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Abstract 

This paper addresses the problem of estimating human 
body pose in static images. This problem is challenging 
due to the high dimensional state space of body poses, 
the presence of pose ambiguity, and the need to segment 
the human body in an image. We use an image genera-
tive approach by modeling the human kinematics, the 
shape and the clothing probabilistically. These models 
are used for deriving a good likelihood measure to 
evaluate samples in the solution space. We adopt a 
data-driven MCMC framework for searching the solu-
tion space efficiently. Our observation data include the 
face, head-shoulders contour, skin color blobs, and 
ridges; and they provide evidences on the positions of 
the head, shoulders and limbs. To translate these infer-
ences into pose hypotheses, we introduce the use of 
‘proposal maps’, which is an efficient way of consoli-
dating the evidence and generating 3D pose candidates 
during the MCMC search. As experimental results 
show, the proposed technique estimates the human 3D 
pose accurately on various test images. 

1.   Introduction 
Estimating human body pose is important for auto-

matic recognition of human activities in image under-
standing applications. For static images, the major diffi-
culties are the high dimensionality of the solution space, 
pose ambiguity, and body segmentation.  

The human body has about 31 parameters and pose 
estimation involves searching in a high dimensional and 
multi-modal solution space. In addition, there is an 
inherent non-observability of some of the degrees of 
freedom, causing “forwards/backwards flipping ambi-
guities” [10] in the depths of body joints. Ambiguity is 
also caused by noisy or spurious image features.  

The segmentation of the human body is required be-
cause the human boundary in an image is dependent on 
the body pose, and this boundary affects the feature 
extraction needed to estimate the body pose. This calls 
for a method that simultaneously solves the dual-
problem of segmentation and pose estimation.  

We propose to address this problem by building an 
image generative model and using the Markov chain 
Monte Carlo (MCMC) framework [2] to search the 31-
D solution space. Our human model represents the 
kinematics structure, shape and clothing of the human 

body. Given a pose candidate, a human image can be 
synthesized and compared with the real image. This 
model-based approach is appealing as it seeks to “ex-
plain away the data” from the image generation stand-
point [14]; and it solves the segmentation problem si-
multaneously. The set of samples drawn by MCMC 
weakly converges to a stationary distribution equivalent 
to the posterior distribution. However, with only the use 
of random-walk sampler algorithm, the MCMC frame-
work is inefficient. 

The data-driven MCMC framework [14] allows us to 
design complementary jump proposal functions, derived 
from image observations, to explore the solution space 
more efficiently. Each jump dynamic has a much larger 
scope and allows the transitions between non-
neighboring regions of high densities. Useful image 
observations are obtained from appearance-based face 
detection, matching head and shoulders contours, skin 
color blobs detection, and limbs detection. However, 
these observations only provide 2D inferences on local 
body parts but not the 3D pose. Also, these observations 
have localization errors, contain false alarms, and may 
not be independent. A mechanism is needed to properly 
translate these observations into proposal distributions 
for the 3D pose, while addressing the above issues.   

In this paper, we describe the use of proposal maps 
to consolidate the inferences provided by the collective 
set of image observations. Each proposal map repre-
sents the proposal distribution of the image position of a 
body joint and it is used to generate proposals of 3D 
pose during MCMC.  

We focused on middle resolution images, where the 
body height is about 150 pixels. We make no restrictive 
assumptions about the background, the human shape, 
and clothing except for not wearing any headwear or 
gloves. 

The paper is organized as follows: Section 2 dis-
cusses related work; Section 3 describes the MCMC 
framework and its extension to pose estimation; the 
generative model and image observation are presented 
in Sections 4 and 5, respectively; and Section 6 shows 
experimental results. 

2.  Related Work 

Pose estimation in video sequences has been ad-
dressed in many previous works, using either multiple 



or a single camera [1][9]. Many of these works used 
particle filter to track the body poses, by relying on a 
good initialization, temporal smoothness, and some-
times a low dimensional dynamic model [1]. 

For static images, some works have been reported for 
recognizing prototypical body poses using shape con-
text descriptors [5], mapping of features into body con-
figurations [7], and parameter-sensitive hashing [8]. 
These works rely on either a clean background or a pre-
segmented human region and not suitable for automatic 
pose estimation.  

There are reported works on detecting body parts in 
images. In [6][3], the authors model the appearance and 
the 2D geometric configuration of body parts. These 
methods focus on real-time detection of people and do 
not estimate the 3D body pose. Recovering 3D pose was 
studied in [11], but the proposed method assumes that 
the image positions of body joints are known and there-
fore simplifies the problem. 

3. Estimation Framework 

3.1. Data-Driven MCMC 
In this section, we describe the MCMC framework 

[2][14] and its adaptation for pose estimation. Denoting 
x as the vector of model parameters and Y as the image 
observations, pose estimation is formulated as a Bayes-
ian inference for estimating the posterior distribution: 

)()|()|( xxYYx ppp ∝ . (1) 

The desired output is dependent on the application. A 
simple solution is the maximum a posteriori estimate 
(MAP) given by: 

)|(maxarg Yxx
x

pMAP = . (2) 

Since the posterior distribution is multi-modal, it is 
often desirable to extract multiple solutions of x. A 
simple approach consists in approximating the posterior 
distribution as a mixture of Gaussians: 
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MCMC is a suitable methodology for finding these 
solutions by drawing samples from the posterior distri-
bution using a Markov chain based on the Metropolis-
Hastings algorithm [2]. At the t-1th iteration, a candidate 
x′ is sampled from a proposal distribution )|(. 1−tq x and 

accepted as the new state xt with a probability 
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A simple proposal distribution is provided by the ran-
dom-walk sampler [2]. 

In the data-driven MCMC paradigm, image observa-
tions are used to generate additional proposals to en-

hance the convergence of the MCMC [14]. As the map-
ping of 2D image features to 3D poses is non-trivial, we 
design a proposal mechanism based on the missing data 
u that represents the image positions of body joints 
(head, elbows, etc.). The observation Y is conditionally 
dependent on u only, i.e. p(Y|u,x) = p(Y|u). In addition, 
u can be computed from x by a deterministic function 
u=f(x) which is a many-to-one mapping. We can de-
compose u into its components u={ui}, where ui is the 
image position of the ith body joint, and use local obser-
vations, Yi ⊂ Y, to generate the proposal distribution for 
this joint, denoted by ),|( 1−tiiiq xYu . The function f(.) 

can be decomposed into its components f(.)={fi(.)} such 
that ui = fi(x). (See Figure 1 for graphical models of 
these variables.)  

 

 

 

 

 

 

 

 

        (a)              (b)                            (c) 

Figure 1: Graphical Models: (a) shows the basic model 
between model parameters x and image observation Y, (b) 
introduces the missing data u, representing image positions of 
body joints, and z representing the depth,  (c) shows relation-
ship between the image position of the ith

 body part u
i,
 and the 

local observation Y
i
, which is used to generate proposals. In 

this figure, u
n(i)

 represents image positions of other body joints 
except the ith

, and Y
n(i)

 represents the corresponding local 
observations for these joints. 

 
Using a component-based proposal approach, the ith 

component proposal distribution for x′  becomes: 

∫ −−− ′=′ iitiiitiiiti dqqq uYxuYxuxYxx ),|(),,|(),|( 111 .  (5)

The sampling of the proposal distribution is simplified 
in two ways. First, we construct the proposal for ui so 
that it is independent of the previous sample xt-1: 

)|(),|( 1 iiiitii qq YuYxu =− . (6) 

Second, we construct the proposal ),,|( 1 itiiq Yxux −′  as a 

deterministic function. Given the previous state xt-1 and a 
sample iu′ , a candidate x′ is computed easily using 

direct inverse kinematics (IK) so that the image position 
of the ith  body joint is shifted to iu′ , while all the other 

body joints are left unchanged:  
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When multiple solutions exist, due to depth ambiguity, 
we choose the solution x′ with the smallest change in 
depth. Due to space limitation, we will not discuss the 
inverse kinematics in details. Instead, readers may refer 
to [10] for a discussion. Denoting the IK computation as 
a function g(.), we have: 

),( 1 itg uxx −=′ . (8) 

The proposal distribution then becomes:  

∫ −− −′=′ iiiiititi dqgq uYuuxxYxx )|()),((),|( 11 δ , (9)

where δ(.) is the Dirac delta function. We can draw a 
sample for x′, by first drawing a sample iu′  

from )|( iiiq Yu , and computing x′ using Equation (8).  

At each Markov chain iteration, this step is repeated for 
different body joint, in a partitioning approach.  

Sometimes there is no valid IK solution due to 
kinematics and no self-penetrating constraints. (For 
example, the proposed hand position might be too far 
from the elbow.) In this case, the function g(.) outputs 
an invalid state, denoted by xnull, which has the property 
p(xnull)=0. The proposal driven by iu′ is then rejected 

according to Equation (4).  

3.2. Proposal Maps 
This section discusses the proposal mechanism for 

drawing a sample )|(~ iiii q Yuu , where Yi represents the 

observation of the ith body joint. The observation usually 
includes false alarms and generates multiple weighted 
hypotheses on the image position of the ith joint. We 
express Yi  as the set of hypotheses:  

},...,1;,{ ,, ikikii nkw == YY , (10) 

where ki,Y represents each hypothesis, kiw ,  its confi-
dence, and in is the number of hypotheses. The inference 
of each hypothesis is approximated by a Gaussian dis-
tribution with mean ki,µ and covariance matrix ki,Σ  
corresponding to the measurement uncertainty. The 
proposal distribution for the joint image position de-
rived from each hypothesis is given by:  

),,()|( ,,, kikiikii Nq Σ∝ µuYu ,  (11) 

and the contributions of all the hypotheses are combined 
as follows: 

)}|({max)|( ,, kiiki
k
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The hypotheses are, in general, not independent. For 
example, matching the head-shoulders contour to image 
edges usually results in multiple local minima. In addi-
tion, the hypotheses are generated using different types 
of image cues and this leads to redundancy.  We there-
fore use the max function in Equation (12) instead of the 
summation to avoid exaggerated dominant peaks.  

We present in this section a method for improving 
sampling efficiency. The proposal distribution is 
approximated by a grid space representation called the  
proposal map, with samples corresponding to every 
pixel position. The proposal distribution is thus cor-
rectly bounded within the image. As this distribution is 
unchanged during the MCMC process, it is computed 
beforehand. Ignoring the quantization noise  (which is 
small compared to the measurement errors), this pro-
posal is reversible: for any valid proposal jump, there is 
another valid reverse jump because the function g(.) in 
Equation (8) has a one-to-one mapping. 

In Figure 2 we show the grey level representation of 
the proposal maps for various body joints. They are 
generated from image observations that we will describe 
in Section 5. 

3.3.  Other Proposal Mechanisms 
The Markov chain dynamic consists of three types 

of proposals: (i) data-driven proposal, which was de-
scribed earlier, (ii) random-walk sampler, and (iii) flip 
kinematics jump. The last two are briefly described 
here. 

Random-walk Sampler.   This process serves as a 
local optimizer and the corresponding proposal distribu-
tion is given by: 

),0,()|( 11 diffusiontt Nq Σ−′∝′ −− xxxx . (13) 

Flip Kinematic Jump. This dynamic involves flip-
ping a body part (i.e. head, hand, lower arm, entire arm, 
lower leg, or entire leg) along the depth direction, 
around its pivotal joint [10]. Flip dynamic is balanced 
so that forward and backward flips have the same pro-
posal probability. 



4. Generative Model 

4.1. Human Model 

The human model is an explicit representation of the 
human body structure. It defines the pose parameters as 
well as the parameters for shape and clothing.  

Human Kinematics Model. This model represents the 
articulated structure of the human body and has 31 
degrees of freedom. The pose is described by a 6D 
vector g representing global position, scale, and orienta-
tion, and a 25D vector j representing the joint angles. 
We assumed an orthographic projection. The prior dis-
tributions of these parameters, denoted by p(g) and p(j), 
are learned from the training data. For simplicity, these 
distributions are approximated as Gaussians and the 
joint angles of non-neighboring body locations are as-
sumed to be independent. 

Probabilistic Shape Model.  Each human body part is 
represented by a truncated 3D cone and the shape of the 
human is represented by a vector s which has 23 pa-
rameters describing the relative lengths and widths of 
these 3D cones. PCA is used to reduce the shape space 
to 6 dimensions. The prior distribution p(s) is assumed 
to be Gaussian. 

Clothing Model. This model describes the type of 
clothing the person is wearing and allows the prediction 
of whether skin is exposed so that skin blob features are 
correctly interpreted. As there are many clothing types, 
the modeling requires a trade-off between generality 
and simplicity. The clothing model has 3 parameters, c 
= [c1 c2 c3]

T , representing the sleeve length, the hem 

length, and the socks length. For computation effi-
ciency, these parameters are quantized into coarse dis-
crete levels (5 levels for c1, and 10 levels for c2 and c3). 
The prior distribution, P(c), is learned from the training 
data.  

4.2. Prior Distribution 

The parameters from the various components of the 
human model are combined into a complete state vector 
x, now consisting of four subsets:  

x = { g, j, s, c } . (14) 

For simplicity, we assume that the subsets of parameters 
are independent and the prior distribution, denoted by 
p(x), is given by: 

p(x) ≈ p(g) p(j) p(s) P(c) . (15) 

This prior distribution is combined with the image like-
lihood function to form the posterior density function, 
which is used for evaluating samples and computing the 
acceptance probability for the Markov chain, as given 
by Equation (4).  

The following sub-section describes the image likeli-
hood function. 

4.3. Image Likelihood Function 

The image likelihood function p(Y|x) consists of two 
components, based on region and color respectively. 
This approach is motivated by the work in [15] where 
similar likelihood measure is used for segmenting mul-
tiple persons in static image.   

Region Likelihood. Color-based segmentation is used 
to divide a given image into a set of regions denoted by 
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Figure 2: Grey level representation of proposal maps for various body joints (overlaid on edge image for clarity).
 



{Ri;  i = 1, ..., Nregion }, where Nregion  is the number of 
regions. For a given state candidate x, we predict the 
human body region in the image, denoted by Hx. Ide-
ally, this human region will coincide with the union of a 
certain subset of the segmented regions. In other words, 
each region Ri should either belong to the human region 
Hx or to the background (non-human) region, denoted 
by xH . This region likelihood function measures the 

degree of similarity between the human body and the 
segmented regions. For each segmented region Ri, we 
count the number of pixels in Ri, that belong to Hx, and 
that belong to xH : 

N
i,human         = count pixels (u,v) ∈ { Ri  ∩ Hx, } 

N
i,background = count pixels (u,v) ∈ { Ri ∩ xH } 

 
(16) 

We define a binary label, li, for each region, so that  
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We count the number of incoherent pixels, denoted by 
Nincoherent, given by: 
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The region-based likelihood function is defined by: 

)exp( incoherentregionregion NL λ−= , (19) 

where regionλ (=0.2) is a constant determined empiri-

cally with training data using a Poisson model. 

Color Likelihood. The likelihood measures the dissimi-
larity between the color distributions of the human re-
gion Hx and the background region xH . Given the pre-

dicted region Hx, and xH , we obtain the color distribu-

tion of human region d, and background region b. They 
are represented by normalized histograms with Nhistogram 

bins. The color likelihood is defined by: 

)exp( 2
bd,BL colorcolor λ−= , (20) 

where colorλ  (=30) is a constant determined empirically 

and Bd,b is the Bhattachayya coefficient measuring the 
similarity of two color distributions given by: 

∑
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The combined likelihood measure is given by:  

colorregion LLp ×=)|( xY . (22) 

5. Image Observations 
Image observations are used to compute the proposal 
maps described in Section 3. These are local observa-
tions used to infer positions of various body joints, and 
they are weighted according to their saliency and joint 
probabilities.  These observations are extracted in 4 

stages: (i) face detection; (ii) head-shoulders contour 
matching; (iii) skin blobs detection; and (iv) ridges 
detection. 

5.1.  Face Detection 
The AdaBoost cascade classification technique [13] is 

used for detecting faces in the image. Each detected 
face provides a hypothesis of the head position. As the 
face constitutes the most reliable observation, the de-
tected face is used to initiate the extraction of other 
image observations. 

 5.2. Head-Shoulders Contour Matching  
An active shape model approach is used to detect the 

head and shoulders contour using a deformable shape 
model. The face observation is used to define a search 
region within which multiple candidates for the head-
shoulders contour are detected using a gradient descent 
search that aligns the shape model to image edges .  

Each detected contour provides hypotheses on the 
positions of head, neck and shoulders (Figure 3.b), 
using a joint probabilistic model of these variables. The 
edge matching error is used to adjust the confidence 
weight of each hypothesis.  

   
    (a)                  (b)                    (c)                   (d)       

Figure 3: Image observations:  (a) box indicates the detected 
face; (b) outline indicates one of the detected head-shoulders 
contour, ellipses indicate the corresponding hypotheses for 
head, left and right shoulders, and the ellipse size represents 
measurement uncertainty; (c) a grey-level map of skin prob-
ability with extracted skin ellipses; and (d) white pixels indi-
cate ridges for the lower body.  

5.3. Elliptical Skin Blob Detection   

Skin color features provide important cues about the 
positions of the arms and sometimes the legs. Skin 
blobs are detected in four sub-stages: (i) the image is 
divided into regions using a color-based image segmen-
tation; (ii) for each segmented region, the probability of 
skin is evaluated using a histogram-based skin color 
model; (iii) ellipses are fitted to the boundary of these 
regions to form skin ellipse candidates; and finally (iv) 
adjacent regions with high skin probabilities are merged 
to form larger regions and extract larger ellipses (see 
Figure 3.c). The extracted skin ellipses are used for 
inferring the positions of limbs. Further details are 
given in [4]. 



5.4. Ridge Observations  

In addition to skin color blobs, another type of ob-
servations useful for the segmentation of the limbs is 
based on ridges.  If most of the limbs are clothed, espe-
cially the lower body, skin color blobs are less useful 
and ridge observations are more relied upon. The cen-
ters of the ridges provide hypotheses on the medial axis 
points of the limbs and therefore provide inference on 
the position of the legs. This approach is motivated by 
the work in [3] where limbs are detected as rectangular 
segments.  

In the following, we discuss two aspects of the ob-
servations: (i) the detection of ridges, and (ii) the com-
putation of confidence weights for these observations.  

Detection of Ridges. We extract the medial axis points 
of image regions derived from color-based segmenta-
tion. Since the lower body limbs are usually not hori-
zontal, the medial axis points are easily extracted by 
scanning each horizontal line in the image to find the 
centers of each region along the line. To overcome 
errors due to imperfect color segmentation, we first use 
an over-segmented image to find the first set of medial 
axis points. We then merge neighboring regions with 
similar color and extract additional medial axis points 
on the new regions. This method extracts many medial 
axis points efficiently.  

Confidence weight. Each extracted point is weighted 
by a confidence measure based on the following criteri-
ons: (i) the likelihood of the point being on the medial 
axis of the leg, (ii) the likelihood of the region (to which 
the point belongs) being a subset of the leg, and (iii) the 
likelihood of the width of the region.  

In order to compute these likelihoods, we need first 
a joint probability model, learned from training data, of 
the positions of the legs and the position of the torso. 
Estimates of the torso position are provided by head-
shoulder contour matching.  

The confidence measures are used to prune out some 
of the medial axis points with low confidence (Figure 
3.d). We use the remaining points and the correspond-
ing weights to generate the proposal maps for the knees 
and ankles, as described in Section 3.  

Figure 2 shows examples of proposal maps for 
lower body joints. These distributions are generally 
more diffused, as the observations are less reliable. 
Because each observation could be associated to either 
side of the limbs, the maps for the left and right legs are 

similar to some extent. Nonetheless, the proposal maps 
do capture different regions of high densities to indicate 
plausible positions of legs and allow for proposal jumps 
to explore these regions during Markov chain iterations.  

6.  Experiments  
Database and Ground Truth. We used a set of images 
representing various human activities on which we have 
generated ground truth by manually locating joint posi-
tions and estimating their relative depths.  Among this 
set, we chose a subset for training (primarily for learn-
ing the prior distributions of model parameters), and the 
rest for testing the proposed method. This second subset 
is used for the experiments described in this section. 

 The experiments were conducted without any man-
ual pre-processing such as background removal, scaling 
and centering of the person, or model initialization. At 
the start of the MCMC search, the human model was 
initialized in a standard upright pose in the center of the 
image.  

Pose Estimation. Figure 4 shows the obtained 3D pose 
estimation on various images from the test set after 
1000 Markov chain iterations. The estimated human 
model and its pose (the MAP solution) are projected 
onto the image and a 3D rendering from a sideward 
view is also shown to illustrate the depth estimation. 
Some small errors are observed and discussed in the 
figure caption; these are mostly due to the lack of image 
observable or features. The overall 3D pose estimation 
is good on this challenging set of images. 

The estimated joint positions were compared with 
the ground truth data, and a RMS error was computed 
using all body joints. Since the depth has a higher un-
certainty, we have computed two separate RMS errors: 
one for the 2D position and the other for the depth. We 
computed the average of these errors over all test im-
ages (average RMS error); the result (based on 20 im-
ages) is given in Table 1. As the posterior distribution is 
multi-modal, the MAP solution may be insufficient. As 
an alternative measure, we approximated the posterior 
distribution as a mixture model by clustering the sam-
ples using k-mean algorithm (we used k =20). (An alter-
native technique is the greedy “K-adventurers” algo-
rithm [12] which updates the mixture model after each 
iteration.). 



    The clusters were ranked by their sample sizes. Using 
the estimated cluster means, average RMS errors were 
computed based on Rank 5, 10, 15 criterions. (For ex-
ample, Rank 5 result was obtained by finding the lowest 
error among the five highest ranked cluster means.) 
These results, presented in Table 1, show that the mix-
ture model captures better estimates of the pose, espe-
cially the depth estimates. Good pose estimates are 
usually found within the 5 highest ranked components.  
 

  Average RMS Error (pixel) 
  (image position) (depth) 

MAP Solution 14.92 21.45 
Rank 5 12.44 15.04 
Rank 10 11.94 14.86 

Mixture 
Model 

Solution Rank 15 11.89 14.83 
Table 1. Average RMS errors in image position and depth, 
using MAP solutions and mixture model solution. 
 
To examine the spread of the RMS errors among test 
images, Figure 5 shows a histogram of these errors 
using Rank 5 results. 

Convergence Analysis.  Figure 6 shows the RMS 
errors with respect to the MCMC iterations. The error 
for the 2D image position decreases rapidly from the 
start of the MCMC process; this is due largely to the 
observation-driven proposal dynamics. For the depth 
estimate, the kinematics flip dynamic is helpful for 
finding good depth estimates, but it requires a longer 
time for exploration. In the current implementation, 
1000 iterations were considered and it took, on average, 
8 minutes.  

7.  Conclusion 
We have presented a data-driven MCMC framework 

for estimating 3D human pose in static images. Image 
observations of different cues provide inferences on the 
image positions of body joints. We introduce the use of 
proposal map as an effective mechanism to consolidate 
these inferences and generate 3D pose candidates for 
MCMC. As the results show, the technique is effective 
on a wide variety of images. 
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Figure 4: Pose Estimation. 1st Row: Original images, 2nd row: estimated poses, 3rd row: side view. Due to space 
limitation, the images were cropped for display. Errors include: (1) the person’s left lower leg in image A,  as it is mostly hidden, 
(2) the left arm in B, where the elbow is highly bent, (3)  the left  foot in C which is dark and similar to background, (4) the feet in E
is wrongly estimated to be tip-toed. In addition, there are errors in depth estimates such as the right elbow in B, the tilting of the 
torso in B, the left feet in C, and the right arm in D. 

 



The system currently has two main limitations. 
Firstly, the technique requires a good face detection 
algorithm. The face detection method used is reliable 
only for frontal faces. Secondly, the computational cost 
is still quite high, even with the use of data-driven pro-
posal. As future work, we are exploring better tech-
niques to detect non-frontal faces. In addition, we are 
designing techniques based on gradient-based diffusion 
and Gibbs sampling to improve the efficiency of the 
MCMC algorithm. 
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Figure 5: Histogram of Average RMS Error (using 
Rank 5 result). 

Figure 6: Convergence Analysis (using Rank 5 result).  Note that 
the relative depth estimate has no global offset and therefore has 
smaller error at the start of iteration compared to image position.   
 


