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Discovery and Segmentation
of Activities in Video

Matthew Brand, Member, IEEE, and
Vera Kettnaker, Member, |IEEE

Abstract—Hidden Markov models (HMMs) have become the workhorses of the
monitoring and event recognition literature because they bring to time-series
analysis the utility of density estimation and the convenience of dynamic time
warping. Once trained, the internals of these models are considered opaque; there
is no effort to interpret the hidden states. We show that by minimizing the entropy
of the joint distribution, an HMM’s internal state machine can be made to organize
observed activity into meaningful states. This has uses in video monitoring and
annotation, low bit-rate coding of scene activity, and detection of anomalous
behavior. We demonstrate with models of office activity and outdoor traffic,
showing how the framework learns principal modes of activity and patterns of
activity change. We then show how this framework can be adapted to infer hidden
state from extremely ambiguous images, in particular, inferring 3D body
orientation and pose from sequences of low-resolution silhouettes.

Index Terms—Video activity monitoring, hidden Markov models, hidden state,
parameter estimation, entropy minimization.
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1 HIDDEN MARKOV MODELS

A discrete-time hidden Markov model is a mixture model
augmented with dynamics by conditioning its hidden state in
time ¢ on that of time t—1. An HMM of N hidden states and
Gaussian emission distributions is specified by the 4-tuple
{Py;, Pi, u;, K;},1 < i,j < N, where P,; are multinomial transition
probabilities between hidden states, P; is the initial probability of
state i, and p;, K; parameterize emission distributions for each
state, in this case, means and covariances of the Gaussian densities
Prob(z| state i) = N(z;p;, K;). The likelihood of a multivariate
time-series X is the product of all transition and emission
probabilities associated with a hidden state sequence
S = {501,501, »5(1)}, summed over all possible state sequences:
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Dynamic programming algorithms are available for the basic
inference tasks: Given a time-series, the Viterbi algorithm
computes the most probable hidden state sequence; the forward-
backward algorithm computes the data likelihood and expected
sufficient statistics of hidden events such as state transitions and
occupancies. These statistics are used in Baum-Welch parameter
reestimation to maximize the likelihood of the model given the
data. The expectation-maximization (EM) algorithm for HMMs
consists of forward-backward analysis and Baum-Welch reestima-
tion iterated to convergence at a local likelihood maximum.

The principle of maximum likelihood (ML) is not valid for
small data sets; in most vision tasks, the training data is rarely
large enough to “wash out” sampling artifacts (e.g., noise) that
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obscure the data-generating mechanism’s essential regularities. It
is not widely appreciated that this is an acute problem in hidden-
variable models, where most of the parameters are only supported
by small subsets of the data. That, combined with the fact that the
models have high-order symmetries that allow many different
parameterizations of the same distribution, results in a learning
problem that is riddled with local optima. Consequently, ML
hidden-variable models are typically both under-fit, failing to
capture the hidden structure of the signal, and over-fit, with a
surfeit of weakly supported parameters that inadvertently model
accidental properties of the signal such as noise and sample bias.
This leads to poor predictive power and modest generalization that
supports only limited inference tasks, such as classifying one of a
small set of events of interest.

We advocate replacing the Baum-Welch formulee with para-
meter estimators that minimize entropy. Entropy minimization
exploits the duality between learning and compression to approx-
imate an optimal separation between essential properties (regula-
rities and hidden structure in the data that should be captured by
the model) and accidental properties (noise and sampling artifacts
that should be ignored). In doing so, it reveals hidden structures in
the data that tend to be highly correlated with meaningful
partitions of the data-generating mechanism’s behavior.

In this article, we outline entropy minimization for HMMs and
show how three video interpretation tasks can be treated as
problems of inferring hidden state: annotating office activity,
monitoring traffic intersections, and inferring 3D motion from
monocular video. A common thread in these applications is the
emphasis of inference over image processing or scene modeling;
high-level inferences are made from relatively impoverished
sensing via learned priors rather than engineered algorithms.

2 RELATION TO VISION AND LEARNING LITERATURES

Small HMMs and HMM-based hybrids have enjoyed wide success
in spoken word and visual gesture recognition, partly because it is
feasible to hand-design an adequate transition topology, which is
the dominating constraint in the learning problem. However, their
usefulness for more complicated systems is seriously curtailed by
the fact that for models of nontrivial size, one must probe for an
appropriate topology using very expensive search techniques.
Although the literature of HMM-based visual event classification
is extensive, to our knowledge it does not touch on the focus of this
article—discovering a set of event types that efficiently describes
action in the video—so we will only review it categorically. One may
consult the proceedings [11], [8], [14] to see the bulk of the visual
monitoring and event recognition literature in the last two years:
Over 30 such papers use a small battery of HMMs as a postvisual
processing event classification engine. Nearly all use the HMMs as a
standard Bayesian MAP classifier: Each HMM is trained on a few
examples of the event of interest; after training, novel events are
classified via likelihood ratios. The HMMs have a hand-designed
topology, typically corresponding to a band-diagonal transition
matrix; the number of bands and states is found by experimentation.
Related models, such as dynamic Bayes’ nets, also require careful
hand-crafting. The problem of finding appropriate HMM topologies
is the subject of intense research interest outside of the vision
literature; [5] reviews 12 of the most current approaches to learning
HMM topology, all involving heuristic generate-and-test search or
heuristic clustering methods. In this article, we will explore an
unsupervised approach in which entropy minimization automati-
cally induces a partitioning of the signal into events of interest. This
framework yields monotonic (hillclimbing) algorithms for simulta-
neous estimation of model topology and parameters. As our
applications will show, the result is a single, sparsely connected
HMM containing the entire classification engine. This allows us to
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fold event segmentation and event classification (often done
separately and, thus, suboptimally) into a single inference problem
for which an efficient solution is readily obtained via the Viterbi
dynamic programming algorithm.

3 ENTROPY MINIMIZATION

We outline the entropy minimization framework here and refer
readers to [3] for details and derivations. We begin with a dataset
X and a hidden-variable probabilistic model whose parameters
and structure are specified by the vector #. In conventional
training, one guesses the sparsity structure of § in advance and
merely reestimates nonzero parameters to maximize the likelihood
P(X]0). In HMMs, the sparsity structure of § encodes the transition
topology of the finite-state machine (e.g., see Fig. 3); 6 is almost
always designed by hand or, if time is not an issue, found via
generate-and-test search over a large space of topologies. In
entropic estimation, we learn the size of 6, its sparsity structure,
and its parameter values simultaneously by minimizing the three
entropies

0" = arg rrbin [H(w) + D(wl||6) + H(6)], 2)

where H(w) is the entropy of the data’s expected sufficient
statistics and can be interpreted as the expected cost of coding
the data relative to the model, D(w||f) is the cross-entropy between
the (expected) sufficient statistics of the data and the model
distribution and measures the expected cost of coding aspects of
the data not captured by the model, and H(f) is an entropy
measure on the model itself and, depending on its formulation, can
be interpreted either as the entropy of the distribution or the
expected coding costs of the model itself. This formulation
identifies entropy minimization as learning by compression; recent
results in algorithmic complexity theory state that any such
method approximates an optimal strategy for model identification
[15]. In this regard, it is kin to the minimum message length (MML)
[16] and minimum description length (MDL) [13] frameworks, but
differs in that its wholly continuous formulation yields well-
behaved parameter estimators without appeal to code-based
discretizations of the real line. Equation (2) and its estimators
provide an embedding of the problem of finding model structure
in a smooth differentiable function whose optimization is much
more computationally attractive than MML/MDL-based model
selection.

Minimizing (2) is equivalent to maximizing the posterior
probability given by Bayes’ rule,

0 = arg max P(0|X) x P(X|0)e O], (3)
The prior e ) expresses a desire for the smallest, least
ambiguous, and most specific model that is compatible with the
data. It is the prior that (asymptotically) maximizes the amount
one can expect to learn from any data [6]. In information theory
terms, the prior divides the posterior by the volume of typical set
(inputs that the model accepts as likely), thereby favoring highly
selective models. In Markov models, the prior also divides the
posterior by the perplexity (branching factor) of the process,
thereby favoring highly predictive models.

The maximum a posteriori (MAP) estimators for the component
distributions of an HMM are as follows: For spread parameters
such as the Gaussian covariance K over N samples {z, ..., z, }, the
entropic prior |K|™' favors minimum volume covariances; the
estimator is
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For multinomial densities over N alternatives, the entropic prior
¢° = H,V 6% favors near-deterministic odds; the estimator is given
by the fix-point
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where w is a vector of sufficient statistics (e.g., event counts), W is
the Lambert inverse function satisfying W (z)e!V® =z, and Z is a
negative temperature term. Z varies the strength of the prior under
the control of a temperature variable T'=1 — Z that is initialized
high and decays to zero (Z = 1) over the course of training. This
gives deterministic annealing within EM, which speeds learning
and turns EM into a quasi-global optimizer.

These estimators have a bias that tends to concentrate evidential
support on just a few parameters. Consequently, MAP reestima-
tion extinguishes excess parameters and maximizes the informa-
tion content of the surviving parameters. If one begins training
with an overcomplete model (comprising the union of an
exponential number of embedded submodels), entropic estimation
whittles away any components of the model that are not in accord
with the hidden structure of the signal. This allows us to learn the
proper size and sparsity structure of a model. Of course, there is no
“correct” number of states for a continuous signal, but if there is
insufficient data to support many states, some will be automati-
cally removed.

Because the likelihood function of an HMM is a sum over an
exponential number of hidden state sequences, its entropy rate H(6)
is not directly calculable. It is, however, upper-bounded by the
summed entropies of the HMM’s component distributions, so
independently minimizing the entropies of the components drives
down the entropy of the whole. Moreover, in training this causes the
distribution over hidden state sequences to collapse onto a single
state sequence, at which point the likelihood function factors into its
component distributions and the estimators above become exact.

Algorithmically, the application to HMMs is straightforward:
One replaces the estimators in the maximization step of EM with
those given above. T is initially set high, then made to decay
exponentially. This obliterates initial conditions and forces EM to
explore the large-scale structure of the energy surface, by holding
entropy high, before committing to a region of parameter space. As
entropy is driven low, the model simplifies as the distribution
sharpens, parameters expire, and the emission distributions
segregate. As in ordinary EM, training ends when the estimators
converge to a fixed point.

One complication arises in the numerical instability of comput-
ing (5) for very small 6; using finite-precision floating point
numbers. Brand [5] shows how to use the expectation-step
statistics to detect parameters that vary the entropy more than
the fit and, therefore, contain almost no information. These can be
profitably zeroed with a gain in the prior that exceeds the loss in
the likelihood. This accelerates learning and can help significantly
to sculpt an appropriate model structure out of the initial
overcomplete model. As we will show below, entropic estimation
of HMMs often recovers a finite-state machine that is illuminative
of the structure of the mechanism that generated the data.

3.1 Examples

The left side of Fig. 1 shows an HMM entropically estimated
from very noisy samples of a system that orbits in a figure-
eight. Even though the data is noisy and has a continuation
ambiguity where it crosses itself, the entropically estimated
HMM recovers the deterministic structure of the system. The
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Fig. 1. Left: HMMs estimated entropically and conventionally from identical initial conditions and projected onto {z,y} figure-eight training data (gray dots). xs and
ellipses indicate Gaussian means and covariances of the hidden states; half-arcs point to transitionable states. Right: Entropic and conventional HMM models of pen-
strokes for the digit “5,” estimated from identical initial conditions on pen-position data taken at 5 msec intervals from 10 different individuals. Any random walk on the
entropic model produces a recognizable digit. (The state machine can begin in state 1 or state 2; state 10 is a pen-up.)

3D pose and orientation

lists of flow vectors

count of flow vectors™ ~

central moments of foreground pixels

Fig. 2. Graphical models of the office activity HMM (Section 4), the traffic MOMC-HMM (Section 5), and the pose-estimation HMM (Section 6). Circles’ represent hidden
state variables; boxes represent observed variables; arrows indicate conditional dependencies. Time advances on the horizontal axis.

conventionally estimated HMM gets “lost” at the crossing,
bunching states near the ambiguity and leaving many of them
incorrectly overconnected. This allows multiple circuits on
either loop as well as numerous small circuits on the crossing
and on the lobes—it is even possible for a random walk to
traverse the conventionally estimated HMM backward! The
conventionally estimated HMM derives most of its selective
power from the Gaussian emission distributions and is thus
little more than a mixture model. Its transition structure allows
backward motion, skipping states, orbits on just one lobe,
jumps across lobes. In short, it does not strongly constraint the
range of time-series the model will accept. In contrast, the
entropically estimated HMM has essentially recovered the
deterministic structure of data-generating mechanism.

Entropic estimation typically succeeds in extracting recogniz-
able structure even where conventional estimation fails to produce
a reasonable mixture model, as shown in the handwriting models
in the right side of Fig. 1. Entropic estimation induces an
interpretable automaton that captures essential structure and
timing of the pen-strokes, as well as variations in their ordering
between writers. In contrast, the conventional model is unin-
terpretable. It is the additional precision of entropic models that
makes them useful for analysis of the complex time-series that
arise in video monitoring.

We now turn to the uses of HMM and HMM variants in
interpreting video streams. We present three quite varied systems
whose useful output is a hidden state sequence. This sequence, and
the associated data likelihood, supports annotation, anomaly
detection, low bit-rate coding of scene activity, and, in the last
example, reconstruction. The graphical models (graphs of depen-
dence structure) of the three systems are depicted in Fig. 3.

initialization final model conventionally trained

!

Fig. 3. The transition matrix at initialization (left), and sparsified by entropic
estimation (middle). Conventional estimation fails to discover any such structure
(right) and, in fact, does not move transition probabilities far from initialization.
Darker entries signify higher probabilities; the top row shows initial-state
probabilities.

4 LEARNING A MODEL OF OFFICE ACTIVITY

Office activity is an interesting test of entropic estimation’s ability
to discover hidden structure because of the challenging range of
time spans: Fast events such as picking up the phone take just a
half-second, while other activities such as writing take hours. The
results below show that much of this structure can be discovered
from lightweight, coarse visual tracking.

4.1 Image Representation

HMMs require a reasonably short observation vector which
represents the content of each image. We used a very basic “blob”
representation consisting of ellipse parameters fitting the single
largest connected set of active pixels in the image. These pixels are
identified by acquiring a static statistical model of the background
texture and adaptive Gaussian color/location models of the
foreground (pixels that have changed, ostensibly due to motion).
Pixels are sorted into foreground or background according by
likelihood ratio; morphological dilation connects the foreground
pixels using a seed from the previous frame [17]. The observation
vector consisted of the ellipse parameters [z,7y, AZ, Ay, mass,
Amass, elongation, eccentricity], calculated from the mean and
eigenvectors of a 2D Gaussian fitted to the foreground pixels.
Approximately 30 minutes of data were taken at random at 4 Hz
from an SGI IndyCam; after automatic deletion of blank frames
(when the subject has left the field of view), roughly 21 minutes of
training data remained.

4.2 Training

Three sequences ranging from 100 to 1,900 frames in length were
used for entropic training of 12, 16, 20, 25, and 30-state HMMs.
States were initialized so that their emission distributions tile the
image. Transition probabilities were initialized to prefer motion to
adjoining tiles; first-state probabilities were set to zero for nonedge
states. It was found that variation in the initial emission
distributions or state counts made little difference in the gross
structure or performance of the final model. Training took
six seconds on an SGI R10000 running Matlab.

4.3 Results

Entropic training yields a substantially simplified transition matrix
(Fig. 3) which was automatically converted into a human-readable
representation of characteristic office activity. Fig. 4 explains the
resulting state machine. We found it fairly easy to label the states
by watching the frames they claim in novel video. Once the states
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Fig. 4. An activity graph automatically generated from the transition matrix of an
entropically estimated HMM. Each state label was determined by watching the
video subsequence of all test frames for which the state had occupation probability
> 0.99. Characteristic frames for several states are shown in Fig. 5. Some states
deserve special explanation: State 5 is a gating state that does not model data but
simplifies paths between other states; state 7 responds mainly to elongation and
represents getting up and sitting down.

are labeled, the Viterbi state sequence of any novel video provides
a frame-by-frame annotation of the activity viewed by the camera.
Note that most of the transitions were extinguished through
training. Entropic estimation with larger initial state counts
resulted in a similar qualitative structure. In contrast, standard
maximum likelihood estimation from identical initial conditions
consistently failed to produce interpretable models and generally
did not move transition parameters far from their initial values.

4.4 Anomaly Detection

The ability of the model to detect unusual behavior was tested
under several conditions to study the significance of the
entropically estimated transitions. Four data sets were used:
1) training data, 2) held out test data, 3) reversed held out test
data, and 4) data taken after the subject had consumed four cups of
espresso. These data sets differ principally in the ordering, rhythm,
and timing of actions and therefore emphasize the discriminative
power of the transition parameters. There were three test
conditions: 1) entropically estimated parameters, 2) conventionally
estimated parameters, 3) transition parameters flattened to chance.
Condition 3 tests whether the transitions or emission parameters
are responsible for the model’s selectivity (in conventional HMMs,
the emission Gaussians strongly dominate [2]). Fig. 6 shows that
the entropic HMM generalized better to test data and was most
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Fig. 5. Characteristic frames and foreground masks for several states in the HMM
model of office activity. (a) Entering the room, (b) at the computer, (c) at the white
board, (d) sitting, (e) getting the phone, (f) looking for a key, (g) writing, and
(h) swiveling right.
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Fig. 6. Model log-likelihoods normalized to sequence length. The entropically
estimated model is by far the most discriminative; the conventionally estimated
model is the most over-fit. Likelihoods are plotted relative to the test set, which we
take to be a de facto standard of normal activity.

successful in distinguishing abnormal behavior (backwards and
jittery). The performance of the flattened model shows that little of
that selectivity is due just to the emission parameters. In run-time
mode, we detect anomalous behavior by looking for windows in
which the HMM assigns a very low likelihood to the data. This
particular model will signal an alarm if one is asleep in one’s chair,
but not if one is reading in the chair. It has also detected anomalous
behavior due to the office occupant being distracted by events
outside the office window and when the office is occupied by a
worker with different habits.

This system uses an extremely simple set of visual features and
will not observe multiple moving objects, except insofar as the
person being tracked reacts to them. We address that limitation next.

5 MONITORING TRAFFIC

Most monitoring applications will require inference about many
simultaneously moving objects. Pedestrian plazas and vehicle
roadways have varying numbers of participants that constantly
enter and exit the scene. An HMM as traditionally formulated has
limited applicability because it is fundamentally a model of a
single hidden process, observing a single fixed-length observation
vector in each time step. Here, we introduce a novel graphical
model (joint distribution) that generalizes HMMs to take a varying
number of observations per time step and solve for its MAP
reestimation formulee. This model will learn holistic modes of
activity in the scene, e.g., the sorts of traffic modes that a traffic
engineer would need to know when designing controls for an
intersection.

Rather than attempt simultaneous tracking of tens of variable-
sized objects, with all the attendant sources of error, we will learn a
distribution over low-level image processes. Our image representa-
tion is a variable-length list V' = {1, , [, } of flow vectors between
two subsequent images. The list is variable-length because flow
vectors smaller than some fixed “noise” magnitude are discarded.
The set of moving image fragments in any one frame form several
clusters roughly corresponding to objects; over time these clusters
roughly follow the geometry of traffic lanes, preferred paths, etc.
The patterns of moving traffic are choreographed by the (invisible)
traffic lights into phases of horizontal and vertical traffic, as well as
implicit subphases with different frequencies of right and left turns.
Our model will have to “learn” the typical locations and directions
of the moving pixels, as well as the dynamic changes of these
patterns through entropy minimization.

The multimodal distribution of the moving pixels can be
captured with multivariate Gaussian mixture models. HMMs can
be extended to handle multiple observations per time step by
treating each frame’s flow-list as an observation sequence for the
mixture model at that time step. Since mixture models provide a
measure on the relative distribution of traffic behavior but not the
traffic density, we further augment the emission probabilities with
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Fig. 7. HMM states learned from a 13,600 frame training sequence. The six MOMC-HMM states learned from a sequence of about four traffic cycles, superimposed on
some of their typical frames. Ellipses indicate one standard deviation spatial iso-probability contours of each mixture component; arrows indicate the mean optical flow.
Labels were determined as in Fig. 4. The number following the # sign is the mean number of flow vectors the state observes in each frame. (a) State 1: east — south
west — south turns; #17, (b) State 2: east-west, all turns; #24, (c) State 3: pedestrians, stopping traffic; #3, (d) State 4: north-south traffic, waits, no turns; #19,
(e) State 5: north — west turns; #13, and (f) State 6: north-south, traffic, frequent turns; #26.

a logarithmic flow vector counting variable. We call the resulting
model a multi-observation-mixture+counter (MOMC) HMM. The
probability that an MOMC-HMM state s; with M mixtures will
observe the list V; is defined as:

vt M

)] D e N, 5. (7)

p m=1

PMOMC (vt def

FAV' I s

The first term f is a distribution on the observation count.
Typically, f would be a Poisson density function. However, in our
current application, the data is overdispersed, meaning that its mean
and variance do not agree as required for a Poisson fit. A double-
Poisson distribution is appropriate in such circumstances, but its
normalization is nonanalytic, making it unusable in the setting of
expectation-maximization. We currently use a left-truncated
Gaussian of the logarithm of the observation counts; the reestima-
tion formulee below are given for this choice of f. The second term
is simply a product of mixture densities, one for each observation.
The Gaussian mixture components A (v'; ! , 3/ ) are mixed by the
coefficients ¢!,. In our application, the mixture Gaussians are 4D
observing flow vectors in (z,y, dz, dy) space. Note that each state
has its own set of mixture Gaussians. The mixture components
model motion in particular directions and locations; the counter
variable essentially models the combined surface area of the
moving objects. Since the mixture likelihood of an empty set of
observations is undefined, we remove frames without motion from
the input sequence.

Maximum likelihood parameter reestimation formule can be
derived by a suitable adaptation of the auxiliary function @ [1],
[9]. Let us first define the single-path likelihood of the data for
a model with parameters 0 = {F;, Py, pi, 0%, ¢l pi,, 58} for all
states ¢,j and mixture components m. This is defined relative
to a specific sequence of states {s(1),...,5(),....s1)} €S’ and,
for each state sy and observation p, a particular mixture
component kg, € {1... M}:
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With this definition, the likelihood of the data given the model can
be written as the sum of Lg(V,s,k) over all state and mixture
sequences. Finally, we define @ as

Q.0) € SN Lo(V,s,k)log Ly(V, 5, k).

seST kel

The structure of @) as defined above is analogous to that used by
Juang et al. [9] and Liporace [10], having a unique maximum that
implies a locally maximal improvement of the data likelihood at
the same parameter value. Setting the derivation of @ for the new
parameters to zero and introducing some Lagrange multipliers, we
obtain the following reestimation formulee for the counter means,
the mixture coefficients, and the mixture means, respectively:
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where ~,;, = Prob(HMM hidden state s explains training frame ¢)
are the hidden state occupation probabilities obtained from the
standard forward-backward recursions on the HMM backbone
(see [12]). The reestimation formulae for the covariances are
analogous to the reestimation of the means and the reestimation
of the transition probabilities and initial state probabilities is
identical to that of standard HMMs.

We convert the ML formulae' into MAP entropy-minimizing
formulee by changing the normalizations (divisions in the expecta-
tion) according to (4) for covariances and (5) and (6) for coefficients.

5.1 Examples

We pointed the camera out the window at a busy traffic
intersection in Cambridge. Sources of image noise include
reflections in the windows of buildings in the scene, headlight
glare on wet streets, and rapidly varying blur from dirt and rain on
the window, which vibrates tympanically in the wind. The optical
flow was spatially subsampled by a factor of 10 and thresholded at
noise level.

1. We have given the batch-mode EM equations for completeness and
because they are the most efficient, computationally. These updates can be
converted to a fully online algorithm by windowing the forward-backward
analysis over short subsequences and updating the model parameters
according to their derivatives.
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Fig. 8. The mode-filtered sequence of hidden states obtained from parsing an
eight minute traffic sequence with a trained model. The plot on the top is a gray-
scale rendering of the plot on the bottom. The state labels correspond to the ones
in Fig. 7.

Fig. 9. Anomalous situation: A car driving in the wrong lane.

5.1.1 Analysis
Fig. 7 indicates the emission distributions of six MOMC-HMM
states learned via entropic estimation. The learned states were
fairly easy to interpret, even though the observed patterns were
quite complex due to multiple lanes, turns, and Boston driving
behavior. States 1 and 2 both represent horizontal traffic, but state 1
is active if there are either left or right turns into the left vertical
lane on the lower half of the image. The HMM uses three states to
represent vertical traffic; state 6 represents fluid traffic with
frequent turns. State 4 is specialized for traffic scenes where a
car slowly approaches the center of the crossing and waits there for
an opportunity to make a left turn. Finally, state 5 is tuned to rather
light North-South traffic with occasional right turns.

Fig. 8 shows the Viterbi hidden-state sequence® computed for a
novel video sequence. The rhythm of traffic is quite clear: Dark bars
correspond to horizontal traffic and light bars to vertical traffic.

5.1.2 Anomaly Detection

As in the office activity model, the MOMC-HMM supports
detection of anomalous situations. To do so, we compute for each
frame a forward-backward state estimation [12] over a frame
neighborhood of size five. Likelihood minima indicate situations
that are unusual even when their immediate temporal context is
taken into account.

Fig. 9 shows one of the most prominent minima in the eight
minute sequence—a case of creative driving in which the car
marked by an arrow drives in the oncoming traffic lane in order to
make an illegal left turn. The few other minima of that sequence
correspond to frames with a lot of noise motion or unusually
crowded traffic. Precision could probably be improved by better
preprocessing, but the important advantage over other anomaly
detection methods, e.g., [7], is that stochastic process models have
the potential to detect anomalies that are only anomalies with
respect to their dynamic context, e.g., cars running a red light.

2. For purposes of exposition, we renumbered the states so that
semantically close states have neighboring numbers.
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Fig. 10. Predictions: The car on the left is predicted to go either straight or to make
a right turn. Arc thickness of the spatial iso-probability ellipses is drawn
proportional to the probability of future activation. Gaussians with negligible
support are omitted from the figure. The thin arrows originating at the two moving
cars show the motion vectors in the current frame. Ellipses and motion vectors are
scaled to improve legibility.

5.2 Prediction
It is also possible to make short-term predictions of traffic
dynamics by projecting the current hidden state probabilities
through the transition matrix. If we combine this with the current
relative activations of the mixture components, we get an estimate
of where the model is expecting to see motion in the next frame.
Fig. 10 shows how an MOMC-HMM with eight states of six
mixtures each predicts for the car on the left to most likely go
straight or to take a right turn. A few frames later, the car starts
pulling to the right, at which point the support for the right-turn-
Gaussian drastically increases.

6 HIDDEN STATE FROM IMPOVERISHED SENSING

What if the available sensing never provides enough information
to learn the desired hidden state? Consider a rather literal
application of Plato’s allegory of the cave:® If one spent a lifetime
observing nothing but shadows, one might never infer the hidden
3D structure that makes two silhouettes of an object two views of
the same thing. On the other hand, one who has had experience of
the world’s 3D structure will have no trouble inferring the true
nature of the phenomena causing the shadows. This is a nontrivial
learning task because the mapping from shadows to 3D is many-
to-many: A human pose casts a multitude of different shadows in
different directions; a shadow can fall from a multitude of different
poses. These ambiguities must be resolved with constraints from
context—previous and subsequent shadows—and with constraints
from knowledge of how the body moves. In principle, HMMs
allow both kinds of constraints to be propagated forward and
backward over arbitrarily long spans of time. The dynamic
programming methods that do this are efficient and optimal
provided that the HMM transition matrix is sufficiently sparse.
Entropically estimated HMMs, in particular, are sparse enough to
carry these constraints for hundreds of frames.

We can learn to infer 3D state from 2D evidence by first training
on 3D data to learn the true dynamics of the system, then
associating families of silhouettes to each hidden state by
estimating a second set of emission distributions over the 3D
data’s silhouettes. We shall call the 3D behavior the target system
and the observed 2D shadows the cue system. The first training
phase yields a target HMM plus a matrix v, , = Prob(hidden state s

3. In the Republic, book VII, pp. 140-146, Plato compares our under-
standing of words and percepts to that of cave-dwellers who have never
seen the world outside, only the shadows it casts on the walls of the cave.
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3D sequence reconstructed from 2D silhouettes
75-166: staightsn & ook around

1-74: walk 3 staps bentover

_ walking

crouching

8

8
T
|

112344

straightening & looking about

grabbing

body rotation relative to camera

,Jmming N
! around camyng

167-246; crouch, grab, & tum 247-267: crouching carry 3 steps

150 200
frame #

Fig. 11. Left: Some frames from the “thief” sequence. Middle: The hidden state sequence inferred from observing a sequence of silhouettes agrees nicely with a
common-sense annotation of the action in the sequence. Right: Inferred 3D structure, rotated 120° from the viewpoint of the camera.

at time ¢). Using 7;;, we estimate a second set of emission means
and covariances such that the HMM also observes the synchro-
nized cue signal, specifically, shadows of each 3D pose:

A~

By = E’Yﬁ.l [zf] (11)

S = By, (- ) — )], (12)
where z; is the “shadow” observation vector and E[| is the
expectation operator. This associates 2D features to 3D hidden
state, yielding a new HMM which has the dynamics of the 3D
system, but is driven by 2D evidence.

To handle real vision data, we must also provide some
invariances. Translation invariance is easily obtained by represent-
ing the shadow by its central moments and scale invariance is
approximated by normalizing these moments with the vertical
standard deviation. There is no representational trick that gives
invariance to rotations out of the image plane, but these can be
handled by the HMM itself. We remove all full-body rotation from
the 3D training data and estimate an HMM. We then replicate this
HMM once for each view, reestimating the emission distributions
of each view-specific HMM to cover an appropriately rotated
version of the 3D data and its 2D “projection.” The 2D “projection”
is actually 10 scale-invariant central moments calculated from the
silhouette of a rendered “tin-man.” We then link together all view-
specific HMMs in the following manner: If P;; is the probability of
transitioning into state ¢ from state j in the original HMM and state
i’ is the ith equivalent state in a duplicated HMM observing data
rotated by ¢, then Py; = P;;V(¢;0,x), where V is a circular von
Mises density (for data normally distributed around a circle)
whose concentration x is set high. A state sequence on this
Cartesian product HMM will thereby specify both pose and
orientation at every time step. When processing evidence, the
Viterbi state sequence will be steered by the shadows, yet
constrained to follow the true dynamics of the 3D system.

6.1 Example

We trained an HMM on 800 frames of 3D motion-capture data,
replicated to 32 view-angles, and reestimated emission distribu-
tions on the appropriated rotated and rendered training data. We
then tested on a 2D silhouette sequence in which a “thief”
approaches an object, stands up straight to look around, bends
over to pick it up, then turns around and runs away, carrying the
loot in both hands. Fig. 11 (middle) shows that the hidden state
sequence, factored into pose and orientation information,
decomposes the sequence into qualitative poses and motions that
agree with our narrative. The system correctly infers that the two
walking subsequences are in diametrically opposite directions even
though the normalized silhouettes contain no information about

which way a the figure is facing or moving. This orientation
constraint is propagated 170 frames between the two subsequences.
If we augment the original 3D pose data Gaussians with
velocity information (deltas), it is also possible to reconstruct a
MAP 3D pose time-series Y = {y;,¥s,¥3, ...} from any hidden state
sequence S = {5(1), 5(2), 5(3), -}
Y= arg m{?xx log HN([:‘/M yt]; M,y Ké‘(/) )Nf’(yt; 0, KP)v (13)
¢
where y, =y, —y,_; and Np(y,;;0,Kp) is an optional prior on
velocities. In minimum-entropy models, equation (13) yields a
large quadratic equation whose maximum can be found by solving
a sparse system of linear equations [4]. This allows a qualitative
reconstruction of the 3D structure (Fig. 12), biased by the training
set (in this case, motion capture data for a hunched-back, video-
game monster, which accounts for the differences in posture). Note
that this gives an extremely compressed encoding of the 3D motion
inferred from the video—just 10 bits per frame to encode the
hidden state sequence.

7 DISCUSSION

We have shown that, by minimizing the entropy of its component
distributions, an HMM'’s internal state machine can be made to
organize observed activity into highly interpretable hidden states
that capture the dynamical regularities of the training set. Entropy-
minimized models show markedly superior performance in
traditional tasks such as classification and prediction. More
importantly, the facts that the model is well-attuned to the data-
generating mechanism’s dynamics and that the HMM states are
highly interpretable opens up several new useful tasks, in
particular, video annotation, low bit-rate coding of scene activity,
detection of anomalous behavior, and scene reconstruction from
minimally informative sensing.

The discovered hidden states are not guaranteed to coincide
with the events that we are interested in detecting, but in our
experience they have always been interpretable and useful. In
addition, the speech recognition literature details several methods
for forcing the semantics of hidden states using hand-labeled

* - t [ *® . ®
I ’ & 4§ 4]
Fig. 12. Every 12th frame from a back-subtracted infrared night-time sequence
and the corresponding inferred 3D structure, rendered for clarity.
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training data (see [8] for a review). These labor-intensive
techniques essentially “tell” the model what entropic estimation
discovers in unsupervised learning—how to break up the signal
into meaningful units.
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