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Chapter 1

Tracking: Fundamental Notions

In a tracking problem, one has some measurements that appear at each tick of a (notional) clock, and,
from these measurements, one would like to determine the state of the world. There are two important
sources of information. First, measurements constrain the possible state of the world. Second, there are
dynamical constraints — the state of the world cannot change arbitrarily from time to time. Tracking
problems are of great practical importance. There are very good reasons to want to, say, track aircraft
using radar returns (good summary histories include [55, 57, 189]; comprehensive reviews of technique
in this context include [34, 20, 414]).

Not all measurements are informative. For example, if one wishes to track an aircraft — where state
might involve pose, velocity and acceleration variables, and measurements might be radar returns giving
distance and angle to the aircraft from several radar aerials — some of the radar returns measured might
not come from the aircraft. Instead, they might be the result of noise, of other aircraft, of strips of foil
dropped to confuse radar apparatus (chaff or window; see [189]), or of other sources. The problem of
determining which measurements are informative and which are not is known as data association.

Data association is the dominant difficulty in tracking objects in video. This is because so few of the
very many pixels in each frame lie on objects of interest. It can be spectacularly difficult to tell which
pixels in an image come from an object of interest and which do not. There are a very wide variety of
methods for doing so, the details of which largely depend on the specifics of the application problem.
Surprisingly, data association is not usually explicitly discussed in the computer vision tracking litera-
ture, which, as we shall see, tends to emphasize mechanisms of inference. However, whether a method
is useful rests pretty directly on its success at data association — differences in other areas tend not to
matter all that much in practice.

This review is intended to expose the main ideas of the subject, rather than to present citations
of all human tracking papers (something that would probably not be possible). The ideas appear in
a rough chronological order, reflecting what we see as the development of ideas in visual tracking.
Initially, there was much emphasis on template and flow based tracking (this section); these methods
proved unattractive in practice, for a variety of reasons. This phase was followed by a widespread
interest in various methods of probabilistic inference, the hope being that dynamical models would offer
helpful constraints on data association (section 2). However, dynamical models do not usefully constrain
the data association problem when one is tracking humans; more recent methods have concentrated
explicitly on building representations of image data that simplify tracking (section 3). We expect to see
a unification of these methods with methods based in probabilistic inference in the near future.

Pfinder
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1.1 General Observations

The literature on tracking people is immense. Furthermore, the problem has quite different properties
depending on precisely what kind of representation one wishes to recover. The most important variable
appears to be spatial scale. At a coarse scale, people are blobs. For example, we might view a plaza
from the window of a building or a mall corridor from a camera suspended from the ceiling. Each person
occupies a small block of pixels, perhaps 10-100 pixels in total. While we should be able to tell where
a person is, there isn’t much prospect of determining where the arms and legs are. At this scale, we can
expect to recover representations of occupancy — where people spend time, for example [422] — or of
patterns of activity — how people move from place to place, and at what time, for example [371].

At a medium scale, people can be thought of as blobs with attached motion fields. For example,
a television program of a soccer match, where each individuals are usually 50-100 pixels high. In this
case, one can tell where a person is. Arms and legs are still difficult to localize, because they cover
relatively few pixels, and there is motion blur. However, the motion fields around the body yield some
information as to how the person is moving. One could expect to be able to tell where a runner is in the
phase of the run from this information — are the legs extended away from the body, or crossing?

At a fine scale, the arms and legs cover enough pixels to be detected, and one wants to report the
configuration of the body. We usually refer to this case as kinematic tracking. At a fine spatial scale,
one may be able to report such details as whether a person is picking up or handling an object. There are
a variety of ways in which one could encode and report configuration, depending on the model adopted
— is one to report the configuration of the arms? the legs? the fingers? — and on whether these reports
should be represented in 2D or in 3D. We will discuss various representations in greater detail later. We
do not regard the choice of a 2D representation or a 3D representation as significant to anything but
detail in the tracking problem; in particular, as we shall show, passing from 2D to 3D representations
is relatively straightforward under most conditions. In particular, the choice of 2D or 3D representation
does not affect ambiguity in any way. If we track using a 2D representation and then lift to 3D, it may
be difficult to recover 3D configuration unambiguously. These ambiguities are also present in the case
where we track a 3D representation, though are often unremarked.

Each scale appears to be useful, but there are no reliable rules of thumb for determining what scale
is most useful for what application. For example, one could see ways to tell whether people are picking
up objects at a coarse scale. Equally, one could determine patterns of activity from a fine scale. Finally,
as we shall see later, some quite complex determinations about activity can be made at a surprisingly
coarse scale. Tracking tends to be much more difficult at the fine scale, because one must manage more
degrees of freedom and because arms and legs can be small, and can move rather fast.

In this review, we focus almost entirely on the fine scale; even so, space will not allow detailed
discussion of all that has been done. Our choice of scale is dictated by the intuition that good fine-scale
tracking will be an essential component of any method that can give general reports on what people are
doing in video. There are distinctive features of this problem that make fine scale tracking difficult:

e State dimension: One typically requires a high dimensional state vector to describe the configura-
tion of the body in a frame. For example, assume we describe a person using a 2D representation.
Each of ten body segments (torso, head, upper and lower arms and legs) will be represented by
a rectangle of fixed size (that differs from segment to segment). This representation will use an
absolute minimum of 12 state variables (position and orientation for one rectangle, and relative
orientation for every other). A more practical version of the representation allows the rectangles
to slide with respect to one another, and so needs 27 state variables. Considerably more variables
are required for 3D models.
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e Nasty dynamics: There is good evidence that such motions as walking have predictable, low-
dimensional structure [345, 328]. However, the body can move extremely fast, with large accel-
erations. These large accelerations mean that one can stop moving predictably very quickly —
for example, jumping in the air during a walk. For straightforward mechanical reasons, the body
parts that move fastest tend to be small and on one end of a long lever which has big muscles at
the other end (forearms, fingers and feet, for example). This means that the body segments that
the dynamical model fails to predict are going to be hard to find because they are small. As a
result, accurate tracking of forearms can be very difficult.

e Complex appearance phenomena: In most applications one is tracking clothed people. Cloth-
ing can change appearance dramatically as it moves, because the forces the body applies to the
clothing change, and so the pattern of folds, caused by buckling, changes. There are two impor-
tant results. First, the pattern of occlusions of texture changes, meaning that the apparent texture
of the body segment can change. Second, each fold will have a typical shading pattern attached,
and these patterns move in the image as the folds move on the surface. Again, the result is that
the apparent texture of the body segment changes. These effects can be seen in figure 1.8.

e Data association: There is usually no distinctive color or texture that identifies a person (which
is why people are notoriously difficult to find in static images). One possible cue is that many
body segments appear at a distinctive scale as extended regions with rather roughly parallel sides.
This isn’t too helpful, as there are many other sources of such regions (for example, the spines of
books on a shelf). Textured backgrounds are a particularly rich source of false structures in edge
maps. Much of what follows is about methods to handle data association problems for people
tracking.

1.2 Tracking by Detection

Assume we have some form of template that can detect objects reasonably reliably — a particularly im-
portant, useful and reliable example is a face template (a huge literature, this; there is some information
in [120], otherwise start at [293, 323, 324, 325, 326, 375, 174, 401, 424, 332]). Assume that faces don’t
move all that fast, and there aren’t too many in any given frame. Furthermore, the relationship between
our representation of the state of a face and the image is uncomplicated. This occurs, for example, when
the faces we view are always frontal or close to frontal. In this case, we can represent the state of the
face by what it looks like (which, in principle, doesn’t change because the face is frontal) and where it
is.

Under these circumstances, we can build a tracker quite simply. We maintain a pool of tracks. We
detect all faces in each incoming frame. We match faces to tracks, perhaps using an appearance model
built from previous instances and also — at least implicitly — a dynamical model. This is where our
assumptions are important; we would like faces to be sufficiently well-spaced with respect to the kinds
of velocities we expect that there is seldom any ambiguity in this matching procedure. This matching
procedure should not require one-one matches, meaning that some tracks may not receive a face, and
some faces may not be allocated a track. For every face that is not attached to a track, we create a new
track. Any track that has not received a face for several frames is declared to have ended (algorithm 1
breaks out this approach; figure ?? shows an example track).

This basic recipe for tracking by detection is worth remembering. In many situations, nothing more
complex is required, and the recipe is used without comment in a variety of papers. As a simple example,
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Assumptions: We have a detector which is reasonably reliable for all aspects that matter. Objects
move relatively slowly with respect to the spacing of detector responses. As a result, a detector
response caused either by another object or by a false positive tends to be far from the next true|
position of our object.

First frame:
Create a track for each detector response.

N’th frame:

Link tracks and detector responses. Typically, each track gets the closest detector response if it is
not further away than some threshold. If the detector is capable of reporting some distinguishing
feature (colour, texture, size, etc.), this can be used too.

Spawn a new track for each detector response not allocated to a track.

Reap any track that has not received a measurement for some number of frames.

Cleanup: We now have trajectories in space time. Link any where this is justified (per-
haps by a more sophisticated dynamical or appearance model, derived from the candidates for
linking).

Algorithm 1: The simplest tracking by detection

at coarse scales and from the right view, background subtraction and looking for dark blobs of the right
size is sufficient to identify human heads. Yan and Forsyth use this observation in a simple track-by-
detection scheme, where heads are linked across frames using a greedy algorithm [422]. The method is
effective for obtaining estimates of where people go in public spaces.

The method will need some minor improvements and significant technical machinery as the rela-
tionship between state and image measurements grows more obscure. However, in this simple form,
the method gives some insight into general tracking problems. The trick of creating tracks promiscu-
ously and then pruning any track that has not received a measurement for some time is a quite general
and extremely effective trick. The process of linking measurements to tracks is the aspect of tracking
that will cause us the most difficulty (the other aspect, inferring states from measurements, is straight-
forward though technically involved). This process is made easier if measurements have features that
distinctively identify the track from which they come. This can occur because, for example, a face will
not change gender from frame to frame, or because tracks are widely spaced with respect to the largest
practical speed (so that allocating a measurement to the closest track is effective).

1.2.1 Background Subtraction

The simplest detection procedure is to have a good model of the background. In this case, everything
that doesn’t look like the background is worth tracking. The simplest background subtraction algorithm
is to take an image of the background and then subtract it from each frame, thresholding the magnitude
of the difference (there is a brief introduction to this area in [120]). Changes in illumination will defeat
this approach. A natural improvement is to build a moving average estimate of the background, to keep
track of illumination changes (e.g. see [416, 337]; gradients can be incorporated [240]). In outdoor
scenes, this approach is defeated by such phenomena as leaves moving in the wind. More sophisti-



1.2. TRACKING BY DETECTION 9

Figure 1.1: Fig 1 of surveillance/00868683 Background subtraction identifies groups of pixels that
differ significantly from a background model. The method is most useful for some some cases of surveil-
lance, where one is guaranteed a fixed viewpoint and a static background changing slowly in appear-
ance. On the left, a background model; in the center, a frame; and on the right, the resulting image
blobs. The figure is taken from Haritaoglu et al. [148]; in this paper, authors use an elaborate method
involving a combination of thresholds to obtain good blobs. Figure ?? illustrates a method due to these
authors that obtains a kinematic configuration estimate by parsing the blob.

cated background models keep track of maximal and minimal values at each pixel [148], or build local
statistical models at each pixel [369, 143, 370, 64, 125, 177, 178].

Under some circumstances, background subtraction is sufficient to track people and perform a de-
gree of kinematic inference. Haritaoglu et al. describe a system called W4, which uses background
subtraction to segment people from an outdoor view [148, ?]. Foreground regions are then linked in
time by applying a second order dynamic model (velocity and acceleration) to propagate median coor-
dinates (a robust estimate of the centroid) forward in time. Sufficiently close matches trigger a search
process that matches the relevant foreground component in the previous frame to that in the current
frame. Because people can pass one another or form groups, foreground regions can merge, split or
appear. Regions appearing, splitting or merging are dealt with by creating (resp. fusing) tracks. Good
new tracks can be distinguished from bad new tracks by looking forward in the sequence: a good track
continues over time. Allowing a tracker to create new tracks fairly freely, and then telling good from
bad by looking at the future in this way is a traditional, and highly useful, trick in the radar tracking
community (e.g. see the comprehensive book by Blackman and Popoli [34]). The background sub-
traction scheme is fairly elaborate, using a range of thresholds to obtain a good blob (figure 1.1). The
resulting blobs are sufficiently good that the contour can be parsed to yield a decomposition into body
segments. They segment the contours using convexity criteria, then tag the segments using: distance to
the head — which is at the top of the contour; distance to the feet — which are at the bottom of the
contour; and distance to the median — which is reasonably stable. All this works because, for most
configurations of the body, one will encounter body segments in the same order as one walks around the
contour (figure ??). Shadows are a perennial nuisance for background subtraction, but this can be dealt
with using a stereoscopic reconstruction, as Haritaoglu et al. show ([147]; see also [179]).

1.2.2 Deformable Templates

Image appearance or appearance is a flexible term used to refer to aspects of an image that are being
encoded and should be matched. Appearance models might encode such matters as: Edge position;
edge orientation; the distribution of color at some scale (perhaps as a histogram, perhaps as histograms
for each of some set of spatially localized buckets); or texture (usually in terms of statistics of filter
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Figure 1.2: For a given view of the body, body segments appear in the outline in a predictable manner.
An example for a frontal view appears on the left. Haritaoglu et al identify vertices on the outline of
a blob using a form of convexity reasoning (right (b) and right (c)), and then infer labels for these
vertices by measuring the distance to head (at the top), feet (at the bottom) and median (right (d)).
These distances give possibly ambiguous labels for each vertex; by applying a set of topological rules
obtained using examples of multiple views like that on the left, they obtain an unambiguous labelling.
Fig 12, 15 of surveillance/00868683

outputs.

A deformable template or snake is a parametric model of image appearance usually used to localize
structures. For example, one might have a template that models the outline of a squash [191, 192] or
the outline of a person [27], place the template on the image in about the right place, and let a fitting
procedure figure out the best position, orientation and parameters.

We can write this out formally as follows. Assume we have some form of template that specifies
image appearance as a function of some parameters. We write this template — which gives (say) image
brightness (or color, or texture, and so on) as a function of space x and some parameters ¢ — as 7'(x|0).
We score a comparison between the image at frame n, which we write as /(x,,), and this template
using the a scoring function p

p(T(x]0), 1(x,14))

Space will allow discussion of only some properties of the very large variety of possible scores. We will
always assume that small values of the score are good and large values of the score are bad matches
(meaning our discussion may differ from an author’s by a minus sign on occasion).

1.2.2.1 Point Templates

One could build a template using a set of active sites within a model coordinate frame; write the matrix
whose columns are vectors containing coordinates of a site as X'. The model allows these sites to appear
in different places in the model coordinate frame. The position of the sites is typically a known affine
function of some unknown shape parameters b, giving X = X + 3", @;b;. The affine function can be
fit using principal coordinate analysis (section ??) to a set of examples.
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The collection of sites is subject to some transformation before appearing in an image frame, as
TO)X

where 7 might be translation, rotation and translation, rotation, translation and scale, or an affine trans-
formation. We observe the resulting keypoints in an image; write the matrix whose columns are vectors
containing coordinates of the image keypoint corresponding to a site as ). We can now formulate the
goodness of fit as

min Trace((V = T(0)(X + D @ibi)" (Y = T(0)(X + D @ibi)")

iy

This method has had some popularity as an active appearance model One must be careful here, how-
ever. First, the minimization is not easy, because there is an implicit correspondence. We assumed that
we could observe in the image which keypoint corresponded to which site, which isn’t usually the case.
The affine function that yields the sites can be derived in a variety of ways. Cootes et al.apply principal
components to observed keypoints, which have been rectified to a canonical frame (one must be careful
about correspondence here; see []) [].

1.2.2.2 Shape models by families of curves

It isn’t particularly natural to think of an object as a set of points (though fashions change in this matter;
for example, see [112, 361, 331, 330, 394, 186] for one view and [32, 54, 268, 207] for the other). One
might instead encode objects using curves. The idea originates with snakes []. In this formalism, a
snake is a curve whose cost is evaluated by integrating some function along its length. The cost is a
sum of an image-based potential — usually computed from a feature map, often an edge map — and a
geometric potential — which discourages sharp corners, excessive stretch, etc. Some curve is chosen as
a start point, and the final encoding is obtained by allowing the curve to evolve in a way that minimizes
the potential. For example, the curve might move to lie on the outline of an object, where there are many
strong edge points. Inertia terms can be added to produce a snake that can track moving objects without
excessive wiggle.

A large body of work modifies this idea to produce deformable templates based on curves. Blake
and Isard give an excellent account of work in this area, with more information on the origins of the
ideas than we can give here, in [35]). One important modification of this model is to drop the idea of
computing the goodness of a curve by summing some potential along its length. Assume the curve c(s),
parametrized by s. We will sum over a small set of points s = s; on the curve. Typically, we would like
these points to be close to image points where there is a strong feature response — say an edge point. It
can be inconvenient to find every edge point in the image (a matter of speed) and this class of template
allows us to search for edges only along short sections normal to the curve (figure 1.3). We then fit a
curve where the points on the curve given by s = s; have a minimum distance to observed features.

We now confine our discussion to B-spline curves, where c(s) is determined by a set of control
points. Write the components of the control points stacked into a vector as Q. Notice we do not need
to encode transformations explictly, because B-splines are affine covariant. Write C for the vector with
components c(s;). Then there is some matrix @ such that C = &Q. Write M for the vector of measured
locations at which we would like the points c(s;) to lie. Then the distance from measurement points to
features is

(@Q - M) (2Q — M)
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Figure 1.3:

Figure 1.4: An example of robustness problems

This fitting distance is insufficient to give a match cost to a template, because it is unconstrained
— it could most things (furthermore, parametrization can create issues; see [36] for details). The curve
should be drawn from a shape space — a constrained family of curves. It is usual to employ a linear
family of curves. Assume our curve has N control points, and we wish to encode a k-dimensional
family of curves. Now write WV for a 2N X k matrix encoding the family of possible sets of control
points, Qq for a reference set of control points, and X for the k-vector of shape parameters. Our curve
is represented by

Q=WX+Q

Blake and Isard give variety of constructions yield the form of W for curves that are translations, sim-
ilarity transformations and affine transformations of a given curve (chapter ***, [36]). An alternative
is to obtain a series of example curves, fit splines, and apply principal components to the coefficients
(eg [27, ?).

We expect that a variety of curves is necessary to encode the outline of an object, and can regularize
the fit by charging for substantial deviations. One then has a reference shape X and a positive definite
matrix S. We bias the fitting cost by a term proportional to (X — X )’ S(X —X). The template matching
cost can be obtained by computing

min(&(WX + Qo) — M) T (@WX + Qo) — M) + A(X — X)TS(X - X)

and the relevant shape is the minimizing value of X.

1.2.2.3 Robustness

We have presented scoring a deformable template as a form of least squares fitting problem. There is
a basic difficulty in such problems. Points that are dramatically in error, usually called outliers and
traditionally blamed on typist error [322, 155], can be overweighted in determining the fit. Figure 1.4
shows an example of this very general problem, in the context of line fitting. Outliers in vision problems
tend to be unavoidable, because nature is so generous with visual data that there is usually something
seriously misleading in any signal. There are a variety of methods for managing difficulties created
by outliers that are used in building deformable template trackers. An estimator is called robust if the
estimate tends to be only weakly affected by outliers. For example, the average of a set of observations
is not a robust estimate of the mean of their source (because if one observation is, say, mistyped, the
average could be wildly incorrect). The median is a robust estimate, because it will not be much affected
by the mistyped observation.

The scheme of finding edge points by searching out some distance along the normal from a curve is
a gating strategy (figure 1.5). In this case, one limits the distance searched. Ideally, there is only one
edge point in the search window, but if there are more one takes the closest (strongest, mutatis mutandis
depending on application details). If there is nothing, one accepts some fixed score, chosen to make the
cost continuous. This means that the cost function, while strictly not differentiable, is not dominated by
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Figure 1.5: Gating

very distant edge points. These are not seen in the gate, and there is an upper bound on the error any
one site can contribute. Again, this strategy confers robustness.

An alternative is to use an m-estimator. One would like to score the template with a function of
squared distance between site and measured point. This function should be close to the identity for
small values (so that it behaves like the square) and close to some constant for large values (so that large
values don’t contribute large biases). A natural form is

u

plu) = ———
so that, for d? small with respect to o, we have p(d?) ~ d? and for d* large with respect to o we have
p(d?) ~ 1. The advantage of this approach is that nearby edgepoints dominate the fit; the disadvantage
is that even fitting problems that are originally convex are no longer convex when the strategy is applied.
Numerical methods are consequently more complex, and one must use multiple start points. There is
little hope of having a convex problem, because different start points correspond to different splits of
the data set into “important” points and outliers; there is usually more than one such split. Again, large
errors no longer dominate the estimation process, and the method is almost universally applied for flow
templates (section ?7?).

1.2.2.4 The Hausdorff Distance

The Hausdorff distance is a method to measure similarity between binary images (for example, edge
maps; the method originates in Minkowski’s work in convex analysis [], where it takes a somewhat
different form). Assume we have two sets of points P and (); typically, each point is an edge point in
an image. We define the Hausdorff distance between the two sets to be

H(P,Q) = maz(h(P,Q),Q, P))

where
h(P. = maxmin | p —
(P, Q) = maxmin | p—q|

The distance is small if there is a point in () close to each point in P and a point in P close to each point
in P. There is a difficulty with robustness, as the Hausdorff distance is large if there are points with
no good matches. In practice, one uses a variant of the Hausdorff distance (the generalized Hausdorff
distance) where the distance used is the k-th ranked of the available distances rather than the largest.
Define F,ﬁh to be the operator that orders the elements of its input largest to smallest, then takes the k’th
largest. We now have

where
hie(P,Q) = F{"(min | p—q )
q€Q

(for example, if there are 2n points in P, then h, (P, Q) will give the median of the minimum distances).
The advantage of all this is that some large distances get ignored.
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Now we can compare a template P with an image () by determining some family of transformations
7 (0) and then choosing the set of parameters 6 that minimizes

Hy(T(0) o P,Q)

This will involve some form of search over 6. The search is likely to be simplified if — as applies in the
case of tracking — we have a fair estimate of § to hand.

1.2.2.5 Tracking by Detection with a Deformable Template

Deformable templates have not been widely used as object detectors, because finding a satisfactory
minimum — one that lies on the object of interest, most likely a global minimum — can be hard. The
search is hard to initialize because one must identify the feature points that should lie within the gate of
the template. However, in tracking problems this difficulty is mitigated if one has a dynamical model
of some form. For example, the object might move slowly, meaning that the minimum for frame n will
be a good start point for frame n 4+ 1. As another example, the object might move with a large, but
near constant, velocity. This means that we can predict a good start point from frame n + 1 given frame
n. A significant part of the difficulty is caused by image features that don’t lie on the object, meaning
that another useful case occurs in the near absence of clutter — perhaps background subtraction, or the
imaging conditions, ensures that there are few or no extra features to confuse the fitting process.

Baumberg and Hogg track people with a deformable template built using a B-spline as above, with
principal components used to determine W [?]. Figure 1.6 gives a sense of the wide variations in shape
that can be obtained with such models. They use background subtraction to obtain an outline for the
figure, then sample the outline. For this kind of template, correspondence is generally a nuisance, but in
some practical applications, this information can be supplied from quite simple considerations. For ex-
ample, Baumberg and Hogg work with background subtracted data of pedestrians at fairly coarse scales
from fixed views [?]. In this case, sampling the outline at fixed fractions of length, and starting at the
lowest point on the principal axis yields perfectly acceptable correspondence information (figure 1.6).

Huttenlocher et al.track using the Hausdorff distance [167]. The template, which consists of a set
of edge points, is itself allowed to deform. Images are represented by edge points. They identify the
instance of the latest template in the next frame by searching over translations 6 of the template to obtain
the smallest value of Hy(7 () o P, Q). They then translate the template to that location, and identify
all edge points that are within some distance of the current template’s edge points. The resulting points
form the template for the next frame. This process allows the template to deform to take into account,
say, the deformation of the body as a person moves. Performance in heavily textured video must depend
on the extent to which the edge detection process suppresses edges and the setting of this distance
parameter (a large distance and lots of texture is likely to lead to catastrophe).

Mean shift tracking

1.3 Tracking using Flow

The difficulty with tracking by detection is that one might not have a deformable template that fully
specifies the appearance of an object. It is quite common to have a template that specifies the shape of
the domain spanned by the object and the type of its transformation, but not what lies within. Typically,
we don’t know the pattern, but we do know how it moves. There are several important examples:
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(a) (b)

mode 10

Figure 1.6: Baumberg+Hogg93 paper Baumberg and Hogg use a point template where the sites are
points of fixed parameter value on a closed B-spline and the shape parameters are given by the choice
of control points for this spline [?]. Templates are fit to a training set, and modes of variation extracted
by a principal component analysis on the fitted control points. The three examples on the left show the
range of variation in outline shape and keypoint position obtainable by varying the coefficients of some
principal components. Their application involves tracking pedestrians at a relatively coarse scale,
using background subtraction to identify the pedestrian. In this application, keypoints are obtained
by sampling the outline at evenly spaced intervals, starting at the lowest of the two points where the
outline crosses the principal axis (right). This strategy imposes a correspondence which appears to be
satisfactory in practice.

¢ Human body segments tend to look like a rectangle in any frame, and the motion of this rectangle
is likely to be either Euclidean or affine, depending on imaging circumstances.

e A face in a webcam tends to fill a blob-like domain and undergo mainly Euclidean transforma-
tions. This is useful for those building user interfaces where the camera on the monitor views
the user, and there are numerous papers dealing with this. The face is not necessarily frontal —
computer users occasionally look away from their monitors — but tends to be large, blobby and
centered.

o Edge templates, particularly those specifying outlines, are usually used because we don’t know
what the interior of the region looks like. Quite often, as we have seen, we know how the template
can deform and move. However, we cannot score the interior of the domain because we don’t
know (say) the pattern of clothing being worn.

In each of these cases, we cannot do tracking by detection as above because we do not posess an
appropriate template. As a matter of experience, objects don’t change appearance much from frame to
frame (alternatively, we should use the term appearance to apply to properties that don’t change from
frame to frame). All this implies that parts of the previous image could serve as a template if we have a
motion model and domain model. We could use a correspondence model to link pixels in the domain in
frame n with those in the domain in frame n + 1. A “good” linking should pair pixels that have similar
appearances. Such considerations as camera properties, the motion of rigid objects, and computational
expense suggest choosing the correspondence model from a small parametric family.
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All this gives a formal framework. Write a pixel position in the n’th frame as x;,, the domain in the
n’th frame as D,,, and the transformation from the n’th frame to the n + 1’th frame as 7, ,+1(+; 0, ). In
this notation 6,, represent parameters for the transformation from the n’th frame to the n + 1’th frame,
and we have that x,, 11 = 7,41 (Xp; 0n).

We assume we know D,,. We can obtain D,, 11 from D,, as 7, +1(Dy; 6, ). Now we can score the
parameters 6,, representing the change in state between frames n+ 1 and n by comparing 1), with D, 11
(which is a function of 6,,). We compute some representation of image information R(x), and, within
the domain D,, 11 compare R(x;,+1) with R(7;,—n+1(xn;65)), where the transformation is applied to
the domain D,,.

1.3.1 Optic Flow

Generally, a frame-to-frame correspondence should be thought of as a flow field (or an optic flow field)
— a vector field in the image giving local image motion at each pixel. A flow field is fairly clearly a
correspondence, and a correspondence gives rise to a flow field (put the tail of the vector at the pixel
position in frame n, and the head at the position in frame n + 1). The notion of optic flow originates

A useful construction in the optic flow literature assumes that image intensity is a continuous func-
tion of position and time, I(x,t). We then assume that the intensity of image patches does not change
with movement. While this assumption may run into troubles with illumination models, specularities,
etc., it is not outrageous for small movements. Furthermore, it underlies our willingness to compare
pixel values in frames. Accepting this assumption, we have

I I
gy 0F_

dt dt E_O

(known as the optic flow equation, e.g. see [161]). Flow is represented by dx/dt. This is important,
because if we confine our attention to an appropriate domain, comparing (7 (x; 4,), t,+1) with I(x,t,,)
involves, in essence, estimating the total derivative. In particular,

dI
H(T(x;0,),thy1) — I(x,t,) = p
Furthermore, the equivalence between correspondence and flow suggests a simpler form for the trans-
formation of pixel values. We regard 7 (x; 6),) as taking x from the tail of a flow arrow to the head. This
justifies the notation 7 (x; 6,) = x + dx(6,,).
O’'RourkeBadler? Hogg?

1.3.2 Image stabilization

This form of tracking can be used to build boxes around moving objects, a practice known as image
stabilization. One has a moving object on a fairly uniform background, and would like to build a
domain such that the moving object is centered on the domain. This has the advantage that one can
look at relative, rather than absolute, motion cues. For example, one might take a soccer player running
around a field, and build a box around the player. If one then fixes the box and its contents in one
place, the vast majority of motion cues within the box are cues to how the player’s body configuration
is changing (compare root and segment representations, section ??). As another example, one might
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Figure 1.7: Figure 1, part of 3 and 4 from Efros et al. Recognizing action at a distance. Flow based
tracking can be useful for medium scale video. Efros et al. stabilize boxes around the torso of players in
football video using a sum of squared differences (SSD) as a cost function and straightforward search
to identify the best translation values. As the figure on the left shows, the resulting boxes are stable
with respect to the torso. On the top right, larger versions of the boxes for some cases. Note that,
because the video is at medium scale, it is difficult to resolve arms and legs, which are severely affected
by motion blur. Nonetheless, one can make a useful estimate of what the body is doing by computing an
estimate of optic flow (bottom right, F;,, F), rectifying this estimate (bottom right, F}f, F'.", F.f, F,")
and then smoothing the result (bottom right, Fb, etc.). The result is a smoothed estimate of where
particular velocity directions are distributed with respect to the torso, which can be used to match and
label frames.

stabilize a box around an aerial view of a moving vehicle; now the box contains all visual information
about the vehicle’s identity.

Efros et al. use a straightforward version of this method, where domains are rectangles and flow is
pure translation, to stabilize boxes around people viewed at a medium scale (for example, in a soccer
video). In some circumstances, good results can be obtained by matching a rectangle in frame n with
the rectangle in frame n 4 1 that has smallest sum-of-squared differences — which might be found by
blank search, assisted perhaps by velocity constraints. This is going to work best if the background is
relatively simple — say, the constant green of a soccer field — as then the background isn’t a source of
noise, so the figure need not be segmented (figure 1.7). For more complex backgrounds, the approach
may still work if one performs background subtraction before stabilization. At a medium scale it is very
difficult to localize arms and legs, but they do leave traces in the flow field. The stabilization procedure
means that the flow information can be computed with respect to a torso coordinate system, resulting in a
representation that can be used to match at a kinematic level, without needing an explicit representation
of arm and leg configurations (figure 1.7).

1.3.3 Cardboard people

Flow based tracking has the advantage that one doesn’t need an explicit model of the appearance of the
template. Ju et al build a model of legs in terms of a set of articulated rectangular patches (“cardboard
people”). Assume we have a domain D in the n’th image I(x, t,,) and a flow field 6x(#) parametrized by
0. Now this flow field takes D to some domain in the n + 1’th image, and establishes a correspondence
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the set of articulated
noints for resion 1

Figure 1.8: Figure 3, 4 from Ju, Black and Yacoob, ‘“Cardboard People”, no permission yet On
the left, a 2D flow based model of a leg, called a “cardboard people” model by Ju et al [190]; there
is a lower leg, an upper leg and a torso. Each domain is roughly rectangular, and the domains are
coupled with an energy term to ensure they do not drift apart. The model is tracked by finding the set
of deformation parameters that carve out a domain in the n + 1’th frame that is most like the known
domain in the n’th frame. On the right, two frames from a track, with the left column showing the
original frame and the right column showing the track. Notice how the pattern of buckling folds on the
trouser leg changes as the leg bends, this leads to quite significant changes in the texture and shading
signal in the domain. These changes can be a significant nuisance.

between pixels in the n’th and the n + 1’th image They score
S oLy (x + 6x(6)) — I (x))
D

where p is some measure of image error, which is small when the two compare well and large when
they are different. One could use the sum of squared differences, but this is unwise because the score is

not robust. It is usual to use
u

p(u) = =

for o some parameter (cf the discussion above, see chapter *** of [120], or [322, 155]). Notice that this
is a very general approach to the tracking problem, with the difficulty that, unless one is careful about
the flow model the problem of finding a minimum might be hard. To our knowledge, the image score
is always applied to pixel values, and it seems interesting to wonder what would happen if one scored a
difference in texture descriptors; we explain the reason to consider this below (section ??).

Typically, the score is not minimized directly, but is approximated with the optic flow equation and
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with a Taylor series to get

Zp (x + 0%(6), tns1) — (x,tn))%%ﬁp(%)—Zp(%ax(enwg—iay(enwg)

(this works because At = 1). Now assume that a patch has been marked out in a frame; then one
can determine its configuration in the next by minimizing this error summed over the domain. The
error itself is easily evaluated using smoothed derivative estimates. As we show below, we can further
simplify error evaluation by building a flow model with convenient form. To track an articulated figure,
we attach a further term that encourages relevant vertices of each separate patch to stay close. Similarly,
Black et al construct parametric families of flow fields and use them to track lips and legs, in the latter
case yielding a satisfactory estimate of walk parameters [33]. In both cases, the flow model is view
dependent. Yacoob and Davis build a view independent parametric flow field models to track views of
walking humans [418]. As one would expect, this technique can be combined with others; for example,
the W4S system of Haritaoglu er al. uses a “cardboard people” model to track torso configurations
within the regions described above [147].

1.3.4 Building Flow Templates

We have seen how to construct tracks given parametric models of flow. But how is one to obtain good
models? One strategy is to take a pool of examples of the types of flow one would like to track, and try
to find a set of basis flows that explains most of the variation (for examples, see [190]). In this case, and
writing 6; for the ¢’th component of the parameter vector and F; for the ¢’th flow basis vector field, one

has

Now write VI for the image gradient and exploit the optic flow equation and a Taylor series as above.
We get
o1

Ze VDHTF;) + Gt)

This can be done with a singular value decomposition (and is equivalent to principal components
analysis or PCA; see [120, ?]). A second strategy is to assume that flows involve what are essentially
2D effects — this is particularly appropriate for lateral views of human limbs — so that a set of basis
flows that encodes translation, rotation and some affine effects is probably sufficient. One can obtain
such flows by writing

Sx — u(x) _ [ a0+ ax+ay+ agxr® + arxy
a3 + asx + asy + agry + ary’

This model is linear in the parameters (the g;), which is convenient; it provides a reasonable encoding
of flows resulting from 3D motions of a 2D rectangle (see figure 1.9). One may also learn linearized
flow models from example data [418].

1.3.5 Flow models from kinematic models

An alternative method to build such templates is to work in 3D, and exploit the chain rule, as in the
work of Bregler and Malik [51, 52]. We start with a segment in 3D, which is in some configuration and
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Figure 1.9: Figure 2 from Ju, Black and Yacoob, ‘“Cardboard People’’, no permission yet Typical
flows generated by the model (u(x),v(x)" = (ag + a1z + asy + agx?® + arry, a3 + asx + asy +
agxy + a7y?)). Different values of the a; give different flows, and the model can generate flows typical
of a 2D figure moving in 3D. We write a = (agy, a1, as, as, a4, as, ag, a7 ). Divergence occurs when the
image is scaled; for example, a = (0,1,0,0,0,1,0,0). Deformation occurs when one direction shrinks
and another grows (for example, rotation about an axis parallel to the view plane in an orthographic
camera); for example, a = (0,1,0,0,0,—1,0,0). Curl can result from in plane rotation; for example,
a = (0,0,-1,0,1,0,0,0). Yaw models rotation about a vertical axis in a perspective camera; for
example a = (0,0,0,0,0,1,0). Finally, pitch models rotation about a horizontal axis in a perspective

camera; for example a = (0,0,0,0,0,0,1).

viewed with some camera. Each point on the segment produces some image value. We could think of
the image values as a function — the appearance map — defined on the segment. This allows us to see
viewing the segment as building a mapping from the points on the segment to the image domain. The
image values are obtained by taking each point in the image, finding the corresponding point (if any) on
the segment, and then evaluating the appearance map at this point.

All this leads to an important formal model, again under the assumption that motions in 3D do not
affect the appearance map in any significant way. We have a parametrized family of maps from points
on the body to the image. A flow field in the image is a vector field induced by a change in the choice
of parameters (caused by either a change in joint configuration or a camera movement). We will always
assume that the change in parameters from frame to frame is small. At this point, we must introduce
some notation. Write the map that takes points on the segment to points in the n’th image as Z_.;(+; 6,,),
where 0,, are parameters representing camera configuration, intrinsics, etc. The point p on the segment
appears in image n at x,, = 7, 7(p;0,) and in image n + 1 at x,,41 = 75— 1(P; 0p+1)- The tail of the
flow arrow is at x,, and the head is at x,,1 1. The change in parameters, Af = 6,,,1 — 6,, is small. Then
the flow is

Xp+1 — Xp = Zal(p; 9n+1) - Zal(p; Hn) ~ VoTs_r- A0

where the gradient, Vy7,_,7, is evaluated at (p, 6,,).

1.3.5.1 Tracking a Derivative Flow Model

The main point here is that the flow at x,, can be obtained by fixing the relevant point p on the object,
then considering the map taking the parameters to the image plane — the derivative of Z_,;(p; -). This
is important, because the flow Vy7,_,; - Af is a linear function of Af. We now have the outline of a
tracking algorithm:

e Start at frame n = 0 and some known configuration ¢y = 0.

e Fit: Fit the best value of Af to the flow between the frame n and frame n + 1 using the flow
model given by the derivative evaluated at 6,.
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Figure 1.10: Figure 7 from Bregler and Malik CVPR paper ‘““Tracking people with twists and ex-
ponential maps’ no permission yet Bregler and Malik formulate parametric flow models by modelling
a person as a kinematic chain and then differentiating the maps from segment to image. They then track
by searching for the parameter update that best aligns the current image pixels with those of the previ-
ous frame under this flow model. There is no dynamical model. This means that complex legacy footage,
like these frames from the photographs of Eduard Muybridge [262, 261 ], can be tracked. Muybridge’s
frames are difficult to track because the frame-frame timing is not exact, and the figures can move in
quite complex ways (see figure ??).

e Update: Update the parameters by 6,1 = 6,, + Af and set n ton + 1.

This should be seen as a primitive integrator, using Euler’s method and inheriting all the problems that
come with it. This view confirms the reasonable suspicion that fast movements are unlikely to be tracked
well unless that sampling rate is high.

1.3.5.2 The Flow Model from the Chain Rule

In the special case of segments lying on a kinematic tree — a series of links attached by joints of known
parametric form, where there are no loops — the chain rule means that the derivative takes a special
form. Each segment in a kinematic tree has its own coordinate system, and the joint is represented by
a map from a link’s world coordinate system to that of its parent. The parent of segment k is segment
k — 1. They are connected by a joint whose parameters at frame n are 6, ,,. In general, in a kinematic
tree, points on segments are affected by parameters at joints above them in the tree. Furthermore, we can
obtain a transformation to the image by recursively concatenating transformations. Write the camera as
T—i- Then the transformation taking a point of link & in frame n to the image can be written as

Ti—i = T—i © Tp—1—p © Ths—1

Notice that the only transformation that depends on 6 ,, here is 7j, 1.

There is an advantage to changing notation at this point. Write Z_,x_1 as 7x. The root of the tree is
at segment one, and we can write 7y_.,, as 77 and 7,,_,; as 7. We continue to divide up the parameters
¢ into components, 0y, , being the components associated with segment k in the n’th frame (&), are
viewing parameters in frame n). We can now see the map from point p on segment k to the image as

Ti—i(p;0) = To(T1(Ta(. - - 3 62); 61); 00)

This is somewhat inconvenient to write out, and it is helpful to keep track of intermediate values. Intro-
duce the notation

pr = Tp—i(p; 0)
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for the point p in the coordinate system of the [’th link.

Our transformations have two types of argument: the points in space, and the camera parame-
ters. It is useful to distinguish between two types of derivative. Write the partial derivative of a trans-
formation 7 with respect to its spatial arguments as D7T. In coordinates, 7 would take the form
(f1(x1, e, x3,0), fo(x1,x2,23,80), f3(x1, 22, 23,60)), and this derivative would be the matrix whose i,
j’th element is 0f;/Ox;. Similarly, write the partial derivative of a transformation 7 with respect to
parameters 0 as Dy. If we regard ¢ as a vector of parameters whose j’th entry is ¢;, then in coordinates
this derivative would be the matrix whose ¢, j’th element is 0 f;/06;.

This orgy of notation leads to a simple form for the flow. Write the flow at point x — which is the
image of point p on segment k& — in frame n as v(x, 6, ). Then

v(x,60,) = DoTo(po; 00)-Abo+DyToo DTy (p1;61) A0 .. .+DyTooD,Tho. .. DT 10Dg Ty (p; 0) Aby,

Our indexing scheme hasn’t taken into account the fact that we’re dealing with a tree, but this doesn’t
matter; we need care only about links on the path from the relevant segment to the root. Furthermore,
there is a relatively efficient algorithm for computing this derivative. We pass from the leaves to the root
computing intermediate configurations p; for each point p and the relevant parameter derivatives. We
then pass from the root to the leaves concatenating spatial derivatives and summing.

1.3.5.3 Rigid-body Transformations

All the above takes a convenient and simple form for rigid-body transformations (which are likely to be
the main interest in human tracking). We use homogeneous coordinates to represent points in 3D, and
so a rigid body transformation takes the form

R t

where R is an orthonormal matrix with determinant one (a rotation matrix). The parameters are the
parameters of the rotation matrix and the coefficients of the vector t. This means the spatial derivative
is the same as the transformation, which is convenient.

The derivatives with respect to the parameters are also relatively easily dealt with. Recall the defi-
nition of the matrix exponential as an infinite sum,

1 1
exp(/\/l):I+M+§M2+M3+...+5M”...

where the sum exists. Now it is straightforward to demonstrate that if

At
m=|
0 0
and if A is antisymmetric, then exp(M) is a rigid-body transformation. The elements of the anti-
symmetric matrix parametrize the rotation, and the rightmost column is the translation. This is useful,

because

0 (exp M(6)) _ <8M(9)
00 00

which gives straightforward forms for the parameter derivatives.

) exp M(6)
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1.4 Tracking with Probability

It is convenient to see tracking as a probabilistic inference problem. In particular, we have a sequence
of states Xy, X1, ..., Xy produced by some dynamical process. These states are unknown — they are
sometimes called hidden states for this reason — but there are measurements Yj, Y7, ..., Yn. Two
problems follow naturally:

e Tracking, where we wish to determine some representation of P(X|Yo, ..., Yx);

e Filtering, where we wish to determine some representation of P(X|Yp, ..., Yy ) (i.e. we get to
use “future” measurements to infer the state).

These problems are massively simplified by two important assumptions.

e We assume measurements depend only the hidden state, that is, that P(Y;| Xo, ..., X, Yo, ..., YN) =
P (Y| Xk).

e We assume that the probability density for a new state is a function only of the previous state; that
is, P(Xg|Xo, ..., Xk—1) = P(X|Xk_1), or, equivalently, that X; form a Markov chain.

Now tracking involves three steps:

Prediction: where we construct some prediction of the future state given past measurements, or
equivalently, construct a representation of P(Xy|Y, ..., Y;_1). Straightforward manipulation of proba-
bility combined with the assumptions above yields that

P(Xi|Yo, ..., Y1) = /P(Xk|Xk—1)P(Xk:—1|YOa---7Yk—1)ka—1

Data association: where we use the predictive density — which is sometimes called the prior —
and anything else likely to be helpful, to determine which of a pool of measurements contribute to the
value of Y;..

Correction: where we incorporate the new measurement into what is known, or, equivalently, con-
struct a representation of P(Xy|Yp, ..., Yy ). Straightforward manipulation of probability combined with
the assumptions above yields that

_ PVl Xk) P(Xk[Yo, ..., Yi1)
| P(Yi|Xk)P(Xk|Yo, ..., Yi—1)d X

P(X|Yo, ..., Yx)

1.5 Linear Dynamics and the Kalman Filter

We write X ~ N (u;X) to mean that X is a normal random variable with mean p and covariance X. If
the dynamics of the process we are observing are given by applying a linear map, then adding gaussian
noise and our observations are obtained as a linear map of the state with gaussian noise added, we can
write
Xy, ~ N(A X5 24
and
Yy ~ N(BpXp; S0™)

In this case, it is straightforward to demonstrate that all densities encountered are normal (or gaussians).
This means that they can be represented by mean and covariance alone. In particular, both tracking and
filtering boil down to producing update rules for estimates of mean and covariance of the hidden states.
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Notation: We will represent the mean of P(X;|yo, - -.,%;—1)as X, and the mean of P(X;|yo, ..., ¥;)
as Y;F — the superscripts suggest that they represent our belief about X; immediately before and im-
mediately after the ¢’th measurement arrives. Similarly, we will represent the standard deviation of
P(Xi|yo,---,yi—1) as X; and of P(X;|yo,--.,y:) as X7 . In each case, we will assume that we know
P(X;_1lyo,--.,yi—1), meaning that we know 7?_1 and & ;.

Prediction: Now assume we possess Y;F and ;. We wish to generate X, +1 and X ;. These
are easy to get, because X; 1 is obtained by applying a linear map (4;+1) to X; and adding zero mean
noise. Recall that if U, V are random variables with mean U, V and covariances Y7, XV respectively,
and c;, cy are constants, then ¢;U + ¢,V is a random variable with mean ¢;U + ¢,V and covariances
C%EU + C%E\/. This means that Y;H = AHlY;r and X; | = .A;fFHE;rAHl + Ez(i)l.

Correction: The next step is to incorporate the measurement to generate 7(;;1 and E;Srl. While
the derivation of this step is relatively straightforward, it does require some notation, and we skip it for
reasons of space; instead, we simply state the result in algorithm ??.

Dynamic Model:

x; ~ N(Dixi—1,%q,)
Vi ~ NMix;,3n,)

Start Assumptions: X, and X, are known
Update Equations: Prediction

Xi =DiX;_,

Y, =MXg, + Din_lDz‘

7

Update Equations: Correction
-1
Ki =% MT [MiE;MiT + Eml}

< =%, +Ki |yi — M|
»F = [Id — K;M;] 27

Algorithm 2: The Kalman filter updates estimates of the mean and covariance of the various distri-
butions encountered while tracking a state variable of some fixed dimension using the given dynamic
model.

Filtering: In some applications, we must report a revised estimate of state as soon as possible after
a measurement arrives, but in others one can delay reporting this estimate. If we can, we can improve
the estimate by working with “future” measurements. Future measurements might affect the current es-
timate of state, for example, when they are in agreement with a slightly different estimate of the position
of a point. Ideally, we would use all measurements and represent P(X;|yo,...,yn~) , but sometimes it is
sufficient to use a small number of future measurements and work with P(X;|yo, ..., ¥i+x). This pro-
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cess is known as filtering. There is a straightforward trick for using future measurements in a Kalman
filter. First, notice that there is no reason to care about the case where 4, does not have full rank. This
means we can run time backward, with a dynamical model

Xpo1 ~ N(AT X 29

and without changing the measurement model. Write the mean and variance of P(X;|yi+1,...,YN)
as X; > and X b (the “b” for backwards) and the mean and variance of PXilyi,---,yn) as X;rb
and E;Fb. Now we wish to obtain a mean and variance for P(X;|yo,...,yn), which we write as 7{
and E{ . Now notice that, from the point of view of the filter running forward in time, the state esti-
mate produced by the filter running backward is, essentially, another measurement. The measurement
matrix is now the identity. We can now use the Kalman equations to combine X7L (the forward esti-
mate of state, representing P(X;|yo,...,y:)) and XZ-_ b (the backward estimate of state, representing
P(Xi|¥it1,---,YN)). Weuse X, b, rather than X;rb, to avoid using the same measurement twice.

1.5.1 People Tracking with a Kalman Filter

Blake Hand tracker gate; Hogg body tracker gate?; Cipolla?
Other examples?
Hogg, Rohr, O’'RourkeBadler, BlakesLip trackerr

1.6 Data Association and Multi-modal Densities

Data association involves determining which pixels or image measurements should contribute to a track.
That data association is a nuisance is a persistent theme of this work. Data association is genuinely
difficult to handle satisfactorily — after all, determining which pixels contribute to which decision seems
to be a core — and often very difficult — computer vision problem. The problem is usually particularly
difficult when one wishes to track people, for several reasons. First, standard data association techniques
aren’t really all that much help, as for almost every aspect the image domain covered by a person changes
shape very aggressively, and can do so very fast. Second, there seem to be a lot of background objects
that look like some human body parts; for example, kinematic tracking of humans in office scenes is
very often complicated by the fact that many book spines (or book shelves) can look like forearms.

In tracking by detection, almost all computation is directed at data association, which is achieved
by minimizing p with respect to the template’s parameters — the support of p identifies the relevant
pixels. Similarly, in tracking using flow, data association is achieved by choosing the parameters of a
flow model to get a good match between domains in frames n and n + 1 — the definition of the domain
cuts out the relevant pixels. When these methods run awry, it is because these data association methods
have failed. Either one cannot find the template, or one cannot get good parameters for the flow model.

There are a variety of simple data association strategies which exploit the presence of probability
models. In particular, we have an estimate of P(X,|Yp,...,Y,—1) and we know P(Y,,|X},). From this
we can obtain an estimate of P(Y,|Yy,...Y,,—1), which gives us hints as to where the measurement
might be.

One can use a gate — we look only at measurements that lie in a domain where P(Y,|Yp, ..., Y,—1)
is big enough. This is a method with roots in radar tracking of missiles and aeroplanes, where one must
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deal with only a small number (compared with the number of pixels in an image!) of returns, but the
idea has been useful in visual tracking applications.

One can use nearest neighbours. In the classical version, we have a small set of possible measure-
ments, and we choose the measurement with the largest value of P(Y,|Yp,...,Y,—1). This has all the
dangers of wishful thinking — we are deciding that a measurement is valid because it is consistent with
our track — but is often useful in practice (see chapter *** of [120] for an example of how badly the
method can behave). This strategy doesn’t apply to most cases of tracking people in video because the
search to find the maximising Y;, — which would likely be an image region — could be too difficult (but
see section 3). However, it could be applied when one is tracking markers attached to the body — in
this case, we need to know which marker is which, and this information could be obtained by allocating
a measurement to the marker whose predicted position is closest.

One can use probabilistic data association, where we use a weighted combination of measurements
within a gate, weighted using (a) the predicted measurement and (b) the probability a measurement has
dropped out. Again, this method has the dangers of wishful thinking, and again does not apply to most
cases of tracking people; however, it could again be applied when one is tracking markers attached to
the body.

1.6.1 Multiple Modes

The Kalman filter is the workhorse of estimation, and can give useful results under many conditions.
One doesn’t need a guarantee of linearity to use a Kalman filter — if the logic of the application indicates
that a linear model is reasonable, there is a good chance a Kalman filter will work. However, difficulties
arise if relevant densities have multiple modes, because the representation adopted by a Kalman filter
(the mean and covariance, sufficient statistics for a Gaussian distribution) tends to represent multimodal
distributions poorly. There are several reasons one might encounter multiple modes.

First, nonlinear dynamics — or nonlinear measurement processes, or both — can create serious
problems. The basic difficulty is that even quite innocuous looking setups can produce densities that
are not normal, and are very difficult to represent and model. For example, let us look at only the
hidden state. Assume that this is one dimensional. Now assume that state updates are deterministic,
with X;11 = X; + esin(X;). If € is sufficiently small, we have that for 0 < X; < m, X; < X;41 < ;
for —m < X; < 0, —7 < X;4+1 < X;; and so on. Now assume that P(Xj) is normal. For sufficiently
large k, P(X},) will not be; there will be “clumps” of probability centered around the points (25 + 1)7
for j an integer. These clumps will be very difficult to represent, particularly if P(X)) has very large
variance so that many clumps are important. Notice that what is creating a problem here is that quite
small non-linearities in dynamics can cause probability to be concentrated in ways that are very difficult
to represent. In particular, nonlinear dynamics are likely to produce densities with complicated sufficient
statistics. There are cases where nonlinear dynamics does lead to densities that can be guaranteed to
have finite-dimensional sufficient statistics (see [?, ?, ?]); to our knowledge, these have not been applied
to human tracking.

Second, there are practical phenomena in human tracking that tend to suggest that non-normal dis-
tributions are a significant part of the problem (none of the examples we know is compelling proof that
a multi-modal density occurs). Assume we wish to track a 3D model of an arm in a single image. The
elbow is bent; as it straightens, it will eventually run into an end-stop — the forearm can’t rotate further
without damage. At the end-stop, the posterior on state can’t be a normal distribution, because a normal
distribution would have some support on the wrong side of the end-stop, and this has a significant effect
on the shape of the posterior (see figure 2.5). Another case that is likely, but not guaranteed, to cause
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trouble is a kinematic singularity. For example, if the elbow is bent, we will be able to observe rotation
about the humerus, but current observation models will make this unobservable if the elbow is straight
(because the outline of the arm will not change; no current method can use the changes in appearance
of the hand that will result). The dimension of the state space has collapsed. The posterior might be a
normal distribution in this reduced dimension space, but that would require explicitly representing the
collapse. The alternative, a covariance matrix of reduced rank, creates unattractive problems of rep-
resentation. Deutscher et al. produce evidence that, in both cases, posteriors are not, in fact, normal
distributions, and show that an extended Kalman filter can lose track in these cases [92]. In fact, as we
discuss in section ??, evidence for the presence of multiple modes in people tracking problems is moot
for 2D representations. Some of the difficulties with multiple modes come from kinematic ambiguity in
a 2D-3D lifting process; others appear to come from data association problems.

1.6.2 Multiple Modes from Data Association

The richest source of multiple modes is data association problems. An easy example illustrates how
nasty this problem can be. Assume we have a problem with linear dynamics and a linear measure-
ment model. However, at each tick of the clock we receive more than one measurement, exactly one
of which comes from the process being studied. We will continue to write the states as X;, the mea-
surements as Y;; but we now have ¢;, an indicator variable that tells which measurement comes from
the process (and is unknown). P(Xy|Y1. n,d1. ) is clearly Gaussian. We want P(Xy (Y1 n) =
Y histories P (XN|Y1.n,01.8)P(61..~|Y1..n), which is clearly a mixture of Gaussians. The number
of components is exponential in the number of frames — there is one component per history — meaning
that P(Xx|Y1. n) could have a very large number of modes.

1.6.2.1 The Kalman Filter with Noisy Measurements

For the moment, assume that the exponential number of histories presents no problem. We can apply
the same reasoning we used for Kalman filtering to maintain a representation of P(Xy|Y1. n). First,
assume we have a representation of P(Xy_1[Y1. n—1). Prediction presents no problem, because dy is
not involved. We have

P(Xn[Yin 1) = / P(Xn|Xn_1)

We have already shown that P(Xy_1|Y1. ny—1) must be a mixture of Gaussians, so P(Xy|Y1. v-1)
must be too if the dynamics are linear. Integration is linear, so the prediction step just involves updating
the mean and covariance of each component using the rules above; the weights are not touched.

Correction is much more interesting. Yy is a vector of measurements, some of which come from
the object being tracked and some of which come from the noise process. We assume that the noise
process is some known Gaussian, which is the same for each noise point — it might have very large
covariance, so as to be approximately uniform over the domain. We know P(Yy|dny = k, Xy ) — the
indicator variable says the k’th block of components of Yy come from the object being tracked, and the
others do not, so this density is Gaussian. P(dy = k|Xy) = P(0y = k) (because the noise process
doesn’t know anything about the state) and is uniform, because we have no prior basis to believe that
the measurements have been sorted in some order. Then we have

P(Xy|Y1n) = > kecases (Y N[Oy =k, Xn)P(XN|Y1.N-1)
i J > kecases POYN|On =k, XN)P(Xn|Y 1. v-1)d Xy
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Now the numerator is a mixture of Gaussians. This is because each term in the sum is a mixture of
Gaussians (which typically differ from term to term). The terms are a mixture of Gaussians, because
P(Xn|Y1.n-1) is a mixture of Gaussians and P(Yx|dn = k, Xy ) is Gaussian.

There are hard cases and easy cases in this example. The easy cases occur when the erroneous mea-
surements are spaced very far away from the measurements predicted by the state model. In this case,
we could use nearest neighbours to identify the right measurement, and need only try each measurement
for the first frame to find a start point. Another easy case occurs when there are very few frames, and
we can represent the mixture explicitly. In more difficult cases, we will be compelled to assume that
most of the probability is concentrated in a tractable number of modes, however long the history. The
result is a multiple hypothesis tracker — one Kalman filter keeps track of each of a fixed number mode,
and we must determine methods to prune the number of modes. This method was used by Cham and
Rehg [65], to track a 2D kinematic model of the body — note that this was adopted explicitly to cope
with data association difficulties, and they make no argument that posteriors for 2D human tracking are
intrinsically multimodal.

1.7 Tracking in the Presence of Multimodal Distributions

Assume we have case where the logic of the application suggests the number of clumps in the posterior
is likely to be manageable. Although we regard the evidence that there are multiple modes in people
tracking as moot (section ??), there is little doubt that the posterior in this case has relatively few clumps,
and that they are manageable. Algorithms for approximate inference in such cases build and manage
models of the posterior. This presents some practical difficulties; for example, if we model the posterior
at frame n as a mixture of Gaussians, we face the prospect that any, or each, of these Gaussians might
be split by the dynamics and lead to multiple lumps in the posterior at frame n + 1.

Generally, to maintain a representation of the posterior, we are going to need to propagate the rep-
resentation through the dynamics (prediction, above, which involves computing an integral), and then
adjust the representation to take account of our measurements. Furthermore, if our representation in-
volves a mixture, we may need to prune it to control complexity (because “lumps” of probability may
split, as in the example above). When we prune, we must choose the remaining mixture elements and
their weight so as to obtain a “good” approximation to the true posterior.

1.7.1 Kalman Filters - MM and IMM

There is no prospect in practice of filtering using a complete representation of the posterior, because
the number of terms grows so fast. Instead, we must manage the complexity of the mixture. A natural
strategy is to use a fixed number of terms in the mixture. We take the prior and compute the weights
for all terms in the posterior, then prune terms with small weights and reweight the remaining terms.
This case is not usually handled in tracking textbooks, which tend to concentrate on unknown dynamics
(which leads to similar issues — our history is now the dynamical model applied at each past step, rather
than the choice of measurement). There are two standard strategies, IMM and what?

1.

Rehg used IMM? No, MHT
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1.8 Notes

The Hausdorff distance was extensively studied in the 90’s [168, 327, 165, 166], and appears to have
fallen out of favour since then, for reasons we can only guess at. A likely source of difficulty (which
applies to any edge-based matching technique) is that scoring edge points against a template tends to
perform poorly in the presence of strong natural texture, whatever the score (e.g. the discussion of
verification in chapter *** of [120]). Interest in edges and edge-based methods is reviving, and we
might see Hausdorff distance papers again. There are relatively few trackers, but the method was widely
used for matching [59], logo recognition [67, ?] and for face recognition [?, 363, 378].

Flow-based tracking maintains an appearance model implicitly — one models the appearance of a
segment in a frame as the appearance most like that of the domain in the previous frame, accepting the
constraints of the flow model and some noise. The difficulty is that this can drift catastrophically. For
example, let a limb segment become occluded; then the appearance trackers we have described will find
some image patch most like the segment, given flow and structural constraints — but this could be quite
different from what the segment actually looks like. When the segment reappears, we may be unable
to find it, because our segment model is now quite different from the appearance of the actual segment.
Two natural strategies apply. First, we might wish to use a fixed model of segment appearance, to avoid
this drift effect. Second, we might hope that better formulated dynamical constraints could help.

There is a very large range of applicable templates (for example, one might use the machinery
of [113, ?]) each of which has a somewhat different detailed form of p (for example, we might interpret
p as a metric [] or as a likelihood []). Typically, we detect by identifying valuesf such that p(T'(x|0), I,,)
(a) is a local minimum and (b) is less than some threshold. This is sufficient to build a tracker, if we
ignore dynamical constraints. If the template is very reliable, it may be sufficient to detect instances
and link them over time (this can work quite well for face tracking in simple circumstances; see, for
example, [?]).
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Chapter 2

Tracking: Relations between 3D and 2D

Many applications require a representation of the body in three dimensions. Such a track could come
from tracking with a 3D representation — perhaps a set of body segments in 3D, modelled as surfaces,
triangle meshes or sample points — or by building a kinematic track in two dimensions, then “lifting” it
to produce a 3D track. If there is only one camera, relations between the 2D figure and the 3D track are
complicated, and may be ambiguous. Ambiguities appear to be less significant in the case where there
are multiple cameras; we review this case only briefly (section 2.1).

The heart of the question is the number of possible 3D configurations that could explain a single
image. There is no doubt that there are many if there is no motion information and if only geomet-
ric correspondence information is used. In other cases, whether there is any ambiguity is uncertain,
and appears to depend quite precisely on the circumstances of measurement. When reconstruction is
ambiguous, one expects to encounter multimodal distributions in a tracking problem built around 3D
representations, because several distinct inferred 3D configurations could have the same likelihood.

We discuss methods for reconstructing body configuration in 3D from a single view (and perhaps
a dynamical history) in considerable detail in section 2.2. This leads us to the (surprisingly complex
and unresolved) question of the extent and nature of ambiguities in 3D reconstruction (section 6.0.1.1).
Furthermore, the lifting procedure adopted may have significant consequences for how we choose to
represent body configuration (section 6.0.1.2). All this provides background information to understand
tracking methods that work on 3D body models (section 3).

2.1 Kinematic Inference with Multiple Views

If one has multiple views of the body, the problem of reconstruction is considerably simplified. Ideally,
the cameras are calibrated, in which case the main difficulty is localizing body parts. At least con-
ceptually, one could lift from one frame using some method chosen from section 2.2, then search all
ambiguities, evaluating by backprojecting into the other view. It is more sensible to search configura-
tions with a cost function incorporating all views; this requires the cameras be calibrated. There are
generally two questions: the score used to evaluate a particular reconstruction, and how to search for
the best reconstruction.

Scores can be computed by explicitly reconstructing a three-dimensional structure from the views,
then comparing the body representation to that structure. Cheung et al.use a volumetric reconstruction
of the person — a quantized approximatation to the visual hull — obtained using five views, and then
encode kinematic configuration by fitting a set of ellipsoids to the 3D reconstruction with EM [69];
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the process is realtime. Kehl et al.use an approximate visual hull, estimated by intersecting cones over
foreground regions from between 4 and 8 calibrated cameras [194] (figure 2.1). The reconstruction
is produced assuming a simple background, so that the cones can be obtained. The body model is a
textured 3D mesh, controlled by a skeleton (section ??); texture maps are obtained from a modelling
view. Tracking is by minimizing distance between the volumetric reconstruction and sample points on
the mesh (which are a function of the skeleton’s kinematic parameters). The minimization procedure
itself is a sophisticated variant of stochastic gradient descent.
Luck, Small
Black

It is not necessary to construct the visual hull explicitly. There are numerous methods that use
the visual hull implicitly, by comparing the reconstructed 3D model with the silhouette in each view.
Carranza et al.use an implicit representation, comparing the silhouette of the 3D reconstruction with
silhouettes in each view using graphics hardware [63]. This yields a cost function that can be evaluated
very fast, allowing real-time tracking.

M P M:w 37

Figure 2.1: figure 12 of kehl ea, full body tracking using multiple views, multipleview/01467432
Kehl et al.represent the body as a textured 3D mesh, controlled by a skeleton with a texture map obtained
from a modelling view. They obtain a volumetric reconstruction from a set of calibrated cameras,
then track the body by minimizing distance between sampling points on the mesh and the volumetric
reconstruction. The top row shows frames from one camera with reprojected skeleton superimposed;
the bottom row shows the surface reconstruction at the left of each frame and the original volumetric
reconstruction at the right. The reconstruction is accurate, despite some difficulties in the volumetric

measurement.

Stereo matches can give greater depth precision than the visual hull can provide. Plinkers and Fua
estimate parameters for a model of the body consisting of a skeleton, metaball muscle model, and skin
using stereo and, optionally, silhouette information [292]; the method appears to work with a complex
background. Delamarre and Faugeras use a form of iterated closest point matching to produce forces
that drive a 3D segment model into correspondence with the silhouette in three calibrated views [88, 89].
Drummond and Cipolla model the body with quadric segments, and track by applying a linearized flow
model (as per section 1.3.5; [51, 52]) to a search for edge points close to projected sample points on the
model [98] (see also [97] for more information on the formalism, and [96, 99] for information about
tracking changes in camera parameters). Shahrokni et al.use a similar general approach, but employ a
novel texture segmentation model to find silhouette points [339]. They search along a scan line near
and approximately normal to the predicted silhouette to find points where there is a high posterior of
a texture edge (see also an alternative method for finding texture silhouettes using a classifier in [340];
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and using an entropy measure in [338]).

Texture information can be registered to the body model. Starck and Hilton obtain the best config-
uration of a 17 joint, meshed 3D model of the human body to fit stereo, silhouette and feature matches
for each frame; texture is then reprojected onto the body (in [?]; see also [151, 366]). The texture
is then backprojected onto the reconstruction and composited to give a single texture map. In recent
work, Starck and Hilton show that correspondences between texture maps induced in separate frames
yield temporal correspondences and so information on how relevant surfaces deform [364]. Models of
this form allow relatively straightforward synthesis of new views [365]. These methods are oriented to
performance capture, and appear to have been demonstrated for simple backgrounds only.

In principle, texture information registered to the body should yield a match score and improve
matches, if the texture does not move with respect to the skeleton. We are not aware of methods that use
this cue, though it may prove useful if one wants a detailed surface reconstruction of a model wearing
tight garments. However, one can use a flow model to register texture from frame to frame. Yamamoto
et al.use a linear flow model derived from the kinematic model (cf section 1.3.5) with three cameras
to obtain good tracks from hand-initialized data; they use three calibrated cameras [419]. The paper
describes no difficulties resulting from movement of texture with respect to the body, but we expect
that this effect significantly limits the precision of available reconstructions (see also figure 1.8, and the
discussion in section 1.1). Theobalt et al.describe improved configurations obtained from the method of
Carranza et al.([63]) by incorporating an optic flow model to correct the estimates of configuration [383].
Subjects are not wearing very tight clothing, and there again seem to be no difficulties resulting from
movement of texture with respect to the body.

Generally, search methods involve either standard optimization techniques or fairly standard vari-
ants. However, Deutscher et al.use a form of randomized search, described in greater detail in sec-
tion 2.3.1, to align a 3D model with silhouette edges [91, 93]. Sigal et al.use a form of belief propa-
gation, described in greater detail in section 2.3.1.1, to infer configuration in three or four views; the
method uses detectors to guide a form of search [346]. Carranza et al.use a surface model, controlled by
a 17 joint skeleton [63]. The search for a reconstruction at a time instant uses the reconstruction at the
previous instant as a start point; however, because motion can be fast, and the sampling rate is relatively
slow (15 Hz, p 571), a form of grid search at each limb separately is necessary to avoid local minima.
A texture estimate is obtained by rectifying all images to the surface model, and blending.

The most comprehensive and recent discussion of 3D reconstruction issues appears in two papers.
Cheung et al.give an extensive discussion of representations of the visual hull and methods of obtaining
them; the methods they describe can incorporate temporal information, color information, stereopsis
and silhouette information [70]. Cheung et al.then use these methods to build a body model from a
series of calibration sequences, which give both surface and skeleton information [71]. This model
is then tracked by minimizing the sum of two scores. The first compares the deformed body model
with the silhouettes in each image at a given timestep. The second compares an object reconstruction
obtained at a given timestep with the silhouettes in each modelling frame. As authors note, there are
3D situations that are either kinematically ambiguous or at least very difficult for a tracking algorithm
of this form. The first occurs when body parts are close together (for example, an arm pressed against
the torso) and may lead to a self-intersecting reconstruction. This difficulty appears to be intrinsic to the
use of silhouette features. The second occurs when the arm is straight, making rotation about the axis of
the humerus ambiguous. The difficulty is that the photometric detail is too weak to force the method to
the right configuration of the hand. Curiously, although Mori and Malik have shown that one can obtain
landmark positions automatically [256], there appears to be no multiple view reconstruction work that
identifies landmarks in several views (with, for example, the method of Mori and Malik, section 2.2.1)
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and builds a geometric reconstruction this way.

2.2  Lifting to 3D

There are a variety of methods for lifting a 2D representation of the body to 3D. Different methods
draw from different bodies of technique (kinematics, statistics, computational geometry, optimization,
etc.), but the geometry of lifting gives clear bounds to what ambiguities may appear (subsection 2.2.1).
The extent of ambiguity appears to depend on whether the ambiguous reconstructions violate kinematic
constraints, and whether a dynamical history is available. The remarkable fact is that reconstruction
ambiguity seems to be either quite easily evaded or not to manifest itself at all. Thus, while many
papers advocate methods to manage ambiguity, almost any method appears to work — one doesn’t
see many records of systems failing due to ambiguity. This may be because experiments are poorly
conducted; but it is more likely that the implicit folk mythology — that ambiguous reconstructions are
quite easily avoided — is true. We discuss this point in section 6.0.1.1.

2.2.1 Geometric Ambiguity and Lifting by Kinematic Inference

The way that people are imaged means that there are very few cases where a scaled orthographic camera
model is not appropriate. One such case to keep in mind is a person pointing towards the camera; if the
hand is quite close, compared with the length of the arm, one may see distinct perspective effects over
the hand and arm and in extreme cases the hand can occlude much of the body.

Regard each body segment as a cylinder, for the moment of known length. If we know the camera
scale, and can mark each end of the body segment — we might do this by hand, as Taylor [379, 380]
does and Barrén and Kakadiaris [23, 24] do, or by a strategy of matching image patches to marked up
images as Mori and Malik do [256, 257] — then we know the cosine of the angle between the image
plane and the axis of the segment, which means we have the segment in 3D up to a twofold ambiguity
and translation in depth (figure 2.2 gives examples). We can reconstruct each separate segment and
obtain an ambiguity of translation in depth (which is important and often forgotten) and a two-fold
ambiguity at each segment.

For the moment, assume we know all segment lengths and the camera scale. We can now reconstruct
the body by obtaining a reconstruction for each segment, and joining them up. Each segment has a single
missing degree of freedom (depth), but the segments must join up, meaning that we have a discrete set
of ambiguities. Depending on circumstances, one might work with from seven to nine body segments
(the head is often omitted; the torso can reasonably be modelled with several segments), yielding from
128 to 512 possible reconstructions. These ambiguities persist for perspective images; examples appear
in figure 2.4.

Barrén and Kakadiaris show that anthropometric parameters can be estimated as well [23, 24]. They
do this by constructing a multivariate Gaussian prior on segment lengths, which do not vary much in
size (a factor of 1.5 covers the range of human heights from four foot six to six foot nine, which deals
with the vast majority of adults). Ratios of body segment lengths vary even less (e.g. see [273, 23, 24]).
Barrén and Kakadiaris assume that, in any view, two segments are close to parallel to the image plane,
meaning that the ratio of their image lengths is very close to the actual length ratio. They construct a
discrete set of possible bodies, and use image length ratios to index into this set to obtain a start point
for an optimization procedure that obtains the actual anthropometric parameters by choosing the set that
agrees with the image, meets joint limit constraints, and has highest prior probability (this could be seen
as an MAP estimate).
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Figure 2.2: 2d3Dlift/cvpr00.pdf, figure 5, p 682, CJpaper Two 3D reconstructions obtained by Taylor
[379], for single orthographic views of human figures. The image appears left, with joint vertices on the
body identified by hand (the user also identifies which vertex on each segment is closer to the camera).
Center shows a rendered reconstruction in the viewing camera, and right shows a rendering from a
different view direction.
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Figure 2.3: Mori+Malik, 2d3dlift/morimecv01.pdf, figures 6 and 7 Mori and Malik deal with discrete
ambiguities by matching test image outlines to examplars, which have keypoints marked [256, 257 ]. The
keypoint markup includes which end of the segment is closer to the view. The images on the left show
example test images, with keypoints established by the matching strategy superimposed. The resulting
reconstruction appears on the right.

The discrete ambiguities can be dealt with in a number of ways. One could ask the user to identify
the closer endpoint of each segment (Taylor [379], p. 681). One could simply choose, as Barrén and
Kakadiaris appear to do. In detail, their method uses each kinematically acceptable 3D reconstruction as
a start point for the minimization procedure described above, and chooses the reconstruction with best
value of the objective function. Since this procedure enforces kinematic constraints but does not apply
distinct weights to distinct kinematic reconstructions, the unconstrained objective function must have a
symmetry corresponding to the reconstruction ambiguity, and so the choice depends largely on random
factors within the optimization procedure. It is important to notice that this doesn’t seem to cause any
problems, which suggests that substantial kinematic ambiguities might be rather rare. We will pick up
on this point in section 2?.

Mori and Malik deal with discrete ambiguities by matching [256, 257]. They have a set of example
images with joint positions marked. The outline of the body in each example is sampled, and each
sample point is encoded with a shape context (an encoding that represents local image structure at high
resolution and longer scale image structure at a lower resolution). Keypoints are marked in the examples
by hand, and this marking includes a representation of which end of the body segment is closer to the
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camera. The outline of the body is identified in a test image (Mori and Malik use an edge detector; a
cluttered background might present issues here), and sample points on the outline are matched to sample
points in examples. A global matching procedure then identifies appropriate examplars for each body
segment and an appropriate 2D configuration. The body is represented as a set of segments, allowing
(a) kinematic deformations in 2D and (b) different body segments in the test image to be matched to
segments in different training images. The best matching example keypoint can be extracted from the
matching procedure, and an estimate of the position of that keypoint in the test image is obtained from a
least-squares fit transformation which aligns a number of sample points around that keypoint. The result
is a markup of the test image with labelled joint positions and with which end of the segment is closest
to the camera. A 3D reconstruction follows, as above (figure 2.3 gives some examples).

Figure 2.4: figure 2 of sminchisescu+triggs, kinematic jump processes, kinematicambigu-
ity/01211339 Ambiguous reconstructions of a 3D figure, all consistent with a single view, from Smin-
chisescu and Triggs [357]. The ambiguities are most easily visualized by an argument about scaled
orthographic cameras, given in the text, but persist for perspective views as these authors show. Note
that the cocked wrist in the leftmost figure violates kinematic constraints — no person with an undam-
aged wrist can take this configuration.

fix this par
Camera scale can be calibrated, and anthropometric parameters estimated, but the remaining discrete
set of ambiguities appears to have substantial practical consequences. Furthermore, they appear to
apply to whatever particular scheme of reconstruction is adopted, unless the measurement process is
more informative than locating segment endpoints. Schemes that use the silhouette (section 2.6) and
image matches (section ?? and section 2.2.3) appear to be subject to this set of ambiguities (section ??
discusses further observations that might help).

Current likelihood models compare some set of predicted with observed image features (typically,
silhouette edges), and so must have multiple peaks corresponding to the ambiguities described. These
peaks appear in the posterior (figure 2.5). While this makes the multiple peaks predictable, they are still
a major nuisance. Typically, at each peak in the likelihood there are some directions where the value
of the likelihood varies slowly (small eigenvalues in the Hessian). This is because localization of either
landmarks or silhouette points is difficult, and large changes in the estimate of depth to a joint or of a
limb angle can result in small changes to image positions. The problem directions tend to move a joint
in depth (figure 2.4).
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Figure 2.5: Figure 4, 2a of Sminchisescu and Triggs, Covariance scaled..., particlefilter/009090509

Several nasty phenomena result from kinematic ambiguities and from kinematic limits, as Sminchisescu
and Triggs [353, 356]. Ambiguities in reconstruction — which are caused because body segments can
be oriented in 3D either toward or away from the camera, as described in the text — result in multiple
modes in the posterior. The two graphs on the left (a and b) show the fitting cost (which can be thought of
as a log-likelihood) as a function of the value of two state variables (scaled by their standard deviation).
The state variables refer to the kinematic configuration of the 3D model. Note the significant “bumps”

from the second mode (the vertical arrows). For reference, there is a quadratic approximation shown as
well. Note also the the significant deformations of modes resulting from a kinematic limit (the horizontal
arrows). This is caused by the fact that no probability can lie on the other side of the limit, so the mode
must be “squashed” .

2.2.2 Lifting by Minimization

As we have seen (section 2.1), if one has multiple views, the body configuration can be reconstructed
by minimizing an error between the image and projected configuration in each view. A wide variety
of view errors are available, though most involve a comparison between inferred outline points and an
image silhouette. Sminchicescu and Telea show that this approach can produce a reconstruction from
a single view [352] (see also [351]). Their error function includes a term to force the projected body
to cover as much silhouette as possible and a term to force the projected body inside the silhouette. It
is important to smooth the silhouette (from background subtraction), because noise components on the
silhouette boundary can produce a difficult optimization problem. The silhouette is skeletonized and the
skeleton is then pruned and “inflated” using a form of distance transform. The method produces good
reconstructions, but must experience at least reconstruction ambiguities similar to those experienced by
kinematic inference.

Randomized search is a reasonable strategy for attacking the minimization. Sminchisescu and Triggs
describe various methods to bias the likelihood function searched by a sampler so that the state will move
freely between local minima [355, 354, 359]. Sminchisescu and Triggs exploit an explicit representation
of kinematic ambiguities to help this search, by making proposals for large changes of state that have
a strong likelihood of being good [358]. Lee and Cohen use a markov chain Monte Carlo method
to search the likelihood, using both a set of image detectors and a model of kinematic ambiguities to
propose moves; this gives a set of possible reconstructions for the upper body [212] and the whole
body [213].
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Figure 2.6: Figure 4, figure 6 from Sminchisescu+Telea, Liftto3D/paper.pdf Sminchisescu and Telea
lift to 3D by matching to a silhouette using a cost function that causes (a) the projected model to lie
on the silhouette and (b) the silhouette to have few points unexplained by the model [352]. To do
this effectively, they must first clean up the silhouette. Top: they take the raw silhouette obtained by
thresholding (b), compute a distance transform (c) and skeleton (d), then prune small components of the
skeleton and expand (e). Bottom: the raw image (f); the initial reconstruction, projected onto the raw
image (g); the result of silhouette fitting without charging for pixels that are not explained (h), the result
of silhouette fitting while charging for unexplained silhouette pixels.

2.2.3 Lifting by Regression

Assume we are given a set of example pairs (x;,y;), where x; is a vector of measurements of image
properties and y; is the known 3D configuration of the body for that measurement vector.

We can regard lifting as a regression problem — predict y for a new set of image measurements X,
using the training data. This regression problem has some nasty properties.

e Dimension: We expect x to be drawn from a high-dimensional space. Worse, we expect that the
possible x that we can observe lie on a relatively low-dimensional subspace of the original space.
For example, we expect to see arms and legs in a limited range of configurations; we expect to see

people with arms of similar appearance; we expect to see people with legs of similar appearance;
and so oon.

e Metric distortion: We do not expect that the distance between x; and x; necessarily reflects the
distance between y; and y;. For example, two quite distinct body configurations could have very
similar images (as a result of geometric ambiguities section 2.2.1).

e Multiple values: Worse, we could have two distinct values of y that are correctly associated with
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a single value of x, (as a result of the discrete ambiguity of section 2.2.1).

Notation: To avoid dealing with isolated constants, we will assume that one component of x always
has the value 1.

2.2.3.1 Lifting using the Nearest Neighbour

The simplest regression method is to use the value associated with the nearest neighbour. Athitsos and
Sclaroff determine 20 kinematic configuration parameters from an image of a hand by matching the
image to a set of examples [14, 15]. Examples cover a wide range of viewing conditions, and the cost of
obtaining the best match (in a total of 107,328 images) limits the number of distinct hand configurations
to 26.

One can incorporate dynamical information into the distance cost matching entire 3D motion paths
to 2D image tracks. Howe computes a match cost frame by frame, by comparing rendered motion cap-
ture data from the CMU Motion Capture collection (http:whereisit)with image silhouettes [162].
Views are again assumed lateral and orthographic, and are sampled every 1( around the body. Trans-
lation and scale could be handled either by sampling, or by obtaining estimates from a bounding box.
The comparison is scored with a chamfer distance. Write

H(S,,Sy) = in d(p,
(S1,52) p%;l;gg; (p,q)

(noting a similarity with the Hausdorff distance, section ??), # for the 3D configuration of the [’th
frame of motion capture data with respect to the camera (meaning that rotation, translation and scale are
encoded here), P for the set of pixels covered by a rendering of ¢, and Pg; for the pixels lying in the
j’th silhouette. The comparison between ¢ and S; is now scored as

M(6',5;) = H(Py, Ps,) + H(Ps,, Py)

Now write the (unknown) value of 6 at time 7 as ©; — this value could be any one of the available ¢.
Howe then constructs a cost linking frames of motion capture A(6;, ©;_1); this cost could include a
charge for extreme camera motions, though the paper does not explicitly describe this (the cost used
charges for large changes in body configuration). The motion is lifted by applying dynamic program-
ming to

N N
C(O1,....0N) =D A(0;,0;1) + > M(0;,5)

=2 i=1
There are too many frames of motion capture to implement an exact dynamic programming solution,
and we allow only values ¢ of ©; such that M (', S;) is less than some threshold. The method appears
to produce solutions that are unambiguous, which is consistent with the view that 3D reconstruction
ambiguities are probably a phenomenon of short, rather than long, time-scales. There is also some useful
evidence that reconstruction errors or uncertainties do not propagate over long time-scales (figure 2.7).
However, there is no attempt to use either N-best dynamic programming or beam search to identify 3D
reconstructions that have cost comparable to the best cost, but are significantly different.

2.2.3.2 Snippets and Cameras

This work suggests that, while a single frame reconstruction might be ambiguous, a match from a
short 2D track to a short 3D track might not be (in section ??, we lay out evidence it is not). Howe et
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Figure 2.7: 01384804, figure 7 (8 is incomprehensible, and so omitted) Howe’s formulation lifts to 3D
by comparing projected motion capture data with image silhouettes [162]. There is a frame-frame cost
for the reconstruction, and the final 3D lift is obtained by dynamic programming. In a formalism like
this, one could reasonably fear that a mistaken reconstruction in one frame might result in an entirely
wrong path. In practice, this does not occur. The graph is obtained by constraining the first lifted frame
of a sequence to each of a 1000 different (incorrect) states, the plot shows the number of distinct states
found in the succeeding frames for each path, as a function of frame. The local image evidence quickly
overwhelms the effect of history, by the 10’th frame, there are only two distinct states.

al.compare projected motion capture data with image tracks, but now use posterior inference to estimate
dynamic parameters [163]. These parameters are an encoding of “snippets” — 11 frames of motion
capture data — which are clustered using a mixture of Gaussians. Each 11 frame section of the track
produces a snippet with maximal posterior, and the snippets are blended into one another to give a 3D
reconstruction. While authors acknowledge the tracker loses track after a while, the lifting procedure
appears to be robust and effective.

Ramanan and Forsyth use a similar approach, but apply constraints to camera dynamics, too [313].
They assume that views are lateral, estimate scale and translation from the image, and sample the re-
maining camera parameter (rotation about the vertical axis). They constrain the camera speed, and
charge for large motions in three dimensions. The best matching sequence can then be obtained by
dynamic programming. The method cannot recover the motion in depth of the root, but successfully
recovers the configuration of the body with respect to the root and all root parameters but depth.

The discrete ambiguity in configuration is handled by incorporating information about surrounding
frames into the match cost. In particular, the cost of matching a given image frame with a given motion
capture frame is averaged over a window of image (resp. motion capture) frames centered around the
frame under consideration. This means that the match uses an implicit (in the collection of motion
capture) dynamical model to resolve these discrete ambiguities, at the cost of not being able to lift
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Figure 2.8: Figure 5.4 from Ramanan’s thesis Left frames are taken from a walking sequence,
matched to motion capture data using the method of Ramanan and Forsyth [313]. Matches are in-
dependent from frame to frame. Note that the lateral view of the body (far left) is ambiguous, and
can be reconstructed inaccurately. This ambiguity does not persist, because the camera cannot move
freely from frame to frame. Right frames show reconstructions obtained using dynamic programming
to enforce a model of camera cost. The correct reconstruction is usually available, because the per-
son does not stay in an ambiguous configuration. The frames are taken from a time sequence, and the
graphs below show an automatically computed annotation sequence — facing left vs. facing right — as
a function of time. Note that the case on the left shows an essentially random choice of direction when
the ambiguity is present (the person appears to flip from facing left to facing right regularly). This is
because the free rotation of the camera means the ambiguity appears on a per-frame basis. For the case
on the right, the smoothing created by charging for fast camera rotations means that the labels change
seldom (and are, in fact, correct).

configurations that are not in the motion capture data.

The charge for camera rotation is reasonable, because cameras do not usually swing around the body
by very large amounts, but it is also important, because Ramanan and Forsyth’s model does not match
heads and so has difficulty telling which way the body is facing for lateral views, particularly when the
limbs are in line with the body (figure 2.8). This results in a lateral view of a standing person can be
interpreted as facing either right or left; the camera rotation charge means that, if the person walks off
— and so reveals the direction in which they are facing — this information can be propagated.

2.2.3.3 Regressing Pose against the Image

Shakhnarovich et al.train with a data set of 3D configurations and rendered frames, obtained using
POSER (a program that renders human figures, from Creative Labs). They show error rates on held
out data for a variety of regression methods applied to the pool of neighbours obtained using parameter
sensitive hashing. Generally, performance improves with more neighbours, with using a linear (rather
than constant) locally weighted regression, and if the method is robust. The best is a robust linear locally
weighted regression. Their method produces estimates of joint angles with RMS errors of approximately
20° for a 13 degree of freedom upper body model [341]; a version of this approach can produce full 3D
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shape estimates [142]. Liu et al.demonstrate a full body reconstruction from silhouettes in five views
using a similar regression model; the reconstruction is not evaluated directly, but is used to control
motion synthesis [315].

2.2.3.4 Disambiguation with the Immediate Past

A major difficulty with this procedure is the possibility that a single set of image features may predict
multiple poses. This could be a result of weaknesses in image features — for example, it is hard to
tell which way the actor is facing in a lateral view of a standing person with current image features
— but is more likely the consequence of the kinematic ambiguities described above. Reconstructions
performed in the past could disambiguate the current reconstruction. Brand links images with motion
capture by fitting HMM’s to both motion capture data and image data; these HMM’s share a dynamical
model [47]. The HMM’s are fitted with a variant fitting algorithm which tends to obtain models with
relatively low entropy (there is some discussion in [47]; more in [46, 48]). Reconstruction in 3D is
obtained by inferring a state sequence from image data, then choosing a sequence of emitted states from
the motion capture model, using a smoothed approximation rather than the Viterbi sequence.

We could think of pose as lying on a set of distinct “sheets”, each of which is a single valued
function of image features, and then build distinct models for each sheet. This leads to tricky problems
in identifying the sheets, however. Agarwal and Triggs observe that the pose in the previous frames, if
correctly computed, should give a good guide to the current pose — one is unlikely to jump from sheet
to sheet in a single frame [2]. This observation implies that, while y;(x;) might be a multiple valued
function, y:(x¢, yt—1,y:—2) is not. At reasonable sampling rates, the pose in the last two frames should
give a fair estimate of the pose in the current frame. Agarwal and Triggs first construct a regressed
estimate of the pose in frame ¢, y; from y;_; and y;_5 using a linear regression. They then compute
a regression estimate of y; from x; and y;, using a regression vector machine trained with a variant
algorithm. The method produces estimates of joint angles with RMS errors of 4 for 55 degrees of
freedom (3 angles per joint for an 18 joint skeleton, and 1 orientation DOF with respect to the camera).

2.3 Multiple Modes, Randomized Search and Human Tracking

We have clear evidence that tracking a 3D representation of the body can result in multiple modes in the
posterior and that these modes do not look Gaussian locally (figure ??; but see section ??). The need to
manage these modes has spawned a number of methods, all of which are forms of randomized search.

Particle filters should be seen as a form of randomized search. One starts a set of points that tend to
be concentrated around large values of the posterior. These are pushed through the dynamical model,
to predict possible configurations in the data. The result is a sampled representation of the prior. The
predictions are compared to the data, and those that compare well are given higher weights, yielding a
sampled representation of the posterior. This simple view provides some insight into why particle filters
in their most basic form are not particularly well adapted to kinematic tracking.

There is a problem with dimension. The state vector for most kinematic tracking problems must be
high dimensional. One expects to encounter at least 20 degrees of freedom (one at each knee, two at
each hip, three at each shoulder, one at each elbow and six for the root) and quite possibly many more.
This means that mismatches between the prior and the likelihood can generate serious problems. Such
mismatches are likely for three reasons.

First, the body can move quickly and unexpectedly, meaning that probability must be quite widely
spread in the prior to account for large accelerations. It is hard to be clear on how much uncertainty
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there is in the state of the body at some time given the past, and there are fair arguments either way
(section ??). However, fast movements do occur, and current methods are forced to have fairly diffuse
dynamical models to cope with them.

Second, the likelihood has multiple peaks, which can be very narrow. Narrow peaks occur because
some body segments — forearms are a particularly nasty example — have relatively small cross-section
in the image, and so only a small range of body states will place these segments in about the right image
configuration. Multiple peaks occur because there tend to be numerous objects that look somewhat like
body segments (long, narrow, parallel sides, constant colour). We are now using the predictions of the
prior to find the largest narrow peak in a high-dimensional likelihood — for this to have any hope of
success, the predictions need to be good or to occur in very large numbers. But we know the predictions
will be poor, because we know people can generate fast, unexpected movements.

Third, detectors used to produce a likelihood model may be inaccurate. This can result in small
errors in inferred state, which in turn produce potentially large changes in state from frame to frame. As
Sminchicescu and Triggs point out ([356], p. 372), this suggests using a relatively diffuse dynamical
model as an insurance policy.

The key idea in particle filters is the randomized search. One might abandon, or at least de-
emphasize, probabilistic semantics, and focus on building an effective search of the likelihood. The
key difficulties are that the peaks in the likelihood are narrow (and so easy to miss) and that the con-
figuration space is high-dimensional (so that useful search probes may be difficult to find). The narrow
peaks in the likelihood could be dealt with by annealing, and good search probes may be found by
considering the ambiguity of 3D reconstructions. We review these approaches in section 2.3.1.5.

2.3.1 Randomized Search with Particle Filters

There are a series of approaches to deal with problems created by the dimension of the state space.
First, we could refine the search using importance sampling methods. Second, we could use sequential
inference methods to obtain more efficient samples of the prior. Third, we could build lower-dimensional
dynamical models. Finally, we could build more complex searches of the likelihood.

2.3.1.1 Importance Sampling

Importance sampling is a method to concentrate samples in places that seem likely to be useful. As-

sume we have a distribution g(X;) from which we can draw samples, and which is a better guide to the

likelihood than the prior P(X¢| Yo, ..., Y¢—1) is. We can then draw samples X;; from g(X;). Then the

set of samples

P(X; =X4i| Yo, Y1) P(Y Xy = Xyi)
9(Xti)

is a representation of the posterior, as can be established by pattern matching to the expressions above.
Given several plausible importance functions, one could use a mixture of these functions and the prior
as an importance function. Drawing samples from this mixture is straightforward; one draws a sample
according to the mixing weights, and uses this to choose a sampling strategy. Image observations are
a natural source of importance functions. Isard and Blake use this approach to track hands and fore-
arms [176], using a skin detector to build an importance function. Rittscher and Blake use importance
sampling methods to track contours of motions drawn from two classes (pure jump and half star jump);
the tracker maintains a representation of posterior on the motion class, which can be used to distinguish

(Xtiv )
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Figure 2.9: If one models a person with a kinematic chain, then determining where a given person
appears in a static image involves inference on a tree structured graphical model. On the left, a graph-
ical model illustrating this point. In the usual language of graphical models, open nodes represent
unknowns, arrows represent dependencies, and shaded nodes represent measurements. Each open node
encodes the state (for example, image position; image position and orientation; 3D position, orientation
and scale; and so on) of the body segment implied by the label (t: torso; lul: left upper leg; and so on).
The arrow represents a model of P(variable at head|variable at tail). The filled nodes represent various
detector responses. Notice that each open node has at most one parent, so the open nodes form a tree,
so that inference is a matter of dynamic programming (or, equivalently, message passing; section 3.4 or
a text such as [120, 234]). On the right, we show what happens when one has temporal dependencies.
We show only two frames (there’s enough clutter in the drawing), and the gray arcs are temporal links.
The graphical model becomes much more complex. Most open nodes now have two parents, a spatial
parent and a temporal parent, and this means that exact inference is impractical.

@@}@@

between motion classes successfully [316]. Forsyth uses edge detector responses as a source of pro-
posal mechanisms to find simple boundaries [115], and Zhu et al. — who call the approach data driven
MCMC — use image observations to propose segmentations [392, 391, 430]. We are not aware of the
method being used for kinematic tracking; however, it is a way to unify the more successful kinematic
tracking methods of section ?? with particle filter based inference.

If one models a person with a tree-structured kinematic model, then identifying each body segment
in the image is a matter of dynamic programming (we discuss this issue in greater detail in section 3.4).
However, adding temporal dependencies produces a structure that does not allow for simple exact infer-
ence, because the state of a limb in frame ¢ has two parents: the state in time ¢ — 1, and the state of its
parent in frame ¢ (figure 2.9). Loopy propagation is a method for approximate inference on graphical
models which are not trees. One constructs a spanning tree, passes messages with the usual algorithm
on that spanning tree, and then repeats for other choices of spanning tree. This is an approximation,
because some probabilities are overestimated as a result of cycles in the graph; experiment shows that,
under many circumstances, the approximation gives usable and helpful results. Useful accounts of this
method appear in [425, 260, 409].

Sigal et al. use loopy propagation, representing messages passed between nodes using a set of
particles [346]. Their template is a 3D model of a person with links both in time and in space learned
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Figure 2.10: Figures 1 and 7 from Particlefilters/013150163 Sigal et al. build a 3D model of a
person as a set of segments [346]. Again, the state of each segment but the root has two parents — the
corresponding segment in the previous frame, and that segment’s parent in the model (left). This yields
an inference problem that is too difficult in general to do exactly. Sigal et al. track in multiple views
using a form of particle filter adapted for loopy belief propagation. The image likelihood is a conditional
exponential model. Authors use a combination of segment detectors and uniformly distributed samples
to propose likely configurations of limbs in the image, these are incorporated in the inference procedure
as importance functions. The figure on the right shows camera outputs with superimposed information
for two of four views (rows); column (a) shows limb segments proposed by the detector; (b) shows
proposals from a uniform distribution; (¢) shows samples from the belief distribution after 30 frames of
belief propagation; and (d) shows the state with the highest belief.

from data. The likelihood is modelled with a conditional exponential model, where

P(Y|X) o< exp <— Z )\igi(X’Y>>

with parameters \; learned from data. Such models, often called maximum entropy models and quite
popular in the language modelling community, are commonly fitted by maximizing likelihood (which
requires computing the partition function), using an algorithm known as iterative scaling (see [], and
variants in []; more conventional optimization methods are now becoming popular []). Sigal et al. use
a series of detectors which are tuned to body parts (but not, in the nature of such detectors, particularly
reliable; otherwise there’d be nothing to do) to produce an importance function. Some percentage of
messages passed to limb nodes are drawn from this importance function, giving strong suggestions
about the configuration in 3D of a particular body segment. They demonstrate tracks of people in 3D
from three views. Unusually, there is a strong evaluation component, which we describe in section ??.

2.3.1.2 Partitioned Sampling

Partitioned sampling is a variant of importance sampling that uses a sequence of samples within each
time slice. Assume that the state vector X has several components; notation etc. is much simpler if we
assume only two, and the more general case follows, so we shall work with two and write X = (x, X2).
We will also drop the subscript for time to simplify notation. Now assume that we have an importance
function I(X) that is a good guide to the likelihood (what this means will become apparent), and can
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be factored as I(X) = I;(x1)l2(x1,x2) Now if u; is a set of IID samples of P(x; ), then

(uiv Il(ui))

represents a probability distribution proportional to P(x )3 (x1 ). Take this representation and resample
with replacement according to the weights, to obtain (u;, 1) which must also be a representation of that
distribution. Now obtain vy, which are IID samples of P(x2|x; = u;). Then

((ij, Uj), I2(uja ij))

represents a probability distribution proportional to P(x|x1)P(x1)I1(x1)l2(x1,x2). Take this repre-
sentation and in turn resample with replacement according to the weights, to obtain (vj;, 1), which is
also a representation of that distribution. Finally,

PY|X = (vij,u;))
I (uj)I2(uy, vij)

((vij, ),

represents the posterior. Notice that we have omitted various if’s, and’s and but’s to do with the support
of the importance function and so on, to get to this point. The advantage of this strategy is that we have
guided the search of the likelihood using our importance function; in particular, the first resampling step
discards particles that lie in spots where there is evidence — supplied by the importance function —
that the marginal of the posterior will be small. Throwing these particles away allows means that, when
we elaborate the particles to represent the whole state, the resulting particles should tend to lie in places
where the likelihood is large. Of course, all this depends on the quality of our likelihood functions.
MacCormick and Isard track hands using partitioned sampling [232]. MacCormick and Blake use this
method to track multiple objects [231, 230], where one needs a method to avoid both tracks lying on
the same object. The importance functions are obtained by considering each object separately, and the
likelihood function is a mixture of three cases: no objects in the tracker gate, one object in the tracker
gate, and two objects in the tracker gate. Again, we are aware of no kinematic trackers of humans
that use this method, but see it as a way to unify the more successful kinematic tracking methods of
section ?? with particle filter based inference.

2.3.1.3 Lower Dimensional State Models

Sidenbladh ef al. build a 3D model of a human as a kinematic chain, with state encoded as the configu-
ration and velocity of each element of this chain with respect to its parent, and the root with respect to
the camera. Each segment of the model has an attached encoding of appearance, and the likelihood is
computed by comparing a rendering of the state with the image, using the appearance encoding. There
is a separate constant likelihood term for self-occluded segments, and a discount term for foreshortened
segments, because foreshortening of a segment causes texture foreshortening. The tracker is initialized
by hand. Tracks are obtained using a straightforward particle filter, using a random walk dynamical
model and also using a dynamical model specialized to walking. This walking model is obtained by
principal components analysis on motion captured walk data. The appearance model appears to have
dynamics to account for changes in illumination; the authors point out that this advantage over a fixed
appearance template comes at the cost of potentially increased tracker drift. The random walk model
is shown to track a two segment arm with reasonable success, but authors indicate that more complex
kinematic models are difficult to track this way. The advantage of a low dimensional model of walking
dynamics is that the effective dimension of the state space at the k + 1’th frame is relatively small, and
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Figure 2.11: Figure 6 and 7 from Particlefilters/eccv00.pdf Sidenbladh et al. use particle filters to
track a 3D model of a walking person, using a reduced dimensional dynamical model fitted to motion
capture data of walking people. This means that the dynamics are more predictable, and so the search
of the likelihood is more effective; the difficulty is that one must know the activity before being able to
track. On the left, a track of a walking person who turns during the walk. The 3D reconstruction of this
track is shown below left. On the right, a “track” of a walking person, initialized as on the left, but
now ignoring image data; this illustrates the strength of the prior. In particular, the “track” continues
to walk, but does not turn when the subject turns.

this relatively tight motion prior allows quite good tracking of a walking figure (figure ??). The diffi-
culty with this approach is that one might need to choose which activity is occuring to be able to track
it, and that seems difficult to do.

2.3.1.4 Probabilistic Searches of the Posterior

Choo and Fleet implement a more extensive search of the posterior using a Markov chain Monte Carlo
(MCMC) method [73]. They interpret the particles at a particular step as a set of initial states for an
MCMC sampler; this sampler then runs independently on each state. Any such sampler will eventually
produce a fair sample of the posterior. It is reasonable to expect that running an MCMC sampler on
a set of particles will produce IID samples of the posterior. These can, in turn, be passed through the
particle filter and refined again. Choo and Fleet use Duane et al.’s hybrid Monte Carlo method to obtain
samples (see [101, 264]; there is a brief account in [119]), but other methods might be used. The method
is used to compute 3D configurations from images of markers. It has not been shown to cope with the
dramatic problems with local maxima one associates with texture and clutter, and it seems unlikely
that it can. The difficulty here is that it may take very many steps of the MCMC method to produce
samples that have “forgotten” their start point. In practice, it is extremely difficult for such a sampler to
pass from one local maximum of the posterior to another; this means that such a sampler is unlikely to
overcome the problems created by a posterior with many narrow peaks (see [132]; in some applications,
for example where there is a symmetry in the posterior, this may not be a nuisance [119], but one cannot
rely on MCMC methods to discover all peaks in a posterior without quite strong proofs of good mixing
behaviour).
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2.3.1.5 Annealing

Check this; Neal paper, etc; If one is willing to abandon the semantics
of a sampled representation of a distribution, a variety of search strategies
are available.

A variety of search strategies are available. One strategy is to launch an annealed search of the like-
lihood. We do this by defining a set of intermediate weighting functions, to obtain w)(X) = P(Y|X),
w1 (X), ..., wy(X), where wy, is a somewhat smoother version of wy,1. At any time step we have
u; a set of IID samples of P(X). Instead of weighting these samples by the likelihood, we weight by
wps. We resample with replacement according to the weights and reset the weights to one, yielding
u;. We take each sample and add noise drawn from a normal distribution with zero mean. We now
weight the resulting samples using was—1. This process continues until each sample is weighted using
the likelihood. Deutscher et al use this scheme to track a person moving using a 3D model viewed with
multiple cameras [91, 93] (figure ??). The likelihood is evaluated using both image values within and
edge points near the projected outline; annealing in effect uses a smoothed version of this (very peaky)
likelihood function to guide samples toward peaks in the likelihood. This method can be given exact
probabilistic semantics by interpreting the annealing procedure as an importance function, an obser-
vation due to Neal [267, 266, 265]. Deutscher et al have shown that performance improvements are
available by using partitioning methods together with an annealed particle filter (figure 2.13). All ex-
amples show isolated persons on black backgrounds; there is no evidence that the annealing is powerful
enough to cope with the rich range of local likelihood peaks that can result from, say, texture or clutter.

2.3.2 Multiple Probes from Covariance Analysis

One difficulty with a sampled model of the posterior is that we don’t know if there are larger values of
the posterior close to each sample. We could regard each sample as a plausible start point for a search of
the posterior. We are now no longer building a set of particles that explicitly represents the posterior in
the sense above, but are using multiple states to represent the prospect that the posterior is multi-modal.
Each state lies on a mode in the posterior, and we attempt to ensure that all modes have a state. The
origins of this approach lie with Cham and Rehg [65], who use it to track a 2D kinematic model of the
body.

Sminchisescu and Triggs elaborate this search by analysis of the Hessian of the log-posterior [353,
356]. They track a 3D model of a person, which has parameters giving the kinematic configuration,
relative proportions of segments, and deformations of the surface skin. Sminchisescu and Triggs do
not use a dynamical model. However, they do encode joint limits, and so must represent a model of
P(X|Yx) (which we call the posterior in what follows; note that only the current measurement is
involved). They regard the reconstruction at frame k£ — 1 as an initial point for a search of the posterior
at frame k. The likelihood is evaluated by comparing projected model points with image points, using
values of edges and other image features. What is known about state is represented by a collection of
tuples; the 7’th tuple (¢;, p;, 25 ), contains a weight ¢;, a state value y; and a covariance matrix %;. Each
state value gives the state at a mode of the likelihood. The covariance is the Hessian of the negative log-
posterior at the mode, and the weight is the value of the posterior at the mode. Weights are normalized
to sum to one.

This information is propagated from the £ — 1’th frame to the k’th frame by using these tuples to
launch searches of the likelihood. The search proceeds by:
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Figure 2.12: Figure 8 of DeutscherBlakeReid Deutscher et al. [91 ] track a moving person in 3D using
an annealed particle filter. In effect, particles are passed through the dynamic model, then weighted
with a smoothed version of the likelihood. They are resampled according to weights, then perturbed
randomly and weighted using a less heavily smoothed likelihood. This concentrates particles in regions
where the likelihood is likely to be high. The process continues for some number of layers of annealing.
The figure shows tracks for a particular set of frames using three different algorithms. On the left,
a straightforward particle filter, which loses track fairly quickly because searching a peaky likelihood
using a smooth prior doesn’t work well. In the center, the results of one layer of annealing. Notice that
the right leg is poorly tracked, but the track has improved. On the right, the results from ten layers of
annealing. Notice the much improved track. The particles no longer have any probabilistic semantics,
however, and the ability of the method to deal with clutter and texture — which can hugely complicate
the likelihood function — is not proven.

e Choosing a tuple to propagate by drawing one of the initial tuples randomly according to the
weight. Assume we have drawn tuple .

e Computing a local covariance scaling by obtaining the & directions in the 3j where the least
change in posterior is likely — these directions are those in which the state is most uncertain
— by a singular value decomposition, and computing the restriction of 35 to this space; call the
result 3.

¢ Generating a new tuple by generating a sample s distributed as N (4, sE;) for some scale pa-
rameter s (it is wise to have s > 1). We start an optimization procedure for the posterior at s; this
produces s". The weight for the new tuple is the value of the posterlor at this point; the mean is
s'; and the covariance is the Hessian of the negative log-posterior at .

These steps are repeated multiple times, to produce a set of tuples representing the posterior. This set
is pruned to remove tuples that represent the same mode — the states will be the same — and the
result represents the new posterior. Numerous variants of this method are possible; for example, it is
natural to produce a large pool of tuples, prune duplicates, and then keep only the K best. Performance
comparisons between these methods appear in [356].

2.4 Notes

Reducing configuration ambiguity is one reason to use multiple cameras; another is to keep track of
individuals who move out of view of a particular camera (e.g. [247, 196, 60]). Currently, this is done at
a coarse scale (people are blobs).
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Figure 2.13: Figure 10 and 11 of Particlefilters/deutscheretalcvpr2001 Deutscher et al [93] show
that one can use partitioning methods with the annealed particle filter. They track a 3D model of a
person in a single view. On the left, a track and the inferred 3D configuration for a running person. On
the right, a track and the inferred 3D configuration for a person doing a handstand. Again, there are
no probabilistic semantics, and again the ability of the method to deal with clutter and texture is not
proven.

Lots of dodgy approximate nearest neighbours papers; careful
cite Isard Blake, SalmondGordon, Kitagawa, LiuChen, etc

history of particle filter notes in particlefilters/iccv99-deutscher;
also Liu; also 00784636

Obtaining dynamical models; EM; ptr to Li; North et al in particlefilters
00877523; other stuff by North and Blake

More variant particle filters Sullivan and Rittscher particlefilters
00937536

particlefilters/science-6 PF tracking for HCI

D’Souza et al.learn inverse kinematics for a humanoid robot with locally weighted regression [100].
Schaal ef al.describe learning methods for a variety of robot problems, including inverse dynamics [329].

Rosales and Sclaroff use a collection of local experts (“specialized mappings™) to regress hand
configuration against image appearance [319].

Appendix I: Particle Filter Basics

2.4.1 The Particle Filter

Probability distributions should be thought of as devices that are used to compute expectations; this
means that any procedure that can produce good estimates of expectations with respect to a distribution
is a representation of that distribution. Assume we wish to represent a distribution Q(X), and we
can sample some other distribution P(X). Take a set of points s which are independent identically
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distributed samples of P(X). If we attach a weight w; = kQ(s;)/P(s;) (where k is a constant, perhaps
unknown) to each point, the resulting set of pairs {(s;, w;)} is a representation of Q(X). This is because

> f(si)w;

> Wi

is an estimate of

Eq(f) = [ F(X)QUX)dx

(by the weak law of large numbers). Samples are commonly thought of as particles. Notice, by the
way, that it is usual in the vision literature to normalize weights so that); w; = 1, and in the statistics
literature to divide by the sum of weights as we have done; Liu gives an argument that the latter is better
practice [224].

Priors into posteriors: A useful trick allows us to obtain a representation of a posterior P(X|Y =
y) from a representation of a prior P(X). Assume the prior is represented by {(s,w;)}. Now

[FXPEY =y)dX = & [ FRIPIY = yiX)P(X)aX

where
K=P(Y=y) = /P(Y — y|X)P(X)dX

What this means is that
Y P(Y =y|X =s)w;

> W
is an estimate of K. In turn, this means that (s;, w; P(Y = y|X = s;)) is a representation of the
posterior.

Resampling: Finally, we can turn one representation of a distribution P(X) into another represen-
tation of the same distribution by resampling the particles. The most important case is if we form a
distribution 7 on the index from w;, where the probability of drawing the 4’th index is w;/ Y w;. We
now produce a new representation {(s;, 1)}, where the [ are independent identically distributed (hence-
forth IID) samples from 7. This is a representation of P(X). The easiest way to see this is to assume
we have drawn a very large number of samples. Now if we form )", f(s;), we will see samples from the
original set of particles with a frequency proportional to the original weights.

Prediction: Now assume that we have a set of points and weights (s;, w;) which represents the
distribution P(X}y_1[Yp,...Yx—1). Write (q;(;)) for a set of N(7) points, indexed by j, drawn from
P(X|Xg—1 = s;). We can represent P(Xy|Yp, ..., Y1) using the set (q;(;),w;/N(i)). This is be-

cause
> 20 F(aj))wi/N (i)
> wi/N (i)

is an estimate of
J | 7000 POGI X)X PG Yo Vi)

(one can see this by pattern matching to the previous paragraph). This could be impractical, because the
number of samples might grow — perhaps N (i) > 1 for all i« — but we ignore this possibility for the
moment. Notice that X; might live in a space of complex form — for example, multiple components of
different dimension, the product of two spaces encoding very different types of state etc. — but as long
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as we can obtain samples, no difficulty results (e.g. [150, 66]; various formulations and applications
appear in [95, 224]). ).

Correction: The result of the step above is a a set of weighted samples, (qj(i) , w; ), which represent

P(Xg|Yo, ..., Yr—1). This is a prior. We apply the recipe above, and obtain a representation of the

posterior as (q;(;y, wi P(Yr = y&| Xz = q;()))-

Initialization: Represent P(Xj) by a set of N samples

{57 w6}

where
s’(‘)”_ ~ Py(S) and wlg’_ = P(SIS’_)/Ps(S = SIE):’_)

Ideally, P(Xy) has a simple form and s]g’_ ~ P(Xy) and wg’_ =1
Prediction: Represent P(X;|yo,yi—1) by

where
S5 = (5 + € and wf = 0 and € ~ V(0,24

1

Correction: Represent P(X;|yo,y:) by

{6 i)}

where
k,—

Ju

kA k— kA4 . ok
s, =s; andw,”  =PY;=yi|X; =s p

,—
3 3 K3

Resampling: Normalise the weights so that ), wf "+ = 1and compute the variance of the nor-
malised weights. If this variance exceeds some threshold, then construct a new set of samples by
drawing, with replacement, IV samples from the old set, using the weights as the probability that a
sample will be drawn. The weight of each sample is now 1/N.

Algorithm 3: A practical particle filter resamples the posterior.

2.4.2 Practicalities

The recipe above is not much use. First, we cannot manage a pool of particles that either shrinks or
grows too fast. The easiest way to deal with this problem is to ensure that N (i) = 1, though this may
not be the best. Second, as one can discover with a simple experiment, the variance of the weights tends
to increase as time goes on (there is a theorem to this effect, in [224]). What this means is that one weight
gets very much larger than all the others, which means that, in effect, only one sample is being used
to represent the distribution. This doesn’t affect the expected value of our estimates, but it does mean
that their variance might be extremely high, and so they are of no practical use. This effect — known
as sample impoverishment — can be countered by using an estimate of the variance of the weights
to determine when it is occurring, and then resampling the particles. This is effective because we will
tend to drop particles with low weight and keep multiple copies of particles with high weight. These
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latter will spawn multiple distinct samples in the next prediction stage. As a result, we can reasonably
hope that our particles tend to be concentrated near spots where the posterior is large. Algorithm 3
gives a practical particle filter; one should realize that numerous variants are possible (see [224, 95] for
examples).

The particle filter can be a powerful and effective inference tool. It should be seen as a form of
randomized search. One starts a set of points that tend to be concentrated around large values of the
posterior. These are pushed through the dynamical model, to predict possible configurations in the data.
The predictions are compared to the data, and those that compare well are given higher weights. This
simple view provides some insight into the strengths of the method, and into what could go wrong.

2.5 Appendix I1: Regression

2.5.1 The Nearest Neighbours

One could obtain the k-nearest neighbours, where for a new set of measurements x, we obtain the k
examples x; that lie closest to x (using an appropriate distance function, which we discuss below), then
average the y; associated with the examples. There is no reason to expect good results from this method
unless the examples are relatively uniformly spaced — in particular, if the £ nearest neighbours that we
obtain are far away from our query example, the estimate could be very poor. Worse, if y is a multi-
valued function of x, the method might average values associated with distinct “sheets”, and produce a
meaningless result.

Assume, for the moment, that y is not a multi-valued function of x. We must still obtain the &
nearest neighbours for a query x. We expect to require sufficient examples that blank search through
the examples is unattractive. An approximation called (7, €) nearest-neighbours is attractive, because
one can obtain a solution in time less than linear in the number of examples using an approach known as
locality sensitive hashing. Assume a query point x. If there is an example x; such that d(x, x;) < 7,
then with high probability the algorithm returns x; such that d(x,x;) < (1 + €)r, otherwise it reports
no point. It does so by computing a hash key from a randomly selected subset of a locality sensitive
family of functions; this key has the property that similar points have a high probability of colliding,
and dissimilar points have a low probability of colliding. One then obtains a list of possible nearest
neighbours for a query by computing a hash key for the query, obtaining all examples with which the
query collides, then searching this set of examples (details appear in [133, 85, 171, 170]).

The usual difficulty in practical applications of nearest neighbours problems is that it isn’t clear what
distance to use. Shakhnarovich et al.argue that in regression problems, it is important that the distance
reflect the distance between predicted parameters (rather than, say, some canonical distance between
examples) [341]. While their argument applies to the general case, the application is to lifting. In this
case, two quite similar image configurations x; and x; may predict rather different 3D configurations
yi and y; — a query close to x; should not be seen as close to x;, because the two predictions are
different. This means that we would like the hashing functions we choose to tend to generate collisions
for examples that have close values of y.

Shakhnarovich et al.achieve this by noting that a hash function acts like a classifier that determines
whether two points are close (when they collide) or not. By searching thresholds 7" and decision stumps
— functions of the image configuration x with the property

wo-{ 1, rumzr)

otherwise
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they obtain a set of hash functions, on the set of training examples, tend to cause examples with similar
y to collide and those with distinct y not to collide.

2.5.2 Some Regression Technique

Assume we have a set of examples likely to be relevant for a regression problem, perhaps as a result of
k-nearest neighbours. How are we to obtain an estimate? in general, we must fit some approximation
and obtain y = f(x, 3), where (3 is a vector of parameters chosen by minimizing an error predicted
and observed values. For our purposes, y is a high dimensional vector. This means that we will not,
in general, be able to build a good model of correlations between elements of y, and so will predict its
components independent of one another.

We will concentrate on the [’th component. Our problem is now to predict a single value from some
input vector. Because the components are assumed independent, we can ignore the question of which
component we are dealing with, and so write (y;, x;) for the i’th example. We write

Y = (g1 yn)”

(i.e. the values to be predicted for each example) X for the matrix

xi

XN
Recall that we assumed that one component of x has the value 1. We can then write the predictions
produced by a vector § as X'3. The simplest method of obtaining a prediction is to solve for [ that
minimizes

(Y —x8)" (Y — xp)
(this is linear regression). This is a maximum likelihood solution assuming that p(y|x, 3, &) is normal
with mean zero and variance 0. Linear regression tends to overfit. One problem is that, if terms in x
are strongly correlated with one another, an appropriate linear combination of these terms is noise;
and multiplying this noise by a large number may lead to a good fit. This suggests solving for 3 that
minimizes
(Y = XB8)"(Y - Xp) + 8" 3

(a practice known as ridge regression). Here A is usually chosen by cross-validation [149]. An alterna-
tive method to control the size of the coefficients is to solve for 5 that minimizes

(Y = XB)1(Y = XB) + 23 |5

(a practice known as the lasso). The effect of using an I; penalty is first to make solutions non-linear
in the example values, and — for sufficiently large A — compelling some components of 3 to be zero.
A relevance vector machine (RVM) uses a Bayesian model to force weights in the regression to be
small or zero. One has a model of P(y|x, 3, 02) (normal, mean zero and variance o2, as above). We
express a preference for smaller weights by writing a prior probability distribution on 3, conditioned
on hyperparameters «. This distribution, p((3|«), is normal with mean zero and diagonal covariance;
the variance of each component is 1/c. The posterior over weights, p(3|y, x, 0®, @), is obtained from
Bayes’ rule. We then obtain p(y|o?, ) by marginalization, and choose a value of o that maximizes this
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likelihood (say &). We then choose 3 to maximize p(f|y, x, 0%, &). Algorithms for each step appear
in [385, 384, 108] (with a variant in [2]); an analysis in [108] shows that some components of o will
tend to be infinite, implying a zero component in .

In each of these cases, one is building a linear model that applies over the whole of the set of
examples. This is unattractive for our application (for example, there is fair prospect that there is more
than one y for a given x, something that doesn’t happen in linear models). It is natural to try to fit local
linear models, where the model is linear, but the 3 varies with the input. We can do this by weighting
errors with weights that depend on how close the query is to the examples.

For some input x, we compute a diagonal weight matrix W (x). There are a variety of possibilities

for the diagonal, but using
1
exp |(5 ) (x = x;)" (x = x;)

for the j’th entry is a sensible choice (errors close to the example have large weights, those far have
small weights; o may be chosen by cross-validation). We now use ( obtained by minimizing

(Y = xB8)"W(Y —x8) + 28"

for that example. At the cost of solving a linear system for every query, we have a fit that smoothes local
linear models into one another without needing to solve non-linear equations. The method has a good
reputation for high-dimensional x. Notice that the weight penalties described above can be applied to
this problem as well; one computes a ridge regression, lasso, or relevance vector machine for each query
as appropriate.

We are assuming that the x we have computed form an appropriate set of features. However, a
more extensive feature representation can be obtained by comparing the query against examples using
a kernel. Assume that we have a satisfactory kernel function K (u, v). A popular kernel function is

1
K(u,v) = exp ( (5051 = vI) )
(for a choice of o usually obtained by cross-validation). We can then consider a regression of the form

yx) =%+ > BiK(xx)

icexamples

Note that this remains linear in (3, so that the methods expounded above apply. Various details and other
applications of this useful trick appear in [?].
Robustness; robust lwr by reweighting



56

CHAPTER 2. TRACKING: RELATIONS BETWEEN 3D AND 2D



Chapter 3

Tracking: Data Association for Human
Tracking

Mori thing
Agarwal and Triggs 2D tracker, 2D3D1ift/MFKNL5J etc

Tracking people is a means to an end, and trackers should be assessed in that way. Trackers should
be reasonably accurate, start automatically (no practical application can use trackers that can’t be started
automatically), and run for long times without any particular difficulties. These are the correct criteria
on which to judge trackers. In our opinion, the literature has, until quite recently, placed too much em-
phasis on probabilistic inference machinery, while paying insufficient attention to the (possibly dull but
certainly essential) vision problems implied by data association. Furthermore, this inference machinery
may, in fact, be being used to solve a non-problem (section ??).

Early Kalman filter based human trackers (for example, Hogg’s 1983 paper [], and above) could
produce kinematic tracks for people moving without sudden accelerations on reasonably simple, high-
contrast backgrounds if started automatically. The more recent trackers we have described use more
complex inference machinery, but without any great change in competence.

read and check - is this true; look at Hogg, Chen+Lee, Rohr, Pfinder?

Improvements in competence have come with increased attention paid to tracking by detection
schemes. These are well established in, say, face tracking. For example, one can build a fairly sat-
isfactory face tracker by simply running a face detector on frames, and linking over time; smart linking
schemes built around affine invariant feature patches can result in very satisfactory tracks [?]. Tracking
by detection is now capable of building good human kinematic tracks, without relying on background
subtraction.

3.1 Detecting Humans

Human detection is difficult, and important. It is difficult because people (usually!) wear clothing of
widely varying appearance; because changes in body configuration can result in dramatic changes in
appearance; and because different views result in dramatic changes in appearance. There are several
important applications. A huge literature now deals with methods to detect pedestrians automatically,

57
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because this is a function that autonomous or semi-autonomous motor-cars will need. There is a substan-
tial literature on detecting and interpreting gestures for human-computer interaction purposes. There is
a smaller but growing literature on using various human detection and description methods for under-
standing the content of various multi-media datasets. There is a small but occasionally startling literature
on methods for detecting sexually explicit images. Interest in these areas is not confined to academia;
in each of these areas, there are both research efforts by established companies and start-up companies
appearing regularly.

No published method can find clothed people wearing unknown clothing in arbitrary configurations
in complex images reliably, though, as we shall see, there is reason to believe that this situation will
change. The first standard approach to this problem involves matching to one or a family of templates,
which might use either spatial or temporal information (or both). We review this area in section ??.
The second standard approach is to identify parts of a person and then reasoning about an assembly of
these parts to identify the person. We distinguish between two types of method, according to the type
of part: First, one may use parts that are semantic in origin (“arms”, “legs”, “faces”, and so on), and
we review this approach in section ??. Second, one may use parts that are defined by statistical criteria
(for example, they form a good codebook for representing the image of the person), and we review this
approach in section ??.

For the rest of this discussion, it is helpful to recall that face detection — determining which parts
of an image contain human faces, without reference to the individual identity of the faces — is one of
the substantial successes of computer vision. Neither space nor energy allow a comprehensive review
of this topic here. However, the typical approach is: One searches either rectangular or circular image
windows over translation, scale and sometimes rotation; corrects illumination within these windows by
methods such as histogram equalization; then presents these windows to a classifier which determines
whether a face is present or not. There is then some post-processing on the classifier output to ensure
that only one detect occurs at each face. This general picture appears in relatively early papers [374, 293,
375, 323, 324]. Points of variation include: the details of illumination correction; appropriate search
mechanisms for rotation (cf. [326] and [333]); appropriate classifiers (cf. [375], [333], [325], [249]
and [279]); building an incremental classification procedure so that many windows are rejected early
and so consume little computation (see [398, 401, 188, 187] and the huge derived literature). There are a
variety of strategies for detecting faces using parts, an approach that is becoming increasingly common
(compare [174], [58], [214], [245, 243] and [408]; faces are becoming a common category in so-called
object category recognition, see, for example, [112]).

3.1.1 Finding People by Matching Static Templates

Approximately half-a-million pedestrians are killed by cars each year (1997 figures, in [128]). Car
manufacturers and governments have an interest in ensuring that cars are less dangerous, and there is
a considerable body of research on automated pedestrian detection. Gavrila gives an overview of the
subject in [128], which covers cues such as radar, infrared, and so on, which have practical importance
but are of no interest to us. For our purposes, this is an example of person detection that may be simpler
than the general problem, and is certainly important.

At relatively low resolution, pedestrians tend to have a characteristic appearance. Generally, one
must cope with lateral or frontal views of a walk. In these cases, one will see either a “lollipop” shape
— the torso is wider than the legs, which are together in the stance phase of the walk — or a “scissor”
shape — where the legs are swinging in the walk. This encourages the use of template matching.

Papageorgiou and Poggio represent 128x64 image windows with a modified wavelet expansion, and
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present the expansion to a support vector machine (SVM), which determines whether a pedestrian is
present [287]. SVM’s are classifiers, trained with positive and negative examples. For a brief informative
discussion of SVM’s see [396] or [75]. More extensive information appears in [395, 342, 334], and
discussion in the context of a variety of other classifiers is in [149]. The training data consists of
windows with and without people in them; each positive example is scaled such that the person spans
approximately 80 pixels from shoulder to foot. A variety of image representations are tested, with
the modified wavelet expansion applied to colour images performing significantly better than wavelet
expansions applied to grey-level images, low resolution pixel values for grey-level images, principal
components analysis representations of grey-level images, and the like. The strength of these wavelet
features appears to be that they emphasize points that are, rather roughly, outline points. This yields
a method for exploiting the restricted range of contours without explicitly encoding contour templates.
The wavelet expansion can be reduced in dimension to obtain a faster, though somewhat less accurate,
matcher. There are several variants of this approach in the literature [283, 277, 286, 284, 285, 276].

Zhao and Thorpe use stereopsis to segment the image into blocks, then present each block to a neural
network [428]. The stereo cue acts as a variant of background subtraction, because there are typically
substantial discontinuities in depth between pedestrian and background. A comparison of this system
with that of Papageorgiou et al.(the version in [284]) suggests it is more accurate, possibly because the
stereo segmentation reduces the number of windows that must be searched.

There are a variety of systems that use edge templates explicitly. Gavrila describes an approach
that matches image contours against a hierarchy of contour templates using a chamfer distance [127].
The method is oriented to real-time detection. The image is passed through an edge detector, and then
passed through a smoothed distance transform (see [25]); a template is evaluated by computing the
sum of distance transform values at template feature points, so that a small value results in a match.
One needs numerous templates for such a method to be successful (distinct views; distinct phases in
the walk), and Gavrila organizes the set of templates into a hierachy using an agglomerative clustering
method rather like k-means. Each node of the hierarchy contains a summary template (summaries at
nodes deeper in the hierarchy encode more spatial detail), and a representation of the distance of the
examples from that summary. Matching proceeds by computing a cost to the representative node at the
current level, and testing this against a threshold to determine whether to expand that node or not. A
verification step uses radial basis functions to classify those image windows that appear to match edge
templates. Gavrila et al.describe an improved version of this method, using stereo cues and temporal
integration [129]. Broggi et al.describe a method that uses vertical edges, the characteristic appearance
of the head and shoulders, and background subtraction to identify pedestrians [53].

Wau et al.build random field models of image windows with and without a pedestrian, and then detect
using a likelihood ratio [417]. Shape is encoded with a random field, and measurements are assumed
to be conditionally independent given the shape and some deformation parameters. There is a search
over scale, translation and orientation. The considerable technical difficulties involved in evaluating the
likelihood are dealt with using a variational approximation. One would expect a performance penalty
for using a generative formalism in what is, in essence, a discriminative problem (does this window
contain a pedestrian or not?), but ROC curves suggest the method is comparable with strong recent
discriminative methods in performance.

Dalal and Triggs give a comprehensive study of features and their effects on performance for the
pedestrian detection problem [84]. The method that performs best involves a histogram of oriented
gradient responses (a HOG descriptor). This is a variant of Lowe’s SIFT feature [228]. Each window
is decomposed into blocks (large spatial domains) and cells (smaller spatial domains). A histogram
of gradient directions (or edge orientations) is computed for each cell. In each block, a measure of
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histogram “energy” is computed, and used to normalize the histogram for each cell in the block. This
supplies a modicum of illumination invariance. The detection window is tiled with an overlapping grid,
within each cell of which HOG descriptors are computed, and the resulting feature vector is presented to
an SVM. Dalal and Triggs show this method produces no errors on the 709 image MIT dataset of [287];
they describe an expanded dataset of 1805 images. The paper compares HOG descriptors with the
original method of Papageorgiou and Poggio [287]; with an extended version of the Haar wavelets of
Mohan et al. [250]; with the PCA-Sift of Ke and Sukthankar ([193]; see also [244]); and with the shape
contexts of Belongie et al. [28]. There is considerable detailed information on tuning of features.

3.1.2 Templates that include Motion

- spatial, spatiotemporal features and insert into classifier - structure: what features, stereo, how many
templates, what classifier - also, niyogi adelson motion feature - issues: view and deformation create
complexity, often quite successful for pedestrians

Static templates most likely work because the outlines of pedestrians tend to be of limited complex-
ity. While it would be nice to have a formal notion of what this meant, the appropriate comparison is
with arbitrary views of people in arbitrary configurations (say, the figure skater of figure 3.12). Pedes-
trians also tend to move in quite restricted ways — they are typically either standing or walking. Niyogi
and Adelson point out that, if one forms an XYT image — a stack of frames, registered as to camera
motion, originally due to Baker [19] — these motions produce quite distinctive structures (figure 3.1),
which can be used to identify motions [272] or recover some gait parameters [271]. Polana and Nelson
consider spatial patterns of motion energy, which also have a characteristic structure [303].

This characteristic structure can be used to detect pedestrians in a variety of ways. Papageorgiou
and Poggio compute spatial wavelet features for the frame of interest and the four previous frames, stack
these into a feature vector, and present this feature vector to an SVM, as above [286]. The result is a
fairly significant improvement in detection rate for given false positive rate. The performance improve-
ments that Dalal and Triggs obtain by careful feature engineering (as above) are probably available here,
too. The features encode motion implicitly (by presenting the frames in sequence), but not explicitly.

Viola et al.use explicit motion features — obtained by computing spatial averages of differences
between a frame and a previous frame, possibly shifted spatially — and obtain dramatic improvements
in detection rates over static features ([402, 403]; see also the explicit use of spatial features in [77,
280, 281], which prunes detect hypotheses by looking for walking cues). This work uses a cascade
architecture, where detection is by a sequence of classifiers, each of which operates only on windows
accepted by the previous classifier. The classifiers are engineered so that they each have a low false
negative rate, so that classifiers early in the cascade reject many windows, and so that the overall cascade
is accurate. Features are sums of spatial averages over box-shaped windows in space and time, and so
can be evaluated in large numbers extremely quickly; the techniques of classifier and features are due to
Viola and Jones [401, 400, 399].

Dimitrijevic et al.build a spatio-temporal template as a list of spatial templates in time-order [94].
The spatial templates are edge templates giving the silhouette of the figure, and are matched with a
chamfer distance, as above. The spatial templates and the spatio-temporal templates (which are accept-
able sequences of spatial templates) are obtained by rendering skinned motion capture data against a
blue background from a wide variety of views. The match is scored by computing the time average of
chamfer distances. The detector is trained to detect the portion of the walk cycle where both feet are on
the ground (other frames could be handled by various forms of temporal interpolation or tracking; see
also section 3.5). The paper describes a variety of optimizations helpful to obtain a reasonable speed.
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Figure 3.1: figure 2 of polana nelson recognizing activities , figure 2 of Niyogi Adelson recognizing
gait On the left, an XYT image of a human walker. The axes are as shown; the stack has been sliced
at values of Y, to show the pattern that appears in the cross section. Notice that, at the torso there is a
straight line (whose slope gives an estimate of velocity) and at the lower legs there is a characteristic
“braid” pattern, first pointed out by Niyogi and Adelson [272]. On the right, a series of estimates of the
spatial distribution of motion energy (larger white blocks are more energy) for different frames of a walk
(top) and a run (bottom); the frame is rectified to the human figure by translation, and one image frame
from each sequence is shown. Notice that, as Polana and Nelson point out, this spatial distribution is
quite characteristic [303].

3.2 Parts and Relations

Detecting pedestrians with templates most likely works because pedestrians appear in a relatively limited
range of configurations and views. It appears certain that using the architecture of constructing features
for whole image windows and then throwing the result into a classifiers could be used to build a person-
finder for arbitrary configurations and arbitrary views only with a major engineering effort. The set of
examples required would be spectacularly large, for example. This is unattractive, because this set of
examples implicitly encodes a set of facts that are relatively easy to make explicit. In particular, people
are made of body segments which individually have a quite simple structure, and these segments are
connected into a kinematic structure which is quite well understood.

3.2.1 Traditional Parts

All this suggests finding people by finding the parts and then reasoning about their layout — essentially,
building templates with complex internal kinematics. The core idea is very old (for example, one might
consult [154, 278, 235, 32, 5, 4]), but the details are hard to get right and important novel formulations
are a regular feature of the current research literature. It is currently usual to approach this question in
terms of 2D representations, which represent a view of a person as a set of body segments — which
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could be represented as image rectangles — linked by rotary (and perhaps translational) joints.

The advantage of these 2D kinematic templates is that they are relatively easy to learn. Learning
2D kinematic templates requires the relative scale of body segments, link probabilities, and an appear-
ance encoding for each body segment. It is relatively straightforward to obtain scale information from
static images. Link probabilities can be modelled in a variety of ways. It is usually better to represent
translation as well as rotation of a link with respect to another; if we now use a distribution that is flat,
or near to, within a useful range, we are preferring no legal kinematic configuration over any other. This
isn’t in accord with reality — most of the time in most footage, people are walking — but is convenient
because it doesn’t lock us into any particular activity. In this form, link probabilities can be modelled
using either static images or anthropometric information.

3.2.1.1 Discriminative Approaches

The first difficulty is that simply identifying the body parts can be hard. This is simplified if people
are not wearing clothing, because skin has a quite distinctive appearance in images. Forsyth et al.then
search for naked people by finding extended skin regions, and testing them to tell whether they are
consistent with body kinematics [118, 117]. The method is effective on their dataset (and can be ex-
tended to find horses [116]), but is not competitive with more recent methods for finding “adult” images
(which typically use whole-image features [42, 11, 184, 423]). loffe and Forsyth formalize this process
of testing, and apply it to relatively simple images of clothed people [172, 175]. Their procedure builds
a classifier that accepts or rejects whole assemblies of body components; this is then projected onto
factors to obtain derived classifiers that can reject partial assemblies that could never result in accept-
able complete assemblies. Sprague and Luo use this approach to find clothed people in more complex
images, by reasoning about image segments [362].
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Figure 3.2: from Mohan et al, figures 5 and 10 Mohan et al.use SVM’s to find major body parts (left
arm, right arm, head/shoulders and legs) as in the training examples shown on the left. They then use
these SVM'’s to search frames for components; the response of all part SVM’s in each window is pooled
and then presented to an SVM which identifies whole figures. On the right, examples showing good
detects; the whole body window is outlined with lines, and the part windows with dashed lines.

Mohan et al.use a discriminative approach not only to identify good assemblies of parts (as above),
but also to find body parts [250]. SVM’s are trained to detect the whole left arm, the whole right arm,
the legs and the head/shoulders (see figure 3.2); because these body components are relatively large, and
because the work focuses on pedestrians, it is possible to search for them in an image centered frame
— one can inspect vertical boxes of the right size and aspect ratio to tell whether an arm is present. The
SVM part detectors produce a score (distance to the separating hyperplane). For each 128x64 window,
the top score for each type of part is placed in a slot in a vector, which is presented to a further SVM.
Geometric consistency is enforced by finding the top score for each type of part over a subset of the
window to be classified. The approach is applied to pedestrian images, and outperforms the methods
of [276, ?].
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Figure 3.3: DT’s, F+H CVPR 00, fig 4 part A pictorial structure is a 2D model of appearance as a
kinematic tree of segments. Each segment has configuration variables which encode the spatial support
of the segment — for example, position and orientation — a local appearance model — for example, the
color of a segment — and there is a cost associated with each edge in the tree — for example, the cost
of finding a lower leg far from an upper leg. One can find the best instance of such a structure by dis-
cretizing the configuration variables for each segment, then using dynamic programming. Felzenswalb
and Huttenlocher show that, for properly defined segment-segment costs, the cost-to-go function in the
dynamic programming can be evaluated more cheaply than one would expect, meaning that localization
can be fast [109, 110].

3.2.1.2 Generative Approaches

Naked people are easier, because identifying body parts is easier. If we had an encoding of the appear-
ance of the individual parts, this would simplify finding people, because identifying an instance involves
dynamic programming; but, done in a straightforward fashion, this is slow because the likelihood evalu-
ation is slow. Felzenswalb and Huttenlocher show how one may use distance transforms to speed this
process up substantially [109, 110]. In particular, assume that the model is built out of a set of compo-
nents, the 7’th of which has some configuration 1. We assume that the components are linked in a tree
of n nodes. Then to find the best instance, we can discretize the configurations — assume that we use m
sample points — and do dynamic programming. However, this will cost O(nn?), which is unattractive
because m is likely to be quite big, particularly if the configurations are high-dimensional. Felzenswalb
and Huttenlocher show that, as long as the link cost has a particular form, the cost-to-go functions en-
countered in the dynamic programming problem are, in fact, generalized distance transforms, and so can
be computed in O(m) time (so that the whole thing costs O(nm), which is a useful improvement). The
paper demonstrates these models being used in two contexts: finding people and finding cars. People are
modelled with rectangles of fixed size and known color (appearance is modelled with image color) and
can be localized quite effectively (figure 3.3). Kumar ef al.extend this model to incorporate boundaries
into the likelihood and use loopy belief propagation to apply it to arbitrary graphs (rather than trees);
the method is applied to pictures of cows and horses [208].

Song et al. use a variant of tree-structured models to identify human motion. They identify local
image flows at interest points in an image, using the Lucas-Tomasi-Kanade procedure for identifying
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Figure 3.4: devatracker/01206511, figs 1 and 8 On the left, two triangulated graph models of the hu-
man figure. Each node represents the state of some interest point on the body; because the graph has
a triangulated form and simple cliques, the junction tree is easy to obtain and inference is relatively
straightforward (one could use dynamic programming on the junction tree). Song et al. use this rep-
resentation to detect people engaged in known activities, using learned models to infer the form of the
distributions represented by the edges of the graph [360, 361 ]. They detect flow at interest points in the
image, then use these models to identify the maximum likelihood labelling of the image interest points
in terms of the body interest points; detection is by threshold on the likelihood. On the right, some
detection examples. Note the method is generally successful.

and tracking localizable points [360, 361]. For a fixed view of a fixed activity, flows at various interest
points on the body are strongly related, and discriminative. They build a triangulated graph, whose
nodes represent the state of each interest point on the body and whose edges represent the existence
of a probabilistic relation between the nodes. Because this graph is triangulated, the junction tree is
straightforward to find and inference is relatively simple (see, for example, [183]). They then detect
human motion by identifying the best correspondence between image flow features and graph nodes
and testing against a threshold. One requires multiple models for multiple activities, though how many
models might be needed to cover a wide range of activities and aspects is a difficult question. The
method is effective at identifying human motion; note that frames are explicitly not linked over time,
something that doesn’t seem to cause any real difficulties for the method, which should be seen as an
early track-by-detection method.

The advantage of a tree-structured kinematic model, that one can use dynamic programming for
detection, extends to a mixture of such trees. However, adding temporal dependencies produces a
structure that does not allow for simple exact inference, because the state of a limb in frame ¢ has two
parents: the state in time £ — 1, and the state of its parent in frame ¢. Ioffe and Forsyth attack this problem
with a form of coordinate ascent on P(Xy,...,Xg|Yo,...,Yg) [173]. They use a mixture of trees
as a template. Spatial links are learned from static images and temporal links simply apply a velocity
bound. The posterior is maximised by an iterative procedure, which interleaves two steps maximising
over space in a particular frame while fixing all others, and maximising over time for a particular limb
segment, while fixing all other segments. Each step uses dynamic programming. Segments are assumed
to be white, or close; the model doesn’t encode the head position, which occasionally leads to arms
and legs getting confused. As figure 3.5 indicates, fair tracks are possible without a dynamical model.
One should see the work of Sigal et al.(section 2.3.1.1; figure 2.10) as involving a similar, but more
sophisticated, inference procedure.

3.2.1.3 Mixed Approaches

Ronfard et al.use a discriminative model to identify body parts, and then a form of generative model
to construct and evaluate assemblies [318]. Their approach searches for parts that are on a finer scale
than those of Mohan et al.(upper arms vs. arms), and these can’t be found by looking for boxes of a
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Figure 3.5: MOT, part of figure 3 loffe and Forsyth build a 2D model of a person as a set of segments,
modelled using a mixture of trees to capture aspect phenomena [173]. In an image sequence, each
segment except the root has two parents — the corresponding segment in the previous frame, and that
segment’s parent in the model. The appearance model of each individual segment is crude — segments
are light bars of fixed scale. Authors find the best sequence of models by interleaving optimization over
time with optimization over space; the result is a fair track, despite significant changes in aspect.

fixed size, orientation and aspect ratio. This makes it a good idea to search for body parts over scales
and orientations — in effect, a search in a part-centered coordinate system. They compare an SVM part
detector and an RVM (section 2.5.2) part detector, both applied to features that consist of filtered image
grey levels within the window; authors suggest that more sophisticated features, for example those of
Dalal and Triggs (section 3.1.1), might give improvements. Each of the detectors produces a detection
score. People are modelled as a 2D kinematic chain of parts, with link scores depending on a weighted
sum of position, angle and detector scores. The chain is detected with dynamic programming, but the
savings obtained by Felzenswalb and Huttenlocher (section 3.2.1.2) do not appear to be available. The
weights used in the sum are obtained by a novel application of SVM’s. The authors collect a large
number of positive and negative examples of links, use a linear SVM with link terms as features to
classify them, then use the weights produced by that linear SVM as weights in the link cost. Detection
performance is strong; however, there are no standard datasets for evaluating detection of people in
arbitrary configurations so comparisons are difficult.

Mikolajczyk et al.use discriminative part detectors, applied to orientation images and built using
methods similar to those of Viola and Jones (see section 3.1.2), to identify faces, head-and-shoulders,
and legs [246]. Non-maximum suppression isolates detected parts. Once a part is found, it predicts
possible locations for other parts, which are used to drive a search. Finally, the assemblies that are
found are presented to a likelihood ratio classifier. Micilotta et al.use discriminative detect hands, face
and legs; a randomized search through assemblies is used to identify one with a high likelihood, which
is tested against a threshold [242]. Similarly, Roberts et al.use a randomized search to assemble parts;
parts are scored with a generative model, which is used to obtain a proposal distribution for joints [317].
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3.2.2 Parts as CodeBooks

3.3 Tracking by Matching Revisited

The difficulty with background subtraction is that the background may vary in appearance in very com-
plex ways (the camera may move; objects may wave and flutter; illumination can change; etc.) and at
some point it is more effective to code the variations in the foreground than those in the background.
One of the better known methods for doing so comes from an attempt to solve the likelihood problem.
Toyama and Blake encode image likelihoods using a mixture built out of templates, which they call ex-
emplars. Assume we have a single template — which could be a curve, or an edge map, or some such.
These templates may be subject to the action of some (perhaps local) group, for example translations,
rotations, scale or deformations. We model the likelihood of an image patch given a template and its
deformation with an exponential distribution on distance between the image patch and the deformed
template. The normalizing constant is estimated with Laplace’s method. By doing this, we duck the
likelihood problem. But there is a more important advantage; we can have multiple templates, which
encode the important possible appearances of the foreground object. State is now (a) the template and
(b) the deformation parameters, and the likelihood can be evaluated conditioned on state as above.
must have an earlier discussion of the likelihood problem

We can think of this method as a collection of template matchers linked over time with a dynamical
model. The templates, and the dynamical model, are learned from training sequences. Because we
are modelling the foreground, the training sequences can be chosen so that their background is simple,
so that responses from (say) edge, curve, and the like detectors all originate on the moving person.
Choosing templates now becomes a matter of clustering. Once templates have been chosen, a dynamical
model is estimated by counting; authors do not discuss this point, but it seems likely that some form of
smoothing would be useful, because if one has many templates and relatively short training sequences,
observing that one template never follows another does not establish the probability of the event is zero.
Smoothing techniques for problems of this form are a popular tool in the statistical natural language
community, and several appear in Manning and Schutze’s book [?].

What makes the resulting method attractive is that it relies on foreground enhancement — the tem-
plate groups together image components that, taken together, imply a person is present. The main
difficulty with the method is that many templates may be needed to cover all views of a moving person.
Furthermore, inferring state may be quite difficult. Authors use a particle filter; but if one views a parti-
cle filter as a type of randomized search started using dynamics, as above, then it is clear that this search
will be more difficult as the movement is less predictable and as the number of templates increases.
Part of the difficulty is that the likelihood may change quite sharply with relatively small changes in
transformation parameters.

Spatial templates can be used to identify key points on the body. Sullivan and Carlsson encode a
motion sequence (of a tennis player) using a small set of templates, chosen to represent many frames
well [373]. These templates are then marked up with key points on the body, and matched to frames
using a score of edge distance that yields pointwise correspondence; they show that a rough face and
torso track, obtained using a particle filter, improves the correspondence. The key points are transferred
to the markup, and the correspondence between edge points is used to deform the matched template to
line up with the image; this deformation carries the keypoints along (figure ??). Finally, the configura-
tion of the keypoints is significantly improved using a particle filter for backward smoothing. Loy et al.
show that such transferred keypoints can be used to produce a three dimensional reconstruction of the
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Figure 3.6: Figure 3, 6 and 7 from Toyama-Blake LJCV paper Toyama and Blake [390, 389] track
a 2D model of a person by learning a set of templates — which they call exemplars — from other
sequences of moving people. The image consists of a deformed template and noise, and state is given by
which template is rendered, and the deformation through which the template is rendered. The likelihood
is obtained from a comparison between the template and the image. Tracking uses a particle filter. On
the top, a typical set of templates, consisting of edge points (one may also use curves, region textures,
and so on). On the lower left, a track displayed by rendering the template deformation pair with the
largest posterior. On the lower right, a track of the same sequence obtained with some frames blank;
notice that the dynamical model fills in reasonable templates, suggesting that such a tracker could be
robust to brief occlusions.

configuration of the body [229] (figure ??).

3.4 Templates allowing Easy Inference

Lee and Nevatia Devatrackers/leemotion05

3.5 Models of Appearance

This leaves us with building a model of appearance. We must choose an encoding of appearance, and
determine what appearance each segment has. The trackers we have described up to this point train
models of appearance using one or another form of training data; but one could try to build these
models on the sequence being tracked. The advantage of doing so is that these appearance models
can be specialized to the individual being tracked — rather than attempt to encode human appearance
generally, which appears to be difficult. This is the only place where, for example, we can clearly tell
what color clothing is being worn by the subject.

Ramanan and Forsyth encode appearance using color — the texture changes produced by shading on
folds in clothing make texture descriptors unhelpful — and determine appearance for each segment by
clustering. Their algorithm assumes known scale and known link probabilities. Since individuals don’t
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Figure 3.7: Figure 3, part of 7, 8 part of 11 from Sullivan and Carlsson Devatracker/23500629.pdf
Sullivan and Carlsson encode a motion sequence (of a tennis player) using a small set of templates,
chosen to represent many frames well [373]. Matching uses a topological criterion that can generate
large numbers of matches (a); but by obtaining a rough face and torso track (b), they can localize
matches (¢). This makes it possible to transfer key body points marked on the templates by hand to
the frames, and by deforming the templates to obtain good estimates of the image location of these key
points (d). Finally, the configuration of the keypoints is significantly improved using a particle filter for
backward smoothing.

change clothing in track sequences, one can expect that body segments look the same over the sequence,
and so there should be many instances of the true segments in a long sequence. Furthermore, the correct
segments lie in distinctive configurations with respect to one another in each frame, if detected. This
constraint is more easily exploited by looking for torso segments first, because they’re larger and tend
to move more slowly. Ramanan and Forsyth use a filter tuned to parallel edges separated by a particular
image distance to identify candidate torso segments; they then cluster these and prune clusters that
are stationary. They look for arm and leg segments near each instance of a candidate torso segment,
and if enough are found, declare that the candidate represents a true torso in appearance. Now the
appearance of each arm and leg segment can be determined by finding segments near the torso that lie
in the correct configuration and have coherent appearance (this is simplified by the useful observation
that left and right arms and left and right legs typically look the same). Tracking now becomes a
straightforward matter of detecting instances of each model in each frame, and linking those that meet
a velocity constraint.

This displays some advantages of a tracking by detection framework, and the difficulties that result
from relying on a dynamical model. First, recovery from occlusion, people leaving frame or dropped
frames is straightforward; because we know what each individual looks like, we can detect the individual
when they reappear and link the tracks (this point is widely acknowledged; see, for example, [85, 259]).
Second, track errors don’t propagate; when a segment is misidentified in a frame, this doesn’t fatally
contaminate the appearance model. Difficulties occur if different individuals look the same (although
one may be able to deal with this by instancing) or if we fail to build a model.

Ramanan et al. demonstrate an alternative method of building a model. Assume that people occa-
sionally adopt a pose that is (a) highly stylized (and therefore easy to detect) and (b) displays arms and
legs clearly (so that appearance is easy to read off). Then, if we reliably detect at least one instance of
this pose without false positives, we can read off an appearance model from the detection. Furthermore,
we can make this appearance model discriminative, because we have a set of pixels that clearly do lie
on the segments, and others that clearly do not. It is an empirical property that people do seem to adopt
such poses, even in sequences of quite complex motions. They are relatively straightforward to detect
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Figure 3.8: Fig 8, Part of fig 11 from Loy, Eriksson, Sullivan, Carlsson,Devatracker/loy_eccv04.pdf
Loy et al. show that key body points, localized with a strategy similar to that of Sullivan and Carlsson,
can be lifted to 3D [229]. Each 2D template has an associated, hand-built, 3D configuration. This
configuration is attached to each template matched in the sequence. Intermediate 3D reconstructions
are then obtained with an interpolation technique, constrained to keep limb lengths constant (top). On
the bottom, reconstructions in 3D obtained from a tennis sequence.

by matching an edge template using a pictorial structure model. Notice that we are helped by the detec-
tion regime here — we don’t need to detect every instance, just enough to build an appearance model,
but we don’t want false positives. Ramanan et al. use logistic regression to build discriminative models
for each limb segment, then a pictorial structure model to detect. Again, tracking is a simple matter of
detecting instances of the model and linking those that meet a velocity constraint. These discriminative
models significantly reduce the difficulty of searching for an instance of a person, because much of the
image is discarded by the models. In particular, the models can emphasize aspects of appearance that
distinguish a particular individual from that individual’s background. In his thesis, Ramanan shows that
a discriminative model of appearance results in significantly better tracking behaviour (figure 3.13).

Howe stuff
Shaknarovich? sp stuff
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Figure 3.9: deva’s thesis Ramanan and Forsyth build an appearance model automatically using the
sequence being tracked. They exploit the fact that they know people are to be tracked, and at what scale
— meaning that the size of the segments and their layout is known. They identify putative segments
using a filter tuned to parallel sets of edges, searching for torsos first. The appearance — in this case,
color — within detected segments is then clustered; large clusters with instances in many frames, some
of which move, are kept. Once torso appearance has been obtained, a similar procedure, now focussing
on segments near the torso, yields upper and lower arm segments.

3.6 Evaluation

talk about most recent Black work here?

There is no current consensus on how to evaluate a tracker. In our opinion, it is insufficient to simply
apply it to several video sequences and show some resulting frames (a practice fairly widespread until
recently). Counting the number of frames until the tracker fails is unhelpful: First, the tracker may not
fail. Second, the causes of failure are more interesting than the implicit estimate of their frequency,
which may be poor. Third, this sort of test should be conducted on a very large scale to be informative,
and that is seldom practical. Trackers are — or should be — a means to a larger end, and evaluation
should most likely focus on this point. In this respect, trackers are probably like edge-detectors, in that
detailed evaluation is both very difficult and not wholly relevant. What matters is whether one can use
the resulting representation for other purposes without too much incovenience.

A fair proxy for this criterion is to regard the tracker as a detector, and test its accuracy at detection
and localization. In particular, if one has a pool of frames each containing a known number of instances
of a person, one can (a) compare the correct count with the tracker’s count and (b) check that the inferred
figure is in the right place. The first test can be conducted on a large scale without making unreasonable
demands on human attention, but the second test is difficult to do on a large scale. Ramanan and Forsyth
use these criteria; their criterion for whether a particular body segment is in the right place is to check
the predicted segment intersects the image segment (which is a generous test) [314, 346].

Sigal et al construct a 3D reconstruction, and so can report the distance in millimetres between the
true and expected positions (predicted from the posterior) of markers [346]. Figure 3.14 shows results
from these evaluations.
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Figure 3.10: Fig 7, CVPR 03, RamananForsyth Ramanan and Forsyth build an appearance model
for segments in a 2D model of a person automatically, using methods described in the text and in
figure ?? [314]. They then track by detecting instances of this appearance model in frames and linking
instances across time. The advantages of this tracking by detection strategy are that one can identify
particular individuals, recover from occlusions, from errors in the track and from individuals leaving
the frame. The top shows frames from a tracked sequence; on the bottom, appearance models for each
of the three individuals identified by their appearance modelling strategy.

3.7 Notes

There are numerous papers treating characteristic appearance of motion fields. In addition to those
discussed, one might consult [301, 294, 295, 301, 298, 302, 304, 217, 44, 219, 218]. Particular efforts
have been directed to detecting periodic motion; one might consult [223, 222, 335, 336, 68, 215, 381,
78,79, 80, 81, 141, 140].
other template based trackers?
Important open problems
Multiple people
Hands
Fast Gesture
Is there much in the 3D 2D issue
Tracking Applications - video puppetry
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Figure 3.11: Deva’s thesis, also CVPROS Ramanan et al. demonstrate that one can build appearance
models by looking for human configurations that show all limbs and are easily detected. It turns out
that, even in quite short sequences of people engaging in quite extreme behaviour, one can find lateral
walking views. Top: These views can be detected by using a pictorial structure model on an edge-based
representation, using quite low entropy links to impose the requirement that one has a lateral view of
walking. This detector is tuned to produce no false positives — false negatives are quite acceptable,
as long as one instance is found. Bottom: Once an instance has been found, we have the basis of a
discriminative appearance model, because we know what each limb segment looks like and we have a
lot of pixels that do not lie on a limb segment. Ramanan et al. build a discriminative appearance model
for each body segment using logistic regression, then apply a pictorial structure model to the output of
this process — so that a good segment match contains many pixels where P(segment|pixel values) are
high. The resulting tracker is illustrated in figure ??.
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Figure 3.12: Deva’s thesis Frames from sequences tracked with the methods of Ramanan et al., where
a discriminative appearance model is built using a specialized detector (figure ), and then detected in
each frame using a pictorial structures model. The figure shows commercial sports footage with fast and
extreme motions. On the top, results from a 300 frame sequence of a baseball pitch from the 2002 World
Series. On the bottom, results from the complete medal-winning performance of Michelle Kwan from
the 1998 Winter Olympics. We label frame numbers from the 7600-frame sequence. For each sequence,
the system first runs a walking pose finder on each frame, and uses the single frame with the best score
(shown in the left insets) fo train the discriminative appearance models. In the baseball sequence, the
system is able to track through frames with excessive motion blur and interlacing effects (the center
inset). In the skating sequqnce, the system is able to track through extreme poses for thousands of
frames. The process is fully automatic.
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Model | Torso | Arm | Leg

Generic | 314 | 13.0 | 222
‘Lola’ | 98.1 | 94.3 | 100

Figure 3.13: Deva’s thesis Ramanan shows that tracking people is easier with an instance-specific
model as opposed to a generic model []. The top two rows show detections of a pictorial structure
where parts are modeled with edge templates. The figure shows both the MAP pose — as boxes —
and a visualization of the entire posterior obtained by overlaying translucent, lightly colored samples
(so major peaks in the posterior give strong coloring). Note that the generic edge model is confused
by the texture in the background, as evident by the bumpy posterior map. The bottom two rows show
results using a model specialized to the subject of the sequence, using methods described above (part
appearances are learned from a stylized detection). This model does a much better job of data associ-
ation; it eliminates most of the background pixels. The table quantifies this phenomenon by recording
the percentage of frames where limbs are accurately localized — clearly the specialized model does a
much better job.
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Figure 3.14: Part of Figure 8 from devatrackers/0135063 and Table 1 of devatrackers/cvprfinal On
the left, reports of the percentage of limb segments in the track that overlay the actual limb segments (D)
and that are false alarms (FA) for a series of tracks using the methods of Ramanan and Forsyth, reported
in []. On the right, distance between points on reconstructed 3D models obtained using the methods
of Sigal et al. and tracked motion capture markers supplying ground truth; there are two baselines,
the method of Deutscher et al., which fairly quickly loses track, and belief propagation without part
detectors, which is surprisingly good.
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Chapter 4

Motion Synthesis

There are a variety of reasons to synthesize convincing looking human motion. Game platforms are now
very powerful and players demand games with very rich, complex environments, which might include
large numbers of non-player characters (NPC’s — which are controlled by the game engine) engaged
in a variety of activities. These figures need to move purposefully, react convincingly to impacts, and
be able to change their activities on demand. Ideally, the motions are clean and look human; players
can control characters smoothly; and there are no jumps or jerks resulting from sudden, unanticipated
demands — which might originate either with a player or with game Al Typically, this industry is
willing to sacrifice a degree of quality if it can produce a very large volume of motions, and do so
quickly. The film industry has traditionally been less interested in computational motion synthesis,
largely because human animators — or, for that matter, actors — are still the best way to get high
quality motion.

Another, perhaps less frivolous in purpose, is the simulation industry. Commodity graphics hard-
ware has advanced to the point where many of the “immersive virtual reality” simulation and training
applications which were proposed during the 1990’s are now actually becoming quite practical. Many
of these applications require environments that must be populated with humans. Currently, most such
applications make do with minimally realistic human figures, but as recent computer games have demon-
strated it is now possible to render humans with very realistic static appearance. Variations in rendering
style alter a viewer’s perception of motions [157, 156]. As the characters’ appearance improves so
too does viewer expectations concerning the characters’ motion. More realistic characters with a more
interesting range of behaviors present substantial challenges.

Situation simulations used for training milliary, rescue, and other hazardous-duty personnel are
currently predominantly populated by unrealistic human characters. While these characters suffice for
some aspects of training, they still place strong limitations of the simulation’s potential effectiveness:
a fire-rescue worker’s response to a mannequin with the word “victim” is fundamentally different to
the response that would be elicited by a character that behaves and appears like a frightened 10 year old
child. Similar, but more gruesome, arguments can be advanced concerning the need for realistic humans
in combat simulations [434, 435]. In either case, the desired goal is that the user become immersed in
the simulation to the point where they behave as if the situation were real, and we believe that realistic
simulated humans are required for this to happen.

The computer vision community needs models of human motion to recognize people and reason
about what they are doing. In what follows, we argue that such models are best encoded by motion
synthesis algorithms. Reasoning about what people are doing is a core problem, the solution of which
would enable many significant applications. For example, current “smart” motorcars can keep and

77
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change lanes autonomously and can determine if there’s a moving obstacle in front of them, but cannot
determine whether the obstacle is (say) a child (in which case it must be avoided at all costs) or a large
dog (which may be hit to avoid creating a more dangerous situation). Furthermore, they cannot identify
pedestrians walking along the pavement and determine whether any appears to be planning a dangerous
step into the road. In another application, one seeks to understand human behaviour in public spaces.
Currently, the architecture of public places is based around a set of design “rules of thumb”, which are
used to produce designs that people will enjoy and use; this is not always successful (e.g. [131, 422]).
A better understanding of how people behave could produce enhanced architectural design rules (see,
for example, [422]). As another application, it is currently possible to analyse surveillance video
automatically, but only for such locations as airports and car parks. This is because in these places,
one can typically determine whether activity represents a problem without knowing much about the
activity — a person on a runway is a problem, pretty much whatever they’re doing. However, more
subtle activities such as analysing bulk video evidence to identify who passed what to whom, when, is
completely out of our reach at present. Part of the problem is that it remains very difficult simply to tell
whether a motion was human, and what the actor was doing.

4.1 Fundamental Notions

4.1.1 Motion Capture

Motion capture refers to special arrangements made to measure the configuration of a human body
with (relatively) non-invasive processes. Early systems involved instrumented exoskeletons (e.g. []; the
method is now usually seen as too invasive to be useful except in special cases) or magnetic transducers
in a calibrated magnetic field (e.g. []; the method is now usually seen as unreliable in large spaces).
More recent systems involve optical markers. One can use either passive markers (for example, make
people wear tight-fitting black clothing with small white spots on them) or active markers (for example,
flashing infrared lights attached to the body). A collection of cameras views some open space within
which people wearing markers move around. The 3D configuration of the markers is reconstructed for
each individual; this is then cleaned up (to remove bad matches, etc.; see below) and mapped to an
appropriate skeleton.

Engineering issues: Motion capture is a complex and sophisticated technology; typical modern
motion capture setups require a substantial quantity of skilled input to produce data. There are five main
sources of difficulty. First, people can move fast, meaning that cameras must have high frame rate —
120 Hz is now common — with attendant difficulties of getting pixels out of the camera fast enough.
It is now typical to use cameras that produce only reports of marker position, rather than full frames of
video. To capture many fast movements, high acceleration movements or multiple people, one needs
a large measurement volume (otherwise one might miss something). Furthermore, it is desirable that
each marker is seen by at least two cameras, something that is difficult to achieve when there are many
people because the bodyparts occlude one another. Some very fast motions can be captured only with
specialized stroboscopic equipment [382]. All this leads to the second problem, that one needs many
cameras (which is expensive, and creates calibration and algorithmic issues). Third, one requires high
resolution in the final data, which compels the use of high resolution cameras, because the cameras
can all be quite far away from the marker they view. Fourth, marker correspondence is a persistent
nuisance. There are two issues: one must link markers across cameras to obtain a 3D reconstruction,
and a correspondence error might result in a missing marker and so poor data in a particular frame; and
one must link markers across time, where a correspondence error might result in a jerk in the reported
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motion. Fifth, markers slip on the body, so that reports of marker configuration may not be accurate
reports of body configuration.

Cleanup and Skeletonization: Typical workflow involves capturing 3D point positions for markers,
discounting or possibly correcting any errors in correspondence by hand, then using software to link
markers across time. There are usually errors, which are again discounted or corrected by hand. Motions
are almost always captured to animate particular, known models. This means that one must map the
representation of motion from the 3D position of markers to the configuration space of the model,
which is typicaly abstracted as a skeleton — a kinematic tree of joints of known properties, typically
all revolute, and modelled as points separated by segments of fixed, known lengths, that approximates
the kinematics of the human body. The anatomy of the major joints of the body is extremely complex,
and accurate physical modelling of a body joint may require many revolute and prismatic joints with
many small segments linking them (the shoulder is a particularly nasty example [103, 393], but, for
example, the drawings in [?] emphasize the complex kinematics of human joints). This complexity is
unmanageable for most purposes, and so one must choose a much lower dimensional approximation.
Different approximations have different properties — the details are a matter of folklore — and one
chooses based on the needs of the application and the number of degrees of freedom of the skeleton.
Skeletonization is not innocent, and it is usual to use artists to clean up skeletonized data, essentially
by adjusting it until it looks good. The pernicious practice of discarding point data once it has been
skeletonized is widespread, and it remains the case that data represented using one skeleton cannot
necessarily be transferred to a different skeleton reliably. Reviews of available techniques in motion
capture appear in, for example [41, 137, 241, 248, 347, 227].

Configuration Representations: For the moment, fix a skeleton. While this isn’t usually an exact
representation of the body’s kinematics, we will assume that giving the configuration of this skeleton
gives the configuration of the body. The configuration of the skeleton can be specified either in terms
of its joint angles, or in terms of the position in 3D of the segment endpoints (joint positions). Not
every set of points in 3D is a legal set of segment endpoints (the segments are of fixed lengths), so sets
of points that are a legal set of segment endpoints must meet some skeletal constraints. The set of
all legal configurations of the body is termed the configuration space; the joint angles are an explicit
parametrization of this space, and sets of points in 3D taken with constraints can be seen as an implicit
representation.

Skinning: In animation applications, one wants the motion capture data to drive some rendered
figure — when the actor moves an arm, the virtual character should do the same. The virtual character
is represented as a pool of textured polygons, and one must determine how the vertices of these poly-
gons change when the arm is lifted. The process of building a mapping from configuration — always
represented as joint angles for this purpose — to polygon vertices is referred to as skinning. Skinning
methods typically determine an appropriate configuration for the skin for each of a set of example poses,
then interpolate [251]. One represents configuration as joint angles for skinning purposes because us-
ing joint positions is unwieldy (one would have to manage the constraints; we are not aware of any
advantage to be obtained by doing so).

4.1.2 Controlling Synthesized Motion

One must specify what is desired to a motion synthesis algorithm. While synthesis algorithms tend to
vary quite widely, there are not many options for constraints. Geometric constraints may constrain:
the position or position and orientation of the root; the position or position and orientation of one or
more body segments; or, in extreme cases, the exact configuration of the body (in which case the frame
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constraint can be thought of as a keyframe). Geometric constraints may take various forms involving
either equalities or inequalities. For example, one may constrain a point to lie on a plane, a line, or a
point (which are all equality constraints), or to lie within a region (an inequality constraint).

Depending on algorithmic details, constraints may be either exact or represented as a penalty func-
tion. Constraints may be either summary constraints, applying to the position and orientation of a
summary of configuration such as the overall center of gravity or the root, or detailed constraints, ap-
plying to individual body segments or particular points on the body. One can apply either instantaneous
constraints, which constrain at a particular time, or path constraints, which constrain to a path over a
period of time. It is common, but not universal, to assume that a path constraint comes implicitly with a
temporal parametrization. It is usual to assume that impossible constraints are not supplied.

Such constraints can be used to sketch out the structure of a motion in greater or lesser detail,
depending on what an algorithm requires. In most cases, however, they don’t determine the motion. For
example, in some cases quite a precise temporal parametrization of a path may not determine whether
a figure must run or walk. Usually, one would like to supply relatively few constraints (authoring
constraints is a nuisance), meaning that the resulting motion is usually dramatically ambiguous. There
are almost always very many ways to meet instantaneous summary constraints for the start and the end
of a motion (i.e. start here at this time, end there at that time). One might dawdle at the start, then sprint;
walk very slowly; run, walk, then run, then dawdle, and so on.

Annotation constraints are intended to reduce this ambiguity. These constraints are demands that a
motion be of a particular type, that are painted on the timeline. The interesting issue is how one encodes
the type of a motion. Arikan ef al. choose a set of 13 terms (“run”, “walk”, “jump”, “wave”, “pick
up”, “crouch”, “stand”, “turn left”, “turn right”, “backwards” “reach”, “catch”, “carry”) that appear
to be useful for their dataset [12]. It is desirable to respect the fact that motions can compose — for
example, one can run while carrying — and they do so by allowing any combination of these terms
to be an annotation. One can visualize an annotation as a bit vector, with 13 entries, one per term.
This model ignores the fact that most combinations of annotations — e.g. “stand” and “run” — are
meaningless; this is deliberate, because there isn’t a principled way to build a space of legal annotations
and dependencies between annotations may result in nasty inference problems. Arikan et al. then mark
up a collection of motion capture data using classifiers. The features are a representation of a pool of
motion frames spanning the frame to be classified. The classifiers are trained independently, one per
term, by marking up some frames, fitting a classifier, and then repeatedly classifying all frames, viewing
and correcting a sample of labelled motions, and fitting a new classifier. This process converges quickly,
allowing a large pool of motion to be marked up relatively quickly, probably because it is easy to view
a large pool of animations and correctly identify mislabelled motions. The result is a pool of frames of
motion capture data, each carrying a vector of 13 bits, each of which is determined independent of the
others. Interestingly, Arikan et al. point out that, although their model does not exclude inconsistent
annotations, relatively few of the 2'3 available annotations are actually applied, and they observe no
inconsistent annotations.

LR N3

4.1.3 Footskate

An important practical problem is footskate, where the feet of a rendered motion appear to slide on
the ground plane. In the vast majority of actual motions, the feet of the actor stay fixed when they are
in contact with the floor (there are exceptions — skating, various sliding movements). This property
is quite sensitive to measurement problems, which tend to result in reconstructions where some point
quite close to, but not on, the bottom of the foot is stationary with respect to the ground. The result is



4.1. FUNDAMENTAL NOTIONS 81

that the foot slides on the ground (and sometimes penetrates it). The effect can be both noticeable and
offensive visually. Footskate can be the result of: poorly placed markers; markers slipping; errors in
correspondence across space or time; reconstruction errors; or attempts to edit, clean up or modify the
motion. Part of the difficulty is that the requirement that the base of the foot lie on the ground results in
complex and delicate constraints on the structure of the motion signal at many joints. These constraints
appear to have the property that quite small, quite local changes in the signal violate them. It is likely
that these properties are shared by other kinds of contact constraint (for example, moving with a hand
on the wall), but the issue has not arisen that much in practice to date.

There are methods for cleaning up footskate. Kovar er al. assume that constraints that identify
whether heel or toe of which foot is planted in which frame (but not where it is planted) are avail-
able [204]. One can sometimes, but not always, infer such constraints from data automatically and
accurately []; such methods can fail when data is noisy, or when the motion involves skidding or sliding.
Kovar et al. then: choose positions for each planted point, determine ankle poses to meet these con-
straints; adjust the root position and orientation so that the legs can meet the resulting ankles; compute
legs that join the root and the ankle mainly by adjusting angles, but occasionally by adjusting leg lengths
slightly; and then smooth the adjustment over multiple frames. The method is effective and succesful.
One could reasonably speculate that success at cleaning up footskate is a cue to footplant constraints,
suggesting simultaneous estimation of a cleaned up motion and footplant constraints. As far as we are
aware, there is currently no attempt in the literature to do this.

It is typical that repeated instances of a particular motion differ by some details in timing; for exam-
ple, each pace of a walk is usually slightly different. Time alignment is therefore a useful tool. Kovar
and Gleicher score frame-frame differences using ****, and then align frames with dynamic program-
ming. This approach is usually successful for sequences where it is meaningful — it is unwise, for
example, to expect much useful out of an alignment between a sequence of standing and a sequence of
jumping (see section ?? for more detail). fix discussion of kovar gleicher

4.1.4 Inverse Kinematics and Motion Editing

Footskate cleanup is an example of a more general problem — adjust the joint angles of a motion so that
it meets some constraints on joint positions. Assume we have a fixed skeleton; we now wish to clean
up a motion referred to this skeleton, perhaps moving a foot position or ensuring that a contact occurs
between a hand and a doorhandle. This creates a difficulty for either representation of configuration: if
we work with joint angles, we must obtain joint angles such that the constraint is met; if we work with
joint positions, we must obtain a set of joint positions that meet both this constraint and the skeletal
constraints. We will confine our discussion to the case of joint positions, which is more important in
practice.

For the moment, let us consider only a single frame of motion. Write the vector of joint angles
as 6, and the joint positions as a function of joint angles as x(6). Assume that we would like to meet
a set of constraints on joint positions g(x) = 0. The problem of inverse kinematics is to obtain a 6
such that g(x(#)) = 0. The constraint is important in the formulation, because we hardly ever wish to
specify a change in every joint position. For example, assume we wish to move the elbow of a figure
so it rests on a windowsill — we would like to adjust the kinematic configuration so that the elbow
lies at a point, but we don’t wish to specify every joint position to achieve this. Notice there is room
for some confusion here. In the robotics and theoretical kinematics literature (e.g. []), the problem is
almost always discussed in terms of choosing joint angles to constrain the endpoint configuration of a



82 CHAPTER 4. MOTION SYNTHESIS

manipulator. In graphics applications, the term refers to meeting any kinematic constraint.

Under some conditions, closed form solutions are available for at least some parameters (e.g. see [201,
386, 387, ?]). More usually, one must see this as a numerical root finding problem. The update for
Newton-Raphson method involves finding a small change in configuration 66 such that g(x (& +d0)) =
0. We may be able to obtain 46 from

0 = g(x(bo+6))
g(XO + jxﬁ(se)
g(XO) + jg,xjx,éée

%

where Jx g is the jacobian of x with respect to ¢, etc. In the ideal case, the product of jacobians is square
and of full rank, but this seldom happens. For almost every point in the configuration space, the rank
of the jacobian J ¢ should be the dimension of the configuration space (if this isn’t the case, then we
have a redundant angle in our parametrization; we assume that this does not happen). At some points,
the rank of this jacobian will go down — these are the kinematic singularities of section 1.5.1. The
practical consequence of this is that some position updates may not be attainable (for example, consider
the straightened elbow of section 1.5.1; the only instantaneous hand velocity attainable is perpendicular
to the forearm). The rank of J; x may be small. For example, if our constraint requires that a point be in
a particular place, the rank will be three. This is a manifestation of kinematic redundancy, which is a
major nuisance. A natural strategy to deal with constraint ambiguity is to obtain a least squares solution
for 96 — but the resulting pose may not be natural (one can use other norms, see [90] ). A second source
of difficulties in the optimization problem are joint limits, which mean that our optimization problem is
subject to some inequality constraints on the §. The feasible set of solutions that meet this constraints
is not necessarily convex, which can mean the general optimization problem is hard.

Kinematic redundancy is a global rather than local matter. In particular, there may be more than one
6 such that g(x(#)) = 0. For example, assume that we wish to constrain a figure to stand with its feet
on the floor in given spots, and a hand on a given spot on a wall. Typically, there is either no solution to
these constraints — the wall is too far away — or many. The collection of solutions is rather rich (stand
next to a wall with your hand on the wall; you can move in all sorts of ways without having your feet
move or your hand leave the wall), and could be continuous or discrete.

All this creates a nasty problem. Applying inverse kinematics on a frame-by-frame basis is may
produce solutions at each frame that are inconsistent (as a result of kinematic redundancy). This is
complicated by the presence of multiple solutions, and the vagaries of root finding. For example, assume
we want a solution where the hand is against the wall, as above. In frame n, the root finder converges
to a solution where the elbow is below the shoulder; but the start point for frame n + 1 is slightly
different from that for frame n, and the root finder could find a solution where the elbow is above the
shoulder. This sort of behaviour results in noticeable and annoying “pops” in the motion. The effect can
be countered by adjusting multiple frames simultaneously, but this is expensive computationally; much
of the recent literature is a search for efficient approximation methods.

Gleicher shows that one can usefully edit motions — typically, so that they meet constraints that are
a small revision of constraints met by the original motion — by adding a displacement [136]. Gleicher
minimizes a measure of the size of the displacement subject to the new constraints. There is no guar-
antee that the resulting motion will necessarily look human, but for small displacements it tends to; this
means that the motion author can manage constraints and update process so that the resulting motion
looks human. The optimization problem is nasty. Lee and Shin obtain a more manageable optimization
problem by representing the motion as a hierarchical B-spline [211]. The displacement is also a hier-
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archical B-spline, and they engage in a coarse-to-fine search across the hierarchy. The IK solver at the
k’th frame at the n’th level now has the £ — 1’th frame at that level and all frames at the n — 1’th level
available to generate a start point and to constrain the solution. Witkin and Popovi¢ modify motions
using parametric warps, so that they pass through keyframes specified by an animator [?]. Shin er al.
use similar methods to touchup motion to meet physical constraints (for example, motion not in con-
tact is ballistic and preserves angular momentum), while sacrificing physical rigor in the formulation
for speed [343]; see also [377], [?] and section ??. Motion editing in this way is useful, and there are
several other systems; a review appears in [138].

4.1.4.1 Resolving Kinematic Ambiguities with Examples

The danger here is that one may obtain poses that do not look human. Motion editing deals with this
by being interactive, so that an animator who doesn’t like the results can fiddle with the constraints
until something better appears (see also [289]). An alternative is to allow relatively few degrees of
freedom — for example, allow the animator to adjust only one limb at a time, as Maya does — or to
require similarity to some reference pose [420, 427, 376]. This isn’t always practical. An alternative,
as Grochow et al. demonstrate, is to build a probabilistic model of poses and then obtain the best
pose [144].

One can do this as follows (for consistency within this review, our notation differs from that of
Grochow et al.). Write y for a feature vector describing a pose x (the feature vector could contain such
information as joint positions, velocities, accelerations, etc.). Write u for the (unknown) values of a low
dimensional parametrization of the space of poses. Use the subscript ¢ to identify values associated with
the 7’th example. Now assume we have a regression model P(y|u,#) for 6 some parameters (which
in this case choose a model and weight components with respect to one another). We could obtain an
inverse kinematic solution by maximizing

P(y(x),ulf)

with respect to x, subject to some kinematic constraints g(x) = 0. The regression model is built using
N examples y; (note we do not know u; for these examples). We assume the examples are independent
and identically distributed (note the independence assumption needs care with motion data; frames may
be correlated over quite long timescales), and obtain u;,  to maximise

P(uia Hlyl)

Grochow et al. use a scaled gaussian process latent variable model as a regression model, and note
that some simpler models tend to overfit dramatically. The method produces very good results; authors
note that a form of rough-and-ready smoothing (obtained by interpolating between parameters obtained
with clean training data and training data with added noise) seems to produce useful models that allow
a greater range of legal poses.

While motion editing does not offer direct insight into representing motion, the artifacts produced
by this work have been useful, and it has produced several helpful insights. The first is that it is quite
dangerous to require large changes in a motion signal; typically, the resulting motion path does not
look human (e.g. [137]). The second is that enforcing some criteria — for example, conservation of
momentum and angular momentum [343]; requiring the zero-moment point lies within the support
polygon [343, 200, 86] — can improve motion editing results quite significantly. However, note that
one can generate bad motions without violating any of these constraints, because motion is the result of
extremely complex considerations. The third is that examples can help produce quite good results.
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motionediting/ulsca2003.pdf edits speech lip signals using ICA
Popovic Witkin

4.2 The Motion Graph

Motion capture data is used in very large quantities by, for example, the movie and computer game
industries. For each title that will contain human motion, an appropriate script of motions is produced;
typically, this involves a relatively small set of “complete” motions that can be joined up in a variety of
different ways. This script is captured, and then motions are generated within the game by attaching an
appropriate set of these motion building blocks together. Motions captured for a particular title are then
usually discarded as re-use presents both economic and legal difficulties.

This suggests a form of directed graph structure encoding legal transitions between motions. The
attraction is that if we have such a graph, then any path is a legal motion; thus, with some luck, much of
the work of motion synthesis could be done in advance. Furthermore, it may be possible to issue quality
guarantees for any synthesized motion if we can do so locally within the graph. This hope has not yet
materialized, but remains an attraction of the representation.

There are several ways to implement this graph structure, but the important matter here is a repre-
sentation of legal motion transitions. The simplest, which we favour as a conceptual (but not necessarily
computational) device is to regard every frame of motion as a node and insert a directed edge from a
frame to any frame that could succeed it. We will call this object a motion graph, and always have this
representation in mind when we use the term. An alternative representation is to build a set of unique
clips (runs of frames where there is no choice of successor — one could build these by clumping to-
gether nodes in the previous representation that have only one successor), use the unique clips as edges
and make choice points into nodes. In this representation, one thinks of running one clip which ends in
a node where we can choose which clip to run next. Finally, we could make each clip be a node, and
then insert edges between nodes that allow a cut. Here we must be careful with the semantics, because
there could be more than one edge from node to node — it may be possible to cut from clip A to clip B
in different ways — and our edges need to carry information about where they leave the source clip and
where they arrive at in the target clip. There is no difference of substance between the representations;
we favour the first, as we find it easier to think about.

4.2.1 Building a Motion Graph

A set of observed motion sequences is a motion graph (there is a pool of frames, and a set of observed
edges). This graph can be made significantly more useful by adding directed edges — which we call
computed edges — from each frame to any frame that could succeed it in some sequence. Typically,
we do so by identifying places where we can build a transition — a sequence of frames that starts at
one frame in the graph (say, frame A; in sequence A), ends at another (B; in sequence B), and joins the
frames preceding the start to those succeeding finish in a natural motion — and blending as in section ??
to build these transitions. This involves adding frames of interpolated motion.

Links by transitions: Kovar er al. build links by testing pairs of frames 4; and B; to tell whether
a transition of fixed length is possible between them, then building that transition [203]. They compare
a window of fixed length into the future of frame A with a window of the same length into the past of
frame B. Each window is represented as a set of points in 3D, and there are implicit correspondences.
The distance is then the minimum sum of weighted squared distances between corresponding points
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available by choice of rigid-body transformation applied to one sequence. The weights are necessary
because errors in some joint positions appear to be more noticeable than errors in other positions. This
distance is computed for every pair of frames for which it exists (the future or the past might be too
short). They build transitions between pairs of frames where the distance is a local minimum (the
topology being supplied by the order of frames in the original sequences) and is lower than a threshold.
The transition is built by aligning the windows with a rigid body transformation, then blending them.
Footskate is avoided by identifying frames with footplant constraints, and blending in such a way as to
preserve these constraints. There is no time or space deformation (c.f. section ??). If the motion graph
is to be used in game applications, there is real value in allowing a designer to interact with this process,
as Gleicher et al.show [139]. In this work, the designer can choose among possible “to” frames for a
given “from” frame, and can disallow (resp. allow) transitions suggested (resp. discouraged) by the
criterion above.

Links by similarity: Lee et al. test for a possible link from 4; to B; by testing a distance between
A; and Bj_1, the logic being that if these two are sufficiently similar, then their futures could be inter-
changed [210]. Notice that this suggests that if 4; can be linked with B;, then we should be able to link
from Bj to A;11. The distance is obtained as a weighted sum of differences in joint angles, summed
with differences in velocities at various points across the body (the choice of weights is important; see
below). Two frames can then be linked if the distance is sufficiently small, the velocity term ensuring
that the temporal ordering of motion is respected. Links between frames with dissimilar contact states,
or that are not local maxima (again, the topology is given by the order of frames in the original se-
quences), are pruned. Once it is known that a pair of frames can be linked, the future of the from frame
is blended with the past of the two frame to build a transition, again inserting new frames.

No - how does this work?

Arikan and Forsyth represent frames as a sets of points in 3D in a coordinate frame centered on the
torso, and obtain a distance by summing squared differences in positions and velocities in that frame
taken together with the differences in velocity and acceleration of the torso frame itself [13]. If this
distance lies below a threshold for a pair of frames, we can insert Any edge where that distance lies
below a threshold is inserted as a computed edge, with the direction being obtained from considerations
of smoothness as below. They do not require any particular combinatorial structure in their graph, and
so do not post process.

Cleanup: Some applications require a fast decision at each choice point, meaning it may be hard to
look far ahead in the graph when making that decision. In these cases, it is helpful to remove nodes that
lack outgoing edges and graph components that cannot be escaped (see figure 4.1). This is best achieved
by computing the strongly connected components of the graph (components such that, for any pair of
nodes in the component, there is a directed path between them) and keeping the largest [203, 210].

Open issues: The methods we have described have generally been successful at producing usable
motion graphs. There remain a number of open issues in building a motion graph. Identifying pairs of
frames that allow one to build a transition is probably the right approach, but one could quibble with
current implementations. First, it remains difficult to know whether one can or can’t build transitions
between a pair of frames (see section ?? above). Wang and Bodenheimer demonstrate that the choice
of weights in Lee’s algorithm is important, and show that better weights than those used in the original
paper can be learned from data [406]. One could reasonably hope for a more extensive criterion than
just requiring the frames to be close and this seems like a productive area of study. Second, requiring the
transitions be of fixed length creates problems can be justified on practical grounds, but seems unwise
in general. In fact, there is some tension between requiring that the transition be of fixed length, and that
the distance between linked frames be a local minimum. Wang and Bodenheimer show that the size of
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Figure 4.1: Examples of bad motion graphs. On the left, a motion graph where it is possible to get
stuck in one component. This problem can be avoided by computing strongly connected components
and taking the largest, at the possible cost of excluding some frames. The graph on the right has the
difficulty that it is possible to get caught in a motion where no alternatives are available for many
frames. This presents a difficulty if one wishes the motion to be responsive. Typically, there is a tension
between obtaining high quality motions — which tend to require relatively few edges in the graph —
and responsive motions — which tend to need as many edges leaving nodes.

the difference between frames gives some cue to the length of the transition, as does the velocity [407].
It is probably possible to take the methods described in section ?? (for enriching collections of observed
motions) and, by incorporating some form of greedy transition builder, obtain very heavily enriched
motion graphs.

Where is this going? Generally, there is a complex and poorly understood
tension between the complexity of a motion graph,

4.2.2 Searching a Motion Graph

We assume that our method of constructing edges is satisfactory, which means that any path in the
motion graph is a motion. We can construct paths in the motion graph using local or global properties.
A local search involves looking ahead some fixed number of frames. This means that the motion can
respond to inputs, but may mean that some constraints can’t be met. A global search involves looking
at entire paths. The resulting motion is less responsive, but more easily constrained.

Local search methods: Kovar et al concentrate on choosing the next frame of motion, or, equiva-
lently, choosing one of the outgoing edges at a choice node in the motion graph [203]. Nodes without
outgoing edges are a problem; they can be removed with a simple graph algorithm. The choice of edge
can be made in a variety of ways: one could look at a game controller, look at the local tangent di-
rection of the desired root path, look at an annotation constraint (figure 4.2), or use a random variable.
This latter approach can generate very good background motion when used with care. The trick is not
to cut between motion sequences too often (because all methods of constructing motion graphs have
flaws, and a path that contains mainly computed edges in the motion graph will tend to explore those
flaws, and look bad). This can be achieved, for example, by choosing observed edges with rather higher
probability than computed edges.

Local searches can run into problems. The motion graph might contain some frames that can be
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Figure 4.2: Fig 8, Mographs/mograph.pdf These figures show motions synthesized using the motion
graph method of Kovar et al.to meet path constraints and annotation constraints. The demand path is
the coloured path on the ground plane; this is yellow for “walking”, green for “sneaking” and blue for
“martial arts move”. The black path shows the projected root path, and the figures are frames sampled
at even intervals to give a sense of the motion.

reached only by making the right choice at a choice point many frames away. In this case, choosing
based only on a local criterion could make it impossible to meet some constraints (this is the horizon
problem — a choice now might lead to trouble that is invisible, because it is on the other side of the
horizon separating the future cases we consider from those we don’t). We can cope with the horizon
problem either by using a representation of available futures when making a choice, by choosing paths
using some form of global search, or by enriching the motion graph (section ??).

Taking the future into account: The body is capable of very fast accelerations. This suggests that,
in a motion graph built with enough data, there is a fairly short path from any one frame to any other.
In turn, this suggests that the horizon problem wouldn’t be a problem if the horizon looked forward
sufficiently far in time. However, in this case the range of futures available from a particular frame
must be very large. Lee ef al. encode the future in terms of clusters of frames [210]. These clusters
form a graph, where each cluster is a node and there is an edge from one node to another if there is an
edge from a frame in the cluster represented by the “from” node to a frame in the cluster represented by
the “to” node. A given frame in the motion graph is associated with some node in this cluster graph.
For any node in the cluster graph, we can construct a cluster tree — a tree, rooted at the node under
consideration, that gives the nodes in the cluster graph accessible with a fixed number of hops. We
now represent the available futures at a given frame by the cluster tree associated with that frame (there
is a cluster path from the root to each leaf — see figure 4.3). Motions are controlled using either a
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Figure 4.3: Figure 4 from mographs/lee02interactive The figure shows steps in building the motion
representation of Lee et al.[210]. (A) shows the original motion signals, with observed motion edges.
(B) shows computed edges inserted using the methods described in the text; though the figure suggests
that no new frames are created in building transitions, this is not necessarily the case. (C) shows a
clustering of frames, by appropriate clustering criteria. The choice of clustering criterion is delicate,
and relevant considerations are described in the text. (D) shows cluster trees attached to some frames,
these trees indicate what types of frame are available from a fixed number of hops leaving the current
frame, and give a compressed encoding of the possible futures available from the frame in consideration.

choice based interface (where the animator chooses at each choice point), a sketch interface — where
the sketch provides a demand signal — or a vision interface — where background subtracted frames
from multiple viewpoints provide a demand signal. In both the sketch and the vision interface, frames
are chosen by scoring the available cluster paths against the demand signal.

For this method, the choice of clustering criterion depends on the application. The alternatives are to
represent the body relative to the root of the body, relative to the root of the body in the frame at the root
of the cluster path, or in absolute coordinates. The first case is appropriate in uncluttered environments,
where one can reasonably expect that any frame can occur at any location and in any orientation. The
second can be appropriate when one needs anticipation — for example, synthesizing the run-up to a
jump which must leave the ground at a point chosen during the synthesis procedure; this is a need one
associates with animations in computer games that emphasize complex movements like jumps. The
third case is appropriate to a cluttered environment, where a frame may be usable in only one spot in the
motion domain.

Ambiguity: The family of acceptable paths through a motion graph that meet a given set of motion
constraints is usually very large, a phenomenon we refer to as motion ambiguity. Local motion ambi-
guity arises because most motion data collections contain multiple copies of some motions — typically,
walking and running — and that there is a rich collection of links between frames in these motions. As
a result, there is a spectacular number of walking motion paths available. One could deal with this issue
by clustering, but it isn’t the major source of difficulty. The real problem is an important general pecu-
liarity — it is very seldom possible to author constraints on a motion animation that are unambiguous,
because the number of constraints required would be unnaturally large. This seems to be a result of
the ways in which people find it natural to think about human motion (this issue will re-surface in our
discussion of activity representations). For example, if I am instructed to go from point A to point B in
some period of time, I can do so in a very large number of ways unless the constraints imply maximum
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velocity at all times. One consequence of all this is that the horizon problem should not be a problem
in practice because there are lots of paths that meet a set of constraints. Another is that searches for a
global motion path can be complicated, because of the number of paths available.

Global Search Methods: Arikan and Forsyth search for complete motion paths that meet given
constraints [13]. Such searches are intrinsically off-line so one must sacrifice the goal of interaction, but
if the search is fast enough it can be used for authoring animations. Motion ambiguity means that simply
applying Dijkstra’s algorithm doesn’t work, because the algorithm must manage too many intermediate
paths. Arikan and Forsyth use a variant of the motion graph where each clip of observed motion is a
node, and edges represent acceptable cuts. This means that edges need to be tagged with “from” and “to”
frames within the node, and that there are typically multiple self-edges and multiple edges between any
pair of nodes. They produce a sequence of compressed version of this graph by clustering edges, so that
a pool of edges with similar “from” and “to” frames can be replaced by a single edge with approximating
“from” and “to” frames in the more heavily clustered version. They then use a randomized search to
find a pool of paths in the most heavily compressed version of the graph; these paths are either refined
locally to produce paths in less heavily compressed graphs, or modified. The best resulting path is then
reported. They report a trick that can be used to make synthesized motion paths look as though actors
are interacting. One obtains measurements of an interaction, then uses frame constraints to construct
paths into and out of the interaction.

Low entropy: Human motion appears to be quite predictable in the sense that one can predict the
frame that will occur a short while in the future rather well using the current frame — we use the term
low temporal entropy to refer to this property. This is in tension with what we have seen already
(that motion constraints are ambiguous, and that it is generally fairly easy to move between any two
frames in the motion graph quite quickly). The most plausible interpretation is that, while one could
move between any two frames quickly, people generally don’t. This entropy property allows useful
approximations for search algorithms.

Annotation based synthesis: One method to control motion ambiguity is to require the synthesis
process to produce motions that meet annotation constraints (described in section 4.1.2). Arikan et
al.use demands that either require the annotation to be present, to be absent, or are “don’t care” [12].
The annotations are painted on the timeline. Frames in the motion graph carry annotations, and we
must produce a path that meets position and frame constraints, and carries the required annotation at
the required time. For the moment, assume that the only geometric constraint is on the start point.
Then building a path that meets annotation constraints is a matter of dynamic programming (there are
local costs for failing to meet annotation demands, and frame-frame costs for continuity). The dynamic
programming problem is too hard to solve in that form, because there are too many frames of motion.
Instead, Arikan et al.coarsely quantize the graph into blocks of frames that form sequences and then
use dynamic programming on a random subset of these blocks. There are then two search activities:
refining blocks, and changing the (randomly chosen) working set of blocks. This works well, because
ambiguity means that one doesn’t miss much structure by random sampling and low entropy means that
a quantized path represents the actual solution quite well.

General points: There are several useful conclusions that can be drawn from all this. First, motion
capture data clusters well — in the sense that several of the methods we have described cluster motion
capture data, and no significant problems appear to result. This is important, because it isn’t obvious
that useful clusters are available for such high-dimensional data. Second, there is some indirect evidence
that motion graphs can be quite well connected. For example, in the method of Lee et al., there is an
assumption that elapsed time in cluster nodes need not be represented (this means that, when we plan
a motion using the cluster graph, we are assuming that when the motion enters a particular cluster
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node it isn’t going to be stuck there for a very long time before being able to leave the node). This
assumption clearly causes no problems, probably because it is a property of reasonably sized motion
datasets that a motion can move fairly freely between cluster nodes (it’s hard to prove this, but we see
the consequences of this property regularly). Motion ambiguity is partially a result of this phenomenon,
which creates the rich variety of paths; the other part is an apparent sense on the part of motion authors
that relatively few constraints should specify a motion. Finally, low temporal entropy is a phenomenon
that will make a nuisance of itself later; for example, the low temporal entropy of motion is the reason
that one could obtain apparently excellent annotation results by simply labelling every action in every
frame of a surveillance video with “walking”.

4.2.3 Enriching a Motion Collection

Motion graph methods can produce good motions when the data is there. But there will never be enough
motion capture data to make motion graph methods able to cope with very general synthesis problems.
The methods are attractive because it is fairly straightforward to synthesize motions given one has the
data. This has spawned a search for methods that can enrich existing motion collections using what is
known about human motion and (perhaps) physics.

There is not yet a comprehensive understanding of how to approach this problem. Part of the dif-
ficulty is that human motions quite clearly have some properties allowing composition over the body
and over time. These properties are a formidable source of complexity of a form that will defeat naive
data-driven methods — for example, to synthesize an actor walking while scratching with the left hand,
do we really need to see this particular action? does this mean we need to see walking while scratching
with the right hand to synthesize that, too? must we observe scratching different locations with each
hand, too?

4.2.3.1 New Motions by Cut and Paste

Simple methods can produce good results for some composition across the body, but not for all cases.
Ikemoto and Forsyth build new motions from old by cutting arms or upper bodies off one motion and
attaching them to another [169]. Pairs of motions are selected by several different randomized proposal
mechanisms, components transplanted between them, and the two results then presented to a classifier
which attempts to tag sequences that do not look human. The classifier is quite reliable when presented
with motions that are reasonably similar to examples, but tends to be less reliable when presented with
dramatically different motions; this is a difficulty, because the whole point of understanding composition
is to synthesize good motions that are dramatically different from examples.

What is important here is that the classifier is necessary; many such transplants are successful, but
some apparently innocuous transplants generate motions that are extremely bad. It is difficult to be
precise about the source of difficulty, but at least one kind of problem appears to result from passive
reactions. For example, assume the actor punches his left arm in the air very hard; then there is typically
a small transient wiggle in the right arm. If one transplants the right arm to another sequence where there
is no such punch, the resulting sequence often looks very bad, with the right arm apparently the culprit.
One might speculate that humans can identify movements that both don’t look like as though they have
been commanded by the central nervous system and can’t be explained as a passive phenomenon.

4.2.3.2 Motion Fill-in by Nonparametric Regression

Pullen+Bregler
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The idea that motion of one part of the body leaves a signature in the motion of other parts of the
body is confirmed by work of Pullen and Bregler [310], who built a motion synthesis system that allows
animators to sketch part of the motion of the body, and then uses a non-parametric regression method
to fill in the details. Joint angle signals are segmented at local extrema. The segments are represented
at multiple temporal scales. Animators can then sketch part of a motion — for example, hip and knee
angles at a coarse temporal scale — and the system then obtains fragments of joint angle for the other
joints and other scales. These are found by matching the fragments of sketched motion to a motion
capture dataset (allowing a degree of scaling in both time and angle in the matching process). Typically,
there are multiple matches for each fragment. The set of resulting fragments is searched to produce
signals that tend to have as many consecutive fragments — fragments that succeed one another in the
observed data — as possible. These signals may not be continuous (and usually are not, unless the
fragments are consecutive), so discontinuous joins are smoothed using a blending technique. Multiple
motions can result from this process, and it is up to the animator to choose the best.

Other Pullen+Bregler paper

The method produces rather good motions, using examples and motion demands from the same
“type” of activity. Conditioning on the kind of motion appears to be important — one couldn’t reason-
ably expect that it would be possible to synthesize good football motions from observations of dance —
but it is difficult to be precise about what one is actually conditioning on. The fact the method works
can be used as evidence in support of the idea that motions have some form of structure that takes in the
whole of the body. It is probably unwise to use this view to argue against a compositional representation
of motion, because the experiments in the paper don’t establish that there is only one possible path for,
say, the upper body given a particular set of lower body motions.

4.2.3.3 Enriching Motion Collections with Variational Methods

It is not always necessary to enforce that a motion be physical.
SulejmanpaSi¢ and Popovi¢ modify existing motions to obtain revised motions that meet physical
constraints using a full dynamical model [372].

4.2.4 How good is a Motion Graph?

Pollard and Reitsma stuff

work through citations in optimsynth paper-1.pdf
motion editors that preserve physical properties also cited in paper-1l.pdf

In motion interpolation, one attempts to produce motions that interpolate between, or extrapo-
late from, existing motion-capture measurements. A natural procedure is to produce a controller that
can track the measurements and then, when measurements are no longer available, produce motions
by controlling some body parameters. A variety of approaches that make use of physical simulation
have been developed along these lines. Controllers that track motion data provide a useful mechanism
for smoothing recorded errors while also adjusting for disturbances not present in the recorded motion
[106, 306, 432, 433]. Other approaches make use of hand designed or optimized controllers that oper-
ate independently from recorded motion [104, 105, 145, 158, 309]. Building controllers that generate



92 CHAPTER 4. MOTION SYNTHESIS

human-like motion remains an open research problem.
ptr to parametric methods and primitives

4.2.5 The Limits of the Pure Statistical View

The methods we have described so far in this section take what can loosely be described as a statis-
tical view of motion — in essence, we are expecting, usually implicitly, that a model that is good at
representing the motions that one has seen will be good at representing the motions that one will see.
This property of a model and a dataset is known as generalization in the machine learning community,
where quite strong guarantees are available if one has an appropriately representative data set and if the
model adopted meets certain criteria (e.g. see []). There is no reason to believe that these guarantees are
available in the case of human motion; it appears likely that they never will be.

This is a problem that has to do with both data and models.

There is an important issue of datasets here that clouds the picture somewhat. In our opinion, it
probably is the case that many significant motion distinctions are “large” — in the sense that they involve
huge changes in kinematic configuration — and so quite simple clustering and dimension reduction
methods can expose much structure in motion. What remains uncertain is the extent to which the
vocabulary of motions that are well-behaved in this way can be used to encode what one does every day
— current experimental work covers relatively small ranges of motion, because motion data is difficult
to collect in large volumes. Furthermore, it isn’t currently possible to collect data without being intrusive
— there are no collections of motion data that can be said to represent “what people do”. Finally, there
is a significant difficulty with rare motions. In some applications, not encoding a motion that people do
relatively seldom is entirely appropriate (for most animation applications, for example, relatively small
amounts of sensibly collected motion data is quite sufficient). In other applications, one should be able
to encode even very rare behaviours (think contortionist), so that they can be reported.

The compositional confusion

Synthesis and objects

link to kovar and gleicher align and linear smooth
link to safanova hodgins thing at SCA 05
Difficulty of the optimization problem
Introduce with IK; then Witkin Kass, various path editing, hand off to
Gleicher review

Witkin+Kass?

Motion graph methods produce motions with non-parametric models. This is all very well when
appropriate data is available, but the methods have little to say about what to do when there isn’t any
relevant data. An alternative is to build what are, in essence, parametric models. One can do so by
seeing human motion as a physical phenomenon. There is a linkage of body segments, with known
masses, inertias, etc. which moves under some set of physical laws subject to forces that are obtained
either from notions of efficiency (section ??) or from controllers (section ??). Of course, one must then
either determine appropriate notions of efficiency or appropriate controllers to obtain motion that looks
good.
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It remains uncertain how helpful physical constraints are in producing good motions. Instead of
emphasizing the physical aspects of the problem, one could attempt to build statistical models of motion
directly (section ??). Such models are usually built around dimension reduction techniques, which we
review briefly in that section.

The general area of building parametric models of human motion is changing fast. At time of
writing, the most useful results appear to be coming from attempts to enrich sets of observed motions
by building deformations of one form or another that attempt to remain physically viable in a rather
general way. We discuss this strategy in section ??.

4.3 Motion from Efficiency

The motion editing methods we have seen do not require that deformed motions be physical. In fact,
these methods are simplifications that originate in a body of research to generate human motion from
considerations of physical constraint and energy. This work originates with Witkin and Kass, who
introduced the use of variational methods, widely known as spacetime constraints [415].

We have a jointed figure, whose configuration can be represented by some set of parameters q.
These coordinates can be reduced coordinates, where any set of values represents a legal configuration
of the figure — these could be, for example, root coordinates and joint angles. An alternative is to use
generalized coordinates is this right
, where not every choice of values represents a legal configuration of the figure — these could be, for
example, the pose of each separate limb segment; in this case we need constraints to ensure that the limbs
don’t fly apart. The configuration of this figure is subject to some constraints. For example, a figure that
is sliding on the floor will be constrained to have each foot on the floor. This figure is subjected to a set of
forces and torques f. Assume the figure is moving for the time interval /. From mechanics, the motion
of this figure achieves an extremal value of the time integral of the Lagrangian (see, for example [?, ?,
?, ?]). We write the Lagrangian as L(f(¢), q(t), A, t), where X are the Lagrange multipliers (which can
be interpreted as the coefficients of generalized workless constraint forces that ensure the motion meets
the constraints). Some constraints are dynamical constraints (which refer to forces, torques, momenta
and the like); we shall write this set as D.(f, q, A\,#) = 0 and D;(f, q, A, t) < 0. Others are kinematic
constraints (which constrain configuration); we shall write this set of constraints as K.(q,t) = 0 and
Kz’ (q, t) <0.

Let us confine our attention to an interval where we know which kinematic constraints are active
(i.e. which components of K; are equal to 0), and write the set of active kinematic constraints including
all the equality constraints as P(q,¢) = 0. Write the remaining set of kinematic inequality constraints
as P;(q,t) < 0. Any physical motion extremizes the Lagrangian subject to these constraints, and,
from variational calculus, we obtain the Euler-Lagrange equations, which are differential equations
satisfied by any motion that does extremize the Lagrangian. We adopt the notation where differentiating
by a vector results in a vector of derivatives with respect to each component. Write the Euler-Lagrange
equations as

d( 4L
B(f,q,\t) =0 = W) oL yror g
P(q,?)

Notice that we now have algebraic equations that constrain derivatives. Equations of this form are
known as differential-algebraic equations; they have a (well-deserved) reputation for creating nasty
numerical problems (a fair place to start is [152, 153]).
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Now we wish to choose a motion that meets the dynamical constraints, and where some other
criterion — which might measure, for example, work — is extremised. Write this criterion as

[ Gla g
The problem becomes

Maximize / G(q,f, A t)dt

Subject to:
E(f,q,\,t) = 0
D.(f,gq,\,t) = 0
Di(f,q,\t) < 0

Pi(q,t) < 0

Witkin and Kass did not use the idea to generate human motions, but demonstrated very attractive
animations of a bouncing lamp produced using this method. There are very serious practical difficulties
in producing animations of human motion like this. The actual minimization process might be extremely
difficult. In fact, there is no prospect of getting a useful result by simply dropping this problem into a
commercial optimization package. The state space has complex geometry caused by the internal degrees
of freedom, joint limits and the like. Contact and frame constraints can produce unpleasant feasible sets,
and one should expect the problem not to be convex. One must encode the function x(¢) with some
finite dimensional parameter space, and the choice of encoding may create difficulties; for example,
contact constraints tend to produce quite high frequency terms in the motion signal (or, equivalently but
rather easier to observe, smoothing the motion signal tends to lead to footskate). There is some reason to
believe that a coarse-to-fine representation is useful [226]. One may simplify optimization difficulties by
choosing simplified characters (e.g. [388, 308, 307, 106]; freefall diving is a particular interest [76, 225])
or by exploiting interaction with an animator (e.g. [74]). Ngo and Marks produce motions for quite
complex characters using spacetime optimization by building motions out of stimulus-response pairs
— parametric packets of motion that are triggered by some parametric test ([270, 269]; see also [239]
for other motions built out of packets). The precise set of packets, and the parameters of those packets,
are chosen using search by a genetic algorithm (see also the work of Sims [348]). There is no claim that
these motions necessarily appear human.

The choice of objective function can affect the resulting motion and is by no manner of means
obvious. It is occasionally asserted that human motion should minimize some choice of mechanical
energy. One should place little weight on this idea for most motions because there are too many other
important considerations that shape how we move. For example, Wu and Popovié need a specially
crafted objective function that allows for the enormous energy expenditure required at takeoff to obtain
convincing bird flights [72]. As another example, the energy saved by using a slow reaching motion
might be far outweighed by that lost by getting to the target fruit too late. For that matter, even more
energy could be saved by not moving at all; but at some cost.

For these reasons, spacetime optimization has not to our knowledge been used to generate complete
human motions over long periods. The closest to doing so is the work of Rose et al., who generate
motion transitions — short sequences of motion that join specified frames “naturally” — using an
optimization procedure that minimizes the total squared torque moving the upper body [321]. The legs
are controlled kinematically, using either manual or automatically supplied constraints for footplants.
Spacetime optimization has, however, been of tremendous value in deforming existing motions.
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4.3.1 Simplified Characters, Modified Physics and Reduced Dimensions

Popovi¢ and Witkin use characters with simplified kinematics, and model muscle forces explicitly (the
muscle is modelled as a proportional-derivative controller attempting to drive a degree of freedom
to a setpoint) [308]. Their method produces physically plausible motions that meet constraints and are
close to observations. They represent major features of motion using handles — vector functions of
configuration, typically a map onto some lower dimensional space, the details of which vary between
applications. For example, if one wished to ensure a motion preserved contact, appropriate handles
might be the position of points on the figure. A spacetime optimization is used to fit the simplified
model to observed motion data, resulting in handles hy(qs); a second spacetime optimization produces
a simplified model that meets the constraints with handles hy(q;); and the handles for the observed data
are h,(q,). They now seek to produce a final motion ¢y with handles hy(qs) = h,(q,) + (h¢(q;) —

h,(qs)) (that is, displace the handles of the original motion with a displacement computed from the
simplified figure).

They do this by optimizing an objective function that penalizes mass displacement, which is com-
puted as a sum of squared magnitudes of differences in positions between corresponding sample points
on the final motion and the observed motion, weighted by the mass at that sample point. As a result,
degrees of freedom in the final animation that are not constrained by the handles are derived from the
original motion. The optimization is constrained by the requirement on the handles (above) and phys-
ical constraints on the motion. The parameters are configuration and muscle demands. The spacetime
method appears to benefit considerably from the relatively few degrees of freedom in the simplified
character and the presence of an initial point (the observed motion).

Liu and Popovié¢ produce character animations from rough initial sketches using an optimization
method by breaking the motion into phases, simplifying the physical constraints, and, where necessary,
exploiting the animator’s input [221] They then identify transitions — where the figure moves from one
set of constraints applying to another — and require the animator to provide frames for these transitions,
which tend to be a particular source of difficulty for optimization methods. They must now produce a
series of motion clips to fill in between these transitions. There are two important cases: ballistic
motion, where there is no contact — the body is in flight, as in jumping, diving, etc. — and constrained
motion, where there is some contact. In ballistic motion, if we use reduced coordinates, then all external
forces are due to gravity (so the acceleration of the center of mass is g) and angular momentum is
conserved. Constrained motions are required to have a momentum curve of a particular form (figure 4.4),
which is consistent with biomechanical observations.

The objective function is a sum of three terms: a measure of mass displacement ; a measure of
coordinate velocity, which penalizes large changes in the degrees of freedom to enforce frame-frame
coherence; and a measure of static balance, which penalizes large distances between the center of mass
and the location of point constraints. The objective function and the constraints are functions of q(¢)
(and its derivatives) and the control points for the momentum curve. The method does not constrain
forces or torques at joint, and they do not participate in the objective function, which means that they
can be ignored (this doesn’t mean the motion isn’t physical; it means that we assume that the body will
supply whatever internal forces or torques are required to follow the motion path). Abe et al.drop the
mass displacement and coordinate velocity terms in favour of a similarity term, and use a variety of
different momentum profiles to produce further variations on motion capture data [1].

There is a real advantage to not constraining forces and torques and not allowing them to participate
in the objective function: one does not need to compute them. This means that computing various
Jacobians that arise in the optimization procedure can be made linear (rather than quadratic) in the
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Figure 4.4: Physicalsmoothing/paper1.pdf, figure 6 The angular momentum curve for a whole motion
for the method of Liu and Popovi¢ [221], showing total angular momentum as a function of time. The
motion before py and after p, is ballistic, so the total angular momentum is a constant. The form of
the momentum curve is taken from biomechanical models [282, 199]. The form is imposed by smoothly
interpolating pi1, pa, ps and py, requiring that ps < p1, da < dy and (p2 — p4)(p3 — pa) < 0. Figure 4.5
shows a motion obtained using this method.

number of degrees of freedom, as Fang and Pollard show [107].

4.3.2 Start Points
4.3.3 How to Build Objective Functions

Liu et al.show a method to obtain simulation parameters from examples [220]. They build a full physical
simulation of a jointed body with 18 nodes, 29 joint DOF’s and 6 root DOF’s, with passive effects at
each joint

4.4 Controllers

4.4.1 Motion Blending

The space of human motions: For the moment, let us adopt some encoding of the state of the body
(the details don’t matter for this discussion, but we’d expect to see the configuration of the root, the
configuration of the body relative to the root, velocities and most likely accelerations in this encoding).
Because segment lengths don’t vary, because velocities are limited and because there are torque limits,
not every point in this state space represents a legal motion. It is useful to think of the legal motions
as forming a “sheet” in this space. We make no claim on the topology of this object, not even that it
is a manifold. We can think of motions as functions from time to this space. These functions must
meet some obvious constraints — for example, velocities computed as time derivatives of kinematic
configuration need to be the same as corresponding velocities recorded in the state vector. We expect
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Figure 4.5: Physicalsmoothing/paperl.pdf, figure 6 Top: a motion demand supplied by an animator
and bottom a motion synthesized using the procedure of Liu and Popovt' [221]. The motion is obtained
by (a) inferring constraints from the demand; (b) extracting transitions from an animator; and then (c)
computing a set of clips that meet these transitions and the inferred constraints, have angular momentum
curves of the form of figure 4.4 and extremize an objective function that penalizes mass-displacement,
coordinate velocities, and out-of-balance configurations.

other local constraints, too, resulting from torque limits and the like. There should be some form of
structure at long time scales — we know, for example, that it is possible to walk backwards for long
distances, but that it is very seldom done — but not much is known about these constraints (we discuss
the matter in section ??). We can represent the space of human motions by all acceptable functions from
time to our space. It is difficult to make this model more precise, but in the form described it is already
useful.

Assume we have two legal states x; and x5 that are close. For many such pairs (though not for all —
see figure ??) we can expect that states that lie on the line segment joining them are also legal. Another
way to put this point is that, if the two states are sufficiently close, then the vector 3% — x; should lie
on the tangent space at x;. Now assume we have two observed motions fi(¢) and f5(¢), which run for
similar time periods and are sufficiently similar to one another (it is not known how to be precise what
this means). We expect — and can observe in data — that repeated versions of the same movement
have slightly different temporal parametrizations. For example, each step of a walk can take a slightly
different span of time. This means that we will need to massage the temporal parametrization. Assume
we can place states in correspondence by a small — again, it isn’t currently possible to be precise —
change in temporal parametrization 7(¢), so that f; (¢) is close to fo(7(¢)). Under these circumstances,
we can expect that f;(¢) — f5(7(¢)) lies close to the tangent space to the space of human motions (it
would be on the tangent if we defined what small meant, divided by size, and took an appropriate limit
— but it isn’t currently easy to be formal about this).

Using tangents to the space of motions: The attraction of finding tangents — or near tangents
— to the space of motions is that adding a small amount of a tangent to a motion will most likely
result in a good motion. Bruderlin and Williams describe several constructions that identify plausible
tangents [56]. They operate in joint angle space, meaning that issues with the root, described below, are
hidden but not non-existent. The first potential tangent they identify is £ (¢) — £ (7(¢)) — equivalently,
they observe that small temporal scaling of a good motion usually results in another good motion, with
perhaps a difference in style. A second plausible tangent involves adding a small offset to joint angles.
This is difficult to represent usefully in our notation because we haven’t been precise about what’s in
x; however, the observation that adding joint offsets can result in good motions is confirmed in, for
example, [169]. Again, it simply isn’t known what offsets will and won’t work; Bruderlin and Williams
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rely on an animator to look at the motion. A third plausible tangent involves linear filtering of joint
angles. Again, some filters work and some don’t, but an animator can look at the motion. Finally, they
identify the tangent f; — f5(7(¢)). This tangent allows blending — for at least some values of \, we
expect that

f1 + )\ (fl — fQ(T(t)))

is a good motion. In fact, the blending weights can change with time without creating a problem; this
may offer some more insight into the structure of the tangent space.

Kovar and Gleicher align multiple motions using monotonically increasing functions of time, ob-
tained using dynamic programming [202]. The motions are then blended linearly. However, doing all
this requires careful handling of the root. If our representation contains the root, then we will be able
to blend very few motions because even motions that are similar may occur in different places, which is
clearly a waste of data. However, we cannot simply strip every frame of root information, because the
root path is often quite strongly correlated with the body pose. For example, people use different gaits
for fast and slow translational movements. As another example, an actor trying to move quickly along a
root path with a sharp kink in it typically makes a form of braking and pivoting step.

The solution seems to be to (a) ignore root information for the whole sequence (rather than per
frame) and (b) allow small deformations of the root paths so they line up with one another. One could
think of this as identifying fi(¢), f2(¢), 7(¢) and a rigid body transformation 7 (¢) such that f (¢) —
T15(7(t)) is small. Kovar and Gleicher do this by first identifying 7(¢) by minimizing a Euclidean
invariant distance function on the frame representation using dynamic programming, and then obtaining
7 (t) by transforming frames to align.

4.4.1.1 Difficulties with Blending

Assume we have two motions both captured at the same frequency. Both contain temporally localized
large accelerations (for example, they might be grabbing or hitting motions). The temporal parametriza-
tion of the motions is slightly different, meaning that the samples are aligned slightly differently in time
with respect to the motions. Even at the best possible time alignment, if we blend these motions we
expect to lose some of the structure at high temporal frequencies — which would be the large acceler-
ations. The result is a motion that can be “squashy” in appearance and can lose its temporal crispness.
This problem doesn’t always occur, and might be manageable if one is careful (for example, it might
be worth reconstructing motions using some form of interpolation, resampling at very high frequencies,
then aligning the resampled motions). A version of this problem occurs for dimension reduction meth-
ods, too. figure

Reparametrization, Prolonged Actions, and Tangents

pl05-park, locomotion based on blending

4.4.2 Motion Primitives

Our very rough model of the space of motions above doesn’t really take long time structure of motions
into account. Such structure is evident in how people move on a daily basis. One can walk backward
for long distances, but one doesn’t; one can intersperse; for that matter, some can walk on their hands,
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but few do for long periods. This sort of structure needs to be thought of in terms that are probabilistic,
rather than deterministic (because the semantics are that one could but one tends not to).

A natural method for building models of motion on these time scales is to identify clusters of motion
of the same type and then consider the statistics of how these motion primitives are strung together.
There are pragmatic advantages to this approach: we can avoid blending between motions that are
obviously different; we can model and account for long term temporal structure in motion; and we
may be able to compress our representation of motion with the right choice of primitive model. There
is some neuroscientific evidence that motor activities are encoded using motor primitives of one form
or another (for example, see []). In animation, the idea dates at least to the work of Rose et al., who
describe motion verbs — our primitives — and adverbs — parameters that can be supplied to choose
a particular instance from a scattered data interpolate [320]. The verbs appear to be chosen by hand;
within a particular primitive, motions are aligned (c.f. section ??) and then a scattered data interpolate
produces an instance. There is a verb graph which gives the combinatorial structure of how verbs can
be joined up.

4.4.3 Primitives by Segmenting and Clustering

Primitives are sometimes called movemes. MatariC et al. represent motor primitives with force fields
used to drive controllers for joint torque on a rigid-body model of the upper body [236, 237]. These
force fields have a stationary point at a desired hand configuration; different force fields can be su-
perposed to obtain different endpoints. The primitives appear to be chosen by hand. The motions are
3D motion captured arm movement; segment boundaries are obtained by looking for points where the
sum of squares of velocity at all joints is small. Del Vecchio et al. define primitives by considering
all possible motions generated by a parametric family of linear time-invariant systems; if a split of the
parameter space results in two sets of motions that are always distinct, that split can be used to derive
primitives [397]. The definition of the primitives results in a segmentation algorithm, and authors show
that reaching and drawing motions can be distinguished in this framework.
pointer to primitives/01024148 - which is recognition based on primitives

Perona’s primitive stuff

There is quite a lot of evidence that motions segment and cluster well — meaning that one can
use various segmentation and clustering processes as intermediate steps in motion synthesis, without
serious difficulties resulting. This is not something one would expect, given the dimension of most
motion representations. Barbi¢ et al.compare three motion segmenters, each using a purely kinematic
representation of motion [21]. Their principal components analysis (PCA — see, for example, [120] for
this useful standard technique) moves along a sequence of frames adding frames to the pool, computing
a representation of the pool using the first k principal components, and looking for sharp increases
in the residual error of this representation. Their Gaussian mixture model segmenter regards frames
as IID samples from a Gaussian mixture model, then computes the mixture component from which a
frame arises. Their probabilistic PCA segmenter works like the PCA segmenter, but obtains a normal
probability density from the principal component analysis and then compute the Mahalanobis of new
frames from the mean of this model; this segmenter appears to be the best of the three. While there is
no agreed way to evaluate a motion segmentation, Barbi€ et al.report segmentations that look good. For
our purposes, the most significant point here is that distinct movements tend to be dramatically distinct
— one doesn’t need to look at fine details of dynamics to segment such motions as “walk”, “stand”,
“sit down” and “run”.
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Dimension Reduction: It is natural to expect that any primitive structure in motions could be ex-
posed by reducing the dimension of the data. Furthermore, dimension reduction methods could yield a
conveniently compressed encoding of a motion primitive. Fod et al. construct primitives by segmenting
motions at points of low total velocity, then subjecting the segments to principal component analysis and
clustering [114]. Jenkins and Mataric segment motions using kinematic considerations, then use a vari-
ant of Isomap (detailed in [181]) that incorporates temporal information by reducing distances between
frames that have similar temporal neighbours to obtain an embedding for kinematic variables [182].
They cluster in the resulting space to obtain motion primitives over short temporal scales, then apply
isomap again to obtain primitives on longer temporal scales; they report plausible motions.

There is other evidence that relatively few measurements can yield the kinematic configuration of
the body — that is, that a low dimensional representation of configuration applies. Chai and Hodgins
demonstrate a form of video puppetry — where an animated figure is controlled by observations of
an actor — using relatively few markers; this approach most likely works because motions tend to
be confined to a low dimensional subspace [?]. Safanova et al.are able to produce plausible figure
animations using optimization techniques confined to a low-dimensional space (see [?], figure ?? and
section ??).

Safanova figures 2 and 3; dimensionreduction/lowdoptim
Pollard low dimensional stuff
Perhaps Zordan’s controller here
Problems with dimension reduction

4.4.3.1 Linking Segmentation to the Primitive Model

Segmentation and encoding should interact — we can reasonably expect a good segmentation results in
good primitives, but the other way works, too; if one has a good representation of each particular prim-
itive, that could drive segmentation. This is now a commonplace in the machine learning community.
Li et al. segment and model motions simultaneously using a linear dynamical system model of each
separate primitive and a Markov model to string the primitives together by specifying the likelihood of
encountering a primitive given the previous primitive [216]. For the moment, assume the segmentation
is known and we wish to identify a primitive from some set of observations that have been determined
to come from that primitive. We assume that each primitive consists of a sequence of observations Y,
each generated by a hidden state x,. We would like the system to have second order dynamics so that the
model takes accelerations into account; this is equivalent to assuming that 3 is a linear function of ;1
and x;_o. We can obtain a Markovian model by stacking two state vectors to obtain X; = [xy, xt_l]T
The model of each primitive now takes the form

Xy = AXi1+Vy
Y: = B:X;+ W,

where V; and W; are normal random variables with known mean and variance. Notice that 4 will
have the form

( i1 Z0 )

(so that one has the right behaviour from the stacked components of the state vector). You should
compare this model to the HMM'’s used for tracking; we have the same model, but now we wish to
obtain the values of A and B from observations of Y, rather than estimate the states. The difficulty
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here is that the model is not uniquely specified in this form. For example, assume that G is a sequence of
matrices of full rank, then the state sequence Xt = (¢ X, taken with matrices A;C; Land BiC, ! has the
same likelihood. Li ef al deal with this by insisting that the states be the projection of the observations
on to a subset of the principal components of the observations, and can then estimate .4 and 3; with
maximum likelihood.

Of course, the segmentation is not known. We will estimate the segmentation and primitives to-
gether with an iterative procedure: fix the primitives, estimate the best segmentation; now re-estimate
the primitives with that segmentation; etc. This mirrors EM, but one is now using the maximum likeli-
hood segmentation conditioned on the primitive parameters as an estimate of the expected segmentation
conditioned on the parameters. The segmentation can be obtained with dynamic programming (Li et
al. assume that each primitive emits at least 60 frames, which complicates the representation only very
slightly). To see that the best segmentation of some sequence of length N into M primitives of length
no shorter than L is available using dynamic programming, we build a graph whose nodes consist of
statements that frames 7 to ¢+ k of the sequence were produced by primitive j; there can be no more than
N?2M such nodes. Each node is labelled with the negative log-likelihood of the relevant sequence under
the relevant dynamical model. There is a directed edge from each node to any node that can succeed
it, labelled with the negative log-likelihood that the one primitive follows the other under the Markov
model. We now obtain the minimum value path through this (acyclic, directed) graph using dynamic
programming.

The resulting model can be used generatively to produce new motions. Li ef al. obtain their best
results by specifying the body configuration at each change of primitive — so that the model interpolates
between these frames. This avoids phenomena like drift (which must occur because of the random noise
component) causing minor but annoying effects like the feet floating above or below the ground.



102 CHAPTER 4. MOTION SYNTHESIS



Chapter 5

Describing Activities: Fundamentals

ontologies and non-parametric methods
intentions
linguistic ideas

Understanding what people are doing is one of the great unsolved problems of computer vision.
A fair solution opens tremendous application possibilities, including: improved surveillance systems; a
better understanding of what people do in public; better architectural design; and better human computer
interfaces. We argue that the time is right for substantial advances in the understanding of this area, and
propose to use existing tools from the speech and object recognition community to achieve them.

While there has been extensive study of this topic, it still isn’t terribly well understood. One can ob-
tain statistics of some behaviours from coarse scale tracks (e.g. for car parks, see [371]; for architectural
domains, see [422]). But understanding activities that depend on detailed information about the body
is still hard. We contend that the major difficulties have been (a) that good kinematic tracking is hard;
(b) that models typically have too many parameters to be learned directly from data; and (c) for much
everyday behaviour, there isn’t a clear taxonomy into which to classify observations.

There is a long tradition of research on interpreting activities in the vision community (see, for
example, the extensive survey in [164]). There are three major threads. First, one can use temporal
logics to represent crucial order relations between states that constrain activities. Second, one can
use spatio-temporal templates to identify instances of activities. Third, one can use (typically, hidden
Markov) models of dynamics.

5.1 What should an Activity Representation do?

It has been recognized for some time that there are other helpful distinctions (e.g. Bobick [37] distin-
guishes between movements, activity and actions, corresponding to longer timescales and increasing
complexity of representation; some variants are described in two useful review papers [3, 130]). First,
we distinguish between short, medium and long timescales. Second, we distinguish between motions
that can be sustained (walking, running, waving) and motions that have a localizable character (catch,
throw, punch, kick). Since we want our complex, composite motions to share a vocabulary of base units,
we use the kinematic configuration of the body, limb velocities, and perhaps accelerations as distinctive
features at short timescales — which might be of the order of a small number of frames. We define
acts to be frame labels that can be decided on such very short timescale features — such labels, (for
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example, walk-right-leg-stance-left-leg-swing) tend not to have directly useful semantics.

At medium timescales, we have activities — motions like walking, running, jumping, standing,
waving, whose temporal extent can be short (but may be long); such motions are typically composites
of multiple acts. Furthermore, activities can be sustained for long periods. We use the term actions
for motions that have a localizable character and require medium timescales to identify. Both actions
and activities may be difficult to identify with only a few frames but are relatively easy to identify from
hundreds to thousands of frames. Both actions and activities allow a degree of composition — for
example, one could walk and scratch at the same time.

One’s interpretation of a view of moving humans is strongly affected by objects nearby. For ex-
ample, a person standing in an isolated field may be behaving strangely; the same person in the same
configuration next to a bus stop is waiting for a bus. We believe that the most natural level at which to
start inserting considerations of context into activity recognition is that of activities — where one can
pool object detector responses over a long enough sequence of frames to expect quite good behaviour
— and define the next layer of the representation to be motions in context. Context applies to both
activities and actions. These occur at medium timescales, but the nature of the motion in context is
determined by both the actions in the sequence and the response of object detectors. We use the term
behaviour to cover motions at long timescales — typically, behaviours such as fighting, exercising or
visiting an ATM might be composed of a selection of different motions in context, linked up by ac-
tivities, and organized in a variety of possible ways and meeting a variety of constraints on temporal
ordering.

Our goal is a theory and mechanism for recognizing a wide range of behaviours. There are some
important constraints on solutions to this problem. First, we expect that typical behaviours are a com-
posite of many activities, and this composite is not unique — the same behaviour may be represented
by multiple sequences of actions, as long as these sequences observe an internal structure. For example,
one may scratch or groom at any time while visiting an ATM, but one must type a PIN before retrieving
money, and insert a card before typing a PIN (notice that one can’t retrieve a card before inserting it,
but at some machines one might retrieve the card before typing a PIN; at others, the card is retrieved
after typing the PIN and before recovering money). Each activity may itself be one of several different
composites of multiple actions, in the same way. Each action might also have compositional properties
— for example, one may walk with three-quarters of one’s body while scratching with the fourth limb.
The modelling strategy must respect both this hierarchical structure and the compositional nature of
motion.

Second, we expect that there is not labelled data for each possible case; we cannot simply learn
models without any human interaction. This applies to models of actions, activities and behaviours.
This difficulty is created by the compositional nature of human motion; the sheer richness of available
motions defeats pure data-driven strategies. An important criterion for choosing a modelling strategy is
that it be easy for humans to author and to assess rich models quickly. Such models should be amenable
to parameter learning from data, but it should not be necessary to see an example of every possible
instance of a behaviour to build a model.

Third, we expect that the supervised data that is available may be marked up somewhat inaccurately.
Typically, a behaviour will be marked up with activity names (an activity with actions, respectively), but
the boundaries of the markup are unlikely to be accurate. We expect the learning algorithm to be robust
to some segmentation noise.

Finally, we expect that basic activities with the model — model building, composition, and inference
— be relatively straightforward. In this, we follow the experience of the statistical natural language
community, that trading expressiveness in models for simplicity of authoring and inference is often
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advantageous.

Constraints on Data: An important part of design here is to keep into account what kinds of data
are easy to obtain and what difficult, so as to plan model authoring around what is practical. Experience
suggests that it is possible to get from minutes to hours of reasonable quality motion capture data;
relatively few minutes of video labelled as to actions (these labels are very difficult to produce because
they require frame accuracy); minutes to hours of video labelled in reasonable detail with respect to
activities and behaviours, accepting poor temporal resolution in the labels; and of the order of months
of public observation video. It is relatively straightforward to look at large volumes of labelled motion
capture data and correct labels, not least because one can observe many frames simultaneously (e.g.
see [12]).

One important source of difficulty is that it is hard to tell which aspects of behaviour should be
modelled accurately in order to perform useful tasks. Resolving this requires (a) study of ideas in
sufficient generality that they transfer between tasks and (b) some example tasks. But the selection of
example tasks is not innocuous. In particular, a distinctive feature of everyday activity is the number
of behaviours that appear familiar, but for which the observer may not know a word or even a compact
description. In contrast, in some domains (e.g. ballet [61]; gymnastics [8];tai chi [45, 50]; tennis [373];
walking [62]) there are quite specific vocabularies that refer to very precisely delineated behaviours.
This is an advantage for building demonstration systems, because one can evaluate them, but may avoid
the real difficulty, which is that for most activities we want to classify the activity without knowing a
precise or canonical set of classes.

5.2 Methods based around temporal logics

Pinhanez and Bobick [290, 291] describe a method for detecting what we have called behaviours using
a representation derived from Allen’s interval algebra [9], a method for representing temporal relations
between a set of intervals. One authors a description of the behaviour in terms of primitives, which
are indivisible and occupy temporal intervals. The description incorporates a set of legal relations be-
tween the primitive intervals; a description is consistent if at least one set of intervals, together with an
allocation of those intervals to primitives, satisfies it. One determines whether an event is past, now or
future by solving a consistent labelling problem, allowing temporal propagation. There is no dynamical
model — sets of intervals produced by processes with quite different dynamics could be a consistent
labelling; this can be an advantage at the behaviour level, but probably is a source of difficulties at
the action/activity level. Papers do not show the method applied to noisy detectors; there are results
using simulated detectors on real data. Siskind [350, 349] describes methods to infer activities related
to objects — such as throw, pick up, carry, and so on — from an event logic formulated around a set
of physical primitives —- such as translation, support relations, contact relations, and the like — from
a representation of video. A combination of spatial and temporal criteria are required to infer both
relations and events, using a form of logical inference.

The methods are focussed on activity representation, and do not use real video data; there is no
mechanism to account for missing or noisy interpretations of video.

5.3 Methods based on Templates

The notion that a motion produces a characteristic spatio-temporal pattern dates at least to Polana and
Nelson [296, 297, 299, 300, 305]. Spatio-temporal patterns are used to recognize actions in work by
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Bobick and Davis [38] and Davis and Bobick [87]. Ben-Arie et al [30, 29] recognize actions by first
finding and tracking body parts using a form of template matcher and voting on lifted tracks; the tracks
are lifted to 3D and a spatio-temporal representation of each body segment votes separately for an
action. The action with the most votes is chosen. The method is successful, and has the advantage that it
is robust to composition — if all but the left arm is walking, the action will still be recognized. However,
the vocabulary consists of eight items (jump, kneel, pick, put, run, sit, stand, walk) and the vocabulary
cannot be composed. An alternative is to match gestural information directly, incorporating a timewarp
to improve the match. Bobick and Wilson [39, 40] use a state-based method that encodes gestures as a
string of vector-quantized observation segments; this preserves order, but drops dynamical information.
The advantage is relatively fast training.

5.4 Hidden Markov Models and Finite State Representations

Hidden Markov models (HMM’s) pervade studies of motion, gesture and activity, and a complete review
of their applications here may now be impossible. HMM’s are models of sequences, and at their heart is
a clock. One has a set of hidden states; at each tick of the clock, a Markov process chooses a new state,
dependent on the previous state and nothing else; and an emission process produces an observation
from the new state. There are clean solutions for the standard problems of learning (determining an
appropriate state transition model and emission model for a given state model) and inference (determine
which hidden states occurred given a set of observed states). HMM’s have been used for understanding
human behaviour but typically with quite small state models.

Very large state models are common in speech recognition, where HMM’s have been hugely influ-
ential. We do not propose to engage in speech research, and so do not review the area here. It is purely
a source of inspiration by analogy. Viewed from a great height, a typical speech system has a series of
components: a language model showing how words are built up into sentences; a pronunciation dictio-
nary, giving sequences of context independent phones that correspond to words; a context dependency
model, showing how local influences produce context dependent phones (cphones hereafter) from con-
text independent phones; an acoustic observation model showing how acoustic observations result from
context dependent phones (this is an extremely compact description of a highly sophisticated area; more
extensive descriptions appear in [180, 312]). The resulting object is a vast HMM — in our example,
states can be thought of as being tagged with word-cphone-phone-sample — to explain each sample.

This HMM has some important, attractive features. Learning and authoring can be broken into
tractable subproblems — the language model might be learned with one kind of dataset, the pronunci-
ation dictionary with another — and as a result, we obtain an HMM on a massive scale, but with little
difficulty in authoring it. While the state space is so big that dynamic programming must be sacrificed
for a beam search, the state transition model is not impossible to learn, because most state transitions
don’t occur. Furthermore, the model is forced to share parameters in important ways — a phoneme in
one word has the same model as that phoneme in a different word. The currently dominant method for
authoring such models involves finite state transducers (section ??); we propose to adopt this approach.

Finite state models have had considerable success in the speech and language community. We
introduce some terminology here, from the reviews by Mohri and others [254, 253, 252]. A finite state
automaton is a directed graph, whose nodes are known as states. There is at least one final state and
one initial state; each edge is labelled with an element of an alphabet. The automaton accepts any string
corresponding to a path from an initial state to a final state. In a finite state transducer, transitions are
labelled with both an element of an input alphabet and an element of an output alphabet; any string



5.5. ACTIVITY RECOGNITION METHODS BASED AROUND HMM'’S 107

accepted by the transducer results in a string of output symbols, and so the transducer can be seen as
representing a relation between families of strings. Transducers (representing relations between strings)
can be composed, and there are efficient algorithms for computing the composition of two transducers.

In a string-to-weight transducer, the output alphabet consists of weights (typically, in a semiring
or better; non-negative reals with addition and min is common, because it corresponds to the case of
Viterbi and negative log-probabilities); there are initial and final weights. If a string-to-weight transducer
accepts some string, its output for that string is defined as the minimum sum of weights over the paths
accepting the string. Particularly attractive are subsequential string-to-weight transducers, where there
is only one path accepting any given string. Not all transducers can be transformed to this form; there
are algorithms for this process, known as determinization when it is possible. Furthermore, there are
minimization algorithms, that can produce the unique (up to automorphism) smallest transducer that
implements the same set of mappings as a given transducer.

Each of the components of a speech architecture (language model; a pronunciation dictionary; con-
text dependency model; acoustic observation model) is a string-to-weight transducer. In principle, one
could compose the lot to produce a single, enormous string-to-weight transducer, determinize it, min-
imize the result, and search that (this is equivalent to recognizing that, in the final analysis, the com-
position of each component produces an HMM with an enormous state space). In practice, the object
involved is far too large. Instead, one uses a beam search to produce a reduced string-to-weight trans-
ducer (the word lattice) that contains a reduced pool of higher probability paths. Determinizing and
minimizing this transducer is practical and useful; the result is very much faster searches.

There are two reasons that this material is of interest to us. First, the trick of reducing a speech sig-
nal to a (determinized and minimized) word lattice produces a highly compact representation of a large
number of different transcriptions (each corresponding to a path through the string-to-weight transducer)
that is easy to search and manage. We argue below that we can produce act, action and activity mod-
els which will allow reduction of video to an action/activity lattice with the same attractive properties.
Second, a finite state automaton (whose states represent actions and activities) is a reasonable represen-
tation for a behaviour. If one determinizes and minimizes this, standard algorithms allow one to identify
weights associated with instances of such a transducer in a word lattice extremely fast (we have used
this idea in a vision context to produce fast searches for words in mediaeval latin handwriting [102]).
This means we should be able to engage in fast searches for behaviours.

LeCun et al identify other useful building blocks associated with finite state models [209]. Their
graph transformers take (weighted directed) graphs as inputs and produce graphs as outputs; an example
of a transformer would be composition with a fixed transducer. Particularly useful is the idea of a Viterbi
transformer, a process that (using our terminology) takes a string-to-weight transducer and applies a
beam search to produce a reduced string-to-weight transducer which is effectively a word lattice. They
demonstrate that gradient based learning can usefully be applied to architectures of such objects.

5.5 Activity Recognition Methods based around HMM’s

HMM’s have been very widely adopted in activity recognition, but the models used have tended to be
small (for example, one sees three and five state models in [45, 50]). Yamato et al. describe recognizing
tennis strokes with HMM’s [421]. Wilson and Bobick describe the use of HMM’s for recognizing
gestures such as pushes [412]. Yang et al use HMM’s to recognize handwriting gestures [?]. Feng and
Perona [111] call actions “movelets”, and build a vocabulary by vector quantizing a representation of
image shape, as a collection of rectangle, varying over time. These codewords are then strung together
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by an HMM, representing activities; there is one HMM per activity. We can then identify a new video by
computing the image representation for each frame, obtaining the movelets, and choosing the particular
model that generated the keyword sequence by a form of maximum likelihood. The method is not view
invariant, depending on an image centered representation.

There has been a great deal of interest in models obtained by modifying the HMM structure. The
intention is to improve the expressive power of the model without complicating the processes of learning
or inference. Brand et al use coupled HMM’s (CHMM’s), which involve some number of simultaneous
HMM’s operating to the same clock, where the choice of a particular model’s hidden state is affected
by all other model’s states [45, 50]. Such an object is clearly itself an HMM, but authors demonstrate a
training method that reduces the number of parameters to learn by coupling but with very much enlarged
state space; however, instead of estimating the parameters of that object, one projects the parameter
estimates to transition parameters for each separate model. This means that one learns parameters for
each separate model that tend to couple the two models. They show these models can distinguish
between a set of T’ai Chi moves.

Oliver et al [275, 274] represent behaviours using layered hidden Markov models (LHMM’s). These
models involve a bank of HMM’s at the lowest level, each generating some portion of the observation.
The observations at higher levels are the maximum likelihood hidden state sequences for the lower lev-
els. One then obtains for each HMM the maximum likelihood hidden state sequence. At the next level,
the observations are these states, and this continues recursively. The resulting object is an HMM, but
of complex structure; the LHMM form offers authoring advantages. This representation outperforms a
straightforward HMM in recognizing such activities as phone conversation from both vision and acous-
tic data.Similarly, Mori et al build a hierarchical representation out of HMM’s to recognize everyday
gesture [258].

Wilson and Bobick [413] use a form of HMM where an unknown, global parameter applies to all
emission models (which they call a parametric hidden Markov model or PHMM) to model gestures with
a parametric form (such as might accompany “it was this big”). Data is from stereo or a Polhemus. There
are recognition results for classes of gesture such as pointing. Kettnaker and Brand [195](also, Brand
and Kettnaker, [49]) fit an HMM while penalizing model entropy; this tends to reduce the number of
non-zero parameters, so that one can fit models with quite large state spaces satisfactorily (such models
are sometimes known as Entropic HMM’s or EHMM’s). Galata ef al. use variable length Markov
models (VLMM’s: a model that generates a state stochastically based on a variable but bounded length
history) to encode behaviour and obtain a reduction in perplexity by doing so [123, 124].

Building variant HMM’s is a way to simplify learning the state transition process from data (if the
state space is large, the number of parameters is a problem). But there is an alternative — one could
author the state transition process in such a way that it has relatively few free parameters, despite a very
large state space, and then learn those parameters.

Finite state methods have been used directly. Hongeng er al. demonstrate recognition of multiperson
activities from video of people at coarse scales (few kinematic details are available); activities include
conversing and blocking [160]. Zhao and Nevatia use a finite-state model of walking, running and
standing, built from motion capture [429]. Hong et al. use finite state machines to model gesture [159].
We are not aware of material that attempts to build large hierarchical finite state machines, patterned
after speech recognition programs, and using opportunistic learning, as we propose to do.
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5.6 Notes

Wiley and Hahn describe methods to interpolate between motions [411]. Guo and Roberge

5.6.0.2 Gesture
5.6.0.3 Event Detection
5.6.0.4 Sign Language Recognition

The best-known system for sign matching is due to Starner and Pentland [367, 368]. Features are image
moments of the hand region; signers either wear coloured gloves, or hands are identified using a skin
filter. A Hidden Markov Model (HMM) is used to model individual signs; signs are strung together with
arigid language model (pronoun verbnoun adjective pronoun). Authors report a recognition
rate of 90% with a vocabulary of 40 signs. Grobel and Assan recognize isolated signs under similar con-
ditions for a 262-word vocabulary using HMM’s [197]. This work was extended to recognize continuous
German sign language with a vocabulary of 97 signs by Bauer and Hienz [26]. Vogler and Metaxas have
built a system that uses estimates of arm position, recovered either from a physical sensor mounted on
the body or from a system of three cameras that measures arm position fairly accurately [?, ?, ?]. For
a vocabulary of 53 words, and an independent word language model, they report a word recognition
accuracy of the order of 90%. A more recent system attempted to recognize phonemes with HMM’s;
Vogler and Metaxas were able to recognize signs from a 22 word vocabulary with similar recognition
rates for phoneme and word models (without handshapes in [404], with handshapes in [405]).

Kadous transduced isolated Australian sign language signs with a powerglove, reporting a recogni-
tion rate of 80% using decision trees [263]. Matsuo et al transduced Japanese sign language with stereo
cameras, using decision tree methods to recognize a vocabulary of 38 signs [238]. Kim et al. trans-
duce Korean sign language using datagloves, reporting 94% accuracy in recognition for 131 Korean
signs [198]. Al-Jarrah and Halawani report high recognition accuracy for 30 Arabic manual alphabet
signs recognized from monocular views of a signer using a fuzzy inference system [6]. Gao et al.
describe recognizing isolated signs drawn from a vocabulary of 5177 using datagloves and an HMM
model [126, 410]. Their system is not speaker-independent: they describe relatively high accuracy for
the original signer, and a significant reduction in performance for other signers. Similarly, Zieren and
Kraiss report high, but not speaker independent, accuracy for monocular recognition of German sign
language drawn from a vocabulary of 152 signs [431]. Akyol and Canzler describe an information ter-
minal which can recognize 16 signs with a high, user-independent, recognition rate; their system uses
HMM’s to infer signs from monocular views of users wearing coloured gloves [10]. Bowden et al. use
independent component analysis to obtain state estimates from a set of discriminative visual features;
each sign is encoded as a Markov chain, learned from a single example [43]. They report high accuracy
recognition from a lexicon of 49 signs using a very small training set.
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Chapter 6

Discussion

standard datasets for human detection in arbitrary configurations
datasets in general

6.0.1 Which is better, 2D or 3D?

One could represent the body in 2D or in 3D. But which representation is better? There is very little
compelling evidence either way. For many applications, it is important to have some form of represen-
tation of the body in 3D. For example, this might be used to match to labelled data (section ?? and []); to
produce motion capture data (video motion capture; section ?? and []); or to control animated figures
(video puppetry; section ?? and []). As we have seen, it is not particularly difficult to lift from 2D to
3D, so this is not a compelling point.

It may be the case that inference is much more difficult for 3D models than for 2D models. This
could occur if the relationship between 2D and 3D was highly ambiguous — many distinct 3D poses
are implied by a particular 2D observation. In this case, one could expect a single probability modes in
the 2D posterior to result in multiple separated modes in the 3D posterior. There is some evidence that
this occurs, but that it is a local phenomenon.

There is no evidence that any application demands tracking using a 3D representation, as opposed to
(for example) tracking with a 2D representation and then lifting to 3D. In some cases, it may be sufficient
to produce a 2D representation — for example, if one wishes to composite a figure away from or into a
scene — but there is little evidence that 2D representations are easier to produce or unequivocally better.
This is probably best regarded as a matter of taste.

The evidence here is moot. Deutscher suggests posterior isn’t Gaussian, and this should be accepted
- kinematic singularities are probably a minor problem, but endstops are important.

Sminchisescu and Triggs have some stuff on observability.

There is a question of 3D vs 2D representation here.

6.0.1.1 Is 3D Configuration Ambiguous?

Why not use the discrete ambiguity?
Why not make improved measurements?
Are they all there?

Do dynamics make much difference?
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Mori + Malik
What about image dependencies created by the camera?

Localization difficulties interact with these am

Localizing segment endpoints is difficult, and one expects some inaccuracy.

This interacts with the depth ambiguity to produce significantly larger

The depth ambiguity interacts with difficulties in localizing segment endpoints to produce signifi-
cantly larger uncertainty in some directions in joint angle space; typically, these are directions that tend
to move a limb in depth (figure 2.4). This means that the posterior at a particular frame can have quite
large covariance in some directions. But it doesn’t mean the posterior conditioned on many measure-
ments necessarily has large covariance — a sufficient past history combined with some dynamical limits
may mean that, over a longer timescale than a single frame, the reconstruction is close to unique.

The situation is complicated by the discrete ambiguities, which appear to guarantee the existence of
multiple modes in the posterior under some circumstances. In practice, these multiple modes occur (see
figure 2.5). However, this ambiguity does not appear to be persistent over long time scales. Formally,
P(X;|Y1,...,Y;) may be multimodal, but P(X;|Y1,..., Yit,) tends not to be for sufficiently large
n. This point is remarked on by Sminchisescu and Triggs ( [356], p 372, “In practice, choosing the
wrong minimum rapidly leads to mistracking...”), and is important for the methods described below.
The modes in the multimodal posterior may have quite large covariance in some directions (because of
the depth ambiguity), meaning that poorly placed samples — or failing to search at a sample — may
miss the few important modes for the next frame. It appears that a fixed number of modes (%, where
k is the number of body segments) is probably sufficient, though we’re not aware of anyone benefiting
from this observation directly.

short vs long histories; why;

6.0.1.2 What Representation of 3D Configuration should be Adopted?

Predicting components independent of one another has implications for the encoding of body kinemat-
ics. For example, this suggests adopting a representation based on joint angles rather than on positions
of key points on the body (because some pairs of these points are a fixed distance apart). Joint angles
might themselves be quite strongly correlated with one another. The vast majority of the human activity
that one observes is walking, where there is a characteristic oscillatory motion of both upper and lower
body, 180° out of phase with one another. To address this question sensibly, one needs a model of the
type of error that must be avoided. If the intention is to perform kinematic reconstructions for config-
urations whose frequencies are well represented by typical motion capture or video data (in outdoor
data, lots of walking, some running, and other activities very infrequent), then the correlations between
joint angles typical of walking are very important. One should choose a representation of configuration
where components are independent. This would most likely look like a single variable giving the phase
of the walk, some variables encoding speed, frequency and the like, and then offsets of arm and leg from
typical configurations for that phase. Principal components analysis might also yield an appropriate set
of variables, although the estimate could be poor because of the dimension.

Alternatively, one might wish to obtain reconstructions for activities whose frequencies are not well
represented by typical motion capture or video data — sporting activities and the like. In this case,
joint angles could be weakly correlated or independent. There are some small reasons to think that they
are not, however. For example, in some throwing or striking motions, there is a clear proximal-distal
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sequence by which the joints are activated, leading to a whip-like motion (for some cases, see [7, 16,
311]; the effect does not occur in all sports [121]; it can be used in animation [31]). This means that
near-straight elbow implies a particular shoulder position, so that joint angles will be correlated. The
topic has not been sufficiently addressed in regression studies of kinematic configuration.

6.0.2 What is the status of dynamical models?

probably are good, but hard to build right

6.0.3 What Motion is Human?

Some of the practices we have described — cut and paste, for example — may disrupt some of the de-
tailed structure of the motion signal to which people are often extremely sensitive. Several researchers
have used light-dot displays, also referred to as biological motion stimuli, to study perception of human
movements [122]. The light-dot displays show only dots or patches of light that move with the main
joints of walking figures, but even these minimal cues have been shown to be sufficient for viewers to
make detailed assessments of the nature of both the motion and the underlying figure[185]. Work by
Cutting and Kozlowski showed that viewers easily recognized friends by their walking gaits on light-
dot displays[82]. They also reported that the gender of unfamiliar walkers was readily identifiable, even
after the number of lights had been reduced to just two located on the ankles[205]. In a published note,
they later explained that the two light-dot decisions were probably attributable to stride length[206].
Continuing this work, Barclay, Cutting, and Kozlowski showed that gender recognition based on walk-
ing gait required between 1.6 and 2.7 seconds of display, or about two step cycles[22, 83].

Not much is known about what inclines people toward or away from the judgement that a motion
is “good” or “natural”. It is known that the choice of rendering has an effect, with more naturalistic
renderings making people more inclined to reject motions [157, 156].

There have been several attempts to build methods to score the “goodness” of a motion. Ikemoto
and Forsyth use a large pool of labelled frames and a support vector machine to build a classifier that
takes a set of frames, centered on the current frame, and labels the current frame with “human” or “not
human” []. The classifier has a respectable total error rate (approx ****) but, as one would expect, is
not particularly reliable when applied to motions that are very different from the training set. **** et al.

6.0.4 Notes

The use of inverse kinematics in animation dates to at least the work of Girard and Maciejewski [135];
see also [134] and [146]. Methods for handling singularities are discussed in [233]. A good summary
of early work in animation is [17]. Tolani et al. contains a considerable body of helpful background and
review material [387].

Zhao and Badler approach inverse kinematics as a nonlinear programming problem — using our
notation, find arg min | g(x(#)) | subject to joint constraints, etc. — and use a variant of a standard
optimization method; it is not possible to guarantee a global minimum (neither the objective function
nor the constraints are convex) [426]. Incompatible constraints can be handled by a scheme allocating
different priorities to constraints [18].

Shin et al. obtain a real-time solver for a puppetry application by linking a fast frame-by-frame
solver using a mixed analytical-numerical strategy with a Kalman filter smoother [344].

Joints other than the shoulder have been studied in some detail [255, 288].
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choosing timescales for transitions; Mographs/sca2004wb.pdf
mglight snap together, particularly how the graph should be built

6.0.5 Notes

Non-parametric synthesis methods have been successful in several areas. The idea appears to originate
with Shannon [], who used these methods to synthesize text. These methods have revolutionized texture
synthesis; there is an enormous literature, starting with Efros and Leung []. There are now a range of
very elaborate methods, including methods that can transfer texture “styles” (brushstrokes and the like).
The analogy with texture synthesis seems to have motivated non-parametric motion synthesis, and one
could reasonably believe that there is more to be found in the analogy. A good set of places to start
looking is [].

6.0.6 Notes

Mass displacement comes from Physicalsmoothing/p11-popovic
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inverse kinematics, 79
iterative scaling, 45

joint angles, 77
joint positions, 77
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keyframe, 78
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kinematic singularity, 27

kinematic tracking
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local linear models, 55
Local motion ambiguity, 86
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