those
probabilities, our goal was not estimating them from data,
but, rather, expressing expert’s beliefs about how typical is
the application of each rule. This is reflected, for instance, in
weighing rules applied to simple events, such as PERSON-
THROUGH, designating a single person walking through the
scene, slightly above those related to interactions. In our
applications, these values did not have any dramatic effects
on the resulting parse and were generally set to 1/n, where
n is the number of productions with the same lefthand side.
In most experiments, a uniform distribution over the rules
was sufficient. However, setting values of rule probabilities
to represent a uniform distribution is not a simple task in
the general case, primarily due to the exact form of the

grammar and recursion.

If enough labeled data is available, these probabilities
can be estimated by a number of known methods, based on
a Baum-Welch estimation procedure, such as the inside-
outside algorithm. The estimation of rule probabilities is
beyond the scope of this paper. For a reference, we suggest
the reader to refer to [24], [19], or [11]. For the review of
techniques for grammatical inference, Lee [22] provides a
good reference and bibliography.

The only particularly sensitive probability setting in our
system is the SKIP production. As noted, that parameter
needs to be tuned to the application depending upon the
false alarm rate of the low-level detectors. While it should
be possible to learn that parameter automatically from
training data, we have not systematically explored that
problem.

870 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO.8, AUGUST 2000

G- (PL[S[A] B [C]
S = AB [p] S p1 P2
- C [p] A Ps
- d [pg] B
A — AB [p4] ¢ ps + Py
— a [p5]
B > B [p |[Be]S] 4 [B _[C]
- b [p7] S || 1] 2, | peps +p2po | P2
C — BC |[ps] A =1
N B [pg] B —1+4pa 1
- [p1o] c Ps +Po 1

Fig. 20. Left Corner (P) and its Reflexive Transitive Closure (R.) matrices for a simple SCFG.

7.3 Behavior as Context

Finally, we comment on a broader characterization of the
work presented here, namely behavior as context. Consider
the surveillance application and suppose a blob is detected,
but, because of imaging noise or occlusion, it cannot be
identified well as a car or a person. Further, assume the blob
stops in the parking area, and a well-identified person
moves away from the first blob, and the first blob just
remains in the parking area. The system has just observed a
DRIVE-IN and, because of the behavior, can now more
reliably label the blob a car. By providing an activity
recognition system that explicitly models behavior and
separates it from detection, we can view the behavior as the
disambiguating context applied to the result of detection.

APPENDIX A
PREDICTION STEP: COMPUTING R,

During prediction, the parsing algorithm descends the
grammar down to the leaf nodes hypothesizing the next
possible production to use. This may result in predicting a
state more than once. Because of possible left recursion in
the grammar, the total probability of a predicted state can
increase with it being added to a set infinitely many times.
Indeed, if a nonterminal A is considered for expansion and
given productions for A

A — Aa

— a

we will predict A — .a and A — .Aaq at the first prediction
step. This will cause the predictor to consider these newly
added states for possible descent, which will produce the
same two states again. In nonprobabilistic Earley parser, it
normally means that no further expansion of the production
should be made and no duplicate states should be added. In
the probabilistic version, however, although adding a state
will not add any more information to the parse, its
probability has to be factored in by adding it to the

probability of the previously predicted state. In the above
case, that would mean an infinite sum due to left-recursive

expansion.

In order to demonstrate the solution, we first need to
introduce the concept of Left Corner Relation [20].

Two nonterminals are said to be in a Left Corner Relation
X —1 Y iff there exists a production for X of the form X — Y \.

We can compute a total recursive contribution of each
left-recursive production rule where nonterminals X and Y
are in Left Corner Relation. The necessary correction for
nonterminals can be computed in a matrix form. The form
of the recursive correction matrix R, can be derived using a
simple example presented in Fig. 19. The graph of the
relation presents direct left corner relations between
nonterminals of G;. The LC Relation matrix P; of the
grammar G, is essentially the adjacency matrix of this
graph. If there exists an edge between two nonterminals X
and Y, it follows that the probability of emitting terminal a
such that

X—=Yv
Y —an

is a sum of probabilities along all the paths connecting X
with Y, multiplied by probability of direct emittance of a
from Y, P(Y — an).

Formally,

P(a)=P(Y —an) Y P(X=Y)
VX

— P(Y —an) (P(X=Y)+ (@1)
P(X = Y)+
PX>Y)+...,

where P(X 2 Y) is probability of a path from X to Y of
length k=1,...,00.

In matrix form, all the k-step path probabilities on a
graph can be computed from its adjacency matrix, P,
(Fig. 19), as kth power of it, P}. And, the complete reflexive
transitive closure R; is a matrix of infinite sums that has a
closed form solution:

IVANOV AND BOBICK: RECOGNITION OF VISUAL ACTIVITIES AND INTERACTIONS BY STOCHASTIC PARSING 871

Go: [Pu[|[S|A[B[C]
- C [p] A
A — AB [p4] c Y4
- a [ps]
B - bB |ps) |[Re]S][A] B [C]
- b [p7] S |1 P2p9 | P2
¢ — BC [ps] A 1
- B [p] B 1
— c [plO] C Do 1

Fig. 21. Unit Production (Py) and its Reflexive Transitive Closure (Ry)
matrices for a simple SCFG.

R, =P + P! + ZP’u 1-py)"
Thus, the correction to the completion step should be
applied, by first, descending the chain of left corner
productions, indicated by a nonzero value in Ry:

(22)

TR, O W AT IR
VZ st. R(Z)Y)#0=1i:Y - v
Y —-v

[, N] (23)

and then correcting the forward and inner probabilities for
the left recursive productions by an appropriate entry of the
matrix Ry:

o = ali: X — AZwRL(Z,Y)P(Y — v)
Ap (24)
v =P —v).

Matrix Ry can be computed once for the grammar and
used at each iteration of the prediction step (Fig. 20).

APPENDIX B
COMPLETION STEP: COMPUTING Rj;

Here, as in prediction, we might have a potential danger of
entering an infinite loop. Indeed, given the productions

A — B
— a
B — A
and the state i:A; — a., we complete the state set j,
containing:
ji+4;, — .B
jiA —
j:B; — A

Among others, this operation will produce another state
i: A; — a., which will cause the parse to go into infinite
loop. In nonprobabilistic Earley parser, that would mean
that we just simply do not add the newly generated states
and proceed with the rest of them. However, here this will
introduce the truncation of the probabilities as in the case
with prediction. It has been shown that this infinite loop
appears due to so-called unit productions [35].

Two nonterminals are said to be in a Unit Production Relation

X —y Y iff there exists a production for X of the form X — Y.
As in the case with prediction, we compute the closed-

form solution for a Unit Production recursive correction
matrix Ry (Fig. 21),
relation, expressed by a matrix Py.
Ry=(1-Py)”
rithm accommodates the recursive loops:

considering the Unit Production
Ry is found as
'. The resulting expanded completion algo-

j : Xy — /\ZH‘ [Ot,’y]
VZ st. Ry(Z,Y)#0=i: X, — M .u o,
i:Y;—v. o9,

(25)

where computation of o and v is corrected by a
corresponding entry of Ry:

o = ali: Xy = XNZpRy(Z,Y)'(i:Y; — v.)
Y => A

As R, unit production recursive correction matrix Ry

(26)

X = AYWRy(Z,Y)'(i:Y; — v.).

can be computed once for each grammar.

ACKNOWLEDGMENTS

The authors thank Chris Stauffer and Eric Grimson of the
MIT AI lab for graciously providing the tracker and
modifying it as necessary to generate events and to handle
the data of the CMU experiment. This work was supported
in part by DARPA contract DAAL01-97-K-0103.

REFERENCES

[1] JK. Aggarwal and Q. Cai, “Human Motion Analysis: A Review,”
Computer Vision and Image Understanding, vol. 73, no. 3, pp. 428-
440, 1999.

[2] A.V. Aho and].D. Ullman, The Theory of Parsing, Translation, and
Compiling. Volume 1: Parsing. Englewoods Cliffs, N.J.: Prentice
Hall, 1972.

[3] A.V. Aho and T.G. Peterson, “A Minimum Distance Error-
Correcting Parser for Context-Free Languages,” SIAM]. Comput-
ing, vol. 1, pp. 305-312, 1972.

[4] M.L. Baird and M.D. Kelly, “A Paradigm for Semantic Picture
Recognition,” Pattern Recognition, vol. 6, no. 1, pp. 61-74, 1974.

[5S] AF. Bobick, “Movement, Activity, and Action: The Role of
Knowledge in the Perception of Motion,” Philosophical Trans.
Royal Soc. London B, pp. 1,257-1,265, 1997.

[6] A.F. Bobick and A.D. Wilson, “A State-Based Approach to the
Representation and Recognition of Gesture,” IEEE Trans. Pattern
Analysis and Machince Intelligence, vol. 19, no. 12, pp. 1,325-1,337,
Dec. 1997.

[71 T.L. Booth and R.A. Thompson, “Applying Probability Measures
to Abstract Languages,” IEEE Trans. Computers, vol. 22, no. 5,
pp. 442-450, May 1973.

[8] M. Brand, “Understanding Manipulation in Video,” Proc. Second
Int’l Conf. Automatic Face and Gesture Recognition 96, pp. 94-99,
1996.

[9] M. Brand and N. Oliver, “Coupled Hidden Markov Models for
Complex Action Recognition,” Computer Vision and Pattern
Recognition, pp. 994-999, 1996.

[10] F. Bremond and G. Medioni, “Scenario Recognition in Airborne
Video Imagery,” Proc. Workshop Interpretation of Visual Motion,
pp. 57-64, 1998.

[11] T. Briscoe and N. Waegner, “Robust Stochastic Parsing Using
Inside-Outside Algorithm,” Proc. Am. Assoc. Artificial Intelligence
Workshop Statistically-Based Natural Language Programming Techni-
ques, 1992.

872

[12]

(13]
(14]

(15]

[16]
(17]

(18]

[19]

[20]

(21]
(22]
(23]

(24]

(23]

[20]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO. 8, AUGUST 2000

H. Bunke and D. Pasche, “Parsing Multivalued Strings and its
Application to Image and Waveform Recognition,” Structural
Pattern Analysis, 1990.

E. Charniak, Statistical Language Learning. Cambridge, Mass. and
London: MIT Press, 1993.

J.D. Courtney, “Automatic Video Indexing via Object Motion
Analysis,” Pattern Recognition, vol. 30, no. 4, pp. 607-625, 1997.

E. Csunhaj-Varju, J. Dassow,]. Kelemen, and G. Paun, Grammar
Systems: A Grammatical Approach to Distribution and Cooperation.
Gordon and Breach Science Publishers, 1994.

T.J. Darrell and A.P. Pentland, “Space-Time Gestures,” Proc. Conf.
Computer Vision and Pattern Recognition, pp. 335-340, 1993.

J.C. Earley, “An Efficient Context-Free Parsing Algorithm,” PhD
thesis, Carnegie-Mellon Univ., 1968.

W.E.L. Grimson, C. Stauffer, R. Romano, and L. Lee, “Using
Adaptive Tracking to Classify and Monitor Activities,” Computer
Vision and Pattern Recognition, pp. 22-29, 1998.

E. Jelinek, J.D. Lafferty, and R.L. Mercer, “Basic Methods of
Probabilistic Context Free Grammars,” Speech Recognition and
Understanding. Recent Advances, Trends, and Applications, Pietro
Laface Mori and Renato Dj, eds., vol. F75 of NATO Advanced Study
Institute, pp. 345-360, Berlin: Springer Verlag, 1992.

F. Jelinek and]J.D. Lafferty, “Computation of the Probability of
Initial Substring Generation by Stochastic Context Free Gram-
mars,” Computational Linguistics, vol. 17, no. 3, pp. 315-323, 1991.
F. Jelinek, Statistical Methods for Speech Recognition. Cambridge,
Mass.: MIT Press, 1999.

L Lee, “Learning of Context-Free Languages: A Survey of the
Literature,” Technical Report TR-12-96, Harvard Univ., 1996.

R. Narasimhan, “Labeling Schemata and Syntactic Descriptions of
Pictures,” InfoControl, vol. 7, no. 2, pp. 151-179, 1964.

H. Ney, “Stochastic Grammars and Pattern Recognition,” Speech
Recognition and Understanding, P. Laface and R. DeMori, eds., pp.
319-344, 1992.

N. Oliver, B. Rosario, and A. Pentland, “Statistical Modeling of
Human Interactions,” Proc. Computer Vision and Pattern Recogni-
tion, The Interpretation of Visual Motion Workshop, pp. 39—46, 1998.
B.J. Oomen and R.L. Kashyap, “Optimal and Information
Theoretic Syntactic Pattern Recognition for Traditional Errors,”
Lecture Notes in Computer Science, vol. 1,121, pp. 11-20, Springer,
1996.

L.R. Rabiner and B.H. Juang, Fundamentals of Speech Recognition.
Englewood Cliffs: Prentice Hall, 1993.

M. Rudolf, The Grammar of Conducting: A Comprehensive Guide to
Baton Techniques and Interpretation. New York: Schimmer Books,
1994.

A. Sanfeliu and R. Alquezar, “Efficient Recognition if a Class of
Context-Sensitive Languages Described by Augmented Regular
Expressions,” Lecture Notes in Computer Science, vol. 1,121, pp. 1-
10, Springer, 1996.

A. Sanfeliu and M. Sainz, “Automatic Recognition of Bidimen-
sional Models Learned by Grammatical Inferrence in Outdoor
Scenes,” Lecture Notes on Computer Science, vol. 1,121, pp. 160-169,
Springer, 1996.

R. Schalkoff, Pattern Recognition: Statistical, Structural, and Neural
Approaches. New York: Wiley, 1992.

J. Schlenzig, E. Hunter, and R. Jain, “Recursive Identification of
Gesture Inputs Using Hidden Markov Models,” Proc. Second Ann.
Conf. Applications of Computer Vision, pp. 187-194, 1994.

T. Starner,]. Weaver, and A. Pentland, “Real-Time American Sign
Language Recognition Using Desk and Wearable Computer-
Based Video,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 20, no. 12, Dec. 1998.

T.E. Starner and A. Pentland, “Visual Recognition of American
Sign Language Using Hidden Markov Models,” Proc. Int'l Work-
shop Automatic Face- and Gesture-Recognition, pp. 189-194, 1995.
A. Stolcke, “An Efficient Probabilistic Context-Free Parsing
Algorithm That Computes Prefix Probabilities,” Computational
Linguistics, vol. 21, no. 2, pp. 165-201, 1995.

M.G. Thomason, “Stochastic Syntax-Directed Translation Sche-
mata for Correction of Errors in Context-Free Languages,” IEEE
Trans. Computers, vol. 24, pp. 1,211-1,216, 1975.

W.G. Tsai and K.S. Fu, “Attributed Grammars—A Tool for
Combining Syntatctic and Statistical Approaches to Pattern
Recognition,” IEEE Trans. Systems, Man, and Cybernetics, vol. 10,
no. 12, pp. 873-885, 1980.

[38] A.D. Wilson, A.F. Bobick, and J. Cassell, “Temporal Classification
of Natural Gesture and Application to Video Coding,” Proc. Conf.
Computer Vision and Pattern Recognition, pp. 948-954, 1997.

C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder:
Real-time Tracking of the Human Body,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780-785, July
1997.

J. Yamato, J. Ohya, and K. Ishii, “Recognizing Human Action in
Time-Sequential Images Using Hidden Markov Model,” Proc.
Conf. Computer Vision and Pattern Recognition, pp. 379-385, 1992.
S.J. Young, N.H. Russell, and J.H.S. Thornton, “Token Passing: A
Simple Conceptual Model for Connected Speech Recognition
Systems,” Technical Report CUED/F-INFENG/TR. 38, Univ. of
Cambridge, July 1989.

(39]

(40]

[41

Yuri A. lvanov is pursuing a PhD degree in
media arts and sciences at the Massachussetts
Institute of Technology Media Laboratory. He
received the MS degree in media arts and
sciences from MIT in 1998 and the MS degree
in electrical engineering and computer science
from the St. Petersburg Academy of Air and
Space, Russia, in 1992. His main research
intrerest is machine vision with emphasis on
action understanding, machine learning, and
perceptual interfaces. He is a student member of the IEEE Computer
Society.

Aaron F. Bobick received the PhD degree in
cognitive science from the Massachusetts In-
stitute of Technology in 1987 and also holds BS
degrees from MIT in mathematics and computer
science. In 1987, he joined the Perception
Group of the Artificial Intelligence Laboratory at
SRI International and soon after was jointly
named a visiting scholar at Stanford University.
From 1992 until July 1999, he served as an
assistant and then associate professor in the
Vision and Modeling Group of the MIT Media Laboratory. He has
recently moved to the College of Computing at the Georgia Institute of
Technology, where he is an associate professor in the GVU and Future
Computing Environments laboratories.

Dr. Bobick has performed research in many areas of computer
vision. His primary work has focused on video sequences where the
imagery varies over time either because of change in camera viewpoint
or change in the scene itself. He has published papers addressing many
levels of the problem from validating low-level optic flow algorithms to
constructing multirepresentational systems for an autonomous vehicle
to the representation and recognition of high-level human activities. The
current emphasis of his work is on action understanding where the
imagery is of a dynamic scene and the goal is to describe the action or
behavior. Three examples are the basic recogniton of human
movments, natural gesture understanding, and the classification of
football plays. Each of these examples require describing human activity
in a manner appropriate for the domain and developing recognition
techniques suitable for those representations. He is a member of the
IEEE Computer Society.

