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In this paper, we present a four-step technique for simultaneously estimating a hu-
man’s anthropometric measurements (up to a scale parameter) and pose from a single
uncalibrated image. The user initially selects a set of image points that constitute the
projection of selected landmarks. Using this information, along with a priori statis-
tical information about the human body, a set of plausible segment length estimates
is produced. In the third step, a set of plausible poses is inferred using a geometric
method based on joint limit constraints. In the fourth step, pose and anthropometric
measurements are obtained by minimizing an appropriate cost function subject to
the associated constraints. The novelty of our approach is the use of anthropometric
statistics to constrain the estimation process that allows the simultaneous estima-
tion of both anthropometry and pose. We demonstrate the accuracy, advantages,
and limitations of our method for various classes of both synthetic and real input
data. © 2001 Academic Press

1. INTRODUCTION

Video-based three-dimensional human motion tracking is an important and challen
research problem. Its importance stems from numerous applications such as: (1) pe
mance measurement for human factors engineering, (2) posture and gait analysis for
ing athletes and physically challenged persons, (3) human body, hands, and face anim
and (4) automatic annotation of human activities in video databases. The challenges to
the general applicability of a vision-based three-dimensional tracking system on real |
include the following:

e Data from one camera onlyThere are several applications for which the vide«
recordings from only one view are available (e.g., for analyzing the motion of famc
artists in historical recordings). In addition, the camera might be moving, possibly zoom
in and out.
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(b)

FIG. 1. (a) Instance of an image that can be handled by our algorithm. (b) Instance of an image that ca
be handled by our algorithm.

e Model acquisition There is no such thing as an “average” human and that mak
the selection of a geometric model for model-based tracking difficult.

o Modeling The human models that are currently used for motion estimation do r
incorporate statistical anthropometric information.

Our goalisto develop a model-based system for tracking humans from monocularima
In this paper, we present a technique for simultaneous anthropometry and pose estim
from the first frame of animage sequence. The inputto the algorithm is the image coordin
of the visible landmarks from the human subject (as selected by the user) in the image u
examination (Fig. 6a). The output is the subject’'s anthropometric measurements (up
scale parameter) and his/her pose in the specific image (Fig. 6b). By the term “up
scale,” we refer to the fact that from a single uncalibrated camera we cannot infer absc
lengths (like “upper-leg-length” and “shoulder-width”) but only ratios of lengths. Therefor
in the following when we refer to the estimation of the anthropometric measurements,
imply the estimation of ratios of lengths like “upper-leg-length” over “shoulder-width.” Th
novelty of our approach is the use of anthropometric statistics to constrain the estima
process. The impact of our method lies in the ability to semi-automate the initializat
phase for model-based human tracking methods from a single camera. As will be expla
in later sections, our method can handle images like the one depicted in Fig. 1a, bu
images like the one depicted in Fig. 1b.

The remainder of this paper describes our technique in more detail. In Section 2,
review prior work in the area, while in Section 3 we formulate the problem and we off
a detailed analysis of the geometric and statistical relationships. In Section 4, we des
our method in detail, and in Section 5 we present a number of results from our system

2. PRIOR WORK

Two of the challenges in model-based human tracking algorithms are: (1) the acquisi
of an accurate human body model that will be employed as the model, and (2) the initial
tion of the model in the first frame of the image sequence. Concerning model acquisit
existing approaches use either models of the human body whose parts are approxin
with simple shapes and their dimensions have been manually measured [10, 20] or m
whose shape and/or dimensions have been determined based on camera input data.
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second category, methods have been developed to obtain models of human body part:
multiple cameras [11, 12, 15] or range data [8]. Concerning posture estimation and tr
ing, methods have been presented that use either one [4, 6, 17, 21], or multiple camer
7,9, 13, 14, 16]. However, in most of the existing tracking approaches the user spec
an approximate position and posture for the human model at the first frame of the i
sequence [6, 14, 19]. In contrast, Bregler and Malik [4], for the initialization step of the
human tracking method, minimize a cost function over position, angles, and body dirr
sions. In particular, a user selects the 2D joint locations and then a 3D pose is foun
minimizing the sum of the squared differences between the projected model joint locat
and the corresponding model joint locations. The authors mention that they had good re
with a quasi-Newton method and a mixed quadratic and line search procedure. Howeve
information is provided about the accuracy and repeatability of their method, nor for w
class of postures and human body dimensions does their method succeed. The contrit
of our paper is a systematic study and a technique that takes into consideration stati
anthropometric information to constrain the estimation process.

3. ANALYSIS

In this section, first we formulate the problem, then we present a stick human b
model (SM) that incorporates statistical anthropometric information, and finally we prov
a detailed analysis of the geometrical and statistical relationships of the SM’s segmen

3.1. Problem Statement

The human musculosketelal system is composed of a series of jointed links, which ca
approximated as rigid bodies. Human motion estimation is aimed at quantitatively desc
ing the spatial motion of body segments and the movements of the joints connecting tl
segments. A hallmark of the individuality of people we encounter daily results from t
variation of their anthropometric measurements. If we assume that we have no anthr
metric information for the subject that we are observing, the problem of anthropometry
pose estimation from a single image can be formulated as follows: Given a set of point
an image that correspond to the projection of landmark points of a human subject, esti
both the anthropometric measurements (up to a scale) of the subject and his/her pos
best match the observed image.

3.2. Stick Human Body Model

For the purposes of this research, we have developed a generic stick human body n
(Fig. 2) inspired by the human body model employed at the Center for Human Model
and Simulation at University of Pennsylvania [3]. The model consists of a set of segm:
connected by joints. Specifically, a stick model is a trgeS(.4), whereS is a set of
sites/landmarks and is a collection of edges (segments) with endpoint§ jmands € S
is the root. In our cased = {HD, RY, LY, NK, UT, RC, LC, RUA, LUA, RLA, LLA,
RHD, LHD, LT, RHP, LHP, RUL, LUL, RLL, LLL, RF, LR as enumerated in Table 1,
and the set of landmarks consists of a set of jojits- {at, sp, la, Ic, le, Ih, Ik, Is, Iw, ra,
rc, re, rh, rk, rs, rw, wit (information about the SM’s joints is provided in Table 2) anc
other landmarks\t = {ry (right eye), ly (left eye), rhd (base of the right middle finger).
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FIG. 2. Stick human body model (SM) and its associated coordinate systems.

Ihd (base of the left middle finger), rf (tip of the right foot), if (tip of the left foofy =
J UM).

Alocal coordinate systemis attached to each body part. The kinematics are represent
a transformation tree whose root is the subject’s coordinate system and whose leaves a
coordinate systems of head, hands, and feet. The origin of the subject’s coordinate sy
is the waist joint. Figure 2 depicts the local coordinate systems of the stick human mo
which corresponds to the joints listed in Table 2. Note that every joint has translatio
and rotational degrees of freedom. The joint’s translational degrees of freedom allow
segment scaling, and they are restricted by anthropometric proportionality constraint
explained in Section 4.3. Each rotational degree of freedom has an upper limit and a Ic
limit that restricts the pose estimation to plausible human postures. The default data fo
joints are extracted from [18].

3.3. Geometric Relationships

In this section, we will examine the foreshortening of the body segments in the image,
der the assumption of scaled orthographic projectioncke{ X., Yc, Zc] " be the origin of
the camera (see Fig. 3) and let's assume that the image plane is locajgdlang theZ axis
ofthe camera. As known, under scaled orthographic projection theRwoiat X1, Y1, Z1]"
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TABLE 1
Names of the SM’s Segments

ID Segment ID Segment
HD Head NK Neck
LY Left eye RY Right eye
LT Lower torso uT Upper torso

LC Left clavicle RC Right clavicle
LUA  Leftupperarm RUA  Right upper arm
LLA Leftlowerarm RLA  Rightlower arm
LHD Lefthand RHD  Right hand

LHP  Left hip RHP  Right hip

LUL  Left upperleg RUL  Right upper leg
LLL  Leftlowerleg RLL  Rightlower leg
LF Left foot RF Right foot

(see Fig. 3) projects to the poipt = [X1, Y1, Z1] T = [Xc + A1(X1 — X¢), Yo + A1(Y1 —
Ye), Zim] T, where s = (Zim — Z¢o)/(Z1 — Z¢). Similarly, the pointP, = [X2, Ya, Z5] T
projects to the poin = [Xz, Y2, Zo] " =[Xc + A2(X2 — X¢), Yo + 22(Y2 — Ye), Zim]
wherei; = (Zim — Zo)/(Z2 — Z¢). If we assume that this point lies on the same plan
(normal to the camerZ axis) as the poin®;, theni; = X,. Thus, for any point on the line
P1P,, its projection is given by the equatior,[y]" = A9 X, Y, Z]T, where

1 00
s=lo 2 o

Similarly, for any point on the lin@®zP., its projection is given by the equatior,[y] " =
239X, Y, Z]T, whereis = (Zim — Zc)/(Z3 — Zo) = (Zim — Zo)/(Za — Zc) = ha. If oz is

TABLE 2
Information Related to the Joints of the Stick Model
ID Joint From To DOF PR
at  atlanto occipital NK HD TRz Ry*Rx 3
sp  solar plexus uT NK TRy*Rz*x 2
la left ankle LLL LF TX*'RzZ*Rx*Ry 4
Ilc left clavicle uT LC TZRXx*Ry 3
le  left elbow LUA  LLA Tz*Ry 5
Ih left hip LT LUL  Tz*Rz‘Rx*Ry 2
Ik leftknee LUL  LLL Tz*R-y 3
Is left shoulder LC LUA  TzRzRx*Ry 4
Iw  left wrist LLA  LHD Tz*Ry*Rx*Rz 6
ra  rightankle RLL RF TXR-Z'R-X*Ry 4
rc  right clavicle uT RC TzR-x*Ry 3
re right elbow RUA RLA TZzZRy 5
rh right hip LT RUL  TzZR-z‘R-x*Ry 2
rk  rightknee RUL RLL TzZR-y 3
rs right shoulder RC RUA  TR-ZR-x*Ry 4
rw  right wrist RLA  RHD TZRy*R-x*R-z 6
wt  waist LT uT TZRy*Rz‘Rx 1
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FIG. 3. Notation pertaining to Proposition 3.1.

a real number such that

Z]__ZC
Zs— 72

(1+ay)= 1)
then Z3 — Z. = (Z1 — Z;)/(1 + az) and A3 = A1(1+ ;). Therefore, the scaled ortho-
graphic projection for the points d?;P, is given by K, y]T = A1(1 + a)S[X, Y, Z] 7.
LetLip = [[P2 — P1fl andliz = [|p2 — pal. Then

lo = (X2 — X1)% + (Y2 — Y1)2)? = 22(X2 — X0)2 + (Y2 — Y1)?)? = 2Ly,

Similarly, we can obtain thdt, = A3L34, WhereLss = ||P4 — P3|l andlzs = ||ps — psll.
Using the relatioriz = A1(1 + «;), we obtain that3, = A1(1 + «,)L3s. Finally, the ratio
of l12 andls,4 is given by

|i2= Ali2 _ L1z
lsa 2M(Q+az)las (A+az)las’

which implies the relation

L |
12 _ (1402, @
L34 34

which suggests the following proposition.

PropPosSITION3.1. For segments that lie in planes almost parallel to the image plan
the ratio of segment lengths in 3D is similar to the ratio of the lengths of the correspond
segments projected to the image plane.

Proof. Since the segments lie in planes almost parallel to the image plaieyery
small. Thus, the result is obtained from Eq. (2

3.4. Building a Cadre Family

Using the anthropometric measurements in [18], we build for our SM a cadre family, a
known as a boundary family [2]. The cadre family is a multivariate representation of t
extremes of the population distribution. It has the ability to span the multivariate space
systematic fashion and to capture a significant amount of the variance in the space us
small number of sample human models. The probability density function of the multivari
normal distribution is defined by

f(x) = exp —%(x -9z Yx -9, (3)

1
V(2m)K|Z|
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FIG. 4. Sample models from the distribution of SMs (7 out of 143).

wherek is the number of dimensions. In our case, the variables are the lengths of the
segments of our stick model (see Tablexlls a random vector, arglandX are the mean
and the covariance matrices of the population, respectively.

The quadratic fornQ(x) = (x — s) T 3(x — 9) defines a hyperellispoid surface arowgd
whose shape dependsBnWe compute the principal componentSafand we select seven

Ei (i =1,...,7) eigenvectors with the largest eigenvalues suchithat 2, > --- > A7.
Note that each eigenvector corresponds to the original 22 variables associated witl
lengths asE; = [g1, 82, ..., &22] . In addition, all linear combinationgleai Ei+s

constrained by the relation

7

Y af=1 (4)

i=1

lie in the interior of the hyperellispoid related withands. By selecting the positive nonzero
coefficients that satisfy EqQ. (41| = |2 = - - - = |a7] # 0), we can build a family of stick
models that correspond to all equidistant discrete combinations of the selected eigenve:
S, BEi + s whereg; € {—%, %}. Furthermore, we add in our cadre familgnd the
axial pointstE; +s,i =1, ..., 7. The total number of SMs produced is 143 (in general thi
procedure gives™+ 2n 4+ 1 components, wheneis the number of principal component
vectors kept). A sample of these SMs is depicted in Fig. 4.

3.5. Determining a Covering Set

In this section, we describe our algorithm for determining the set of anthropome
proportions that will be used by our iterative estimator to reach an anthropometric:
plausible solution. In order to reduce the number of variables, we assume that the left
right sides of the human body are symmetrical, and we only consider the left side. Also
do not employ the segments associated with the eyes, the hands, and the atlanto oc
joint. Thus, we focus our statistical modeling on eight segments of the SM as enumer
in Table 3. In the following, le = {I;}2_; be the set of segment lengths, &Rd= {r¢}22,
be the set of the corresponding ratios of segment lengths. These ratios are comput
dividing the lengths of any two different segments that belong.to

TABLE 3
The Segments Used for Computing the Covering Set

Iy P I3 la Is le I7 lg

UT+LT LC LUA LLA LHP LUL LLL LF
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TABLE 4
Segment Lengths and Ratios Associated with Our
Cadre Family of SMs

l11 l21 v g = T 21 v Toga

l12 2.2 O PP = T2 22 o Tog2

li4s lawas oo lgs = Ty 2143 wo Tagi1a3

Mean = () wu(rz) .. u(rz)
Variance = o) o) ... o(r)

We form theseg) = 28 ratios as follows:

I, .

e 1 pln) > 1(lm)
rk,q =

Ing otherwise,

m,

a

wherel<m<n<8k=1,...,28,andg =1, ..., 143. The index formula that relates
kwith mandn is given by:k = n —m+ (m — 1)(8— ).

In Table 4 the rows depict that the lengths of the eight selected segments will be use
produce the SM’s ratios, and the associated means and variances. The segment lengt
the ratios are denoted Iy, andry q respectively, and = 1, ..., 143 denotes the index of
a member of our cadre family (see Section 3.4). Using the values in Table 4, we comj
the matrixC = [g;] of the absolute value of the ratio correlation as

| l(rig = () — ()]
: a(rjo(ry) C
DEFINITION 3.1. LetV = [vkj] be a 28x 8 matrix. For allry € R, andl; € £ we define
the following functions:
a(re)
u(ry)

The variance (ry) is an indication of the precision of the statistical information concernin
the ratiory. Therefore, when the weight of a ratio is small, the ratio is more constrained

j=1...,28

o weightfy) =

e coverfy,li) = {1 if (re = ll_r: Ali=Invii=1,)

Ckp Otherwise
wherecy, = max; {cks}, and € = 'Iﬂ A (li =lg v Ij =lg). The value of coverg, ;) mea-
sures to what extent the ratig constrains the length.

o degreefy, V) = > v, wherevy = coverfy, li).
The degree function measures the correlation of a ratio with all the segments.
degree(y, V)

The goodness function is employed in determining which ratios will be used to constr
the estimation process as explained in Algorithm 1.

DErFINITION 3.2. A setB C R (the set of ratios) is @overing setof £ (the set of
segments), i¥l; € £,3rx =1/ln € Rsuchthat; =1, vIi =1,.
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Our objective isto find a set of ratios that constrain all segment lengths. Thus, we formu
the problem as aet coveringproblem as follows: IfZ is the set of a SM’s segment lengths
andR is the set of the corresponding ratios, find the coveringdet L. In the following,
we outline the steps of the algorithm.

ALGORITHM 1 (RATIO SELECTION).

1. B:=¢

2. Y(rx, i) € (R x £), VIK, i] := cove(ry, I;)
3. Vi,lj € L, care(j):=0

4. while (True)do

5. V], rj e R\ B,d[j] = degredr;, V)
6. Vj,rj e R\B,gd[j] =goodness;,V)
7. mi=arg max, rsigljl} andry = 2
8. B :=BU/{rn}, cardd] +=V[m, d], carde] + =V[m, €]
9. if(cardi] = 1)V, lieLl
10. then
11. return
12. else

13. Vi, rj € R\ B,V[j,d] := max0, V[j, d] — cardd]}
14. Vi, rj e R\ B,VI[j, €] := max0, V[j, €] — carde]}
15. end while

The resulting set i = { =S LA LHE "LE “LE 3

ProPOSITION3.2. The Ratio Selection algorithrfoutlined abovg always returns a
covering set.

Proof. The setR is the maximum covering set d@f. In the worst case, the values of
goodness(, V) could all be equal. However, since step 7 in Algorithm 1 returns one inde
the corresponding ratio is addedBoand discarded frorR, and therefore the algorithm
always returns a covering setm

4. ANTHROPOMETRY AND POSE ESTIMATION

Our technique for simultaneously estimating the anthropometry and the pose frol
single uncalibrated image has the following steps [5]:

ALGORITHM 2 (ANTHROPOMETRY ANDPOSEESTIMATION).

Step 1: Selection of projected landmarks

Step 2: Initial anthropometric estimates

Step 3: Initial pose estimates

Step 4: Iterative minimization over lengths and angles

In the following subsections we describe each step in detail.

4.1. Selection of Projected Landmarks

We have developed a simple user interface that allows the user to select the proje
of visible landmarks of the subject’s body (see Fig. 6a). In addition, the user marks
segments whose orientation is almost parallel to the image plane. For example, in Fi
the green dots depict projection of landmarks associated with segments whose orient
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is almost parallel to the image plane, and the blue dots depict all other selected landm:
Although information from both types of landmarks will be used for pose estimation, initi
length estimates will be based on the projected length of the segments whose orientati
almost parallel to the image plane only.

4.2. Initial Anthropometric Estimates

Our basic assumption is that there is a number of segments whose orientation is al
parallel to the image plane and therefore we can obtain good approximation ratios for tl
using Proposition 3.1. Thus, our algorithm cannot handle images like the one depicte
Fig. 1b, since one cannot locate segments that are almost parallel to the image pla
obtain reliable initial anthropometric estimates.

Let h; be the projected length of a segmewhn the image, and l&t {1, ..., 8} be the
index set of these segments whose orientation is almost parallel to the image plane. L
the measurements (i € Z), we compute all possible ratiggthat correspond to the ratios
of SMs in Table 4 as follows,

if 1(ln) > (lm)
S =

S| o=
FE B

otherwise,

wherek e K = {k € {1, ..., 28}k =n—m(m— 1)(8— ), m, n € Z}. Basing our selec-
tion on these ratios, we select one SM from the family of 143 SMs whose length rat
closely match the ratios computed from the image using the Mahalanobis distance
accomplish this goal, we determine

g*=arg nginZ(rk,q -5) ( Z vkj (Mg — 51)) )

kel jexk

wherer g, I q are defined in Table 4y = 1, ..., 143
v = (g — 1w))(rjg — (i)l
are covariance coefficients of the ratios, &ng € .
[vg] =07*

andO is the covariance matrix of the rati@is q }ker, j=1,..., 143

The length measurements of the selectestick model are used as initial segment lengtt
estimates.

To facilitate the overall understanding of our algorithm, we first present the fourth s
in the next section, and then we present the third step in Section 4.4.

4.3. Iterative Minimization over Lengths and Angles

The variables we want to estimate are the lengths of the body segments and their |
Therefore, we will solve a system of equations where prior information about the hun
body (e.g., relations between lengths of segments) will provide constraints to an optimiza
that minimizes the discrepancy between the synthesized appearance of the SM (for that
and the image data of the subject in the given image.

As mentioned earlier, the user selects a set of points on the image that correspond t
projection of the sites of the stick model. For each of these points, we set up a point-to-
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Shoulder

Camera
Elbow

FIG.5. Two initial poses for the SM’s upper arm.

constraint, since the site will lie on a line that goes through the center of the camera
the projection of a landmark. Letbe the camera’s center of projection, be the position
of m € S (a SM’s site), andn! be the corresponding projection point selected by th
user. Then the constraint line is given Qy= ¢ + Ad;, whered; = (m” —¢)/||Im” —¢|.
Our objective function iD = >, distancefn;, ¢;). We seek to minimize the value of this
function using a BFGS nonlinear solver [22]. Due to the large number of degrees of freed
in order not to be trapped into a local minimum and to obtain an anthropometric plaus
correct answer, we apply the solver in a hierarchical manner. Statistical information al
the proportions of the human body and the range of motion of each joint are integrated
the hierarchical optimization method as a set of constraints.

Hierarchical solver. First, to facilitate and expedite the minimization process, we assi
a priority to each joint and end effector, and we schedule our optimization to procee:
a hierarchical manner starting with joints closer to the waist joint moving outward. T
priorities for each joint are detailed in the column named PR in Table 2.

Constraints. Three classes of constraints are applied: (1) constraints derived from
joint limit information associated with the range of motion of a joint, (2) constraints th
enforce the symmetry between the left and right sides of the subject (e.g., the lengt
the left upper arm is equal to the length of the right upper arm), and (3) constraints
enforce proportions. For the symmetry constraints in particular, we require that the
tios (£, £, LA, LA HHD LHE LUL UL L) are withine distance from the value one.
Thus, the variables whose values will be estimated are the lengths of the segments
lined in Table 3. Furthermore, the constraint for a ratic=1.,/1,Vrx € B(B = {%,

R, toa, HE| Eb ) as per Algorithm 1) takes the form

lj—oj <1j =lj + o
Im

rk: T
n

TABLE 5
Accuracy of the Length Estimates for the Synthetic Experiment

e LA LHP LF 1F
UT +LT LUA LUA LuL LLL
Actual 0.6553 0.9829 0.5700 0.6397 0.6341

Estimated 0.6517 0.9517 0.5713 0.6595 0.6460
PE % 0.5494 3.1743 0.2281 3.0952 1.8767
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FIG. 6. Synthetic experiment: (a) input image and selected points, (b)—(d) novel views of the reconstru
3D SM and the virtual human model.

wherel; is eitherly, or |, and corresponds to the segment with the smaller value betwe
Mm/0om and i /op.

4.4. Initial Pose Estimates

In order for the nonlinear solver not to get trapped into a local minimum, we use
geometric method for providing an initial guess for the pose of the segments whose |
endpoints were selected by the user. bt be the projection of a siten; in the image,

li > 0 be the length of the segment of which this landmark is the end-effectoy, agd
be the position of the parent joint of that landmark on the stick model. By construction,
following equation applies,

lc+adi —jll =1,

whered; is the unit direction between the camera anfd] as defined earlier. This quadratic
equation has two solutions

M=)+ /ldi- (P~ o ]I+ 17 and

do=diG -~ \/ldi -~ N2~ e~ 2 +17,

(a)

FIG.7. Subject Vanessa: (a) selected points, (b) reconstructed model overlaid to the image, and (c), (d) 1
views of the reconstructed SM.
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FIG. 8. (a) Inputimage depicting a geologist along with the user-selected input landmarks, (b) reconstru
model overlaid to the image, and (c) novel view of the reconstructed SM.

FIG. 9. (a) Input image depicting a tennis player along with the user-selected input landmarks, (b) rec
structed model overlaid to the image, and (c) novel view of the reconstructed SM.

(b) ()

FIG. 10. (a) Input image depicting a basketball player along with the user-selected input landmarks,
reconstructed model overlaid to the image, and (c) novel view of the reconstructed SM.

FIG. 11. Input image depicting a golf player along with the user-selected input landmarks, and the rec
structed model SM.
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TABLE 6
Accuracy of the Pose Estimates for the Synthetic Experiment

Joint Actual Estimated PE %
at (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) 0.00
sp (~0.50, —2.00, 0.00) (—0.48,-1.98, 0.00) 1.37
la (12.97, -15.37, —63.40) (13.60, —16.50, —65.00)  3.09
Ic (12.24,0.99) (12.0%, 0.99) 1.87
le (41.84) (42.31) 1.12
Ih (—16.80, 2.14, —2.73) (—16.53,2.12, —2.69) 1.60
Ik (0.00)) (0.00) 0.00
Is (2.50, 36.47, 3.4T) (2.50, 36.87, 3.37) 1.09

Iw (42.67, —39.12, 1.85) (43.02,-40.12,1.65)  1.86
ra (32.28,33.54, —50.13)  (31.98,33.32, -49.8T)  0.72

rc (11.70, 11.4%) (11.6%, 11.5%) 0.82
re (62.74) (63.05) 0.49
th  (~8.63,-13.40,63.87) (—8.62, -13.40,63.77) 0.15
rk (129.13) (131.02) 1.46
rs (26.20, 31.11, 42.44) (26.20, 31.07, 43.01) 0.97
w  (-5.35, -6.55, —54.53) (—5.15,-7.05, —54.50)  0.98
wt (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) 0.00

that correspond to the intersection of the lme A.d; with the sphere of radiug centered
atj. For example, Fig. 5 depicts the two possible solutions related to thega@nt the site
re. The two possible initial guesses for the position of sit@rem;; = ¢+ A1d; andm;, =

C + A2d;. Finally, joint limit information is used to prune the solutions that are not feasibl
If both positions are feasible, then they are used as initial values for the nonlinear solv

5. RESULTS AND DISCUSSION

We have performed a number of experiments on synthetic and real data to asses
accuracy, limitations, and advantages of our approach. In all the examples of the ir
images, the green dots depict projection of landmarks associated with segments w
orientation is almost parallel to the image plane, and the blue dots depict all other sele
landmarks (see for example the input image depicted in Fig. 7a). In the first experim
we applied our technique to an image created using the virtual human modeling tool |
Jack. Figure 6a depicts the selected points in the input image, while Fig. 6b depicts
reconstructed 3D model. Figures 6¢ and 6d depict the reconstructed 3D model in n
views. Tables 5 and 6 contain statistical information related to the accuracy of the estime
process.

TABLE 7
Accuracy of the Length Estimates for the SubjectVanessa
Lc LA LHP LF L
UT+LT LUA LUA LUL LLL
Actual 0.6279 0.8625 0.6949 0.5517 0.4778

Estimated 0.6402 0.8516 0.6728 0.5594 0.4888
PE % 1.9589 1.2638 3.1803 1.3957 2.3022
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In the second experiment, we applied our technique to a real image from the sut
Vanessa whose anthropometric dimensions were manually measured. Figure 7a de
the selected points, Fig. 7b depicts the reconstructed model overlaid to the image,
Figs. 7c and 7d depict the reconstructed model from novel views. Table 7 captures
percentage error (PE) in estimating the length ratios. We observe that the estimatic
anthropometric information is within 3.2% of the anthropometric dimensions of the subje
In general, we have performed numerous other experiments with a variety of subjects w
anthropometric dimensions are known with similar very encouraging results.

In the third experiment, we applied our algorithm to a variety of images from a va
ety of application domains, where anthropometric information about the subjects was
available. Figures 8a, 9a, and 10a depict the input images along with the selected pc
while Figs. 8b and 8c, 9b and 9c, and 10b and 10c depict the reconstructed models
different viewpoints. Finally, Fig. 11 depicts the input image of golf player along with tt
reconstructed three-dimensional stick model.

6. CONCLUSION

In this paper, we have described a four-step technique for generating anthropometric
posture information for a human subject from a single image. The user initially selec
set of image points that constitute the projection of selected landmarks. Based on the ir
coordinates of the selected points and anthropometric statistics, pose and anthropor
measurements are obtained by minimizing an appropriate cost function subject to the
sociated constraints. The novelty of our approach is the use of anthropometric statisti
constrain the estimation process that allows the simultaneous estimation of both an
pometry and pose. We have demonstrated the accuracy, advantages, and limitations
method for various classes of both synthetic and real input data.
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