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The major challenge that faces American Sign Language (ASL) recognition now
is developing methods that will scale well with increasing vocabulary size. Unlike
in spoken languages, phonemes can occur simultaneously in ASL. The number of
possible combinations of phonemes is approximately 1.5× 109, which cannot be
tackled by conventional hidden Markov model-based methods. Gesture recognition,
which is less constrained than ASL recognition, suffers from the same problem. In
this paper we present a novel framework to ASL recognition that aspires to being a
solution to the scalability problems. It is based on breaking down the signs into their
phonemes and modeling them with parallel hidden Markov models. These model the
simultaneous aspects of ASL independently. Thus, they can be trained independently,
and do not require consideration of the different combinations at training time. We
show in experiments with a 22-sign-vocabulary how to apply this framework in
practice. We also show that parallel hidden Markov models outperform conventional
hidden Markov models. c© 2001 Academic Press

Key Words:sign language recognition; gesture recognition; human motion mod-
eling; hidden Markov models.

1. INTRODUCTION

Computers still have a long way to go before they can interact with users in a truly
natural fashion. From a user’s perspective, the most natural way to interact with a computer
would be through a speech and gesture interface. Although speech recognition has made
significant advances in the past 10 years, gesture recognition has been lagging behind. Yet,
gestures are an integral part of human-to-human communication and convey information
that speech alone cannot [20]. A working speech-and-gesture interface is likely to entail a
major paradigm shift away from point-and-click user interfaces toward a natural language
dialogue-and-spoken command-based interface.
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Sign language recognition enters the picture in three ways. First, such a paradigm shift
would leave those deaf people who depend on sign language as their primary mode of
communication behind. There is a sense of urgency, because of the improvements in speech
recognition. Unless we get sign language recognition to the same level of performance as
speech recognition, accessibility of computers will become a major issue for the deaf.

Second, gesture recognition in itself is a difficult problem, because gestures are uncon-
strained, but gestures take place in the same visual medium as sign languages, and the latter
possess a high degree of structure. This structure makes it easier to solve problems in sign
language recognition first, before applying them to gesture recognition.

Third, a working sign language recognition system would make deaf–hearing interaction
easier. Particularly public functions, such as the courtroom, conventions, and meetings,
would become much more accessible to the deaf.

The main challenge in sign language recognition is to find a modeling paradigm that is
powerful enough to capture the language, yet scales to large vocabularies. Signed languages
are highly inflected, which means that each sign can appear in many different forms, de-
pending on subject, object, and numeric agreement. Thus, it is futile to model each form
separately—there are simply too many of them. Instead, sign language recognizers must
capture the commonalities among all signs. In speech recognition this problem is solved by
modeling the language in terms of its constituent phonemes. In principle, the same solution
applies to sign language recognition.

However, modeling the phonology of sign languages is much more difficult than mod-
eling the phonology of spoken languages. In speech, the phonemes appear sequentially.
In signed languages the phonemes can appear both in sequences and simultaneously. For
example, a sign can consist of two hand movements in sequence, but the handshape and
hand orientation can change at the same time. As a consequence, there is a large number of
possible combinations of phonemes that can occur in parallel. Attempting to capture all the
possible different combinations of phonemes statically—for example, by training a hidden
Markov model (HMM) for each combination—would be futile for anything but the smallest
vocabularies.

In this paper we present a novel framework for modeling and recognizing American Sign
Language (ASL). It consists of breaking the simultaneous aspects of ASL down into its
constituent phonemes and modeling them with parallel hidden Markov models (PaHMMs).
This is a new extension to hidden Markov models (HMMs).

In previous work, researchers have proposed other extensions to HMMs to model the
interaction of several interacting processes in parallel, such as factorial hidden Markov
models (FHMMs) [7] or coupled hidden Markov models (CHMMs) [3]. These extensions
require modeling the interactions of the processes during the training phase, and thus require
training examples of every conceivable combination of actions that can occur in parallel.
Thus, it is doubtful that FHMMs and CHMMs will scale well in ASL recognition.

PaHMMs avoid these scalability problems by assuming that the processes are independent
of one another (“independent channels”). As a consequence, the channels can be trained
completely independently, before they are combined at recognition time. Thus, it is not
necessary to provide training examples of all possible combinations of phonemes. There is
linguistic evidence that ASL can be modeled at least partially as independent channels [18].
Hence, PaHMMs stand a much better chance than FHMMs and CHMMs of being scalable.
Because gesture recognition is even less constrained than ASL recognition, PaHMMs are
highly significant to gesture recognition research, as well.
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We use 3D data as the input to our recognition framework. These data can be collected
either with 3D computer vision methods, such as physics-based modeling [14–16], or with
a magnetic tracking system, such as the Ascension Technologies MotionStar system. We
use these 3D data to recognize continuous sentences over a 22-sign vocabulary, where the
individual signs are modeled in terms of their constituent phonemes.

The remainder of this paper is organized as follows: First, we give an overview on related
work. Then we describe the fundamentals of modeling ASL, as they apply to our recognition
framework. We show how and why breaking down signs into their constituent phonemes
is beneficial. We then describe the necessary extensions to existing phonological models
of ASL to adapt them to ASL recognition. We also develop the phonological basis for
modeling ASL in terms of independent channels.

Then we give a brief introduction to HMMs and describe the token-passing algorithm
as the main recognition method. We briefly discuss FHMMs and CHMMs and why they
cause problems for large-scale ASL recognition. We then develop the mathematics and
algorithms behind PaHMMs, in order to overcome the scalability problems of FHMMs
and CHMMs. We briefly discuss implementation issues that arise during the adaptation of
HMMs for ASL recognition and provide experimental results that compare PaHMMs with
conventional HMMs.

2. RELATED WORK

In the discussion of related work, we focus on previous work in sign language recognition.
For coverage of gesture recognition, the survey in [24] is an excellent starting point. Other,
more recent work is reviewed in [35].

Much previous work has focused on isolated sign language recognition with clear pauses
after each sign, although the research focus is slowly shifting to continuous recognition.
These pauses make it a much easier problem than continuous recognition without pauses
between the individual signs, because explicit segmentation of a continuous input stream into
the individual signs is very difficult. For this reason, and because of coarticulation effects,
work on isolated recognition often does not generalize easily to continuous recognition.

Erensthteyn and colleagues used neural networks to recognize fingerspelling [6]. Waldron
and Kim also used neural networks, but they attempted to recognize a small set of isolated
signs [34] instead of fingerspelling. They used Stokoe’s transcription system [29] to separate
the handshape, orientation, and movement aspects of the signs.

Kadous used Power Gloves to recognize a set of 95 isolated Auslan signs with 80%
accuracy, with an emphasis on computationally inexpensive methods [13]. Grobel and
Assam used HMMs to recognize isolated signs with 91.3% accuracy out of a 262-sign
vocabulary. They extracted 2D features from video recordings of signers wearing colored
gloves [9].

Braffort described ARGo, an architecture for recognizing French Sign Language. It
attempted to integrate the normally disparate fields of sign language recognition and un-
derstanding [2]. Toward this goal, Gibet and colleagues also described a corpus of 3D
gestural and sign language movement primitives [8]. This work focused on the syntactic
and semantic aspects of sign languages, rather than phonology.

Most work on continuous sign language recognition is based on HMMs, which offer the
advantage of being able to segment a data stream into its constituent signs implicitly. It thus
bypasses the difficult problem of segmentation entirely.
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Starner and Pentland used a view-based approach with a single camera to extract two-
dimensional features as input to HMMs with a 40-word vocabulary and a strongly con-
strained sentence structure [27]. They assumed that the smallest unit in sign language is
the whole sign. This assumption leads to scalability problems, as vocabularies become
larger. In [28] they applied their methods to wearable computing by mounting a camera on
a hat.

Hienz and colleagues used HMMs to recognize a corpus of German Sign Language [12].
Their work was an extension of the work by Grobel and Assam in [9]; that is, it used colored
gloves, and it was 2D-based. They also experimented with stochastic bigram language
models to improve recognition performance. The results of using stochastic grammars
largely agreed with our results in [31].

Nam and Wohn [23, 22] used three-dimensional data as input to HMMs for continuous
recognition of gestures. They introduced the concept of movement primes, which make
up sequences of more complex movements. The movement prime approach bears some
superficial similarities to the phoneme-based approach in [33] and in this paper.

Liang and Ouhyoung used HMMs for continuous recognition of Taiwanese Sign Lan-
guage with a vocabulary between 71 and 250 signs [17]. They worked with Stokoe’s model
[29] to detect the handshape, position, orientation, and movement aspects of the running
signs. Unlike other work in this area, they did not use the HMMs to segment the input stream
implicitly. Instead, they segmented the data stream explicitly based on discontinuities in the
movements. They integrated the handshape, position, orientation, and movement aspects at
a level higher than that of the HMMs.

We used HMMs and 3D computer vision methods to model phonological aspects of
ASL [31, 33] with an unconstrained sentence structure. We used the Movement–Hold
phonological model by Liddell and Johnson [18] extensively, so as to develop a scalable
framework. In [32] we extended the conventional HMM framework to capture the parallel
aspects of ASL, which ordinarily would make the recognition task too complex.

3. MODELING ASL

In this section we first give an overview on the relevant aspects of ASL linguistics,
particularly ASL phonology. We describe the movement–hold phonological model in detail,
as it forms the basis of our work. We then discuss its shortcomings and extend this model
to make it suitable for ASL recognition.

ASL is the primary mode of communication for many deaf people in the USA. It is a
highly inflected language; that is, many signs can be modified to indicate subject, object,
and numeric agreement. They can also be modified to indicate manner (fast, slow, etc.),
repetition, and duration [30, 29, 19]. Like all other languages, ASL has structure, which
sets it clearly apart from gesturing. It allows us to test ideas in a constrained framework
first, before attempting to generalize the results to gesture recognition problems.

In particular, managing the complexity of large data sets in gesture recognition is an
area where ASL recognition work can yield valuable insights. As we shall explain in
Section 3.3.2 and Section 4.2, managing complexity is already difficult in the relatively
constrained field of ASL recognition, because signs can appear in many different forms.
Gestures are much less constrained than ASL, so this problem will only be exacerbated. It
is, therefore, important to develop methods that make the complexity of ASL and gesture
recognition manageable.
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FIG. 1. The sign for “mother.” The first picture shows the starting configuration of this sign; the second one
shows the ending configuration. The white X indicates contact between the thumb and the chin after each tap. The
location of the hand at the chin and the tapping movements are examples of phonemes.

The large body of research on ASL linguistics, particularly ASL phonology, helps us
to develop exactly these methods. Although there is no phonology of gestures, the ideas
behind ASL phonology—that signs can be broken down into smaller parts—nevertheless
applies to gesture recognition research [23, 22].

At this point we need to provide two essential definitions. Thestrong handis the hand
that performs the one-handed signs and the major component of two-handed signs. The
weak handis the opposite of the strong hand. In the case of right-handed peoples, the strong
hand is typically the person’s right hand, and the weak hand is the person’s left hand.

We now give an introduction to ASL phonology and discuss how it can be applied to
ASL recognition. This overview is by no means exhaustive. For more information on ASL
phonology, see for example [26, 4, 5, 18].

3.1. ASL Phonology

A phonemeis defined to be the smallest contrastive unit in a language [30]; that is, a
unit that distinguishes a word from another. In English, the sounds/c/, /a/,and/t/ (and their
equivalents in regional dialects) are examples of phonemes. In ASL, the movement of the
hand toward the chin in the sign for “mother” or the location of the hand in front of the chin
at the beginning of this sign (Fig. 1) are examples of phonemes.

Modeling phonology helps to keep both speech and ASL recognition tractable [25, 33],
because there isonly a small, limited numberof phonemes, as opposed to the unlimited
number of words and signs that can be built with them. In English, there are approximately 40
distinct phonemes, whereas in ASL, there are approximately 150–200 distinct phonemes.1

For this reason, using phonemes is essential for building large-scale systems. It is practical
to provide sufficient training data for a small set of phoneme models that can be used to
construct every conceivable word in the language. On the other hand, it is not practical to
provide sufficient training data for a very large set of word or whole-sign models, so as
to achieve the same vocabulary size as with the set of phonemes.

There is still considerable controversy whether such units in ASL can justifiably be
called “phonemes.” Some linguists prefer to call them “cheremes” [29], because the roots

1 This number applies to the Movement–Hold phonological model [18] described in Section 3.2. The numbers
for other models vary slightly.
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of “phoneme” can be traced back to the concept of speaking. Other linguists have argued
that the subunits in ASL, such as the movements and locations described in the previous
paragraph, do not function in the same way as phonemes in spoken languages. One of the
reasons they give is that many of these subunits are redundant [5].

In this paper we do not attempt to argue for or against using the term “phoneme” for
ASL. Whenever we use the term “phoneme,” we mean the smallest identifiable subunits
in ASL. In general, we choose to follow the terminology of spoken language linguistics,
because many concepts have direct equivalents in ASL linguistics. In addition, the subunits
in ASL function in the same way as phonemes in our recognition framework.

3.2. The Movement–Hold Model

We are primarily interested in modeling signs as sequences of phonemes, because hidden
Markov models are sequential by nature. Phonological models that emphasize sequen-
tial contrast are calledsegmental models. Such models split signs into multiple segments,
during which the parameters of a sign can vary (see Fig. 2 for an example). Thus, they
emphasize sequential contrast over simultaneous contrast.

Liddell and Johnson’s Movement–Hold model [18] is one of the oldest segmental models.
It consists of two major classes of segments, which aremovementsandholds. Movements
are those segments, during which some aspect of the signer’s configuration changes, such
as a change in handshape, or a hand movement from one location to another. Holds, in
contrast, are those segments, during which the hands remain translationally stationary.

Signs are made up of sequences of movements and holds. Some common sequences
are HMH (a hold followed by a movement followed by another hold, such as “good,”

FIG. 2. The signs for “interpreter” (top) and “teacher” (bottom) illustrate sequential contrast. They differ
only in the first part of their movement sequence (left). The movements that make up this sign are examples of
phonemes.
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FIG. 3. HMH pattern. The sign for “good” consists of a hold at the chin (left), followed by a movement down
and away from the body (left), followed by a hold contacting the weak hand (right).

Fig. 3), MH (a movement followed by a hold, such as “sit,” Fig. 4), andMMMH (three
movements followed by a hold, such as “father,” Fig. 5). Attached to each segment is a
bundle of articulatory featuresthat describe the hand configuration, orientation, location,
and nontranslational hand movements (e.g., wrist rotation, wriggling of fingers). In addition,
movement segments have features that describe the type of movement (straight, round,
sharply angled), as well as the plane and intensity of movement. See Fig. 6 for a schematic
example.

In this paper we use only the aspects of the Movement–Hold model that describe hand
movements and locations, because these are the easiest to capture with our 3D tracking
system. Nevertheless, in the following sections we describe how a recognition framework
could use all aspects of the Movement–Hold model, even though we currently do not take
advantage of them. Future work should also incorporate the hand configuration parameters
into the framework, but doing so requires a solution to the difficult problem of tracking fin-
gers accurately. Table 1 and Fig. 7 give an overview of the transcriptions for the movements
and locations that we use in our framework.

Furthermore, the locations can be modified with the distance from the body, and with
the vertical and horizontal distance from the basic location. If a location does not touch
the body, it can be prefixed with one of these distance markers:p (proximal),m (medial),
d (distal), ore (extended), in order of distance to the body. If a location is centered in front
of the body, the distance marker is suffixed with a 0. If the location is at the side of the chest,
the distance marker is suffixed with a 1, and if the location is to the right (or left) of the

FIG. 4. MH pattern. The sign for “sit” consists of a downward movement onto the weak hand (left), followed
by a hold contacting the weak hand (right).
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TABLE 1

Partial List of Movements

Movement Transcriptions used

straight strAway, strToward, strDown, strUp, strLeft, strRight, strDownAway,

strDownRightAway

short straight strShortUp, strShortDown

circle in vertical plane rndVP

wrist rotation rotAway, rotToward, rotUp, rotDown

Note.The description of the movements deviates from the approach used by the
Movement–Hold model.

FIG. 5. MMMH pattern. The sign for “father” consists of three movements: tap on forehead, away from
forehead, tap on forehead (left), followed by a hold contacting the forehead (right).

FIG. 6. Schematic description of the sign for “Father” in the Movement–Hold model. It consists of three
movements, followed by a hold (compare with Fig. 5).

FIG. 7. Partial list of body locations used in the Movement–Hold model.
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FIG. 8. Description of the sign for “father” with the help of X segments. Articulatory features are now attached
only to holds and X segments. Compare with Fig. 6.

shoulder, the distance marker is suffixed with a 2. For example,d-1-TRmeans a location of
a comfortable arm’s length away from the right side of the trunk (torso). Further markers,
such as “%” and “i” describe the vertical offset relative the basic location, and whether the
location is on the same side or opposite side of the body as the hand. These are described
in detail in [18].

The Movement–Hold model does not address nonmanual features, such as facial expres-
sions. Because facial expressions constitute a large part of the grammar of signed languages,
future work needs to address this shortcoming. Yet, the model has demonstrated convinc-
ingly that sequential aspects of ASL are important. Other recent phonological models all
differ in details from the Movement–Hold model, but they all emphasize sequential aspects
of ASL [26, 5, 4].

3.3. Extensions to the Movement–Hold Model

There are some problems with the Movement–Hold model that prevent it from being
applied to ASL recognition directly. We now discuss solutions to these problems.

3.3.1. Articulatory features attached to movements.One problem is that in the original
description of the Movement–Hold model the articulatory features can be attached to both
movements and holds. From a linguistic point of view attaching the articulatory features to
movement segments is implausible, because these segments describe how the configuration
is changing. The articulatory features, however, describestaticaspects of the configuration.

From a technical point of view, there is no good way to attach the articulatory features to
movement segments, because we would like to estimate fundamentally different parameters
in the segment types: In hold segments, we are interested in the location of the hands relative
to the body and require that there is no hand movement. In movement segments we are
interested in the type of movement and do not care about location. How do we model the
location at the beginning of a sign that starts with a movement, then?

From these two points of view it becomes clear that the Movement–Hold model must be
modified before it can be applied to recognition. To this end, we add a new type of segment
called “X.”2 They are conceptually very similar to holds. The only difference is that, unlike
holds, the hand need not be translationally stationary for any amount of time. The sole
purpose of these segments is to provide an anchor for the articulatory features. Figure 8
shows how the X segments affect the sign for “father.”

2 We came up with this idea independently of Liddell and Johnson. Yet, the role of our X segments seems to be
very similar to the the X segments in the latest, as of yet unpublished, version of the Movement–Hold model.
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FIG. 9. The sign for “inform” demonstrates how several features in ASL change simultaneously. Both hands
move, starting at different body locations. The handshape is symmetrical, but changes from a closed fist to a
half-open hand during the sign.

3.3.2. Sequential versus simultaneous aspects of ASL.Adding X segments, as described
in the previous section, is sufficient for recognizing ASL using only the strong hand [31], but
even with this addition, the Movement–Hold model breaks down completely for modeling
both hands and their associated handshapes and orientations, which are contained in the
articulatory features.

The problem is the sheer number of possible combinations of features. Unlike speech,
where phonemes occur only in sequence, in ASL phonemes occur both in sequence and
in parallel. For example, some signs are two-handed, so both hands must be modeled. In
addition, several features can change at the same time, as depicted in the sign for “inform”
in Fig. 9.

If we consider both hands in the Movement–Hold model, and assuming that there are 30
basic handshapes, 8 hand orientations, 8 wrist orientations, and 20 major body locations
for each hand [29, 18], the number of different combinations of X and hold segments
with attached articulatory features is (30× 8× 8× 20)2 ≈ 1.5× 109. Even if we take into
account that the weak hand is constrained either to mirror the strong hand, or to use one of six
basic handshapes [30], the number of combinations would still be approximately 2.9× 108.

Modeling all such combinations a priori is not practical, because it would be impossible to
obtain that many training examples from a signer. Foregoing ASL phonology and looking at
ASL from the whole-sign level does not help either. Even though the cataloged vocabulary
of ASL consists of only approximately 6000 signs, many signs can be highly inflected.
Verbs like “give” can be modified in the starting location, ending location, handshape, and
type of movement, so as to indicate subject, recipient, object, and manner of action. Thus,
the number of possible cases to consider on the whole-sign level would be several orders
of magnitude larger than 6000.

Therefore, in order to model ASL in a recognition framework, we need to make a major
modification to the Movement–Hold model. Instead of attaching bundles of articulatory
features to the X and hold segments, we break up the features intochannelsthat can be used
independently from one another. The most important channel consists of movements and
hold segments that describe the type of movement and the body locations. Other channels
consist of the handshape, the hand orientation, and the wrist orientation. Yet other channels
describe the actions of the weak hand in the same way as for the strong hand.

Figure 10 shows how the sign for “father” is represented with this modification. Note that
this figure only shows the channels for the strong hand, because “father” is a one-handed
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FIG. 10. The sign for “father,” where the different features are modeled in separate channels. The handshape
and orientations stay the same during the entire sign, so only one phoneme appears in each of these channels.
Compare with Fig. 8.

sign. For two-handed signs, we model the channels for the strong and the weak hands
independently from one another, as well. For example, the movements and holds of the
strong and the weak hands are in two channels independent of each other.

By splitting the feature bundles into independent channels, we immediately gain a major
reduction in the complexity of the modeling task. It is no longer necessary to consider all
possible combinations of phonemes, and how they can interact. The independence of the
channels guarantees that we can model them separately and put together new phoneme
combinations during the recognition process on the fly.

3.4. Phonological Processes

An application of ASL phonology to ASL recognition cannot be complete without taking
phonological processes into account. A phonological process changes the appearance of
an utterance through well-defined rules in phonology, but does not change the meaning of
the utterance. Because the meaning is unchanged, it is best for a recognizer to handle the
changes in appearance at the phonological level.

The most basic, and at the same time also most important, phonological process is
calledmovement epenthesis[18]. It consists of the insertion of extra movements between
two adjacent signs, and it is caused by the physical characteristics of sign languages. For
example, in the sequence “father read,” the sign for “father” is performed at the forehead,
and the sign for “read” is performed in front of the trunk. Thus, an extra movement from
the forehead to the trunk is inserted that does not exist in either of the two signs’ lexical
forms (Fig. 11).

FIG. 11. Movement epenthesis. The arrow in the middle picture indicates an extra movement between the
signs for “father” and “read” that is not present in their lexical forms.
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Movement epenthesis poses a problem for ASL recognizers, because the extra movement
depends on which two signs appear in sequence. Within our extended Movement–Hold
model, we handle such movements just like regular movements within a sign. We do not
yet model any other phonological processes in ASL, such as hold deletion and metathesis
(which allows for swapping of the order of segments in certain circumstances).

4. HIDDEN MARKOV MODELS

One of the main challenges in ASL recognition is to capture the variations in the signing
of even a single human. HMMs are a type of statistical model embedded in a Bayesian
framework and thus well suited for capturing these variations. In addition, their state-based
nature enables them to describe how a signal changes over time.

We now briefly describe the properties of HMMs relevant to ASL recognition. We then
describe possible extensions to the HMM framework and conclude with a description of
parallel HMMs, our approach toward solving the problems associated with regular HMMs.

An HMM λ consists of a set ofN statesS1, S2, . . . , SN . At regularly spaced discrete
time intervals, the system transitions from stateSi to stateSj with probability ai j . The
probability of the system initially starting in stateSi is πi . Each stateSi generates out-
put O ∈Ä, which is distributed according to a probability distribution functionbi (O) =
P{Output isO | System is inSi }. In most recognition applicationsbi (O) is a mixture of
Gaussian densities.

4.1. The HMM Recognition Algorithm

We now describe the main algorithm used for continuous recognition. For a discussion of
how to estimate (i.e., train) the parameters of an HMM and how to compute the probability
that an HMM generated an output sequence, see [25].

In many continuous recognition applications, the HMMs corresponding to individual
signs are chained together into a network of HMMs. Then the recognition problem is
reduced to finding the most likely state sequence through the network. That is, we would
like to find a state sequenceQ= Q1, . . . , QT over an output sequenceO=O1, . . . ,OT of
T frames, such thatP(Q,O | λ) is maximized. Using

δt (i ) = max
Q1,...,Qt−1

P(Q1Q2 . . . Qt = Si ,O | λ), (1)

and by induction

δt+1(i ) = bi (Ot+1) · max
1≤ j≤N

{δt ( j )aji }, (2)

P(Q,O | λ) = max
1≤i≤N

{δT (i )}, (3)

the Viterbi algorithm computes this state sequence inO(N2T) time, whereN is the number
of states in the HMM network. Note that the Viterbi algorithm implicitly segments the
observation into parts as it computes the path through the network of chained HMMs.

In this paper, we adapt a different formulation of the recognition algorithm, called the
token-passing algorithm[37], for ASL recognition. It works as follows:

• Each stateSi contains at timet a tokendenotingδt (i ) from Eq. (1).
• At time t + 1, for eachSi , pass tokens toki j (t + 1)= δi (t)ai j to all statesSj con-

nected toSi .
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FIG. 12. FHMMs: The output is combined.O(n)
i denotes the output of thenth channel at thei th frame.

• Finally, for each stateSj , pick maxi {toki j (t + 1)}, and update this token to denote
δ j (t + 1)= toki j (t + 1)bj (Ot+1).

The token-passing algorithm is equivalent to the Viterbi algorithm. The main difference
between the two algorithms is that the former updates the probabilities via the outgoing
transitions of a state, whereas the latter updates the probabilities via the ingoing transitions
of a state. Thus, only the order in which the probabilities are updated is different.

The advantage of token passing is that each token can easily be tagged with additional
information, such as the path through the network, or word-by-word probabilities. In
Section 4.3.2 we explain why carrying such additional information can be useful. This
functionality would be difficult to replicate with the Viterbi algorithm.

4.2. Extensions to HMMs

Regular HMMs are a poor choice for modeling sign language for two reasons: First, they
are capable of modeling only one single process that evolves over time. Thus, they require
that the different channels described in Section 3.3.2 evolve in lockstep, passing through the
same state at the same time. This lockstep property of regular HMMs is unsuitable for many
applications. Sign language consists of parallel, possibly interacting, channels as described
in Section 3.3.2. For example, if a one-handed sign precedes a two-handed sign, the weak
hand often moves to the location required by the two-handed sign before the strong hand
starts to perform it. If the channels evolved in lockstep, the movement of the weak hand
would be impossible to capture.

Second, as discussed in Section 3.3.2, the number of possible combinations of phonemes
occurring simultaneously is overwhelming. It is computationally infeasible to use on the
order of 108 HMMs, let alone to collect enough training data. For these two reasons, it is
necessary to extend the HMM framework for ASL recognition.

In past research, two fundamentally different methods of extending HMMs have been
described. The first method models theC channels3 in C separate HMMs, effectively
creating a metastate in anC-dimensional state space. It combines the output of theC HMMs
in a single output signal, such that the output probabilities depend on theC-dimensional
metastate (Fig. 12). Such models are called factorial hidden Markov models (FHMMs).
Because the output probabilities depend on the metastate, an optimal training method based
on expectation maximization would take time exponential inC. Ghahramani and Jordan
describe approximate polynomial-time training methods based on mean-field theory [7].

3 Note that in the following we use the term, “channel” exclusively to clarify the relationship between different
HMM extensions and ASL phonology (cf. Section 3.3.2). This does not mean that the algorithms we describe in
the following sections are restricted to modeling channels in ASL. They can model other processes that take place
in parallel, as long as they satisfy the same assumptions as we make for the channels in ASL.



RECOGNIZING THE SIMULTANEOUS ASPECTS OF ASL 371

FIG. 13. CHMMs: The output is separate, but the states influence one another.

The second method consists of modeling theC channels inC HMMs, whose state
probabilities influence one another, and whose outputs are separate signals. That is, the
transition from stateS(i )

t to S(i )
t+1 in the HMM for channeli does not only depend on the state

S(i )
t , but on theS( j )

t states in all channel, where 1≤ j ≤C (Fig. 13). Such HMMs are called
coupled hidden Markov models (CHMMs). Brandet al.describe polynomial-time training
methods and demonstrate the advantages of CHMMs over regular HMMs in [3].

Unfortunately, FHMMs or CHMMs only provide a solution to the problem that regu-
lar HMMs force the channels to evolve in lockstep. They do not help with making the
sheer number of possible phoneme combinations computationally tractable, because the
training methods still require a priori modeling of all combinations. Thus, we need a new
approach to modeling ASL with HMMs. We now describe parallel HMMs as a solution to
the aforementioned two problems.

4.3. A New Approach: Parallel HMMs

Parallel HMMs model theC channels withC independent HMMs with separate output
(Fig. 14). Unlike CHMMs, the state probabilities influence one another only within the
same channel. That is, PaHMMs are essentially regular HMMs that are used in parallel.

Hermanskyet al., as well as Bourlard and Dupont, first suggested the use of PaHMMs
in the speech recognition field [10, 1]. They broke down the speech signal into subbands,
which they modeled independently, so as to be able to exclude noisy or corrupted subbands,
and merged the subbands during recognition with multilayered perceptrons. They demon-
strated that subband modeling can improve recognition rates. Note that the goal of subband
modeling differs from our goal of making ASL recognition methods scale. Subband model-
ing is concerned with eliminating unreliable parts of the speech signal, whereas we would
like to develop a computationally tractable method of modeling all aspects of ASL.

FIG. 14. PaHMMs: The output is separate, and the states of separate channels are independent.O(n)
i denotes

the output of thenth channel at thei th frame.
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PaHMMs are based on the assumption that the separate channels evolve independently
from one another with independent output. The justification for using this independence
assumption is that there is linguistic evidence that the different channels of ASL can be
viewed as acting with a high degree of independence on the phoneme level [18]. As our
experiments in Section 6 show an improvement in recognition rates, this assumption is at
least partially valid.

As a consequence, the HMMs for the separate channels can be trained completely inde-
pendently. Thus, the problem of modeling all possible combinations of phonemes disap-
pears. Now it is necessary to consider only an order of (30+ 8+ 8+ 20+ 40)× 2 HMMs
instead of an order of 108 HMMs (see Section 3.3.2 for an explanation of the numbers).

4.3.1. Combination of the channels.At some stage during recognition, it is necessary
to merge the information from the HMMs representing theC different channels. We would
like to find (in log probability form)

max
Q(1),...,Q(C)

{
log P

(
Q(1), . . . , Q(C),O(1), . . . ,O(C)

∣∣ λ1, . . . , λC
)}
, (4)

whereQ(i ) is the state sequence of channelsi with output sequenceO(i ) through the HMM
network λi . Furthermore, theQ(i ) are subject to the constraint that they all follow the
same sequence of signs. Because we assume the channels to be independent, the merged
information consists of the product of the probabilities of the individual channels, so we
can rewrite (4) as

max
Q(1),...,Q(C)

{
log P

(
Q(1), . . . , Q(C),O(1), . . . ,O(C)

∣∣ λ1, . . . , λc
)}

= max
Q(1), ... ,Q(C)

{
C∑

i=1

log P
(
Q(i ),O(i )

∣∣ λi
)}
. (5)

Because HMMs assume that successive outputs are independent, we rewrite (5) as

max
Q(1),...,Q(C)

{
C∑

i=1

log P
(
Q(i ),O(i )

∣∣ λi
)} = max

Q(1),...,Q(C)


W∑

j=1

C∑
i=1

log P
(
Q(i )

( j ),O(i )
( j )

∣∣ λi
) ,

(6)

where we split the output sequences intoW segments, andQ(i )
( j ) andO(i )

( j ) are the respective
state and observation sequences in channeli corresponding to segmentj . Intuitively, this
equation tells us that we can combine the probabilities as many times as desired at any stage
of the recognition process, including the whole-sign level or the phoneme level.

It is desirable to weight the channel on a per-word basis, because in some two-handed
signs the weak hand does not move. Such signs could be easily confused with one-handed
signs where the weak hand happens to be in a position similar to that required by the two-
handed sign. In these situations, the strong hand should carry more weight than the weak
hand. If we letω(i )

( j ) be the weight of wordj in channeli , the desired quantity to maximize
becomes (from Eq. (6))

max
Q(1),...,Q(C)


W∑

j=1

C∑
i=1

ω
(i )
j log P

(
Q(i )

( j ),O(i )
( j )

∣∣ λi
) , (7)

where
∑

i ω
(i )
j = C for fixed j .
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Before we describe how the token-passing algorithm described in Section 4.1 needs to be
modified for PaHMMs, we need to consider a subtle point. Consider using two channels to
model the movements of the strong and the weak hands in ASL. What does the weak hand
do in a one-handed sign? From a recognition point of view, we do not care, and thus we
should assign a probability of one to anything that the weak hand does during the course of
a one-handed sign.

Unfortunately, doing so would bias recognition toward one-handed signs, because the
average log probabilities for one-handed signs would then be twice as large as the average
log probabilities for two hands. Instead, we define the probability of the weak hand to be
the same as the probability of the strong hand for one-handed signs.

4.3.2. The recognition algorithm.In principle, adapting the token-passing algorithm
to PaHMMs consists of applying the regular token-passing algorithm to the HMMs in the
separate channels, and combining the probabilities of the channels at word or phoneme ends
according to (7). See Fig. 15 for an example with two channels (e.g., left and right hands).

In practice, the recognition algorithm is more complicated, because it must enforce the
constraint that the pathsQ(i ) all touch exactly the same sequence of words. It does not make
sense to combine the probabilities of tokens from different paths. The easiest way to enforce
this constraint is to assign unique path identifiers to the tokens as follows:

• Every time a token with a particular path identifier hits the starting node of a sign
for the first time, it is assigned a new unique path identifier. The recognizer stores the new
path identifier of this token in a lookup table with the old path identifier and the name of
the sign as the keys.
• If a subsequent token hit a starting node of a sign, the recognizer looks up the new

path identifier based on the token’s path identifier and the name of the sign. It then assigns
this new path identifier to the token.

At each word end the recognizer combines the probabilities of only those tokens that have
the same path identifier. Here the advantage of the token-passing algorithm over the Viterbi
algorithm becomes clear, because this information can be directly attached to the tokens.

In addition, a path in channelk that contributes to maximizing (7) does not necessarily
maximize the marginal probability

∑W
j=1 log P(Q(k)

( j ),O(k)
( j ) | λk). To overcome the potential

discrepancy between maximizing the joint and marginal probabilities, each state needs to
keep track of a set of the first few best tokens, each with a unique path identifier. That
is, instead of working with only one hypothesis per channel, the algorithm works with a

FIG. 15. The tokens are passed independently in the HMMs for the left and the right hands, and combined in
the word end nodes.
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maximum ofM hypotheses per channel, whereM is the cardinality of the token set. The
actual number of hypotheses kept at any time depends on how much the paths in the different
channels overlap.

To ensure that the algorithm assigns the probabilities of the strong hand to the weak hand
when it encounters a one-handed sign (see the previous section for why this is necessary),
we define two operations:

• Join(node) takes the tokens of the weak hand in word end nodenodeand attaches
them to the tokens of the strong hand in the same word end node. The attached token must
have the same path identifier as the token that it is attached to.
• Split(node) detaches the weak hand tokens from the strong hand tokens in word start

nodenode. It checks for each detached token, whether the last sign in the path was one-
handed or two-handed. If it was one-handed,Split updates the probabilities of the detached
tokens with the probabilities of the strong hand for the last sign. Then it merges the tokens
with the existing tokens of the weak hand in the same word start node.

If we denote the number of output frames withT , the modified token-passing algorithm
is . given in the following algorithm.

ALGORITHM 1 (TOKEN PASSINGALGORITHM FORPAHMMS).

1. Initialize the tokens in the start nodes of the HMM network with logp= 0.
2. for t = 1 to T
3. for c = 1 toC
4. for each state in all HMM states
5. Pass the tokens instateto the adjacent states and merge them with the tokens
in the adjacent states.
6. end for
7. end for
8. for c= 1 toC
9. for eachnodethat is a word end node

10. Combine the token probabilities.
11. if nodeis a two-handed sign
12. Join(node).
13. end if
14. for eachnode′ adjacent tonode
15. Pass the tokens innodeto node′

16. if node′ is a two-handed sign
17. Split(node′).
18. end if
19. end for
20. end for
21. end for
22. end for

Assuming that the token sets in each state have cardinalityM and are stored as lists sorted
by log likelihood, passing the token set from one single state to another takesO(M) time.
Hence, step 5 takesO(N M) time per frame, whereN is the number of states in the HMM
network. This bound describes the worst case when every state is adjacent to every other
one.
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The combined token probabilities in step 10 need to be computed only once per word
end node for all channels, because they are the same across all channels. Thus, they can
be cached for subsequent iterations overC in the loop starting at step 8. The algorithm for
combining the probabilities iterates over all token sets and stores them in a hash table with
the path identifier as the key. With this hash table, the algorithm keeps track of the combined
token probabilities, and whether a token occurs in all token sets. The latter is a necessary
condition for a token to be in the combined set. Because hash tables have expected lookup
times of O(1) and there are at mostC M tokens looked up, the combination step runs in
O(C M) expected time over all channels.

Using hash tables with the path identifier as the key,Join in step 12 takesO(M) expected
time. Step 15 takesO(M) time per call, by the same argument as for step 5.Split in step
17 takesO(M) time per call, because it uses a token set merge internally. The loop in step
4 iteratesN times. The loops in steps 9 and 14 iterateN times in the worst case, but are
executed much less often in the average case, because there are fewer words than HMM
states.

From all these individual times, it follows that the entire algorithm runs in

O(T(C N× N M + NC M+ C N(M + N(M + M))))

=O(T(C N2M + NC M+ C N2M))

=O(T C N2M) (8)

expected time. That is, it takes time linear in the number of channels and in the number of
tokens per state.

5. HMMs IN ASL RECOGNITION

As mentioned in Section 4.1, the basic idea behind HMM-based recognition is to chain
the HMMs together into a network. The Viterbi algorithm finds the most likely path through
this network, and thus recovers the sequence of signs. For the most part, chaining the HMMs
corresponding to phonemes in ASL together into a network and training the HMMs work
in the same way as that for speech recognition. However, there are some peculiarities in the
network design and training process that are caused specifically by the properties of sign
languages. We now describe what they are and how to manage them.

5.1. Incorporating Movement Epenthesis

In speech recognition, the individual words are expanded into their constituent phonemes,
and the phoneme HMMs are then chained together in the order in which they appear in the
words. Up to this point, chaining together the HMMS in ASL recognition works in exactly
the same way. However, in speech recognition, the composite models for the signs are then
chained together into the recognition network. We cannot do the same in ASL recognition,
because it would ignore movement epenthesis. Instead, we need to provide the epenthesis
models and chain them into the recognition network, as well.

It is convenient to connect each HMM node that ends a sign to a node corresponding
to its ending body location in the HMM network, instead of connecting it to the epenthe-
sis HMMs directly. Similarly, it is convenient to connect each HMM node that starts a
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FIG. 16. Network that models the signs for “father,” “get,” and “chair” in terms of their constituent phonemes.
Epenthesis is modeled explicitly with HMMs (labeled with “trans”). The oval nodes in this figure are the body
locations at the beginning and the end of each sign.

sign to a node corresponding to its starting body location. These nodes are nonemitting;
that is, they do not consume any input frames. The token-passing algorithm described in
Section 4.1 works without modifications on such nodes. This trick reduces the number of
arcs and thus the complexity of the HMM network.

Figure 16 shows how to chain together the phoneme and epenthesis HMMs, and the
nonemitting body location nodes for the three signs for “father,” “get,” and “chair.”

We have not provided any descriptions of the epenthesis movements yet. Ideally, they
should be expressed in terms of the basic movements in the movement–hold model. Unfor-
tunately, the exact appearance of these movements is poorly understood, and there exists
almost no literature on them. For this reason, we choose a different approach to model-
ing these. It is based on the observation that an epenthesis movement is uniquely speci-
fied by the ending location of the preceding sign and the starting location of the follow-
ing sign. Since there are 20 major body locations in ASL, this approach yields at most
202 = 400 HMMs. It is possible to exploit similarities between epenthesis movements to
reduce the number of epenthesis HMMs. For example, for practical purposes, there is no
difference between the movement from the forehead to the chest, and from the chin to the
chest, so they are modeled by the same HMM.

5.2. Training PaHMMs

With PaHMMs, we need such a network for every channel. The word end nodes of
each sign in each channel are associated with one another, as schematically shown in
Fig. 15 in Section 4.3.2. These associations allow the recognition algorithm to combine the
probabilities of each channel.

In principle, the HMMs can be trained independently for each channel with standard
methods, such as Viterbi alignment [25] and embedded Baum–Welch reestimation [36]. Yet,
again the nature of ASL causes complications, because the weak hand does not do anything
meaningful during one-handed signs. Therefore, training the channels (hand movements
and locations, handshape, orientation) for the weak hand is more complicated than training
the channels for the strong hand. During recognition, this problem is handled by the join
and split functions, as described in Section 4.3.2, so there are no HMMs for one-handed
signs in weak hand channels in the HMM network. Embedded Baum–Welch reestimation,
however, requires that all parts of the input signal are covered by HMMs.
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FIG. 17. These images show the 3D tracking of the sign for “father.”

One possible solution to this problem is to use a “noise” model for the weak hand in one-
handed signs during the training phase. This noise model is shared across all one-handed
signs and initialized with the global mean and covariance of the training data. It is not used
at all during the recognition phase.

The introduction of the noise model, however, makes the training process more sensitive
than usual to initial state distributions and the initial mean and covariance estimations. For
this reason, the popular and normally sufficient flat start scheme, where the states of the
HMMs are assigned the global mean and covariance of the training data, is not the best
initialization method. Instead, each channel is best initialized with a set of hand-labeled
data. Our experiments showed that training the movements and holds of the weak hand in
this fashion yields reasonable results.

We now provide experiments with phoneme modeling and PaHMMs to validate our
approach.

6. EXPERIMENTS

We ran several continuous recognition experiments with 3D data to test the feasibility
of modeling the movements of the left and the right hands with PaHMMs. Our database
consisted of 400 training sentences and 99 test sentences over a vocabulary of 22 signs.
The full transcriptions of these signs are listed in Appendix 1. The sentence structure
was constrained only by what is grammatical in ASL. We performed all training and

FIG. 18. Example of the 3D position signal for the sentence “woman try teach.” The solid line is from thex
coordinate, the dashed line is from they coordinate, and the dotted line is from thez coordinate. The unlabeled
parts of the signal are epenthesis movements.
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FIG. 19. Example of a 4-state HMM with the Bakis topology. This topology seems best to be able to absorb
variations in speed.

testing with a heavily modified version of Entropic’s Hidden Markov Model Toolkit
(HTK).

We collect the sentences with an Ascension Technologies MotionStar 3D tracking system,
and with our vision-based tracking system at 60 frames per second. The latter uses physics-
based modeling to track the arms and the hands of the signer, as depicted in Fig. 17. The
models are estimated from the images from a subset of three orthogonal cameras. These
are selected on a per-frame basis depending on the occluding contour of the signer’s limbs
[14–16, 21].

The total number of unique segments was 89 for the right hand and 51 for the left hand,
so we trained a total of 140 HMMs. In a testament to the clear advantage of phoneme-
based modeling over whole-sign-based modeling, many HMMs had more than 30 training
examples available.

We used an 8-dimensional feature vector for each hand. Six features consisted of 3D
positions and velocities relative to the base of the signer’s spine. For the remaining two
features, we computed the largest two eigenvalues of the positions’ covariance matrices
over a window of 15 frames centered on the current frame. In normalized form, these two
eigenvalues provide a useful characterization of the global properties of the signal [33].
Note that our goal is to evaluate a novel recognition algorithm, not the merits of different
features.

Figure 18 shows an example of what the 3D position signal typically looks like, after the
collection with the MotionStar system or with the computer vision system. This particular
example is from the sentence “woman try teach.” The coordinate system was right-handed,
with the positivex axis facing up, with inches as the unit of measurement. Note how the
length of an epenthesis movement can vary greatly depending on the type of movement,
justifying our choice to model them explicitly.

TABLE 2

Regular HMMs: Results of the Recognition Experiments

Level Accuracy Details

sentence 80.81% H = 80a, S= 19b, N = 99c

sign 93.27% H = 294, D = 3d, S= 15, I = 3e, N = 312

Note.80.81% of the sentences were recognized correctly, and 93.27%
of the signs were recognized correctly.

a H denotes the number of correctly recognized sentences or signs.
bSdenotes the number of substitution errors.
cN denotes the total number of signs or sentences in the test set.
d D denotes the number of deletion errors.
eI denotes the number of insertion errors.
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TABLE 3

PaHMMs: Results of the Recognition Experiments, with Merging

of the Token Probabilities at the Phoneme Level

Level Accuracy Details

sentence 84.85% H = 84, S= 15, N = 99
sign 94.23% H = 297, D = 3, S= 12, I = 3, N = 312

Note.See Table 2 for an explanation of the terminology.

We used a Bakis topology [25] for all HMMs. In this topology, all states are connected
to be themselves, the next state, and the state after that one (Fig. 19). This topology seems
best to be able to cope with varying signing speeds and phoneme lengths. This observation
also agrees with those made in Hienzet al. [11, 12]. Not counting nonemitting states, we
used 7-state HMMs to model movements, 5-state HMMs to model holds, 1-state HMMs
to model X segments, and 4-state HMMs to model epenthesis movements. The optimal
number of states depends primarily on the frame rate and the feature vector used—with
global features, fewer states are necessary. We fine-tuned this topology and the numbers of
states for each type of model experimentally.

6.1. Comparison of PaHMMs and Regular HMMs

The purpose of the experiments was to determine by how much does using PaHMMs with
two channels improve recognition rates over regular HMMs with just one channel. Note
that regular HMMs are equivalent to 1-channel PaHMMs. In the PaHMM experiments, one
channel consisted of the movement and hold segments (describing the hand movements
and locations) of the strong hand, and the other channel consisted of the corresponding
segments of the weak hand. Thus, the difference between these two experiments lies in the
addition of a channel with information from the weak hand.

To establish the baseline with regular HMMs, we first ran an experiment using only
the 8-dimensional features (3D position, 3D velocities, and eigenvalues of the positions’
covariance matrices) of the right hand. The results are given in Table 2. We did not test
FHMMs, CHMMs, or regular HMMs with both hands, because even for the small 22-sign
vocabulary the number of occurring phoneme combinations was far too large for the 400-
sentence training set. The goal of these experiments was to demonstrate whether PaHMMs
can outperform regular HMMs while preserving scalability, not to investigate whether
PaHMMs perform better or worse than FHMMs and CHMMs.

TABLE 4

Effect of Token Set on Recognition Rates, with Merging

of the Token Probabilities at the Phoneme Level

Cardinality Sentence accuracy (%) Sign accuracy (%)

2 82.83 92.95
3 84.85 94.23
5 84.85 94.23
8 84.85 94.23
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TABLE 5

Effect of the Level of Token Probability Merging

on Recognition Ratesa

Merge level Sent. accuracy (%) Sign accuracy (%)

Sign level 84.85 94.23
Phoneme level 84.85 94.55

a In both cases, the token set had a cardinality of 3.

An analysis revealed that there were only seven sentences with incorrectly recognized
two-handed signs. Each of these seven sentences involved a single substitution error. Thus,
the maximum recognition rate that we could expect from this experiment, using PaHMMs
to model both hands, was 87.88% on the sentence level and 96.47% on the sign level.
Table 3 shows the actual recognition rates with PaHMMs, with merging of the token prob-
abilities at the phoneme level.

Of the seven sentences with two-handed signs that the regular HMMs failed to recognize,
the PaHMMs recognized four correctly. One of the other three sentences now contained an
additional substitution error in a one-handed sign. All other sentences were not affected.
That is, the PaHMMs recognized every single sentence correctly that was already recognized
correctly by the regular HMMs.

We view this result as evidence that PaHMMs can improve recognition rates over regular
HMMs, with no significant tradeoffs in recognition accuracy. This result also contributes
evidence toward validating the assumption that the parallel channels in ASL can be modeled
independently.

6.2. Factors Influencing PaHMM Accuracy

There are two factors that can potentially influence the recognition accuracy of PaH-
MMs. The first factor is the required cardinalityM of the token set in each state. Recall
from Section 4.3.2 thatM determines how many hypotheses are kept at most for each
channel. Because the time complexity of the recognition algorithm is linear inM , the car-
dinality should be as small as possible. The second factor is the level of merging the token
probabilities. Is it better to perform the merging at the phoneme level or at the whole-sign
level?

Table 4 shows the results for token set cardinalities of 2, 3, 5, and 8. Recognition accuracy
does not seem to be affected by cardinalities beyond 3. The log probabilities of the tokens
are not significantly affected either. We expect that using more than two channels will not
have a significant effect on the required cardinality of the token sets, provided that the
HMMs in each channel have been well trained.

Table 5 shows the effect of merging the token probabilities at the whole-sign level. The
level of merging has a small effect on recognition rates, but it is not significant.

7. CONCLUSIONS

We demonstrated that PaHMMs can improve the robustness of ASL recognition even on a
small scale. Together with breaking down the signs into phonemes, they provide a powerful



RECOGNIZING THE SIMULTANEOUS ASPECTS OF ASL 381

and potentially scalable framework for modeling ASL. Because PaHMMs are potentially
more scalable than other extensions to HMMs, they are an interesting research topic for
gesture and sign language recognition.

Future research should establish how PaHMMs behave with larger vocabularies, and
particularly with highly inflected signs that can exhibit a large number of phoneme com-
binations within one single sign. Future research should also add hand configuration and
orientation as new channels to the PaHMM framework.

Once the viability of PaHMMs has been established for more channels and for larger
vocabularies, the major outstanding challenges in modeling ASL recognition will be the
integration of facial expressions, the use of space. Facial expressions are important, be-
cause they constitute 80% of the grammar of ASL. Space is important, because almost
all subject–object relations are expressed in terms of locations in front of the body. Both
facial expressions and the use of space will be essential in building a complete grammatical
representation of the recognized ASL.

Semantic representation of ASL will also be important, particularly for deaf–hearing
interaction. Because the structure of ASL is so different from spoken languages, it is neces-
sary to do more research into parsing the recognized ASL constructs and converting them
into a semantic representation.

APPENDIX: PHONETIC TRANSCRIPTIONS

The following table gives the phonetic transcriptions of the 22-sign vocabulary
for the strong hand. The phonemes beginning withM denote movements, the phonemes
beginning withH denote holds, and the phonemes beginning withX denote theX segments.

Sign Transcription

I X-{p-0-CH}M-{strToward}H -{CH}
man H -{FH}M-{strDown}M-{strToward}H -{CH}
woman H -{CN}M-{strDown}M-{strToward}H -{CH}
father X-{p-0-FH}M-{strToward}M-{strAway}M-{strToward}H -{FH}
mother X-{p-0-CN}M-{strToward}M-{strAway}M-{strToward}H -{CN}
interpreter X-{m-1-CH}M-{rotDown}M-{rotUp}M-{rotDown}X-{m-1-CH}M-{strDown}

H -{m-1-TR}
teacher X-{m-1-CH}M-{rotAway}M-{rotToward}M-{rotAway} X-{m-1-CH}M-

{strDown}H -{m-1-TR}
chair X-{m-1-TR}M-{strShortDown}M-{strShortUp}M-{strShortDown}H -{m-1-TR}
try X-{p-1-TR}M-{strDownRightAway}H -{d-2-AB}
inform H -{iFH}M-{strDownRightAway}H -{d-2-TR}
sit X-{m-1-TR}M-{strShortDown}H -{m-1-TR}
teach X-{m-1-CH}M-{rotAway}M-{rotToward}M-{rotAway} H -{m-1-CH}
interpret X-{m-1-CH}M-{rotDown}M-{rotUp}M-{rotDown} H -{m-1-CH}
get X-{d-0-CH}M-{strToward}H -{p-0-CH}
lie X-{iCN}M-{strLeft}H -{%iCN}
relate X-{m-1-TR}M-{strLeft}H -{m-0-TR}
don’t mind H -{NS}M-{strDownRightAway}H -{m-1-TR}
good H -{MO}M-{strDownAway}H -{m-0-C H}
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Sign Transcription

gross X-{ABu}M-{rndVP}M-{rndVP}H -{ABu}
sorry X-{%iSTu}M-{rndVP}M-{rndVP}H -{%iSTu}
stupid X-{p-0-FH}M-{strToward}H -{FH}
beautiful X-{p-0-FH}M-{rndVP}H -{p-0-%FH}

The following table gives the phonetic transcriptions of the 22-sign vocabulary for the
weak hand. The Symbols’ meanings are the same as in the previous table. In addition,h/
indicates that the sign is one-handed; in these cases the weak hand does nothing.

Sign Transcription

I h/
man h/
woman h/
father h/
mother h/
interpreter X-{m-1-%CH}M-{rotUp}M-{rotDown}M-{rotUp} X- {m-1-%CH}M-

{strDown}H -{m-1-%TR}
teacher X-{m-1-%CH}M-{rotAway}M-{rotToward}M-{rotAway} X-{m-1-%CH}M-

{strDown}H -{m-1-%TR}
chair H -{m-1-%TR}
try X-{p-1-%TR}M-{strDownLeftAway}H -{d-2-%AB}
inform H -{%iNS}M-{strDownLeftAway}H -{d-2-%TR}
sit H -{m-1-%TR}
teach X-{m-1-%CH}M-{rotAway}M-{rotToward}M-{rotAway} H -{m-1-%CH}
interpret X-{m-1-%CH}M-{rotUp}M-{rotDown}M-{rotUp} H -{m-1-%CH}
get X-{d-0-CH}M-{strToward}H -{p-0-CH}
lie h/
relate X-{m-1-%TR}M-{strRight}H -{m-0-TR}
don’t mind h/
good H -{m-0-CH}
gross h/
sorry h/
stupid h/
beautiful h/
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