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Abstract

We present the use of layered probabilistic representations for modeling human activities,
and describe how we use the representation to do sensing, learning, and inference at multiple
levels of temporal granularity and abstraction and from heterogeneous data sources. The
approach centers on the use of a cascade of Hidden Markov Models named Layered Hidden
Markov Models (LHMMs) to diagnose states of a user!s activity based on real-time streams of
evidence from video, audio, and computer (keyboard and mouse) interactions. We couple
these LHMMs with an expected utility analysis that considers the cost of misclassification.
We describe the representation, present an implementation, and report on experiments with
our layered architecture in a real-time office-awareness setting.
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1. Introduction

Researchers and application developers have long been interested in the promise
of performing automatic and semi-automatic recognition of human behavior from
observations. Successful recognition of human behavior is critical in a number of
compelling applications, including automated visual surveillance and multimodal
human–computer interaction (HCI)—user interfaces that consider multiple streams
of information about a user!s behavior and the context of a situation. Context is a
key element in the interaction between humans and computers, describing the sur-
rounding facts that add meaning. Although progress has been occurring on multiple
fronts, many challenges remain for developing machinery that can provide rich, hu-
man-centric notions of context. By improving the computer!s access to context, we
can increase the richness of the communication between humans and computers
and catalyze the development of new kinds of computational services and
experiences.

We describe in this paper our efforts to build probabilistic machinery that can
provide real-time interpretations of human activity in and around an office. The pa-
per is organized as follows: we first provide background on context-sensitive systems
in Section 2. Section 3 describes the challenge of understanding human activity in an
office setting, reviews the kinds of perceptual inputs we wish to analyze, and the
problems incurred with a single-layer (non-hierarchical) implementation of HMMs.
In Section 4, we introduce our representation, based on Layered Hidden Markov
Models (LHMMs). Section 5 presents the architecture and implementation of a sys-
tem named SEERSEER that uses LHMMs, and describes the details of feature extraction,
learning and classification used in the system. Experimental results with the use of
SEERSEER are reviewed in Section 6. Finally, we summarize our work and highlight sev-
eral future research directions in Section 7.

2. Previous work

2.1. Context sensitive systems

Location and identity have been the most common properties considered as com-
prising a user!s context in ‘‘context-aware’’ HCI systems. Context can include other
critical aspects of a user!s situation, such as the user!s current and past activities and
intentions. Recent work on probabilistic models for reasoning about a user!s loca-
tion, intentions, and focus of attention have highlighted opportunities for building
new kinds of applications and services [1,2].

Most of the previous work on leveraging perceptual information to recognize hu-
man activities has centered on the identification of a specific type of activity in a par-
ticular scenario. Many of these techniques are targeted at recognizing single, simple
events, e.g., ‘‘waving the hand’’ or ‘‘sitting on a chair.’’ Less effort has been applied
to research on methods for identifying more complex patterns of human behavior,
extending over longer periods of time, and involving multiple people. Dynamic mod-
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els of periodic patterns of people!s movements are used by Davis and Bobick [3] to
model the periodicity of activities such as walking. Other approaches to the recogni-
tion of human activity employ graphical models. A significant portion of work in this
arena has harnessed Hidden Markov Models (HMMs) [4]. Starner and Pentland [5]
use HMMs for recognizing hand movements used to relay symbols in American Sign
Language. The different signs are recognized by computing the probabilities that
models for different symbols would have produced the observed visual sequence.
More complex models, such as Parameterized-HMMs [6], Entropic-HMMs [7], Var-
iable-length HMMs [8], and Coupled-HMMs [9,10], have been used to recognize
more complex activities such as the interaction between two people. Ivanov and Bo-
bick [11], propose the use of a stochastic context-free grammar to compute the prob-
ability of a temporally consistent sequence of primitive actions recognized by
HMMs. Clarkson and Pentland [12] model events and scenes from audiovisual infor-
mation. They have developed a wearable computer system that automatically clus-
ters audio–visual information into events and scenes in a hierarchical manner.
Their goal is to determine where the user is at each instant of time (i.e., at home,
the office, at the bank, etc.). Brand and Kettnaker [7] propose an entropic-HMM ap-
proach to segment the observed video activities (office activity and outdoor traffic)
into meaningful states. They illustrate their models in video monitoring of office
activity and outdoor traffic. In [13], a probabilistic finite-state automaton (a varia-
tion of structured HMMs) is used for recognizing different scenarios, such as mon-
itoring pedestrians or cars on a freeway.

Although HMMs appear to be robust to changes in the temporal segmentation of
observations, they suffer from a lack of structure, an excess of parameters, and an
associated over-fitting of data when they are applied to reason about long and com-
plex temporal sequences with insufficient training data. Finally, in recent years, more
complex Bayesian networks have also been adopted for the modeling and recogni-
tion of human activities [2,14–21].

To date, however, there has been little research on real-time, multimodal systems
for human–computer interaction that use statistical methods to model typical human
activities in a hierarchical manner and for long periods of time. The methods and
working system described in this paper focus on this representation. We show
how with our approach one can learn and recognize on the fly common situations
in office settings. Before describing the details of our approach, we shall compare
the proposed architecure of LHMMS with related probabilistic representations.

2.2. Related representations

HMMs and their extensions, including the architecture proposed in this paper
(LHMMs), are particular cases of temporal or dynamic graphical models (DGMs).
DGMs consist of a set of random variables represented as nodes as well as directed
edges or links between them. They define a mathematical form of the joint or con-
ditional probability distribution function (PDF) between the random variables.
DGMs provide a probabilistic, graphical representation of conditional dependencies
(causality) among variables. Therefore, given suitable independence relationships
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among the variables overtime, DGMs can provide a computationally efficient and
sufficiently expressive solution to the problem of human activity modeling and rec-
ognition. The absence of directed links between nodes implies a conditional indepen-
dence. Moreover a family of transformations can be performed on the graphical
structure that has a direct translation in terms of mathematical operations applied
to the underlying PDF. Finally they are modular, i.e., one can express the joint glo-
bal PDF as the product of local conditional PDFs.

DGMs present several important advantages that are relevant to the problem of
human behavior modeling: they can handle incomplete data as well as uncertainty;
they are trainable; they encode causality (conditional independency) in a natural
way; algorithms exist for doing predictive inference; they offer a framework for com-
bining prior knowledge and data; and finally they are modular and parallelizable.

A layered structure, in addition, provides several valuable properties. A layered
formulation makes it feasible to decouple different levels of analysis for training
and inference. As it is further explained in Section 4.1, each level of our hierarchy
is trained independently, with different feature vectors and time granularities. Once
the system has been trained, inference can be carried out at any level of the hierarchy.
One could retrain the lowest (most sensitive to variations in the environment) level,
for example, without having to retrain any other level in the hierarchy.

A formulation forHierarchicalHMMs (HHMMs)was first proposed in [28] inwork
that extended the standard Baum–Welch procedure and presented an estimation pro-
cedure of the model parameters from unlabeled data. A trained model was applied to
an automatic hierarchical parsing of an observation sequence as a dendrogram. Be-
cause of the computational complexity of the original algorithm, the authors suggest
an efficient approximation to the full estimation scheme. The approximation could fur-
ther be used to construct models that adapt both their topology and parameters. The
authors briefly illustrate the performance of their models on natural written English
text interpretation and in English handwriting recognition. Recently,Murphy and Pa-
skin [29] introduce a linear-time inference algorithm for HHMMs.

In Hoey [21], proposes the use of a hierarchical framework for event detection.
Although being a nice framework it does not seem to be particularly suited for a task
with real-time constraints, because it requires the manual segmentation of the audio–
video streams. A new architecture of HMMs called embedded HMMs is proposed in
[30]. Such embedded HMMs are used in applications that handle two-dimensional
data such as images. One HMM models one dimension of the data while its state
variables correspond to the other dimension of the data. They have successfully ap-
plied these to the task of face recognition.

In the original formulation of [28] and other related papers [21,29], each state of
the architecture is another HMM or variation, and therefore represents a time se-
quence of the raw signals. In our model, however, at any given level of the hierarchy,
there are multiple HMMs each corresponding to a certain concept (for example, we
have five HMMs corresponding to different classes of audio signals—speech, silence,
music, etc.). These HMMs take as observations either the features computed from
the raw signals—at the lowest level—or the inferential results from the previous le-
vel—at any other level.
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The LHMM approach is most closely related to the concept of Stacked General-
ization [31], where the main idea is to learn classifiers on top of classifiers. Stacked
Generalization is a technique proposed to use learning at multiple levels. A learning
algorithm is used to determine how the outputs of the base classifiers should be com-
bined. For example, in a two-layer stacked classifier, the original dataset constitues
the ‘‘level zero’’ data. All the base classifiers are run at this level. The ‘‘level one’’
data are the outputs of the base classifiers. Another learning process occurs using
as input the ‘‘level one’’ data and as output the final classification results. This is
a more sophisticated technique than cross-validation and has been shown to reduce
the classification error due to the bias in the classifiers. Note that, while HMMs are
generative probabilistic models, they can also be treated as classifiers.

From this perspective, we can describe LHMMs as a representation for learning
different stacked classifiers and using them to do the classification of temporal con-
cepts with different time granularities. Rather than training the models at all the lev-
els at the same time, the parameters of the HMMs at each level can be trained
independently—provided that the previous level has been already trained, in a bot-
tom-up fashion. The inputs (observations) of each level are the classification outputs
of the previous level, such that only at the lowest level the observations (the leaves of
the tree) are the feature vectors extracted directly from sensor signals.

3. Tractable and robust context sensing

A key challenge in inferring human-centric notions of context from multiple sen-
sors is the fusion of low-level streams of raw sensor data—for example, acoustic and
visual cues—into higher-level assessments of activity. The task of moving from low-
level signals to more abstract hypotheses about activity brings into focus a consider-
ation of a spectrum of approaches. Potentially valuable methods include template
matching, context-free grammars, and various statistical methods. We have devel-
oped a probabilistic representation based on a tiered formulation of dynamic graph-
ical models that we refer to as Layered Hidden Markov Models (LHMMs).

To be concrete, we have explored the challenge of fusing information from the fol-
lowing sensors:

1. Binaural microphones: Two mini-microphones (20–16,000Hz, SNR 58dB) capture
ambient audio information and are used for sound classification and localization.
The audio signal is sampled at 44,100kHz.

2. Camera: A video signal is obtained via a standard Firewire camera, sampled at
30f.p.s, and it is used to determine the number of persons present in the scene.

3. Keyboard and mouse: We keep a history of keyboard and mouse activities during
the past 1, 5, and 60s.

Initially, we built single-layer (non-hierarchical) models to reason about the over-
all office situation, including determining the presence of a PHONE CONVERSATIONPHONE CONVERSATION,
A FACE TO FACE CONVERSATIONA FACE TO FACE CONVERSATION, A ONGOING PRESENTATIONA ONGOING PRESENTATION, A DISTANT CONVER-A DISTANT CONVER-
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SATIONSATION, NOBODY IN THE OFFICENOBODY IN THE OFFICE, and A USER IS PRESENT AND ENGAGED IN SOMEA USER IS PRESENT AND ENGAGED IN SOME

OTHER ACTIVITYOTHER ACTIVITY. Some of these activities have been proposed in the past as indica-
tors of a person!s availability [22]. We explored the use of Hidden Markov Models
(HMMs), a popular probabilistic framework for modeling processes that have struc-
ture in time. An HMM is essentially a quantization of a system!s configuration space
into a small number of discrete states, together with probabilities for the transitions
between states. A single finite discrete variable indexes the current state of the sys-
tem. Any information about the history of the process needed for future inferences
must be reflected in the current value of this state variable. There are efficient algo-
rithms for state and parameter estimation in HMMs. Graphically HMMs are often
depicted ‘‘rolled-out in time,’’ such as in Fig. 1A.

We found, however, that a single-layer HMM approach generated a large param-
eter space, requiring substantial amounts of training data for a particular office or
user, and with typical classification accuracies not high enough for a real application.
Finally and more importantly, when the system was moved to a new office, copious
retraining was typically necessary to adapt the model to the specifics of the signals
and/or user in the new setting.

Therefore, we sought a representation that would be robust to typical variations
within office environments, such as changes of lighting and acoustics, and that would
allow the models to perform well when transferred to new office spaces with minimal
tuning through retraining. We also pursued a representation that would map natu-

Fig. 1. Graphical representation of (A) HMMs and rolled-out in time, and (B) an architecture of Layered
HMMs with three different levels of temporal granularity.
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rally onto the problem space. Psychologists have, in fact, found that many human
behaviors are hierarchically structured [23]. We converged on the use of a multilevel
representation that allows for explanations at multiple temporal granularities, by
capturing different levels of temporal detail.

4. Layered Hidden Markov Models

We have developed a Layered HMM (LHMM) representation in an attempt to
decompose the parameter space in a way that could enhance the robustness of the
system by reducing training and tuning requirements. In LHMMs, each layer of
the architecture is connected to the next layer via its inferential results. The represen-
tation segments the problem into distinct layers that operate at different temporal
granularities1—allowing for temporal abstractions from pointwise observations at
particular times into explanations over varying temporal intervals. LHMMs can
be regarded as a cascade of HMMs. The structure of a three-layer LHMM is dis-
played in Fig. 1B.

Formally, given a set of TL observations, OL ¼ fOL
1;O

L
2 ; . . . ;O

L
TL
g ¼ OLð1 : T LÞ, at

level L, we can consider the HMMs at this level as being a multiclass classifier map-
ping these TL observations to one of KL classes. In our case, each HMM at each level
of the hierarchy models one class. Let X T L be the sample space of vectors OL

i . If
OL 2 X T L , then the bank of KL HMMs2 can be represented as fL : X T L ! YL, where
YL 2 f1; . . . ;KLg is the discrete variable with the class label. i.e., the bank of HMMs
is a function fL that outputs one class label every TL observations. The HMMs at the
next level (L + 1) take as inputs the outputs of the HMMs at level L, i.e.,
X T Lþ1 ¼ fYL

1 ; . . . ;Y
L
T Lþ1

g, and learn a new classification function with time granularity
T Lþ1; fLþ1 : X

T Lþ1 ! YLþ1.

4.1. Learning in LHMMs

In this framework, each layer of HMMs is learned independently of the others,
with one HMM per class. The availability of labeled data during the training phase
allows us to do efficient supervised learning. By itself, each layer is trained using the
same learning and inference machinery that it is used for HMMs.

The problem of learning the model parameters in an HMM is solved by the for-
ward–backward or Baum–Welch algorithm. This algorithm provides expressions for
the forward, at(i), and backward, bt(i), variables, whose normalized product leads to
ct(i) = P(qt = Si ŒO1 . . . Ot), i.e., the conditional likelihood of a particular state Si at
time t, given the observations up to time t, {O1 . . . Ot}. The likelihood of a sequence
of observations is given by L ¼ P ðO1 . . .OT Þ ¼

PN
i¼1atðiÞbtðiÞ, where N is the number

1 The concept of ‘‘time granularity’’ in this context corresponds to the window size or vector length of
the observation sequences in the HMMs.

2 Note that we have one HMM for each class. We will denote these kind of HMMs discriminative
HMMs.
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of hidden states of the HMM. In particular, the expression for the at(i) variable is:
atþ1ðjÞ ¼ ½

PN
i¼1atðiÞP jji&pjðotÞ, and for the bt(i) variable: btðiÞ ¼ ½

PN
j¼1btþ1ðjÞ

P ijjpjðotþ1Þ&, where N is the number of hidden states, Pi Œj is the transition probability
of going to state i given state j and pi(ot) is the probability for state i of the observa-
tion at time t. From the a and b variables one can obtain the model parameters, i.e.,
the observation and transition probabilities.

The layered formulation of LHMMs makes it feasible to decouple different levels
of analysis for training and inference. As we have just shown, each level of the hier-
archy is trained independently, with different feature vectors and time granularities.
In consequence, the lowest, signal-analysis layer, that is most sensitive to variations
in the environment, can be retrained, while leaving the higher-level layers unchanged.

4.2. Inference in LHMMs

The final goal of the system is to decompose in real-time the temporal sequence
obtained from the sensors into concepts at different levels of abstraction or temporal
granularity. At each level, we use the forward–backward algorithm to compute the
likelihood of a sequence given a particular model.

We have implemented two approaches to performing inference with LHMMs. In
the first approach, which we refer to as maxbelief, the model with the highest likeli-
hood is selected, and this information is made available as an input to the HMMs at
the next level. In the distributional approach, we pass the full probability distribution
over the models to the higher-level HMMs.

As an example, let us suppose that we train K HMMs at level L of the hierarchy,
ML

k , with k = 1, . . . ,K. Let LðkÞLt ¼ logðP ðOð1 : tÞjML
k ÞÞ ¼ log

P
iatði;ML

k Þ be the log-
likelihood of the observed sequence O (1:t) for model ML

k ; and let atði;ML
k Þ be the al-

pha variable of the standard Baum–Welch algorithm [24] at time t, state i and for

model ML
k , i.e., atþ1ðj;ML

k Þ ¼
PN

i¼1atði;M
L
k ÞP

ML
k

jji pjðot;M
L
k Þ, where P

ML
k

jji is the transition

probability from state j to state i for model ML
k , and pjðot;ML

k Þ is the probability for
state j in model ML

k of observing ot. At that level, we classify the observations by
declaring CðtÞL ¼ argmaxkLðkÞLt , with k = 1, . . . ,K. The next level of the hierarchy
(L + 1) could have two kinds of observations of s temporal length: (1) in the maxbe-
lief approach, the hard classification results, C(1:s)L, from the previous level for each
time step—and therefore a vector of s discrete symbols in {1, . . . ,K}; or (2) in the
distributional approach, the log-likelihoods, fLð1 : KÞLt¼1; . . . ;Lð1 : KÞLt¼sg, for each
of the models and time instants,—and therefore a vector of K reals for each time
step. In our experience, we did not observe performance increases using the latter ap-
proach. The results reported in Section 6 correspond to the maxbelief approach,
which is simpler.

4.3. Decomposition per temporal granularity

Fig. 1B highlights how we decompose the problem into layers with increasing time
granularity. For example, at layer L we have a sliding time window of TL samples.
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The HMMs at this level analyze the data contained in such time window, compute
their likelihood and they generate one observation for layer L + 1 every TL samples.
That observation is the inferential output of the HMMs in level L, as previously de-
scribed. The sliding factor along with the window length vary with the granularity of
each level. At the lowest level of the hierarchy, the samples of the time window are
the features extracted from the raw sensor data (see Section 5.1). At any other level
of the hierarchy, the samples are the inferential outputs of the previous level. The
higher the level, the larger the time scale—and therefore the higher the level of
abstraction—because gathering observations at a higher level requires the outputs
of lower layers. In a sense, each layer performs time compression before passing data
upward.

Automatic estimation of TL from data is a challenging problem both for standard
HMMs and LHMMs. In the experiments described in this paper, we determined the
time granularities at each level based on our intuitions and knowledge about the dif-
ferent classes being modeled at each level. We used cross-validation to select the opti-
mal values from the original set of proposed ones.

5. Implementation of SEER

Focusing on our target application of office awareness, we developed a system
named SEERSEER, which employs a two-layer HMM architecture. In this Section we de-
scribe in detail the implementation of SEERSEER.

5.1. Feature extraction and selection in SEER

The raw sensor signals3 are preprocessed to obtain feature vectors (i.e., observa-
tions) for the first layer HMMs.

(1) On the audio side, linear predictive coding (LPC) coefficients [25] are com-
puted. Feature selection is applied on these coefficients by means of principal com-
ponent analysis (PCA). The number of features is selected such that at least 95% of
the variability in the data is maintained, which is typically achieved with no more
than seven features. Other higher-level features are also extracted from the audio sig-
nal, such as the energy, the mean and variance of the fundamental frequency over a
time window and the zero crossing rate (ZCR) [24], given by:

ZerosðmÞ ¼
1

N

Xm

n¼m'Nþ1

j signðsðnÞÞ ' signðsðn' 1ÞÞ j
2

( wðm' nÞ;

where m is the frame number, N is the frame length, w is a window function, s(n) is
the digitized speech signal at an index indicator n, and sign(s(n)) = {+1,
s(n)P 0;'1, s(n) < 0}.

3 See Section 3 for a description of the sensors used in SEERSEER.
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(2) The source of the sound is localized using the time delay of arrival (TDOA)
[26] method. In TDOA, one measures the time delays between the signals coming
from each sensor. Typically, TDOA-based approaches have two steps: the time delay
estimation and the sound source localization. Let s(n) be the source signal and be
xi(n) the signal received by the ith sensor. If we assume no reverberation, the received
signal is given by: xi(n) = ais(n'ti) + bi(n). To model reverberation, we add the non-
linear reverberation function: xi(n) = gi * s(n'ti) + bi(n), where ai is the attenuation
factor, bi is additive noise, and gi is the response between the source and the sensor.
In SEERSEER we implemented multiple approaches for estimating the time delay of arrival
between the left and right audio signals. We obtained the best performance by esti-
mating the peak of the time cross-correlation function between the left and right
audio signals over a finite time window [N1, N2], i.e.: rlrðdÞ ¼

PN2

n¼N1
lðnÞrðn' dÞ.

This is the method used in the experiments described in Section 6.
(3) On the video side, we divide the video images into four vertical strips of equal

width. We extract four features on each strip of the images: the density4 of skin color
in the image strip (obtained by discriminating between skin and non-skin models con-
sisting of histograms in YUV space), the density ofmotion in the image strip (obtained
by image differences), the density of foreground pixels in the image strip (obtained by
background subtraction, after having learned the background), and the density of face
pixels in the image strip (obtained by means of a real-time face detector to the image
[27]).

(4) Finally, a history of the last 1, 5, and 60s of mouse and keyboard activities is
logged.

5.2. Architecture of SEER

SEERSEER!s architecture is depicted in Fig. 2. We employ a two-layer cascade of
HMMs with three processing levels. The lowest level captures video, audio, and key-
board and mouse activity, and computes the feature vectors associated to each of
these signals (see Section 5.1). These raw sensor signals are processed with time win-
dows of duration less than 100ms.

5.2.1. First layer HMMs
The first layer of HMMs includes two banks of distinct HMMs for classifying the

audio and video feature vectors, with time granularities of less than 1s. The structure
for each of these HMMs is determined by means of cross-validation on a validation
set of real-time data.

On the audio side, we train one HMM for each of the following office sounds:
human speech, music, silence, ambient noise, phone ringing, and the sounds of key-
board typing. We will denote this kind of HMMs discriminative HMMs. When clas-
sifying the sounds, all of the models are executed in parallel. At each instant, the

4 By ‘‘density’’ we mean the total number of skin pixels in the strip, divided by the total number of
pixels in the strip.
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model with the highest likelihood is selected and the sound is classified correspond-
ingly. The source of the sound is also localized, as previously explained (see Sub-
section 5.1). The video signals are classified using another bank of discriminative
HMMs that implement a person detector. At this level, the system detects whether
nobody, one person (semi-static), one active person, or multiple people are present in
the office.

5.2.2. Second layer HMMs
The inferential results5 from the first layer (i.e., the outputs of the audio and video

classifiers), the derivative of the sound localization component, and the history of
keyboard and mouse activities constitute a feature vector that is passed to the next
and highest layer of analysis. The models at this level are also discriminative HMMs,
with one HMM per office activity to classify. This layer handles concepts that have
longer temporal extent corresponding to a time granularity of about 5–10s. Such
concepts include the user!s typical activities in or near an office. Office activities rec-
ognized by SEERSEER include: (1) PHONE CONVERSATIONHONE CONVERSATION; (2) PRESENTATIONRESENTATION; (3) FACE-ACE-

TO-FACE CONVERSATIONTO-FACE CONVERSATION; (4) USER PRESENT, ENGAGED IN SOME OTHER ACTIVITY;SER PRESENT, ENGAGED IN SOME OTHER ACTIVITY;

5 See Section 4 for a detailed description of how we use these inferential results.

Fig. 2. Architecture of the multimodal SEERSEER system.
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(5) DISTANT CONVERSATIONISTANT CONVERSATION (outside the field of view); and (6) NOBODY PRESENTOBODY PRESENT.
Some of these activities have been proposed in the past as indicators of a person!s
availability [22].

6. Experiments

We have tested SEERSEER in multiple offices, with different users and respective envi-
ronments for several weeks. In our tests, we have found that at least the highest layer
of SEERSEER is robust to changes in the environment. In all the cases, when we moved
SEERSEER from one office to another, we obtained nearly perfect performance without
the need for retraining the highest level of the hierarchy. Only some of the lowest-le-
vel models required re-training to tune their parameters to the new conditions (such
as different ambient noise, background image, and illumination) . The fundamental
decomposability of the learning and inference algorithms in LHMMs makes it pos-
sible to reuse prior training of the higher-level models, allowing for the selective
retraining of layers that are less robust to the variations present in different instances
of similar environments.

Fig. 3 illustrates SEERSEER!s user interface and performance in real time. The figure
depicts SEERSEER running while a PRESENTATIONRESENTATION is taking place in the office. The fig-
ure illustrates several features of the user!s interface. On the top row, from left to
right, we find: (1) The video input. The rectangle around the face on the right im-
age is the output of the face detection module; (2) the raw audio signal; and (3) the
output of the sound localization module and right below it the output of the com-
puter activity monitoring module. In the second row, from left to right, there is
SEERSEER!s iconic representation of the activity that has been recognized (PRESENTA-RESENTA-

TIONTION in this case). Right below it there is the value of each of the inputs to the bank
of HMMs that performs the office activity recognition (highest layer of HMMs in the
LHMM architecture): first the result of the video classification HMMs (one person
present in the figure); second the result of the audio classification HMMs (speech
in the figure); third the location of the sound (center in the figure); and fourth the
value of the keyboard and mouse activity sensor (keyboard in the figure). Finally,
there is the real-time plot of the normalized likelihoods of the HMMs in the highest
layer (i.e., the office activity recognition layer) with their corresponding legend. SEERSEER

chooses the model with the highest likelihood as the activity taking place in the of-
fice. Note how the highest likelihood model is the one corresponding to
PRESENTATIONRESENTATION.

In a more quantitative study, we compared the performance of our model with
that of single, standard HMMs. The feature vector in the latter case results from
the concatenation of the audio, video, and keyboard and mouse activity features
in one long feature vector. We refer to these HMMs as Cartesian Product (CP)
HMMs. For example, in SEERSEER we want to classify six different high-level office activ-
ities. Let us assume that we use eight-state CP HMMs with single Gaussian observa-
tions of dimensionality 16 to model such behaviors. We would need to estimate
8 * (16 + 16 + 120) = 1216 parameters for each behavior. An equivalent LHMM
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with 2 levels would typically have, at the lowest level, two banks of, say, five-state
HMMs (six audio HMMs—assuming we have six audio classes, and four video
HMMs–assuming four video classes, with dimensionalities 10 and 3, respectively),

Fig. 3. SEERSEER!s user interface while running in real-time during a PRESENTATIONRESENTATION.

Fig. 4. Normalized likelihoods for each of the activity models overtime when tested in real time. (A) Single
HMMs, (B) LHMMs.
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and at the highest level (the behavior level), a set of 6 four-state HMMs6 of dimen-
sionality 12, if we use the distributional approach: six dimensions for the six audio
HMMs, four for the four video HMMs, one for the sound localization component,
and another for the keyboard and mouse activity history. This amounts to
4 * (12 + 12 + 66) = 360 for each behavior at the second layer. Therefore the number
of parameters needed to estimate the office activities is much lower for LHMMs than
for CP HMMs. Moreover, in LHMMs the inputs at each level have already been fil-
tered by the previous level and are more stable than the feature vectors directly ex-
tracted from the raw sensor data. In summary, encoding prior knowledge about the
problem in the structure of the models decomposes the problem in a set simpler sub-
problems and reduces the dimensionality of the overall model. Therefore, for the
same amount of training data, we would expect LHMMs to have superior perfor-
mance than HMMs. Our experimental results corroborate this expectation.

We point out that it is not considerably more difficult to determine the structure
of LHMMs versus that of HMMs. Both for HMMs and LHMMs, we estimated the
structure of each of the models—and at each of the levels in LHMMs—using cross-
validation. The only additional complexity when designing an LHMM architecture
is choosing the number of levels and their respective time granularities. Although this
step may be automated in future work, we relied on intuition and knowledge about
the domain to handcraft the number of layers and the time granularity of each layer.

Fig. 4 illustrates the per-frame normalized likelihoods on testing in real-time both
HMMs and LHMMs with the different office activities. By ‘‘normalized’’ likelihoods,
we denote the likelihoods whose values have been bounded between 0 and 1. They

are given by: NormLi ¼ Li'minjðLjÞ
maxjðLjÞ'minjðLjÞ, for i = 1, . . . ,N, j = 1, . . . ,N, and N models.

We only plot the likelihoods for the last half of the testing data to avoid instabilities
in the transitions. Note that, in the case of LHMMs, the likelihoods are those cor-
responding to the highest level in the hierarchy, because this is the level that models
the office activities.

Finally, we carried out a different set of experiments. We trained and tested the per-
formance ofLHMMsandHMMson 60min of recorded office activity data (10min per
activity, 6 activities, and 3 users). Given that it was recorded activity data, we knew the
ground truth for each activity. The first few seconds of each dataset were ignored for
classification purposes, due to the lag of the models in recognizing each activity. We
used 50% of the data—i.e., 5min per activity—for training. The rest of the data—
i.e., 5min per activity—was used for testing. The results are summarized in Table 1.
The average accuracies of both HMMs and LHMMs on testing data were of 72.68%
(STD 8.15) and 99.7% (STD 0.95), respectively. In our experience with the system,
HMMs normally needed training under similar office conditions (lighting, acoustics,
etc.) than that of the particular testing data to obtain reasonable classification results.
On the other hand, we can typically reuse the highest level in LHMMs (if not lower lay-
ers) that have been trained under different office conditions than that of testing.

6 In our experiments the best models obtained using cross-validation had no more than four states in
LHMMs but needed at least eight states in the Cartesian Product HMMs.
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6.1. Discussion

From our experiments we conclude that:

(1) For the same amount of training data, the accuracy of LHMMs is significantly
higher than that of HMMs. The number of parameters of CP HMMs is higher
than that of LHMMs for the office activities being modeled in our experiments.
As a consequence, for the same amount of training data, HMMs are more prone
to over-fitting and worse generalization than LHMMs.

(2) LHMMs are more robust to changes in the environment than HMMs. In our exper-
iments, we could not obtain any reasonable performance on CP HMMs had they
not been highly tuned to the particular conditions of the testing environment. On
the contrary, at least the highest level of LHMMs did not require retraining, despite
the changes in office conditions. This is due to the fact that the CPHMMs carry out
high-level inferences about the user!s activity, directly from the raw sensor signals,
whereas LHMMs isolate the sensor signals in different sub-HMMmodels for each
input modality.

(3) The discriminative power of LHMMs is notably higher than that of HMMs. By
discriminative power, we mean the distance between the normalized likelihood
of the two most likely models. The normalized likelihoods for the HMMs
tend to be much closer to each other, making them prone to instability and
errors in the classification. Note in Fig. 4 how the normalized likelihoods
between the two best models in HMMs are much closer than that in
LHMMs. This phenomenon is particularly noticeable in the PRESENTATIONRESENTATION,
FACE TOACE TO FACEACE CONVERSATIONONVERSATION, DISTANTISTANT CONVERSATIONONVERSATION, and NOBODYOBODY

AROUNDROUND activities.

Table 1
Confusion matrix for tuned CP HMMs and generic LHMMs on 30min of real data, where PC, PHONEHONE

CONVERSATIONONVERSATION; FFC, FACE-TO-FACE CONVERSATIONACE-TO-FACE CONVERSATION; P, PRESENTATIONRESENTATION; O, OTHERTHER ACTIVITYCTIVITY; NA,
NOBODYOBODY AROUNDROUND; and DC, DISTANTISTANT CONVERSATIONONVERSATION.

PC FFC P O NA DC

Confusion matrix for highly tuned HMMs
PC 0.8145 0.0679 0.0676 0.0 0.0 0.05
FFC 0.0014 0.9986 0.0 0.0 0.0 0.0
P 0.0 0.0052 0.9948 0.0 0.0 0.0
O 0.0345 0.0041 0.003 0.9610 0.0 0.0
NA 0.0341 0.0038 0.0010 0.2524 0.7086 0.0
DC 0.0076 0.0059 0.0065 0.0 0.0 0.98

Confusion matrix for generic LHMMs
PC 1.0 0.0 0.0 0.0 0.0 0.0
FFC 0.0 1.0 0.0 0.0 0.0 0.0
P 0.0 0.0 1.0 0.0 0.0 0.0
O 0.0 0.0 0.0 1.0 0.0 0.0
NA 0.0 0.0 0.0 0.0 1.0 0.0
DC 0.0 0.0 0.0 0.0 0.0034 0.9966
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7. Summary, conclusions, and future directions

We have described principles and implementation of a real-time, multimodal ap-
proach to human activity recognition in an office environment. We have introduced
a layered HMM representation (LHMM) that has the ability to capture different lev-
els of abstraction and corresponding time granularities. The representation and asso-
ciated inference procedure appear to be well matched to the decomposition of signals
and hypotheses for discriminating a set of activities in an office setting. Our models
are learned from data and can be trained on-the-fly by the user. Some important
characteristics of LHMMs when compared to HMMs are: (1) LHMMs encode the
hierarchical temporal structure of the discrimination problem; thus, the dimension-
ality of the state space that needs to be learned from data is much smaller than that
of their corresponding CP HMMs; (2) LHMMs, due to their layered structure, are
easier to interpret, and, thus, easier to refine and improve, than the corresponding
CP HMMs; (3) LHMMs can encode different levels of abstraction and time granu-
larities that can be linked to different levels of representation for human behaviors;
and (4) the modularity of LHMMs allows the selective retraining of the levels that
are most sensitive to environmental or sensor variation, minimizing the burden of
training during transfer among different environments.

We have demonstrated the performance of LHMMs in SEERSEER, a real-time system
for recognizing typical office activities. SEERSEER can accurately recognize when a user is
engaged in a phone conversation, giving a presentation, involved in a face-to-face
conversation, doing some other work in the office,—or when a distant conversation
is occurring in the corridor. We believe that our framework can be harnessed to en-
hance multimodal solutions on the path to more natural human–computer
interaction.

We are currently exploring several theoretical and engineering challenges with the
refinement of LHMMs. Ongoing work includes our efforts to understand the influ-
ence of the layered decomposition on the size of the parameter space, and the result-
ing effects on learning requirements and accuracy of inference for different amounts
of training. Alternate decompositions lead to layers of different configurations and
structure; we are interested in understanding better how to optimize the decomposi-
tions. We are also exploring the use of unsupervised and semi-supervised methods
for training one or more layers of the LHMMs without explicit training effort. An-
other research direction entails defining different selective perception policies for
guiding perception in our models, emphasizing the balance between computation
and recognition accuracy. Finally, we are exploring several applications of inference
about context.
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