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In this paper, we present a four-step technique for simultaneously estimating a hu-
man’s anthropometric measurements (up to a scale parameter) and pose from a single
uncalibrated image. The user initially selects a set of image points that constitute the
projection of selected landmarks. Using this information, along with a priori statis-
tical information about the human body, a set of plausible segment length estimates
is produced. In the third step, a set of plausible poses is inferred using a geometric
method based on joint limit constraints. In the fourth step, pose and anthropometric
measurements are obtained by minimizing an appropriate cost function subject to
the associated constraints. The novelty of our approach is the use of anthropometric
statistics to constrain the estimation process that allows the simultaneous estima-
tion of both anthropometry and pose. We demonstrate the accuracy, advantages,
and limitations of our method for various classes of both synthetic and real input
data. c© 2001 Academic Press

1. INTRODUCTION

Video-based three-dimensional human motion tracking is an important and challenging
research problem. Its importance stems from numerous applications such as: (1) perfor-
mance measurement for human factors engineering, (2) posture and gait analysis for train-
ing athletes and physically challenged persons, (3) human body, hands, and face animation,
and (4) automatic annotation of human activities in video databases. The challenges toward
the general applicability of a vision-based three-dimensional tracking system on real data
include the following:

• Data from one camera only: There are several applications for which the video
recordings from only one view are available (e.g., for analyzing the motion of famous
artists in historical recordings). In addition, the camera might be moving, possibly zooming
in and out.
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FIG. 1. (a) Instance of an image that can be handled by our algorithm. (b) Instance of an image that cannot
be handled by our algorithm.

• Model acquisition: There is no such thing as an “average” human and that makes
the selection of a geometric model for model-based tracking difficult.
• Modeling: The human models that are currently used for motion estimation do not

incorporate statistical anthropometric information.

Our goal is to develop a model-based system for tracking humans from monocular images.
In this paper, we present a technique for simultaneous anthropometry and pose estimation
from the first frame of an image sequence. The input to the algorithm is the image coordinates
of the visible landmarks from the human subject (as selected by the user) in the image under
examination (Fig. 6a). The output is the subject’s anthropometric measurements (up to a
scale parameter) and his/her pose in the specific image (Fig. 6b). By the term “up to a
scale,” we refer to the fact that from a single uncalibrated camera we cannot infer absolute
lengths (like “upper-leg-length” and “shoulder-width”) but only ratios of lengths. Therefore,
in the following when we refer to the estimation of the anthropometric measurements, we
imply the estimation of ratios of lengths like “upper-leg-length” over “shoulder-width.” The
novelty of our approach is the use of anthropometric statistics to constrain the estimation
process. The impact of our method lies in the ability to semi-automate the initialization
phase for model-based human tracking methods from a single camera. As will be explained
in later sections, our method can handle images like the one depicted in Fig. 1a, but not
images like the one depicted in Fig. 1b.

The remainder of this paper describes our technique in more detail. In Section 2, we
review prior work in the area, while in Section 3 we formulate the problem and we offer
a detailed analysis of the geometric and statistical relationships. In Section 4, we describe
our method in detail, and in Section 5 we present a number of results from our system.

2. PRIOR WORK

Two of the challenges in model-based human tracking algorithms are: (1) the acquisition
of an accurate human body model that will be employed as the model, and (2) the initializa-
tion of the model in the first frame of the image sequence. Concerning model acquisition,
existing approaches use either models of the human body whose parts are approximated
with simple shapes and their dimensions have been manually measured [10, 20] or models
whose shape and/or dimensions have been determined based on camera input data. In this
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second category, methods have been developed to obtain models of human body parts from
multiple cameras [11, 12, 15] or range data [8]. Concerning posture estimation and track-
ing, methods have been presented that use either one [4, 6, 17, 21], or multiple cameras [1,
7, 9, 13, 14, 16]. However, in most of the existing tracking approaches the user specifies
an approximate position and posture for the human model at the first frame of the image
sequence [6, 14, 19]. In contrast, Bregler and Malik [4], for the initialization step of their
human tracking method, minimize a cost function over position, angles, and body dimen-
sions. In particular, a user selects the 2D joint locations and then a 3D pose is found by
minimizing the sum of the squared differences between the projected model joint locations
and the corresponding model joint locations. The authors mention that they had good results
with a quasi-Newton method and a mixed quadratic and line search procedure. However, no
information is provided about the accuracy and repeatability of their method, nor for what
class of postures and human body dimensions does their method succeed. The contribution
of our paper is a systematic study and a technique that takes into consideration statistical
anthropometric information to constrain the estimation process.

3. ANALYSIS

In this section, first we formulate the problem, then we present a stick human body
model (SM) that incorporates statistical anthropometric information, and finally we provide
a detailed analysis of the geometrical and statistical relationships of the SM’s segments.

3.1. Problem Statement

The human musculosketelal system is composed of a series of jointed links, which can be
approximated as rigid bodies. Human motion estimation is aimed at quantitatively describ-
ing the spatial motion of body segments and the movements of the joints connecting those
segments. A hallmark of the individuality of people we encounter daily results from the
variation of their anthropometric measurements. If we assume that we have no anthropo-
metric information for the subject that we are observing, the problem of anthropometry and
pose estimation from a single image can be formulated as follows: Given a set of points in
an image that correspond to the projection of landmark points of a human subject, estimate
both the anthropometric measurements (up to a scale) of the subject and his/her pose that
best match the observed image.

3.2. Stick Human Body Model

For the purposes of this research, we have developed a generic stick human body model
(Fig. 2) inspired by the human body model employed at the Center for Human Modeling
and Simulation at University of Pennsylvania [3]. The model consists of a set of segments
connected by joints. Specifically, a stick model is a tree (s,S,A), whereS is a set of
sites/landmarks andA is a collection of edges (segments) with endpoints inS, ands ∈ S
is the root. In our case,A = {HD, RY, LY, NK, UT, RC, LC, RUA, LUA, RLA, LLA,
RHD, LHD, LT, RHP, LHP, RUL, LUL, RLL, LLL, RF, LF} as enumerated in Table 1,
and the set of landmarks consists of a set of jointsJ = {at, sp, la, lc, le, lh, lk, ls, lw, ra,
rc, re, rh, rk, rs, rw, wt} (information about the SM’s joints is provided in Table 2) and
other landmarksM = {ry (right eye), ly (left eye), rhd (base of the right middle finger),
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FIG. 2. Stick human body model (SM) and its associated coordinate systems.

lhd (base of the left middle finger), rf (tip of the right foot), if (tip of the left foot)} (S =
J ∪M).

A local coordinate system is attached to each body part. The kinematics are represented by
a transformation tree whose root is the subject’s coordinate system and whose leaves are the
coordinate systems of head, hands, and feet. The origin of the subject’s coordinate system
is the waist joint. Figure 2 depicts the local coordinate systems of the stick human model,
which corresponds to the joints listed in Table 2. Note that every joint has translational
and rotational degrees of freedom. The joint’s translational degrees of freedom allow for
segment scaling, and they are restricted by anthropometric proportionality constraints as
explained in Section 4.3. Each rotational degree of freedom has an upper limit and a lower
limit that restricts the pose estimation to plausible human postures. The default data for the
joints are extracted from [18].

3.3. Geometric Relationships

In this section, we will examine the foreshortening of the body segments in the image, un-
der the assumption of scaled orthographic projection. Letc= [Xc,Yc, Zc]> be the origin of
the camera (see Fig. 3) and let’s assume that the image plane is located atZim along theZ axis
of the camera. As known, under scaled orthographic projection the pointP1 = [X1,Y1, Z1]>
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TABLE 1

Names of the SM’s Segments

ID Segment ID Segment

HD Head NK Neck
LY Left eye RY Right eye
LT Lower torso UT Upper torso
LC Left clavicle RC Right clavicle
LUA Left upper arm RUA Right upper arm
LLA Left lower arm RLA Right lower arm
LHD Left hand RHD Right hand
LHP Left hip RHP Right hip
LUL Left upper leg RUL Right upper leg
LLL Left lower leg RLL Right lower leg
LF Left foot RF Right foot

(see Fig. 3) projects to the pointp1 = [x1, y1, z1]> = [Xc + λ1(X1− Xc),Yc + λ1(Y1−
Yc), Zim]>, whereλ1 = (Zim − Zc)/(Z1− Zc). Similarly, the pointP2 = [X2,Y2, Z2]>

projects to the pointp2 = [x2, y2, z2]> = [Xc + λ2(X2− Xc),Yc + λ2(Y2− Yc), Zim]>,
whereλ2 = (Zim − Zc)/(Z2− Zc). If we assume that this point lies on the same plane
(normal to the cameraZ axis) as the pointP1, thenλ1 = λ2. Thus, for any point on the line
P1P2, its projection is given by the equation [x, y]> = λ1S[X,Y, Z]>, where

S=
[
1 0 0
0 1 0

]
.

Similarly, for any point on the lineP3P4, its projection is given by the equation [x, y]> =
λ3S[X,Y, Z]>, whereλ3 = (Zim − Zc)/(Z3− Zc) = (Zim − Zc)/(Z4− Zc) = λ4. If αz is

TABLE 2

Information Related to the Joints of the Stick Model

ID Joint From To DOF PR

at atlanto occipital NK HD Tz∗Rz∗Ry∗Rx 3
sp solar plexus UT NK Tz∗Ry∗Rz∗x 2
la left ankle LLL LF Tx∗Rz∗Rx∗Ry 4
lc left clavicle UT LC Tz∗Rx∗Ry 3
le left elbow LUA LLA Tz∗Ry 5
lh left hip LT LUL Tz∗Rz∗Rx∗Ry 2
lk left knee LUL LLL Tz∗R-y 3
ls left shoulder LC LUA Tz∗Rz∗Rx∗Ry 4
lw left wrist LLA LHD Tz ∗Ry∗Rx∗Rz 6
ra right ankle RLL RF Tx∗R-z∗R-x∗Ry 4
rc right clavicle UT RC Tz∗R-x∗Ry 3
re right elbow RUA RLA Tz∗Ry 5
rh right hip LT RUL Tz∗R-z∗R-x∗Ry 2
rk right knee RUL RLL Tz∗R-y 3
rs right shoulder RC RUA Tz∗R-z∗R-x∗Ry 4
rw right wrist RLA RHD Tz∗Ry∗R-x∗R-z 6
wt waist LT UT Tz∗Ry∗Rz∗Rx 1
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FIG. 3. Notation pertaining to Proposition 3.1.

a real number such that

(1+ αz) = Z1− Zc

Z3− Zc
, (1)

then Z3− Zc = (Z1− Zc)/(1+ αz) and λ3 = λ1(1+ αz). Therefore, the scaled ortho-
graphic projection for the points ofP3P4 is given by [x, y]> = λ1(1+ αz)S[X,Y, Z]>.
Let L12 = ‖P2− P1‖ andl12 = ‖p2− p1‖. Then

l12 = ((x2− x1)2+ (y2− y1)2)
1
2 = λ1((X2− X1)2+ (Y2− Y1)2)

1
2 = λ1L12.

Similarly, we can obtain thatl34 = λ3L34, whereL34 = ‖P4− P3‖ and l34 = ‖p4− p3‖.
Using the relationλ3 = λ1(1+ αz), we obtain thatl34 = λ1(1+ αz)L34. Finally, the ratio
of l12 andl34 is given by

l12

l34
= λ1L12

λ1(1+ αz)L34
= L12

(1+ αz)L34
,

which implies the relation

L12

L34
= (1+ αz)

l12

l34
, (2)

which suggests the following proposition.

PROPOSITION3.1. For segments that lie in planes almost parallel to the image plane,

the ratio of segment lengths in 3D is similar to the ratio of the lengths of the corresponding
segments projected to the image plane.

Proof. Since the segments lie in planes almost parallel to the image plane,αz is very
small. Thus, the result is obtained from Eq. (2).■

3.4. Building a Cadre Family

Using the anthropometric measurements in [18], we build for our SM a cadre family, also
known as a boundary family [2]. The cadre family is a multivariate representation of the
extremes of the population distribution. It has the ability to span the multivariate space in a
systematic fashion and to capture a significant amount of the variance in the space using a
small number of sample human models. The probability density function of the multivariate
normal distribution is defined by

f (x) = 1√
(2π )k|Σ|exp

[
−1

2
(x− s)>6−1(x− s)

]
, (3)
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FIG. 4. Sample models from the distribution of SMs (7 out of 143).

wherek is the number of dimensions. In our case, the variables are the lengths of the 22
segments of our stick model (see Table 1),x is a random vector, ands andΣ are the mean
and the covariance matrices of the population, respectively.

The quadratic formQ(x) = (x− s)>Σ(x− s) defines a hyperellispoid surface arounds,
whose shape depends onΣ. We compute the principal components ofΣ, and we select seven
Ei (i = 1, . . . ,7) eigenvectors with the largest eigenvalues such thatλ1 > λ2 > · · · > λ7.
Note that each eigenvector corresponds to the original 22 variables associated with the
lengths asEi = [ei 1, ei 2, . . . ,ei 22]>. In addition, all linear combinations

∑7
i=1 αi Ei + s

constrained by the relation

7∑
i=1

α2
i ≤ 1 (4)

lie in the interior of the hyperellispoid related withΣ ands. By selecting the positive nonzero
coefficients that satisfy Eq. (4) (|α1| = |α2| = · · · = |α7| 6= 0), we can build a family of stick
models that correspond to all equidistant discrete combinations of the selected eigenvectors:∑7

i=1 βi Ei + s, whereβi ∈ {− 1√
7
, 1√

7
}. Furthermore, we add in our cadre familysand the

axial points±Ei + s, i = 1, . . . ,7. The total number of SMs produced is 143 (in general this
procedure gives 2n + 2n+ 1 components, wheren is the number of principal component
vectors kept). A sample of these SMs is depicted in Fig. 4.

3.5. Determining a Covering Set

In this section, we describe our algorithm for determining the set of anthropometric
proportions that will be used by our iterative estimator to reach an anthropometrically
plausible solution. In order to reduce the number of variables, we assume that the left and
right sides of the human body are symmetrical, and we only consider the left side. Also, we
do not employ the segments associated with the eyes, the hands, and the atlanto occipital
joint. Thus, we focus our statistical modeling on eight segments of the SM as enumerated
in Table 3. In the following, letL = {l i }8i=1 be the set of segment lengths, andR = {rk}28

k=1

be the set of the corresponding ratios of segment lengths. These ratios are computed by
dividing the lengths of any two different segments that belong toL.

TABLE 3

The Segments Used for Computing the Covering Set

l1 l2 l3 l4 l5 l6 l7 l8

UT+ LT LC LUA LLA LHP LUL LLL LF
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TABLE 4

Segment Lengths and Ratios Associated with Our

Cadre Family of SMs

l1,1 l2,1 ... l8,1 ⇒ r1,1 r2,1 ... r28,1

l1,2 l2,2 ... l8,2 ⇒ r1,2 r2,2 ... r28,2

...
... ...

...
...

...
... ...

...
l1,143 l2,143 ... l8,143 ⇒ r1,143 r2,143 ... r28,143

Mean ⇒ µ(r1) µ(r2) ... µ(r28)
Variance ⇒ σ (r1) σ (r2) ... σ (r28)

We form these (82) = 28 ratios as follows:

rk,q =


lm,q
ln,q

if µ(ln) > µ(lm)

ln,q
lm,q

otherwise,

where 1≤ m< n ≤ 8, k = 1, . . . ,28, andq = 1, . . . ,143. The index formula that relates
k with m andn is given by:k = n−m+ (m− 1)(8− m

2 ).
In Table 4 the rows depict that the lengths of the eight selected segments will be used to

produce the SM’s ratios, and the associated means and variances. The segment lengths and
the ratios are denoted byl i,q andrk,q respectively, andq = 1, . . . ,143 denotes the index of
a member of our cadre family (see Section 3.4). Using the values in Table 4, we compute
the matrixC = [ci j ] of the absolute value of the ratio correlation as

ci j =
∣∣∣∣µ[(ri,q − µ(ri ))(r j,q − µ(r j ))]

σ (r j )σ (r j )

∣∣∣∣, i, j = 1, . . . ,28.

DEFINITION 3.1. LetV = [vki ] be a 28× 8 matrix. For allrk ∈ R, andl i ∈ Lwe define
the following functions:

• weight(rk) = σ (rk)

µ(rk)

The varianceσ (rk) is an indication of the precision of the statistical information concerning
the ratiork. Therefore, when the weight of a ratio is small, the ratio is more constrained.

• cover(rk, l i ) =
{

1 if (rk = lm
ln
∧ (l i = lm ∨ l i = ln))

ckb otherwise,

whereckb = maxf {ck f }, and (r f = ld
le
∧ (l i = ld ∨ l i = le). The value of cover(rk, l i ) mea-

sures to what extent the ratiork constrains the lengthl i .

• degree(rk,V) =∑i vki , wherevki = cover(rk, l i ).

The degree function measures the correlation of a ratio with all the segments.

• goodness(rk,V) = degree(rk,V)

weight(rk )
.

The goodness function is employed in determining which ratios will be used to constrain
the estimation process as explained in Algorithm 1.

DEFINITION 3.2. A setB ⊂ R (the set of ratios) is acovering setof L (the set of
segments), if∀l i ∈ L, ∃rk = lm/ ln ∈ R such thatl i = lm ∨ l i = ln.
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Our objective is to find a set of ratios that constrain all segment lengths. Thus, we formulate
the problem as aset coveringproblem as follows: IfL is the set of a SM’s segment lengths
andR is the set of the corresponding ratios, find the covering setB for L. In the following,
we outline the steps of the algorithm.

ALGORITHM 1 (RATIO SELECTION).

1. B := ∅
2. ∀(rk, l i ) ∈ (R× L),V[k, i] := cover(rk, l i )
3. ∀i, l i ∈ L, care(l i ) := 0
4. while (True)do
5. ∀ j, r j ∈ R \ B, d[ j ] = degree(r j ,V)
6. ∀ j, r j ∈ R \ B, g[ j ] = goodness(r j ,V)
7. m := arg maxj,r j∈R\B{g[ j ]} andrm = ld

le
8. B := B ∪ {rm}, care[d]+=V[m, d], care[e]+=V[m, e]
9. if (care[i ] ≥ 1), ∀i , l i ∈ L

10. then
11. returnB
12. else
13. ∀ j, r j ∈ R \ B,V[ j, d] := max{0,V[ j, d] − care[d]}
14. ∀ j, r j ∈ R \ B,V[ j, e] := max{0,V[ j, e] − care[e]}
15. end while

The resulting set isB = { LC
UT+ LT ,

LLA
LUA ,

LHP
LUA ,

LF
LUL ,

LF
LLL }.

PROPOSITION 3.2. The Ratio Selection algorithm(outlined above) always returns a
covering set.

Proof. The setR is the maximum covering set ofL. In the worst case, the values of
goodness(r j ,V) could all be equal. However, since step 7 in Algorithm 1 returns one index,
the corresponding ratio is added toB and discarded fromR, and therefore the algorithm
always returns a covering set.■

4. ANTHROPOMETRY AND POSE ESTIMATION

Our technique for simultaneously estimating the anthropometry and the pose from a
single uncalibrated image has the following steps [5]:

ALGORITHM 2 (ANTHROPOMETRY ANDPOSEESTIMATION).

Step 1: Selection of projected landmarks
Step 2: Initial anthropometric estimates
Step 3: Initial pose estimates
Step 4: Iterative minimization over lengths and angles

In the following subsections we describe each step in detail.

4.1. Selection of Projected Landmarks

We have developed a simple user interface that allows the user to select the projection
of visible landmarks of the subject’s body (see Fig. 6a). In addition, the user marks the
segments whose orientation is almost parallel to the image plane. For example, in Fig. 6a
the green dots depict projection of landmarks associated with segments whose orientation
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is almost parallel to the image plane, and the blue dots depict all other selected landmarks.
Although information from both types of landmarks will be used for pose estimation, initial
length estimates will be based on the projected length of the segments whose orientation is
almost parallel to the image plane only.

4.2. Initial Anthropometric Estimates

Our basic assumption is that there is a number of segments whose orientation is almost
parallel to the image plane and therefore we can obtain good approximation ratios for them
using Proposition 3.1. Thus, our algorithm cannot handle images like the one depicted in
Fig. 1b, since one cannot locate segments that are almost parallel to the image plane to
obtain reliable initial anthropometric estimates.

Let hi be the projected length of a segmenti on the image, and letI ⊂ {1, . . . ,8} be the
index set of these segments whose orientation is almost parallel to the image plane. Using
the measurementshi (i ∈ I), we compute all possible ratiossk that correspond to the ratios
of SMs in Table 4 as follows,

sk =


hm
hn

if µ(ln) > µ(lm)

hn
hm

otherwise,

wherek ∈ K = {k ∈ {1, . . . ,28}|k = n−m(m− 1)(8− m
2 ),m, n ∈ I}. Basing our selec-

tion on these ratios, we select one SM from the family of 143 SMs whose length ratios
closely match the ratios computed from the image using the Mahalanobis distance. To
accomplish this goal, we determine

q∗ = arg min
q

∑
k∈K

(rk,q − sk)

(∑
j∈K

vk j (r j,q − sj )

)
,

whererk,q, r j,q are defined in Table 4,q = 1, . . . ,143,

vk j = µ[(rk,q − µ(rk))(r j,q − µ(r j ))]

are covariance coefficients of the ratios, andk, j ∈ K.

[vk j ] = O−1

andO is the covariance matrix of the ratios{rk,q}k∈κ, j=1,...,143.
The length measurements of the selectedq∗ stick model are used as initial segment length

estimates.
To facilitate the overall understanding of our algorithm, we first present the fourth step

in the next section, and then we present the third step in Section 4.4.

4.3. Iterative Minimization over Lengths and Angles

The variables we want to estimate are the lengths of the body segments and their pose.
Therefore, we will solve a system of equations where prior information about the human
body (e.g., relations between lengths of segments) will provide constraints to an optimization
that minimizes the discrepancy between the synthesized appearance of the SM (for that pose)
and the image data of the subject in the given image.

As mentioned earlier, the user selects a set of points on the image that correspond to the
projection of the sites of the stick model. For each of these points, we set up a point-to-line
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FIG. 5. Two initial poses for the SM’s upper arm.

constraint, since the site will lie on a line that goes through the center of the camera and
the projection of a landmark. Letc be the camera’s center of projection,mi be the position
of mi ∈ S (a SM’s site), andmp

i be the corresponding projection point selected by the
user. Then the constraint line is given byci = c+ λdi , wheredi = (mp

i − c)/‖mp
i − c‖.

Our objective function isO =∑i distance(mi , ci ). We seek to minimize the value of this
function using a BFGS nonlinear solver [22]. Due to the large number of degrees of freedom,
in order not to be trapped into a local minimum and to obtain an anthropometric plausible
correct answer, we apply the solver in a hierarchical manner. Statistical information about
the proportions of the human body and the range of motion of each joint are integrated into
the hierarchical optimization method as a set of constraints.

Hierarchical solver. First, to facilitate and expedite the minimization process, we assign
a priority to each joint and end effector, and we schedule our optimization to proceed in
a hierarchical manner starting with joints closer to the waist joint moving outward. The
priorities for each joint are detailed in the column named PR in Table 2.

Constraints. Three classes of constraints are applied: (1) constraints derived from the
joint limit information associated with the range of motion of a joint, (2) constraints that
enforce the symmetry between the left and right sides of the subject (e.g., the length of
the left upper arm is equal to the length of the right upper arm), and (3) constraints that
enforce proportions. For the symmetry constraints in particular, we require that the ra-
tios { LY

RY ,
LC
RC,

LUA
RUA ,

LLA
RLA ,

LHD
RHD,

LHP
RHP,

LUL
RUL ,

LLL
RLL ,

LF
RF} are withinε distance from the value one.

Thus, the variables whose values will be estimated are the lengths of the segments out-
lined in Table 3. Furthermore, the constraint for a ratiork = lm/ ln∀rk ∈ B(B = {UT+LT

LC ,
LUA
LLA ,

LUA
LHP ,

LUL
LP ,

LLL
LP } as per Algorithm 1) takes the form

l j − σ j ≤ l j ≤ l j + σ j

rk = lm
ln
,

TABLE 5

Accuracy of the Length Estimates for the Synthetic Experiment

LC
UT+ LT

LLA
LUA

LHP
LUA

LF
LUL

LF
LLL

Actual 0.6553 0.9829 0.5700 0.6397 0.6341
Estimated 0.6517 0.9517 0.5713 0.6595 0.6460
PE % 0.5494 3.1743 0.2281 3.0952 1.8767
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FIG. 6. Synthetic experiment: (a) input image and selected points, (b)–(d) novel views of the reconstructed
3D SM and the virtual human model.

wherel j is eitherlm or ln and corresponds to the segment with the smaller value between
µm/σm andµn/σn.

4.4. Initial Pose Estimates

In order for the nonlinear solver not to get trapped into a local minimum, we use a
geometric method for providing an initial guess for the pose of the segments whose both
endpoints were selected by the user. Letmp

i be the projection of a sitemi in the image,
l i > 0 be the length of the segment of which this landmark is the end-effector, andj ∈ J
be the position of the parent joint of that landmark on the stick model. By construction, the
following equation applies,

‖c+ λdi − j‖ = l i ,

wheredi is the unit direction between the camera andmp
i , as defined earlier. This quadratic

equation has two solutions

λ1 = di · (j − c)+
√

[di · (c− j )]2− ‖c− j‖2+ l 2
i and

λ2 = di · (j − c)−
√

[di · (c− j )]2− ‖c− j‖2+ l 2
i ,

FIG. 7. Subject Vanessa: (a) selected points, (b) reconstructed model overlaid to the image, and (c), (d) novel
views of the reconstructed SM.
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FIG. 8. (a) Input image depicting a geologist along with the user-selected input landmarks, (b) reconstructed
model overlaid to the image, and (c) novel view of the reconstructed SM.

FIG. 9. (a) Input image depicting a tennis player along with the user-selected input landmarks, (b) recon-
structed model overlaid to the image, and (c) novel view of the reconstructed SM.

FIG. 10. (a) Input image depicting a basketball player along with the user-selected input landmarks, (b)
reconstructed model overlaid to the image, and (c) novel view of the reconstructed SM.

FIG. 11. Input image depicting a golf player along with the user-selected input landmarks, and the recon-
structed model SM.
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TABLE 6

Accuracy of the Pose Estimates for the Synthetic Experiment

Joint Actual Estimated PE %

at (0.00◦, 0.00◦, 0.00◦) (0.00◦, 0.00◦, 0.00◦) 0.00
sp (−0.50◦,−2.00◦, 0.00◦) (−0.48◦,−1.98◦, 0.00◦) 1.37
la (12.97◦,−15.37◦,−63.40◦) (13.60◦,−16.50◦,−65.00◦) 3.09
lc (12.24◦, 0.99◦) (12.01◦, 0.99◦) 1.87
le (41.84◦) (42.31◦) 1.12
lh (−16.80◦, 2.14◦,−2.73◦) (−16.53◦, 2.12◦,−2.69◦) 1.60
lk (0.00◦) (0.0◦) 0.00
ls (2.50◦, 36.47◦, 3.41◦) (2.50◦, 36.87◦, 3.37◦) 1.09
lw (42.67◦,−39.12◦, 1.85◦) (43.02◦,−40.12◦, 1.65◦) 1.86
ra (32.28◦, 33.54◦,−50.13◦) (31.98◦, 33.32◦,−49.81◦) 0.72
rc (11.70◦, 11.41◦) (11.61◦, 11.51◦) 0.82
re (62.74◦) (63.05◦) 0.49
rh (−8.63◦,−13.40◦, 63.87◦) (−8.62◦,−13.40◦, 63.77◦) 0.15
rk (129.13◦) (131.02◦) 1.46
rs (26.20◦, 31.11◦, 42.44◦) (26.20◦, 31.07◦, 43.01◦) 0.97
rw (−5.35◦,−6.55◦,−54.53◦) (−5.15◦,−7.05◦,−54.50◦) 0.98
wt (0.00◦, 0.00◦, 0.00◦) (0.00◦, 0.00◦, 0.00◦) 0.00

that correspond to the intersection of the linec+ λkdi with the sphere of radiusl i centered
at j . For example, Fig. 5 depicts the two possible solutions related to the jointrs and the site
re. The two possible initial guesses for the position of sitemi aremi 1 = c+ λ1di andmi 2 =
c+ λ2di . Finally, joint limit information is used to prune the solutions that are not feasible.
If both positions are feasible, then they are used as initial values for the nonlinear solver.

5. RESULTS AND DISCUSSION

We have performed a number of experiments on synthetic and real data to assess the
accuracy, limitations, and advantages of our approach. In all the examples of the input
images, the green dots depict projection of landmarks associated with segments whose
orientation is almost parallel to the image plane, and the blue dots depict all other selected
landmarks (see for example the input image depicted in Fig. 7a). In the first experiment,
we applied our technique to an image created using the virtual human modeling tool EAI
Jack. Figure 6a depicts the selected points in the input image, while Fig. 6b depicts the
reconstructed 3D model. Figures 6c and 6d depict the reconstructed 3D model in novel
views. Tables 5 and 6 contain statistical information related to the accuracy of the estimation
process.

TABLE 7

Accuracy of the Length Estimates for the SubjectVanessa

LC
UT+ LT

LLA
LUA

LHP
LUA

LF
LUL

LF
LLL

Actual 0.6279 0.8625 0.6949 0.5517 0.4778
Estimated 0.6402 0.8516 0.6728 0.5594 0.4888
PE % 1.9589 1.2638 3.1803 1.3957 2.3022
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In the second experiment, we applied our technique to a real image from the subject
Vanessa whose anthropometric dimensions were manually measured. Figure 7a depicts
the selected points, Fig. 7b depicts the reconstructed model overlaid to the image, and
Figs. 7c and 7d depict the reconstructed model from novel views. Table 7 captures the
percentage error (PE) in estimating the length ratios. We observe that the estimation of
anthropometric information is within 3.2% of the anthropometric dimensions of the subject.
In general, we have performed numerous other experiments with a variety of subjects whose
anthropometric dimensions are known with similar very encouraging results.

In the third experiment, we applied our algorithm to a variety of images from a vari-
ety of application domains, where anthropometric information about the subjects was not
available. Figures 8a, 9a, and 10a depict the input images along with the selected points,
while Figs. 8b and 8c, 9b and 9c, and 10b and 10c depict the reconstructed models from
different viewpoints. Finally, Fig. 11 depicts the input image of golf player along with the
reconstructed three-dimensional stick model.

6. CONCLUSION

In this paper, we have described a four-step technique for generating anthropometric and
posture information for a human subject from a single image. The user initially selects a
set of image points that constitute the projection of selected landmarks. Based on the image
coordinates of the selected points and anthropometric statistics, pose and anthropometric
measurements are obtained by minimizing an appropriate cost function subject to the as-
sociated constraints. The novelty of our approach is the use of anthropometric statistics to
constrain the estimation process that allows the simultaneous estimation of both anthro-
pometry and pose. We have demonstrated the accuracy, advantages, and limitations of our
method for various classes of both synthetic and real input data.
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