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Abstract
An appearance-based framework for 3D hand shape

classification and simultaneous camera viewpoint estima-
tion is presented. Given an input image of a segmented
hand, the most similar matches from a large database of
synthetic hand images are retrieved. The ground truth la-
bels of those matches, containing hand shape and camera
viewpoint information, are returned by the system as esti-
mates for the input image. Database retrieval is done hi-
erarchically, by first quickly rejecting the vast majority of
all database views, and then ranking the remaining can-
didates in order of similarity to the input. Four different
similarity measures are employed, based on edge location,
edge orientation, finger location and geometric moments.

1 Introduction
Techniques that allow computers to understand the

shape of a human hand in images and video sequences
can be used in a wide range of applications. Some ex-
amples are human-machine interfaces, automatic recogni-
tion of signed languages and gestural communication, non-
intrusive motion capture systems, video compression of
gesture content, and video indexing.

Different levels of accuracy are needed by different ap-
plications. In certain domains it suffices to recognize a few
different shapes, observed always from the same viewpoint
[23, 13, 6]. On the other hand, 3D hand pose estimation
can be useful or necessary in various applications related to
sign language recognition, virtual reality, biometrics, and
motion capture. Currently, systems requiring accurate 3D
hand parameters tend to use magnetic tracking devices and
other non vision-based methods [14, 15, 19]. Computer vi-
sion systems that estimate 3D hand pose typically do it in
the context of tracking [17, 7, 26, 20] . In that context, the
pose can be estimated at the current frame as long as the
system knows the pose in the previous frame. Since such
trackers rely on knowledge about the previous frame, they
need to be manually initialized, and they cannot recover
when they lose the track.

The tracking system presented in [20] uses, like our
system, a database of synthetic views and an appearance-
based method to find the closest match to the observed in-

put. The hand parameters of the previous frame are as-
sumed to be known, so only poses close to those parame-
ters need to be considered.

A machine learning system that estimates hand pose is
described in [18]. The training set consists of synthetic
renderings of an artificial hand model. Good performance
is reported on a synthetic test set, but no quantitative results
are given for real hand images.

In this paper we present a method for estimating 3D
hand shape and orientation by retrieving appearance-based
matches from a large database of synthetic views. The
hand shape in the input image is assumed to be close to one
of 26 predefined shapes (Figure 2). The database views are
computer-generated renderings of the 26 hand shape pro-
totypes from viewpoints that are sampled uniformly along
the surface of the viewing sphere. The advantage of using
appearance-based matching for 3D parameter estimation is
that the estimation is done indirectly, by looking up the
ground truth labels of the retrieved synthetic views. This
way we avoid the ill-posed problem of recovering depth
information directly from the input image.

Our framework has two main advantages over previ-
ous appearance-based methods for hand shape recogni-
tion [16, 22, 5, 25]: it can handle images from arbitrary
viewpoints, and, in addition to classifying hand shape, it
provides estimates for the camera orientation. In [1] we
presented an early implementation of our framework, in
which the chamfer distance ([3]) between edge images was
used to estimate similarity between the input image and the
database views. In this paper we present additional simi-
larity measures (Section 3), we introduce a method to com-
bine different measures, and we describe a hierarchical re-
trieval algorithm that first quickly rejects the vast majority
of the database views and then ranks the remaining views
in order of similarity to the input (Section 4). Compared
to the approach described in [1], experiments with our cur-
rent system demonstrate higher accuracy and vast improve-
ments in retrieval time.

2 Proposed Framework
We model the hand as an articulated object, consisting

of 16 links: the palm and 15 links corresponding to finger
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Figure 1: The hand as an articulated object. The palm and each
finger are shown in a different color. The three different links of
each finger are shown using different intensities of the same color.
            

Figure 2: The 26 basic shapes used to generate training views in
our database.

            

Figure 3: Four different database views of the same basic shape.

parts. Each finger has three links (Figure 1). There are 15
joints, each connecting a pair of links. The five joints con-
necting fingers to the palm allow rotation with two degrees
of freedom (DOFs), whereas the 10 joints between finger
links allow rotation with one DOF. For the 20-dimensional
vector containing those 20 DOFs we use synonymously the
terms “internal hand parameters,” “hand shape” and “hand
configuration.”

The appearance of a hand shape also depends on the
camera parameters. To keep our model simple, we assume
that hand appearance depends only on the camera viewing
direction (two DOFs), and on the camera orientation (up
vector, or image plane orientation) that defines the direc-
tion from the center of the image to the top of the image
(one DOF). We use the terms “camera parameters,” “exter-
nal parameters,” and “viewing parameters” synonymously
to denote the three-dimensional vector describing viewing
direction and camera orientation.

Given a hand configuration vectorC = (c1; :::; c20) and
a viewing parameter vector V = (v1; v2; v3), we define the
hand pose vectorP to be the 23-dimensional concatenation
of C and V : P = (c1; :::; c20; v1; v2; v3).

Using these definitions, the generic framework that we
propose for hand pose estimation is the following:

1. Preprocessing step: create a database containing a
uniform sampling of all possible views of the hand
shapes that we want to recognize. Label each view
with the hand pose parameters that generated it.

2. For each novel image, retrieve the database views that
are the most similar. Use the parameters of the N
most similar views as initial estimates for the image.

3. Refine each of the retrieved parameter estimates to op-
timally match the input.

Our framework allows for systems that return multiple
estimates. Multiple estimates can be useful when, either
because of deficiencies of the similarity measure, or be-
cause of adverse viewing conditions, the retrieval method
fails to rank one of the correct matches as the best overall
match. If a system returns multiple estimates, we consider
the retrieval successful if at least one of those estimates
is close to the true parameters of the observed hand. A
low value of N may be adequate in domains like 3D hand
tracking and sign language recognition, where additional
contextual information can be used to discriminate among
the returned estimates.

In [1] we speculate on the possibility of using this
framework to estimate arbitrary hand shapes, by includ-
ing a lot of hand shape prototypes in the database, so that
for any possible observed shape there is a “close enough”
shape in the database. In this paper we tackle an easier ver-
sion of the problem, by assuming that the observed hand
shape is close to one of 26 shape prototypes. We also ig-
nore step 3 of the framework, i.e. the refinement process.

3 Similarity Measures
To retrieve the most similar database views for an in-

put image we combine four different similarity measures:
Edge location similarity, edge orientation similarity, finger-
based matching and matching based on central and Hu
moments. This section describes the individual measures.
Section 4 discusses how those measures are combined.

3.1 Chamfer Distance
We define the distance D between a point p and a set of

points X to be the Euclidean distance between p and the
point in X that is the closest to p:

D(p;X) = min
x2X

kp� xk (1)

The directed chamfer distance between two sets of
points X and Y is defined in [3]. In our system we use
the undirected chamfer distance Dc, defined as follows:
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Dc(X;Y ) =
1

jX j

X

x2X

D(x; Y ) +
1

jY j

X

y2Y

D(y;X) (2)

We use Dc to measure the distance between the edge
image of the input and the edge image of a database view.
Edge images are represented as sets of edge pixels. Before
we apply Dc we normalize the scale of both edge images,
so that the longest sides of their bounding boxes are equal.
The advantage of Dc over the directed chamfer distance
is that Dc, in addition to penalizing for points in X that
have no close match in Y , it also penalizes for points in
Y that have no close match in X . In general, the chamfer
distance is relatively robust to small translations, rotations
and deformations of the test image with respect to the cor-
responding model image.
3.2 Edge Orientation Histograms

Given a gray-scale image I , and its corresponding edge
image E, we define the orientation R of an edge pixel p
to be R(p) = arctan

Iy(p)
Ix(p)

, where Ix; Iy are the image
gradients along the x and y directions. Orientation values
are between 0 and 180 degrees. We store those orientation
values in an edge orientation histogram with 96 bins, nor-
malized so that the sum of all bin values is 1. We denote
the i-th bin of histogram H as B(H; i). If k is the number
of bins, and b is the index of one of the bins, we define the
cumulative histogram C(H; b) by the formula

B(C(H; b); i) =

b+iX

j=b

B(H; j mod k) (3)

As a similarity measure between edge orientation his-
tograms we use the maximum cumulative histogram inter-
section. The histogram intersection S 0h of histograms H
and J is defined in [21] as

S0h(H; J) =

k�1X

i=0

min(B(H; i); B(J; i)) (4)

We define the maximum cumulative histogram intersec-
tion Sh(H; J) as

Sh(H; J) = max
0<=b<k

S0h(C(H; b); C(J; b)) (5)

Using cumulative histograms in histogram intersec-
tion makes the measure less sensitive to small orientation
changes in an image. The reason we don't simply define
Sh(H; J) to be S0h(C(H; 0); C(J ;0)) is that edge orienta-
tion histograms are circular; orientation values correspond-
ing to bin 0 are as close to values corresponding to bin 1 as
to those corresponding to bin k� 1. For example, consider
the case where B(H; 0) = 1; B(J; k � 1) = 1, and all
other bins of H and J are 0. S 0h(C(H; 0); C(J ;0)) would
return an inappropriately low similarity value for the two
histograms. Sh(H; J) handles this case correctly.

            

Figure 4: An example output of the finger detector. For the index
finger, P is the fingertip, A and B are the boundary endpoints of
the finger andQ is the base point. The contour segments AP and
PB are shown in green.

3.3 Finger Matching
Given the binary image of a hand, most significant pro-

trusions that we observe are caused by fingers (Figures 2, 3,
5). The fingertips of protruding fingers usually correspond
to local maxima in the curvature of the bounding contour
of the hand. We represent a protrusion F as the ordered
triple (PF ; AF ; BF ) where PF is the fingertip point, and
AF ; BF are the endpoints of the boundary contour of the
protrusion. We define the base point QF of F as the mid-
dle point of the straight line segment between AF and BF

(Figure 4).
The length of a contour segment is defined to be the

number of pixels along that segment. The length L(F )
of protrusion F is defined as the minimum of the lengths
of the segments AFPF and PFBF . The width W (F ) of
F is the symmetric Hausdorff distance ([9]) between the
contour segments AFPF and PFBF . If X = AFPF and
Y = PFBF , then

W (F ) = max(max
x2X

D(x; Y );max
y2Y

D(y;X)) (6)

using the point-to-set distance D defined in Equation 1.
The elongation E of a protrusion F is defined as E(F ) =
L(F )
W (F ) .

We have implemented a finger detector that identifies
protrusions whose width is less than a threshold Tw and
their elongation exceeds a thresholdTe. A detailed descrip-
tion of the finger detector is given in [2].

In defining a distance measure between hand images
that uses the results of finger detection, we need to have
in mind that a slight change in hand shape or camera view-
point can cause two nearby fingers to be detected as a sin-
gle protrusion, or it can cause the elongation of a finger to
drop below the detection threshold Te. Because of that, we
generate two sets of fingers for a given hand image I : a set
of definite fingers SId , detected by setting Te = 1:8, and a
set of potential fingers SIp , detected with Te = 1:1.
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We define the distance between fingers F and G to be

kF �Gk = max(kPF � PGk; kQF �QGk) (7)

The finger-based distanceDf between an input image I
and a database view V is defined as

Df (I; V ) = max(max
F2SI

d

fD(F; SVp )g; max
G2SV

d

fD(G;SIp)g)

(8)
using the point-to-set distanceD defined in Equation 1 and
the finger distance defined in Equation 7.

Intuitively, Df penalizes for any “definite” finger in ei-
ther image for which there is no nearby “potential” finger
in the other image. It does not penalize for any “potential”
finger in one image that has no close match in the other
image. Before we apply Df on two hand images, we nor-
malize their scale, as described in the subsection on the
chamfer distance.

3.4 Moment-Based Matching
From a hand image I we compute seven central mo-

ments and seven Hu moments ([8]), and store them in
a 14-dimensional moment vector. We perform Principal
Component Analysis ([4]) on the moment vectors of all
database views, and we identify the top nine eigenvec-
tors. We define the moment-based distance Dm between
an input image I and a database view V to be the Maha-
lanobis distance ([4]) between their moment vectors, after
they have been projected to the eigenspace spanned by the
top nine eigenvectors.

4 Hierarchical Retrieval Using Combina-
tions of Measures

In general, we have found that combining different mea-
sures we get more accurate results than by using a single
measure. The combination of a set of k measures is done
as follows: given an input image I , using each of the mea-
sures we can rank the database images in order of similar-
ity to I (the most similar view has rank 1). We denote the
rank of the i-th synthetic view Vi under measure j as rij .
We define a new combined measure M(I; Vi) as

M(I; Vi) =

kX

j=1

(wj log rij) (9)

where wj is a preselected weight associated with the j-th
measure. Then, we can rank the synthetic views again, us-
ing the values of the combined measure. The reason we use
inM the ranks of a view, as opposed to using the original k
measure scores of the view, is that the scores under differ-
ent measures have different ranges and distributions, and
it is not obvious how they should be combined. The rank
numbers all belong to the same space and can be easily
combined. We sum the logarithms of the ranks, as opposed
to the ranks themselves, because this wayM behaves more
robustly in the frequent cases where a single measure gives
a really bad rank to a correct database match.

Weights can be tuned to reflect the accuracy and/or re-
dundancy of the individual measures. Our system picks
weights automatically by searching over different combi-
nations and choosing the combination that maximizes ac-
curacy over a small training set of real hand images.

The similarity measures described in section 3 have dif-
ferent strengths and weaknesses. The chamfer distance is
the most accurate, but also the most computationally ex-
pensive. Moment and finger-based matching, on the other
hand, are less accurate, but they can be done almost in real
time, if we precompute and save the corresponding features
of the database views.

In order for the system to function at more or less in-
teractive speeds, we need a retrieval method that can re-
ject most of the database views very fast, and that ap-
plies expensive matching procedures only to a small frac-
tion of likely candidates. Our database retrieval algorithm
achieves that using a hierarchical, two-step matching pro-
cess. First, it ranks the synthetic views by combining fin-
ger and moment-based matching, and it rejects the worst
ranking views. This initial screening can be done very
fast; it takes under a second in our system. Then, we rank
the remaining candidates by combining all four measures.
In practice, we have found that retrieval accuracy is only
slightly affected if we reject 99% of the views in the screen-
ing step. In general, the percentage of views that gets re-
jected in the first step can be tuned to balance between re-
trieval speed and accuracy.

5 Experiments
Our database contains renderings of 26 hand shape pro-

totypes (Figure 2). The renderings are done using a com-
mercially available hand rendering programming library
([24]). Each shape is rendered from 86 viewpoints, that
constitute an approximately uniform sampling of the sur-
face of the viewing sphere. For each viewpoint we gen-
erate 48 database views, using different values for image
plane orientation, uniformly spaced between 0 and 360 de-
grees. Generating multiple rotations of the same image is
necessary, since the similarity measures that we use are
rotation-variant. Overall, the database contains 4128 views
per shape prototype, and 107328 views total.

We have tested our system with 276 real images dis-
playing the right hands of four different persons. In those
images, the hand is segmented using skin detection ([12]).
Eight examples of segmented test images are shown in
Figure 5. We manually established pseudo-ground truth
for each test image, by labeling it with the corresponding
shape prototype and using the rendering software to find
the viewing parameters under which the shape prototype
looked the most similar to the test image. This way of es-
timating viewpoint parameters is not very exact; we found
that estimates by different people varied by 10-30 degrees.
Model views can't be aligned perfectly with a test image,
because each individual hand has somewhat different fin-
ger and palm widths and lengths, and also because the hand
shapes in the real images are only approximations of the 26
shape prototypes.
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Figure 5: Examples of test images with different frontal angles.
The frontal angles of the images in each column belong to the
range indicated at the top of that column.

Given the inaccuracy of manual estimates, we consider
a database view V to be a correct match for a test image
I if the shape prototype with which we label I is the one
used in generating V , and the manually estimated viewing
parameters of I are within 30 degrees of those of V . For
any two viewing parameter vectors u and v (see Section
2) there exists a rotation around the center of the viewing
sphere that maps u to v. We use the angle of that rotation
as the distance between u and v. On average, there are 30.8
correct matches for each test image in the database.

Our measure of the accuracy of the retrieval for a test
image is the rank of the highest-ranking correct match that
was retrieved for that image. 1 is the highest possible rank.
Table 1 shows the distribution of the highest ranking cor-
rect matches for our test set. We should note that, although
the accuracy using the chamfer measure is comparable to
the accuracy using the two-step retrieval algorithm, the
two-step algorithm is about 100 times faster than simply
applying the chamfer distance to each database view.

The viewing parameters for the test images were more
or less evenly distributed along the surface of the view-
ing sphere. We call a hand view ”frontal” if the camera
viewing direction is almost perpendicular to the palm of the
hand, and we call it a ”side view” if the viewing direction is
parallel to the palm. The ”frontal angle” of a view is the an-
gle (between 0 and 90 degrees) between the viewing direc-
tion and a line perpendicular to the palm. Figure 5 shows
some examples of test images with different frontal angles.
Table 2 shows the median rank of the highest-ranking cor-
rect matches for test images observed from different frontal
angle ranges. As expected, retrieval accuracy is worse for
side views, where fewer features are visible. It is fair to
mention that, in some of the side views, even humans find
it hard to determine what the shape is (see Figure 5).

The weights used to combine the finger and moment-
based measures (Equation 9) in the screening step of the
retrieval were 0.6 and 0.4. The weights used in the second
step of the retrieval were 0.4 for the chamfer and the finger-
based measure, and 0.1 for the edge orientation measure
and the moment-based measure. These weights were es-
tablished using a small training set of 28 real images, none
of which was included in the test set.

Rank Chamfer Edge Fingers Moments 2-step
range hist.
1 22.8 0.0 7.6 2.5 21.7
1-2 31.9 0.0 11.2 6.5 31.5
1-4 40.9 0.0 18.1 8.6 41.7
1-8 49.6 0.3 26.8 13.4 52.5
1-16 58.3 2.2 34.0 20.3 60.1
1-32 68.8 4.7 43.8 30.1 68.8
1-64 77.5 6.5 50.7 38.0 76.4
1-128 85.9 11.2 56.2 47.5 83.7
1-256 92.0 23.6 68.5 58.0 87.3
256- 8.0 76.4 31.5 42.0 12.7

Table 1: Retrieval accuracy: for each rank range and each mea-
sure we indicate the percentage of test images for which the rank
of the highest ranking correct match was in the given range. 2-
step stands for the two-step retrieval algorithm described in Sec-
tion 4.

Frontal angle 0-22.5 22.5-45 45-67.5 67.5-90
# of images 54 72 86 64
Median 1 3 9 47

Table 2: Accuracy of the two-step retrieval algorithm over dif-
ferent frontal angles. For each range of frontal angles we indicate
the number of test images whose frontal angles are in that range
and the median of the highest ranking correct matches for those
images.

Retrieval times were between 3 and 4 seconds on a PC
with a 1.2GHz Athlon processor. The memory require-
ments of the system were under 100MB.

6 Future Work
Our long term goal is a system that can provide reli-

able estimates for arbitrary hand shapes, seen from arbi-
trary viewpoints, at speeds that allow for interactive ap-
plications. In order to do that, we need to include more
shape prototypes in the database, and implement the re-
finement step of the framework presented in Section 2. At
the same time we need to work on improving retrieval ac-
curacy. We plan to investigate ways of extracting more
information from the input image, using more elaborate
bottom-up processing. We are currently looking into meth-
ods of detecting fingers and fingertips in the interior of the
hand.

As the size of the database grows larger, the issue of
retrieval efficiency will become critical. It may take un-
der a second to apply finger and moment-based matching
to a database of 100,000 images, but the time may become
prohibitive if we use a significantly larger set of hand shape
prototypes and the number of views grows into the millions
or tens of millions. We need to investigate ways of build-
ing index tables, that can automatically focus the search on
smaller parts of the database. We are currently develop-
ing an indexing scheme that can direct the database search
using the locations of detected fingers. Index tables may
prove to be feasible even for measures like the chamfer
distance or the related Hausdorff distance. [11] describes
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how to embed the Hausdorff distance into an L1 metric
and [10] discusses efficient methods for answering approx-
imate nearest neighbor queries in L1 spaces.

Another system aspect that we have neglected so far is
hand segmentation. In our test images the hand was seg-
mented using skin detection ([12]), but those images were
captured using a background that made segmentation rela-
tively easy. It is important to evaluate the performance of
our similarity measures under realistic segmentation sce-
narios and especially in the presence of segmentation er-
rors. As a start, we plan to use our system as the basis for
a real-time desktop human computer interface, where the
hand is segmented using skin color and motion.

7 Conclusions
We have presented a general framework for 3D hand

pose classification from a single image, observed from
an arbitrary viewpoint, using appearance-based matching
with a database of synthetic views. Using the ground truth
labeling of the retrieved images the system can also esti-
mate camera viewing parameters. We use a hierarchical
retrieval algorithm, which combines the efficiency of com-
putationally cheap similarity measures with the increased
accuracy of more expensive measures, and runs at close to
interactive speed.
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