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1
Introduction

What follows is an incomplete review of the literature on computational as-
pects of human motion. We cover tracking, motion synthesis, and action
recognition. This review is intended to expose the main ideas of the sub-
ject, rather than to present citations of all relevant, which might not even be
possible. In our opinion, the core material in the two Þelds of understanding
human motion and simulating human motion is shared � the great need is
for a better understanding of how to represent motion usefully.

This area uses a stunning array of different techniques, and we have not
really been able to introduce each tool in as full detail as one might wish. We
intend to expand this review to the length of a graduate text, which should
(at least!) have a much more detailed review of action recognition, extended
discussion of techniques, and more detailed and nuanced discussion of ani-
mation by physical principles. If time, energy and skill allow � a very big
�if� indeed � we will review relevant biomechanical information as well.
We encourage readers of this review with suggestions for revision, correc-
tion, incorporation, deletion, and so on, to contact D.A. Forsyth, whose home
page can easily be found using a search engine. It would be helpful if you
would include the term �Motion Book� in the email subject; he will attempt
to address and acknowledge any suggestions.
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8 Introduction

This review is aimed somewhat more at a computer vision audience than
at a computer graphics audience, a balance we intend to correct; one has to
start somewhere. We review tracking in three chapters, covering respectively
basic ideas, the complexities created by inferring 3D body conÞguration from
2D information, and detection and data association. We cover motion syn-
thesis and activity recognition each in single chapters. We expect that these
chapters will expand. Finally, we have a discussion of speciÞc issues in mo-
tion representation that attempts to bring to bear all we have seen on some
important, and murky, questions of representation.

We see three core problems in the representation of human motion, at least
from the perspective of applied computer science: What motions look like
humanmotion and what do not?Human observers are remarkably sensitive
to the quality of motion. Quite small changes in a motion representation can
lead to the perception that the motion �isn�t right� or �isn�t human�. It would
be most useful to have a set of tools that can predict whether a motion will
prove acceptable to a human oserver. Such tools are of obvious signiÞcance
to the animation community. One beneÞt to the vision community would be
the ability to tell whether a track is human or not; this seems unlikely to be
of major impact, because one is unlikely to be presented with tracks that look
human to simple tests but are not, in fact, human. A more important result
of studying this question would be an increased understanding of dynamical
models of motion.
How should activities be described and represented? Typical applica-

tions of motion synthesis increasingly need be able to produce motions that
can be controlled to appear purposeful, and do so quickly and simply. This
means that whatever produces motion demands � the game AI, the simu-
lation enviroment or the simulation author � needs some vocabulary with
which to communicate to the motion synthesis machinery. No canonical vo-
cabulary is known. This situation parallels a difÞculty in the computer vision
community, which would like to report what is happening in a video sequence
but does not possess a vocabulary in which to report it. We believe that a good
working hypothesis is that a vocabulary suitable for controlling motion is also
suitable for describing it. This idea is informal � it�s hard to be formal in this
area � but useful nonetheless.
How is human behaviour affected by nearby objects? Generally, a de-

scription of what one is doing is signiÞcantly affected by the objects nearby.
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For example, standing next to a bus sign and standing outside a door are
different � not because they look different, but because the intention, as
revealed by what is nearby, is different. The actual motions generated in re-
sponse to some demand are affected by what is nearby � for example, mov-
ing across broken ground is different from walking over clear terrain. We
shall have relatively little to say on this point, which is not much addressed in
either the animation or the computer vision literature. This is not because it�s
not important, but because making progress on this issue probably requires a
better understanding of the Þrst two matters.

We have listed these questions in order of perceived difÞculty (from rather
nasty to very hard to discuss with current methods). These big questions are
attended by a host of lesser, but important questions. Generally, we can say
more about the lesser questions, and the discussion chapter contains a host of
speculation and recommendation on them.





2
Tracking: Fundamental Notions

In a tracking problem, one has some measurements that appear at each tick
of a (notional) clock, and, from these measurements, one would like to deter-
mine the state of the world. There are two important sources of information.
First, measurements constrain the possible state of the world. Second, there
are dynamical constraints � the state of the world cannot change arbitrarily
from time to time. Tracking problems are of great practical importance. There
are very good reasons to want to, say, track aircraft using radar returns (good
summary histories include [63, 65, 215]; comprehensive reviews of technique
in this context include [27, 44, 147]).

Not all measurements are informative. For example, if one wishes to track
an aircraft � where state might involve pose, velocity and acceleration vari-
ables, and measurements might be radar returns giving distance and angle to
the aircraft from several radar aerials � some of the radar returns measured
might not come from the aircraft. Instead, they might be the result of noise,
of other aircraft, of strips of foil dropped to confuse radar apparatus (chaff or
window; see [215]), or of other sources. The problem of determining which
measurements are informative and which are not is known as data associa-
tion.

Data association is the dominant difÞculty in tracking objects in video.

11



12 Tracking: Fundamental Notions

This is because so few of the very many pixels in each frame lie on objects of
interest. It can be spectacularly difÞcult to tell which pixels in an image come
from an object of interest and which do not. There are a very wide variety of
methods for doing so, the details of which largely depend on the speciÞcs of
the application problem. Surprisingly, data association is not usually explic-
itly discussed in the computer vision tracking literature. However, whether
a method is useful rests pretty directly on its success at data association �
differences in other areas tend not to matter all that much in practice.

2.1 General Observations

The literature on tracking people is immense. Furthermore, the problem has
quite different properties depending on precisely what kind of representation
one wishes to recover. The most important variable appears to be spatial scale.
At a coarse scale, people are blobs. For example, we might view a plaza from
the window of a building or a mall corridor from a camera suspended from
the ceiling. Each person occupies a small block of pixels, perhaps 10-100
pixels in total. While we should be able to tell where a person is, there isn�t
much prospect of determining where the arms and legs are. At this scale, we
can expect to recover representations of occupancy � where people spend
time, for example [478] � or of patterns of activity � how people move
from place to place, and at what time, for example [423].

At a medium scale, people can be thought of as blobs with attached mo-
tion Þelds. For example, a television program of a soccer match, where each
individuals are usually 50-100 pixels high. In this case, one can tell where a
person is. Arms and legs are still difÞcult to localize, because they cover rela-
tively few pixels, and there is motion blur. However, the motion Þelds around
the body yield some information as to how the person is moving. One could
expect to be able to tell where a runner is in the phase of the run from this
information � are the legs extended away from the body, or crossing?

At a Þne scale, the arms and legs cover enough pixels to be detected, and
one wants to report the conÞguration of the body. We usually refer to this
case as kinematic tracking. At a Þne spatial scale, one may be able to report
such details as whether a person is picking up or handling an object. There
are a variety of ways in which one could encode and report conÞguration,
depending on the model adopted � is one to report the conÞguration of the



2.1. General Observations 13

arms? the legs? the Þngers? � and on whether these reports should be rep-
resented in 2D or in 3D. We will discuss various representations in greater
detail later. We do not regard the choice of a 2D representation or a 3D rep-
resentation as signiÞcant to anything but detail in the tracking problem; in
particular, as we shall show, passing from 2D to 3D representations is rela-
tively straightforward under most conditions. In particular, the choice of 2D
or 3D representation does not affect ambiguity in any way. If we track using a
2D representation and then lift to 3D, it may be difÞcult to recover 3D conÞg-
uration unambiguously. These ambiguities are also present in the case where
we track a 3D representation, though are often unremarked.

Each scale appears to be useful, but there are no reliable rules of thumb for
determining what scale is most useful for what application. For example, one
could see ways to tell whether people are picking up objects at a coarse scale.
Equally, one could determine patterns of activity from a Þne scale. Finally, as
we shall see later, some quite complex determinations about activity can be
made at a surprisingly coarse scale. Tracking tends to be much more difÞcult
at the Þne scale, because one must manage more degrees of freedom and
because arms and legs can be small, and can move rather fast.

In this review, we focus almost entirely on the Þne scale; even so, space
will not allow detailed discussion of all that has been done. Our choice of
scale is dictated by the intuition that good Þne-scale tracking will be an es-
sential component of any method that can give general reports on what people
are doing in video. There are distinctive features of this problem that make
Þne scale tracking difÞcult:

• State dimension: One typically requires a high dimensional state
vector to describe the conÞguration of the body in a frame. For
example, assume we describe a person using a 2D representation.
Each of ten body segments (torso, head, upper and lower arms and
legs) will be represented by a rectangle of Þxed size (that differs
from segment to segment). This representation will use an abso-
lute minimum of 12 state variables (position and orientation for
one rectangle, and relative orientation for every other). A more
practical version of the representation allows the rectangles to
slide with respect to one another, and so needs 27 state variables.
Considerably more variables are required for 3D models.
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• Nasty dynamics: There is good evidence that such motions as
walking have predictable, low-dimensional structure [378, 395].
However, the body can move extremely fast, with large acceler-
ations. These large accelerations mean that one can stop moving
predictably very quickly � for example, jumping in the air dur-
ing a walk. For straightforward mechanical reasons, the body parts
that move fastest tend to be small and on one end of a long lever
which has big muscles at the other end (forearms, Þngers and feet,
for example). This means that the body segments that the dynami-
cal model fails to predict are going to be hard to Þnd because they
are small. As a result, accurate tracking of forearms can be very
difÞcult.

• Complex appearance phenomena: In most applications one is
tracking clothed people. Clothing can change appearance dramat-
ically as it moves, because the forces the body applies to the
clothing change, and so the pattern of folds, caused by buckling,
changes. There are two important results. First, the pattern of oc-
clusions of texture changes, meaning that the apparent texture of
the body segment can change. Second, each fold will have a typi-
cal shading pattern attached, and these patterns move in the image
as the folds move on the surface. Again, the result is that the ap-
parent texture of the body segment changes. These effects can be
seen in Þgure 2.4.

• Data association: There is usually no distinctive color or texture
that identiÞes a person (which is why people are notoriously difÞ-
cult to Þnd in static images). One possible cue is that many body
segments appear at a distinctive scale as extended regions with
rather roughly parallel sides. This isn�t too helpful, as there are
many other sources of such regions (for example, the spines of
books on a shelf). Textured backgrounds are a particularly rich
source of false structures in edge maps. Much of what follows
is about methods to handle data association problems for people
tracking.
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2.2 Tracking by Detection

Assume we have some form of template that can detect objects reasonably
reliably. A good example might be a face detector. Assume that faces don�t
move all that fast, and there aren�t too many in any given frame. Furthermore,
the relationship between our representation of the state of a face and the im-
age is uncomplicated. This occurs, for example, when the faces we view are
always frontal or close to frontal. In this case, we can represent the state of
the face by what it looks like (which, in principle, doesn�t change because the
face is frontal) and where it is.

Under these circumstances, we can build a tracker quite simply. We main-
tain a pool of tracks. We detect all faces in each incoming frame. We match
faces to tracks, perhaps using an appearance model built from previous in-
stances and also � at least implicitly � a dynamical model. This is where
our assumptions are important; we would like faces to be sufÞciently well-
spaced with respect to the kinds of velocities we expect that there is seldom
any ambiguity in this matching procedure. This matching procedure should
not require one-one matches, meaning that some tracks may not receive a
face, and some faces may not be allocated a track. For every face that is not
attached to a track, we create a new track. Any track that has not received a
face for several frames is declared to have ended (algorithm 1 breaks out this
approach).

This basic recipe for tracking by detection is worth remembering. In many
situations, nothing more complex is required, and the recipe is used without
comment in a variety of papers. As a simple example, at coarse scales and
from the right view, background subtraction and looking for dark blobs of
the right size is sufÞcient to identify human heads. Yan and Forsyth use this
observation in a simple track-by-detection scheme, where heads are linked
across frames using a greedy algorithm [478]. The method is effective for
obtaining estimates of where people go in public spaces.

The method will need some minor improvements and signiÞcant tech-
nical machinery as the relationship between state and image measurements
grows more obscure. However, in this simple form, the method gives some
insight into general tracking problems. The trick of creating tracks promis-
cuously and then pruning any track that has not received a measurement for
some time is a quite general and extremely effective trick. The process of
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Assumptions: We have a detector which is reasonably reliable for all
aspects that matter. Objects move relatively slowly with respect to the
spacing of detector responses. As a result, a detector response caused
either by another object or by a false positive tends to be far from the
next true position of our object.

First frame:
Create a track for each detector response.

N�th frame:
Link tracks and detector responses. Typically, each track gets the closest
detector response if it is not further away than some threshold. If the
detector is capable of reporting some distinguishing feature (colour,
texture, size, etc.), this can be used too.
Spawn a new track for each detector response not allocated to a track.
Reap any track that has not received a measurement for some number of
frames.

Cleanup: We now have trajectories in space time. Link any where
this is justiÞed (perhaps by a more sophisticated dynamical or appear-
ance model, derived from the candidates for linking).

Algorithm 1: The simplest tracking by detection

linking measurements to tracks is the aspect of tracking that will cause us
the most difÞculty (the other aspect, inferring states from measurements, is
straightforward though technically involved). This process is made easier if
measurements have features that distinctively identify the track from which
they come. This can occur because, for example, a face will not change gen-
der from frame to frame, or because tracks are widely spaced with respect
to the largest practical speed (so that allocating a measurement to the closest
track is effective).

All this is particularly useful for face tracking, because face detection�
determining which parts of an image contain human faces, without reference
to the individual identity of the faces � is one of the substantial successes
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of computer vision. Neither space nor energy allow a comprehensive review
of this topic here. However, the typical approach is: One searches either rect-
angular or circular image windows over translation, scale and sometimes ro-
tation; corrects illumination within these windows by methods such as his-
togram equalization; then presents these windows to a classiÞer which deter-
mines whether a face is present or not. There is then some post-processing on
the classiÞer output to ensure that only one detect occurs at each face. This
general picture appears in relatively early papers [339, 373, 374, 428, 429].
Points of variation include: the details of illumination correction; appropriate
search mechanisms for rotation (cf. [376] and [381]); appropriate classiÞers
(cf. [289], [320], [381], [375] and [429]); building an incremental classiÞca-
tion procedure so that many windows are rejected early and so consume little
computation (see [213, 214, 450, 452] and the huge derived literature). There
are a variety of strategies for detecting faces using parts, an approach that
is becoming increasingly common (compare [66], [199], [251], [283, 285]
and [463]; faces are becoming a common category in so-called object cate-
gory recognition, see, for example, [127]).

2.2.1 Background Subtraction

The simplest detection procedure is to have a good model of the background.
In this case, everything that doesn�t look like the background is worth track-
ing. The simplest background subtraction algorithm is to take an image of the
background and then subtract it from each frame, thresholding the magnitude
of the difference (there is a brief introduction to this area in [135]). Changes
in illumination will defeat this approach. A natural improvement is to build
a moving average estimate of the background, to keep track of illumination
changes (e.g. see [471, 385]; gradients can be incorporated [280]). In outdoor
scenes, this approach is defeated by such phenomena as leaves moving in
the wind. More sophisticated background models keep track of maximal and
minimal values at each pixel [168], or build local statistical models at each
pixel [73, 140, 163, 202, 203, 421, 422].

Under some circumstances, background subtraction is sufÞcient to track
people and perform a degree of kinematic inference. Wren et al.describe a
system, PÞnder, that uses background subtraction to identify body pixels,
then identiÞes arm, torso and leg pixels by building �blobby� clusters [471].
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Haritaoglu et al. describe a system called W4, which uses background sub-
traction to segment people from an outdoor view [168]. Foreground regions
are then linked in time by applying a second order dynamic model (velocity
and acceleration) to propagate median coordinates (a robust estimate of the
centroid) forward in time. SufÞciently close matches trigger a search process
that matches the relevant foreground component in the previous frame to that
in the current frame. Because people can pass one another or form groups,
foreground regions can merge, split or appear. Regions appearing, splitting or
merging are dealt with by creating (resp. fusing) tracks. Good new tracks can
be distinguished from bad new tracks by looking forward in the sequence: a
good track continues over time. Allowing a tracker to create new tracks fairly
freely, and then telling good from bad by looking at the future in this way is
a traditional, and highly useful, trick in the radar tracking community (e.g.
see the comprehensive book by Blackman and Popoli [44]). The background
subtraction scheme is fairly elaborate, using a range of thresholds to obtain a
good blob (Þgure 2.1). The resulting blobs are sufÞciently good that the con-
tour can be parsed to yield a decomposition into body segments. The method
then segments the contours using convexity criteria, and tags the segments
using: distance to the head � which is at the top of the contour; distance to
the feet � which are at the bottom of the contour; and distance to the median
� which is reasonably stable. All this works because, for most conÞgura-
tions of the body, one will encounter body segments in the same order as
one walks around the contour (Þgure 2.2). Shadows are a perennial nuisance
for background subtraction, but this can be dealt with using a stereoscopic
reconstruction, as Haritaoglu et al. show ([167]; see also [204]).

2.2.2 Deformable Templates

Image appearance or appearance is a ßexible term used to refer to aspects
of an image that are being encoded and should be matched. Appearance mod-
els might encode such matters as: Edge position; edge orientation; the distri-
bution of color at some scale (perhaps as a histogram, perhaps as histograms
for each of some set of spatially localized buckets); or texture (usually in
terms of statistics of Þlter outputs.

A deformable template or snake is a parametric model of image ap-
pearance usually used to localize structures. For example, one might have a
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Fig. 2.1 Fig 1 of surveillance/00868683 Background subtraction identiÞes groups of pixels that differ
signiÞcantly from a background model. The method is most useful for some some cases of surveillance,
where one is guaranteed a Þxed viewpoint and a static background changing slowly in appearance. On
the left, a background model; in the center, a frame; and on the right, the resulting image blobs. The
Þgure is taken from Haritaoglu et al. [168]; in this paper, authors use an elaborate method involving a
combination of thresholds to obtain good blobs. Figure 2.2 illustrates a method due to these authors that
obtains a kinematic conÞguration estimate by parsing the blob. Figure from �W4: Real-time surveillance
of people and their activities�, Haritaoglu et al., IEEE Trans. Pattern Analysis and Machine Intelligence,
2000, c© 2000 IEEE

template that models the outline of a squash [218, 219] or the outline of a
person [35], place the template on the image in about the right place, and let
a Þtting procedure Þgure out the best position, orientation and parameters.

We can write this out formally as follows. Assume we have some form of
template that speciÞes image appearance as a function of some parameters.
We write this template � which gives (say) image brightness (or color, or
texture, and so on) as a function of space x and some parameters θ � as
T (x|θ). We score a comparison between the image at frame n, which we
write as I(x, tn), and this template using the a scoring function ρ

ρ(T (x|θ), I(x, tn))

A point template is built as a set of active sites within a model coordi-
nate frame. These sites are to match keypoints identiÞed in the image. We
now build a model of acceptable sets of active sites obtained as shape, lo-
cation, etc., changes. Such models can be built with, for example, the meth-
ods of principal component analysis (see, for example, [212]). We can now
identify a match by obtaining image keypoints, building a correspondence
between image keypoints and active sites on the template, and identifying
parameters that minimize the Þtting error.

An alternative is a curve template, an idea originating with the snakes
of [218, 219]. We choose a parametric family of image curves � for example,
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Fig. 2.2 For a given view of the body, body segments appear in the outline in a predictable manner.
An example for a frontal view appears on the left. Haritaoglu et al identify vertices on the outline of
a blob using a form of convexity reasoning (right (b) and right (c)), and then infer labels for these
vertices by measuring the distance to head (at the top), feet (at the bottom) and median (right (d)). These
distances give possibly ambiguous labels for each vertex; by applying a set of topological rules obtained
using examples of multiple views like that on the left, they obtain an unambiguous labelling. Fig 12,
15 of surveillance/00868683 Figure from �W4: Real-time surveillance of people and their activities�,
Haritaoglu et al., IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, c© 2000 IEEE

a closed B-spline � and build a model of acceptable shapes, using methods
like principal component analysis on the control points. There is an excellent
account of methods in the book of Blake and Isard [45]. We can now identify
a match by summing values of some image-based potential function over a
set of sample points on the curve. A particularly important case occurs when
we want the sample points to be close to image points where there is a strong
feature response � say an edge point. It can be inconvenient to Þnd every
edge point in the image (a matter of speed) and this class of template allows
us to search for edges only along short sections normal to the curve � an
example of a gate.

Deformable templates have not been widely used as object detectors, be-
cause Þnding a satisfactory minimum � one that lies on the object of interest,
most likely a global minimum � can be hard. The search is hard to initialize
because one must identify the feature points that should lie within the gate of
the template. However, in tracking problems this difÞculty is mitigated if one
has a dynamical model of some form. For example, the object might move
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slowly, meaning that the minimum for frame n will be a good start point for
frame n + 1. As another example, the object might move with a large, but
near constant, velocity. This means that we can predict a good start point
from frame n + 1 given frame n. A signiÞcant part of the difÞculty is caused
by image features that don�t lie on the object, meaning that another useful
case occurs in the near absence of clutter � perhaps background subtraction,
or the imaging conditions, ensures that there are few or no extra features to
confuse the Þtting process.

Baumberg and Hogg track people with a deformable template built using
a B-spline as above, with principal components used to determine W [35].
They use background subtraction to obtain an outline for the Þgure, then
sample the outline. For this kind of template, correspondence is generally
a nuisance, but in some practical applications, this information can be sup-
plied from quite simple considerations. For example, Baumberg and Hogg
work with background subtracted data of pedestrians at fairly coarse scales
from Þxed views [35]. In this case, sampling the outline at Þxed fractions of
length, and starting at the lowest point on the principal axis yields perfectly
acceptable correspondence information.

2.2.2.1 Robustness

We have presented scoring a deformable template as a form of least squares
Þtting problem. There is a basic difÞculty in such problems. Points that are
dramatically in error, usually called outliers and traditionally blamed on typ-
ist error [175, 372], can be overweighted in determining the Þt. Outliers in
vision problems tend to be unavoidable, because nature is so generous with
visual data that there is usually something seriously misleading in any signal.
There are a variety of methods for managing difÞculties created by outliers
that are used in building deformable template trackers. An estimator is called
robust if the estimate tends to be only weakly affected by outliers. For exam-
ple, the average of a set of observations is not a robust estimate of the mean of
their source (because if one observation is, say, mistyped, the average could
be wildly incorrect). The median is a robust estimate, because it will not be
much affected by the mistyped observation.

Gating � the scheme of Þnding edge points by searching out some dis-
tance along the normal from a curve � is one strategy to obtain robustness. In
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this case, one limits the distance searched. Ideally, there is only one edge point
in the search window, but if there are more one takes the closest (strongest,
mutatis mutandis depending on application details). If there is nothing, one
accepts some Þxed score, chosen to make the cost continuous. This means
that the cost function, while strictly not differentiable, is not dominated by
very distant edge points. These are not seen in the gate, and there is an upper
bound on the error any one site can contribute.

An alternative is to use anm-estimator. One would like to score the tem-
plate with a function of squared distance between site and measured point.
This function should be close to the identity for small values (so that it be-
haves like the square) and close to some constant for large values (so that
large values don�t contribute large biases). A natural form is

ρ(u) =
u

u + σ

so that, for d2 small with respect to σ, we have ρ(d2) ≈ d2 and for d2 large
with respect to σ we have ρ(d2) ≈ 1. The advantage of this approach is
that nearby edgepoints dominate the Þt; the disadvantage is that even Þtting
problems that are originally convex are no longer convex when the strategy is
applied. Numerical methods are consequently more complex, and one must
use multiple start points. There is little hope of having a convex problem,
because different start points correspond to different splits of the data set into
�important� points and outliers; there is usually more than one such split.
Again, large errors no longer dominate the estimation process, and the method
is almost universally applied for ßow templates.

2.2.2.2 The Hausdorff Distance

The Hausdorff distance is a method to measure similarity between binary
images (for example, edge maps; the method originates in Minkowski�s work
in convex analysis, where it takes a somewhat different form). Assume we
have two sets of points P and Q; typically, each point is an edge point in an
image. We deÞne the Hausdorff distance between the two sets to be

H(P,Q) = max(h(P,Q), h(Q,P ))

where
h(P,Q) = max

p∈P
min
q∈Q

|| p − q ||
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The distance is small if there is a point in Q close to each point in P and a
point in P close to each point in P . There is a difÞculty with robustness, as
the Hausdorff distance is large if there are points with no good matches. In
practice, one uses a variant of the Hausdorff distance (the generalized Haus-
dorff distance) where the distance used is the k-th ranked of the available
distances rather than the largest. DeÞne Fth

k to be the operator that orders the
elements of its input largest to smallest, then takes the k�th largest. We now
have

Hk(P,Q) = max(hk(P,Q), hk(Q,P ))

where

hk(P,Q) = F th
k (min

q∈Q
|| p − q ||)

(for example, if there are 2n points in P , then hn(P,Q) will give the me-
dian of the minimum distances). The advantage of all this is that some large
distances get ignored.

Now we can compare a template P with an image Q by determining some
family of transformations T (θ) and then choosing the set of parametersθ̂ that
minimizes

Hk(T (θ) ◦ P,Q)

This will involve some form of search over θ. The search is likely to be sim-
pliÞed if � as applies in the case of tracking � we have a fair estimate of θ̂
to hand.

Huttenlocher et al.track using the Hausdorff distance [191]. The template,
which consists of a set of edge points, is itself allowed to deform. Images are
represented by edge points. They identify the instance of the latest template
in the next frame by searching over translations θ of the template to obtain
the smallest value of Hk(T (θ) ◦ P,Q). They then translate the template to
that location, and identify all edge points that are within some distance of the
current template�s edge points. The resulting points form the template for the
next frame. This process allows the template to deform to take into account,
say, the deformation of the body as a person moves. Performance in heavily
textured video must depend on the extent to which the edge detection process
suppresses edges and the setting of this distance parameter (a large distance
and lots of texture is likely to lead to catastrophe).
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2.3 Tracking using Flow

The difÞculty with tracking by detection is that one might not have a de-
formable template that fully speciÞes the appearance of an object. It is quite
common to have a template that speciÞes the shape of the domain spanned
by the object and the type of its transformation, but not what lies within. Typ-
ically, we don�t know the pattern, but we do know how it moves. There are
several important examples:

• Human body segments tend to look like a rectangle in any frame,
and the motion of this rectangle is likely to be either Euclidean or
afÞne, depending on imaging circumstances.

• A face in a webcam tends to Þll a blob-like domain and undergo
mainly Euclidean transformations. This is useful for those build-
ing user interfaces where the camera on the monitor views the
user, and there are numerous papers dealing with this. The face is
not necessarily frontal � computer users occasionally look away
from their monitors � but tends to be large, blobby and centered.

• Edge templates, particularly those specifying outlines, are usu-
ally used because we don�t know what the interior of the region
looks like. Quite often, as we have seen, we know how the tem-
plate can deform and move. However, we cannot score the interior
of the domain because we don�t know (say) the pattern of clothing
being worn.

In each of these cases, we cannot use tracking by detection as above because
we do not posess an appropriate template. As a matter of experience, objects
don�t change appearance much from frame to frame (alternatively, we should
use the term appearance to apply to properties that don�t change from frame
to frame). All this implies that parts of the previous image could serve as
a template if we have a motion model and domain model. We could use a
correspondence model to link pixels in the domain in frame n with those in
the domain in frame n + 1. A �good� linking should pair pixels that have
similar appearances. Such considerations as camera properties, the motion
of rigid objects, and computational expense suggest choosing the correspon-
dence model from a small parametric family.



2.3. Tracking using Flow 25

All this gives a formal framework. Write a pixel position in the n�th frame
as xn, the domain in the n�th frame as Dn, and the transformation from the
n�th frame to the n+1�th frame as Tn→n+1(·; θn). In this notation θn represent
parameters for the transformation from the n�th frame to the n + 1�th frame,
and we have that xn+1 = Tn→n+1(xn; θn).

We assume we know Dn. We can obtain Dn+1 from Dn as
Tn→n+1(Dn; θn). Now we can score the parameters θn representing the
change in state between frames n + 1 and n by comparing Dn with Dn+1

(which is a function of θn). We compute some representation of image
information R(x), and, within the domain Dn+1 compare R(xn+1) with
R(Tn→n+1(xn; θn)), where the transformation is applied to the domain Dn.

2.3.1 Optic Flow

Generally, a frame-to-frame correspondence should be thought of as a ßow
Þeld (or an optic ßow Þeld) � a vector Þeld in the image giving local image
motion at each pixel. A ßow Þeld is fairly clearly a correspondence, and a
correspondence gives rise to a ßow Þeld (put the tail of the vector at the pixel
position in frame n, and the head at the position in frame n + 1). The notion
of optic ßow originates with Gibson (see, for example, [148]).

A useful construction in the optic ßow literature assumes that image in-
tensity is a continuous function of position and time, I(x, t). We then assume
that the intensity of image patches does not change with movement. While
this assumption may run into troubles with illumination models, speculari-
ties, etc., it is not outrageous for small movements. Furthermore, it underlies
our willingness to compare pixel values in frames. Accepting this assumption,
we have

dI

dt
= ∇I · dx

dt
+

∂I

∂t
= 0

(known as the optic ßow equation, e.g. see [186]). Flow is represented by
dx/dt. This is important, because if we conÞne our attention to an appropri-
ate domain, comparing I(T (x; θn), tn+1) with I(x, tn) involves, in essence,
estimating the total derivative. In particular,

I(T (x; θn), tn+1) − I(x, tn) ≈ dI

dt

Furthermore, the equivalence between correspondence and ßow suggests a
simpler form for the transformation of pixel values. We regard T (x; θn) as
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taking x from the tail of a ßow arrow to the head. At short timescales, this
justiÞes the view that T (x; θn) = x + δx(θn).

2.3.2 Image stabilization

This form of tracking can be used to build boxes around moving objects, a
practice known as image stabilization. One has a moving object on a fairly
uniform background, and would like to build a domain such that the moving
object is centered on the domain. This has the advantage that one can look
at relative, rather than absolute, motion cues. For example, one might take
a soccer player running around a Þeld, and build a box around the player.
If one then Þxes the box and its contents in one place, the vast majority of
motion cues within the box are cues to how the player�s body conÞguration
is changing. As another example, one might stabilize a box around an aerial
view of a moving vehicle; now the box contains all visual information about
the vehicle�s identity.

Efros et al. use a straightforward version of this method, where domains
are rectangles and ßow is pure translation, to stabilize boxes around people
viewed at a medium scale (for example, in a soccer video) [116]. In some
circumstances, good results can be obtained by matching a rectangle in frame
n with the rectangle in frame n + 1 that has smallest sum-of-squared differ-
ences � which might be found by blank search, assisted perhaps by velocity
constraints. This is going to work best if the background is relatively simple
� say, the constant green of a soccer Þeld � as then the background isn�t a
source of noise, so the Þgure need not be segmented (Þgure 2.3). For more
complex backgrounds, the approach may still work if one performs back-
ground subtraction before stabilization. At a medium scale it is very difÞcult
to localize arms and legs, but they do leave traces in the ßow Þeld. The sta-
bilization procedure means that the ßow information can be computed with
respect to a torso coordinate system, resulting in a representation that can be
used to match at a kinematic level, without needing an explicit representation
of arm and leg conÞgurations (Þgure 2.3).

2.3.3 Cardboard people

Flow based tracking has the advantage that one doesn�t need an explicit model
of the appearance of the template. Ju et al.build a model of legs in terms
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Fig. 2.3 Figure 1, part of 3 and 4 from Efros et al. Recognizing action at a distance. Flow based
tracking can be useful for medium scale video. Efros et al. stabilize boxes around the torso of players in
football video using a sum of squared differences (SSD) as a cost function and straightforward search to
identify the best translation values. As the Þgure on the left shows, the resulting boxes are stable with
respect to the torso. On the top right, larger versions of the boxes for some cases. Note that, because the
video is at medium scale, it is difÞcult to resolve arms and legs, which are severely affected by motion
blur. Nonetheless, one can make a useful estimate of what the body is doing by computing an estimate of
optic ßow (bottom right, Fx, Fy), rectifying this estimate (bottom right, F+

x , F−
x , F +

y , F−
y ) and then

smoothing the result (bottom right, Fb+x , etc.). The result is a smoothed estimate of where particular
velocity directions are distributed with respect to the torso, which can be used to match and label frames.
Figure from �Recognizing Action at a Distance�, Efros et al., IEEE Int. Conf. Computer Vision 2003, c©
2003 IEEE

of a set of articulated rectangular patches (�cardboard people�) [216]. As-
sume we have a domain D in the n�th image I(x, tn) and a ßow Þeld δx(θ)
parametrized by θ. Now this ßow Þeld takes D to some domain in the n+1�th
image, and establishes a correspondence between pixels in the n�th and the
n + 1�th image. Ju et al.score

∑
D

ρ(In+1(x + δx(θ)) − In(x))

where ρ is some measure of image error, which is small when the two com-
pare well and large when they are different. Notice that this is a very general
approach to the tracking problem, with the difÞculty that, unless one is care-
ful about the ßow model the problem of Þnding a minimum might be hard.
To our knowledge, the image score is always applied to pixel values, and it
seems interesting to wonder what would happen if one scored a difference in
texture descriptors.

Typically, the score is not minimized directly, but is approximated with
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Fig. 2.4 Figure 3, 4 from Ju, Black and Yacoob, �Cardboard People�, no permission yet On the left,
a 2D ßow based model of a leg, called a �cardboard people� model by Ju et al [216]; there is a lower
leg, an upper leg and a torso. Each domain is roughly rectangular, and the domains are coupled with
an energy term to ensure they do not drift apart. The model is tracked by Þnding the set of deformation
parameters that carve out a domain in the n + 1�th frame that is most like the known domain in the n�th
frame. On the right, two frames from a track, with the left column showing the original frame and the
right column showing the track. Notice how the pattern of buckling folds on the trouser leg changes as
the leg bends; this leads to quite signiÞcant changes in the texture and shading signal in the domain.
These changes can be a signiÞcant nuisance. Figure from �Cardboard People: A Parameterized Model of
Articulated Image Motion�, Ju et al., IEEE Int. Conf. Face and Gesture, 1996 c© 1996 IEEE

the optic ßow equation and with a Taylor series. We have∑
D

ρ(I(x + δx(θ), tn+1) − In(x, tn))

is approximately equal to

∑
D

ρ(
dI

dt
) =

∑
D

ρ(
∂I

∂x
δx(θn) +

∂I

∂y
δy(θn) +

∂I

∂t
)

(this works because ∆t = 1). Now assume that a patch has been marked out
in a frame; then one can determine its conÞguration in the next by minimizing
this error summed over the domain. The error itself is easily evaluated using
smoothed derivative estimates. As we show below, we can further simplify
error evaluation by building a ßow model with convenient form. To track an
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articulated Þgure, we attach a further term that encourages relevant vertices of
each separate patch to stay close. Similarly, Black et al construct parametric
families of ßow Þelds and use them to track lips and legs, in the latter case
yielding a satisfactory estimate of walk parameters [43]. In both cases, the
ßow model is view dependent. Yacoob and Davis build a view independent
parametric ßow Þeld models to track views of walking humans [474]. As one
would expect, this technique can be combined with others; for example, the
W4S system of Haritaoglu et al. uses a �cardboard people� model to track
torso conÞgurations within the regions described above [167].

2.3.4 Building Flow Templates

We have seen how to construct tracks given parametric models of ßow. But
how is one to obtain good models? One strategy is to take a pool of examples
of the types of ßow one would like to track, and try to Þnd a set of basis ßows
that explains most of the variation (for examples, see [216]). In this case, and
writing θi for the i�th component of the parameter vector and Fi for the i�th
ßow basis vector Þeld, one has

δx =
∑

i

θiFi

Now write ∇I for the image gradient and exploit the optic ßow equation and
a Taylor series as above. We get

ρ(
∑

i

θi((∇I)T Fi) +
∂I

∂t
)

This can be done with a singular value decomposition (and is equivalent
to principal components analysis). A second strategy is to assume that ßows
involve what are essentially 2D effects � this is particularly appropriate for
lateral views of human limbs � so that a set of basis ßows that encodes
translation, rotation and some afÞne effects is probably sufÞcient. One can
obtain such ßows by writing

δx =

(
u(x)
v(x)

)
=

(
a0 + a1x + a2y + a6x

2 + a7xy

a3 + a4x + a5y + a6xy + a7y
2

)

This model is linear in the parameters (the ai), which is convenient; it pro-
vides a reasonable encoding of ßows resulting from 3D motions of a 2D
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Fig. 2.5 Figure 2 from Ju, Black and Yacoob, �Cardboard People�, no permission yet Typical ßows
generated by the model (u(x), v(x)T = (a0 + a1x + a2y + a6x2 + a7xy, a3 + a4x + a5y +
a6xy + a7y2)). Different values of the ai give different ßows, and the model can generate ßows typical
of a 2D Þgure moving in 3D. We write a = (a0, a1, a2, a3, a4, a5, a6, a7). Divergence occurs when the
image is scaled; for example, a = (0, 1, 0, 0, 0, 1, 0, 0). Deformation occurs when one direction shrinks
and another grows (for example, rotation about an axis parallel to the view plane in an orthographic
camera); for example, a = (0, 1, 0, 0, 0,−1, 0, 0). Curl can result from in plane rotation; for example,
a = (0, 0,−1, 0, 1, 0, 0, 0). Yaw models rotation about a vertical axis in a perspective camera; for
example a = (0, 0, 0, 0, 0, 1, 0). Finally, pitch models rotation about a horizontal axis in a perspective
camera; for example a = (0, 0, 0, 0, 0, 0, 1). Figure from �Cardboard People: A Parameterized Model
of Articulated Image Motion�, Ju et al., IEEE Int. Conf. Face and Gesture, 1996 c© 1996 IEEE

rectangle (see Þgure 2.5). One may also learn linearized ßow models from
example data [474].

2.3.5 Flow models from kinematic models

An alternative method to build such templates is to work in 3D, and exploit
the chain rule, as in the work of Bregler and Malik [60, 61]. We start with a
segment in 3D, which is in some conÞguration and viewed with some camera.
Each point on the segment produces some image value. We could think of
the image values as a function � the appearance map � deÞned on the
segment. This allows us to see viewing the segment as building a mapping
from the points on the segment to the image domain. The image values are
obtained by taking each point in the image, Þnding the corresponding point
(if any) on the segment, and then evaluating the appearance map at this point.
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Fig. 2.6 Figure 7 from Bregler and Malik CVPR paper �Tracking people with twists and expo-
nential maps� no permission yet Bregler and Malik formulate parametric ßow models by modelling a
person as a kinematic chain and then differentiating the maps from segment to image. They then track by
searching for the parameter update that best aligns the current image pixels with those of the previous
frame under this ßow model. There is no dynamical model. This means that complex legacy footage, like
these frames from the photographs of Eduard Muybridge [304, 303], can be tracked. Muybridge�s frames
are difÞcult to track because the frame-frame timing is not exact, and the Þgures can move in quite com-
plex ways (see Þgure 4.7). Figure from �Tracking People with Twists and Exponential Maps�, Bregler and
Malik, Proc. Computer Vision and Pattern Recognition, 1998, c© 1998 IEEE

All this leads to an important formal model, again under the assumption
that motions in 3D do not affect the appearance map in any signiÞcant way.
We have a parametrized family of maps from points on the body to the im-
age. A ßow Þeld in the image is a vector Þeld induced by a change in the
choice of parameters (caused by either a change in joint conÞguration or a
camera movement). We will always assume that the change in parameters
from frame to frame is small. At this point, we must introduce some nota-
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tion. Write the map that takes points on the segment to points in the n�th
image as Ts→I(·; θn), where θn are parameters representing camera conÞg-
uration, intrinsics, etc. The point p on the segment appears in image n at
xn = Ts→I(p; θn) and in image n + 1 at xn+1 = Ts→I(p; θn+1). The tail
of the ßow arrow is at xn and the head is at xn+1. The change in parameters,
∆θ = θn+1 − θn is small. Then the ßow is

xn+1 − xn = Ts→I(p; θn+1) − Ts→I(p; θn) ≈ ∇θTs→I · ∆θ

where the gradient, ∇θTs→I , is evaluated at (p, θn).

2.3.5.1 Tracking a Derivative Flow Model

The main point here is that the ßow at xn can be obtained by Þxing the rel-
evant point p on the object, then considering the map taking the parameters
to the image plane � the derivative of Ts→I(p; ·). This is important, because
the ßow ∇θTs→I ·∆θ is a linear function of ∆θ. We now have the outline of
a tracking algorithm:

• Start at frame n = 0 and some known conÞguration θ0 = θ̂.
• Fit: Fit the best value of ∆θ to the ßow between the frame n and

frame n+1 using the ßow model given by the derivative evaluated
at θn.

• Update: Update the parameters by θn+1 = θn + ∆θ and set n to
n + 1.

This should be seen as a primitive integrator, using Euler�s method and in-
heriting all the problems that come with it. This view conÞrms the reasonable
suspicion that fast movements are unlikely to be tracked well unless that sam-
pling rate is high.

2.3.5.2 The Flow Model from the Chain Rule

In the special case of segments lying on a kinematic tree � a series of links
attached by joints of known parametric form, where there are no loops � the
chain rule means that the derivative takes a special form. Each segment in a
kinematic tree has its own coordinate system, and the joint is represented by a
map from a link�s world coordinate system to that of its parent. The parent of
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segment k is segment k− 1. They are connected by a joint whose parameters
at frame n are θk,n. In general, in a kinematic tree, points on segments are
affected by parameters at joints above them in the tree. Furthermore, we can
obtain a transformation to the image by recursively concatenating transfor-
mations. Write the camera as Tw→i. Then the transformation taking a point
of link k in frame n to the image can be written as

Tk→i = Tw→i ◦ Tk−1→w ◦ Tk→k−1

Notice that the only transformation that depends on θk,n here is Tk→k−1.
There is an advantage to changing notation at this point. Write Tk→k−1 as

Tk. The root of the tree is at segment one, and we can write T1→w as T1 and
Tw→i as T0. We continue to divide up the parameters θ into components, θk,n

being the components associated with segment k in the n�th frame (θ0,n are
viewing parameters in frame n). We can now see the map from point p on
segment k to the image as

Tk→i(p; θ) = T0(T1(T2(. . . ; θ2); θ1); θ0)

This is somewhat inconvenient to write out, and it is helpful to keep track of
intermediate values. Introduce the notation

pl = Tk→l(p; θ)

for the point p in the coordinate system of the l�th link.
Our transformations have two types of argument: the points in space,

and the camera parameters. It is useful to distinguish between two types
of derivative. Write the partial derivative of a transformation T with re-
spect to its spatial arguments as DT . In coordinates, T would take the
form (f1(x1, x2, x3, θ), f2(x1, x2, x3, θ), f3(x1, x2, x3, θ)), and this deriva-
tive would be the matrix whose i, j�th element is ∂fi/∂xj . Similarly, write
the partial derivative of a transformation T with respect to parameters θ as
Dθ . If we regard θ as a vector of parameters whose j�th entry is θj , then
in coordinates this derivative would be the matrix whose i, j�th element is
∂fi/∂θj .

This orgy of notation leads to a simple form for the ßow. Write the ßow
at point x � which is the image of point p on segment k � in frame n as
v(x, θn). Then

v(x, θn) = DθT0(p0; θ0) · ∆θ0 + DxT0 ◦ DθT1(p1; θ1)∆θ1
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. . . + DxT0 ◦ DxT1 ◦ . . . DxTk−1 ◦ DθTk(p; θk)∆θk

Our indexing scheme hasn�t taken into account the fact that we�re dealing
with a tree, but this doesn�t matter; we need care only about links on the
path from the relevant segment to the root. Furthermore, there is a relatively
efÞcient algorithm for computing this derivative. We pass from the leaves
to the root computing intermediate conÞgurations pl for each point p and
the relevant parameter derivatives. We then pass from the root to the leaves
concatenating spatial derivatives and summing.

2.3.5.3 Rigid-body Transformations

All the above takes a convenient and simple form for rigid-body transfor-
mations (which are likely to be the main interest in human tracking). We
use homogeneous coordinates to represent points in 3D, and so a rigid body
transformation takes the form

T (p, θ) =

[
R t
0 1

]
p

where R is an orthonormal matrix with determinant one (a rotation matrix).
The parameters are the parameters of the rotation matrix and the coefÞcients
of the vector t. This means the spatial derivative is the same as the transfor-
mation, which is convenient.

The derivatives with respect to the parameters are also relatively easily
dealt with. Recall the deÞnition of thematrix exponential as an inÞnite sum,

exp(M) = I + M +
1
2
M2 + M3 + . . . +

1
n
Mn . . .

where the sum exists. Now it is straightforward to demonstrate that if

M =

[
A t
0 0

]

and if A is antisymmetric, then exp(M) is a rigid-body transformation. The
elements of the antisymmetric matrix parametrize the rotation, and the right-
most column is the translation. This is useful, because

∂ (expM(θ))
∂θ

=
(

∂M(θ)
∂θ

)
expM(θ)

which gives straightforward forms for the parameter derivatives.
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2.4 Tracking with Probability

It is convenient to see tracking as a probabilistic inference problem. In partic-
ular, we have a sequence of states X0,X1, ...,XN produced by some dynam-
ical process. These states are unknown � they are sometimes called hidden
states for this reason � but there are measurements Y0, Y1, ..., YN . Two prob-
lems follow naturally:

• Tracking, where we wish to determine some representation of
P (Xk|Y0, ..., Yk);

• Filtering, where we wish to determine some representation of
P (Xk|Y0, ..., YN ) (i.e. we get to use �future� measurements to in-
fer the state).

These problems are massively simpliÞed by two important assumptions.

• We assume measurements depend only the hidden state, that is,
that P (Yk|X0, ...,XN , Y0, ..., YN ) = P (Yk|Xk).

• We assume that the probability density for a new state is a func-
tion only of the previous state; that is, P (Xk|X0, ...,Xk−1) =
P (Xk|Xk−1), or, equivalently, that Xi form aMarkov chain.

Now tracking involves three steps:
Prediction: where we construct some prediction of the future state

given past measurements, or equivalently, construct a representation of
P (Xk|Y0, ..., Yk−1). Straightforward manipulation of probability combined
with the assumptions above yields that the prior or predictive density is

P (Xk|Y0, ..., Yk−1) =
∫

P (Xk|Xk−1)P (Xk−1|Y0, ..., Yk−1)dXk−1

Data association: where we use the predictive density � which is some-
times called the prior � and anything else likely to be helpful, to determine
which of a pool of measurements contribute to the value of Yk.
Correction: where we incorporate the new measurement into what

is known, or, equivalently, construct a representation of P (Xk|Y0, ..., Yk).
Straightforward manipulation of probability combined with the assumptions
above yields that the posterior is

P (Xk|Y0, ..., Yk) =
P (Yk|Xk)P (Xk|Y0, ..., Yk−1)∫

P (Yk|Xk)P (Xk|Y0, ..., Yk−1)dXk
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2.4.1 Linear Dynamics and the Kalman Filter

All this is much simpliÞed in the case that the emission model is linear, the
dynamic model is linear, and all noise is Gaussian. In this case, all densities
are Normal and the mean and covariance are sufÞcient to represent them.
Both tracking and Þltering boil down to maintenance of these parameters.
There is a simple set of update rules (given in algorithm 2; notation below),
the Kalman Þlter.
Notation: We write X ∼ N(µ; Σ) to mean that X is a normal random

variable with mean µ and covariance Σ. Both dynamics and emission are
linear, so we can write

Xk ∼ N(AkXk−1; Σ
(d)
k )

and
Yk ∼ N(BkXk; Σ

(m)
k )

We will represent the mean of P (Xi|y0, . . . , yi−1) as X
−
i and the mean

of P (Xi|y0, . . . , yi) as X
+
i � the superscripts suggest that they repre-

sent our belief about Xi immediately before and immediately after the i�th
measurement arrives. Similarly, we will represent the standard deviation of
P (Xi|y0, . . . , yi−1) as Σ−

i and of P (Xi|y0, . . . , yi) as Σ+
i . In each case,

we will assume that we know P (Xi−1|y0, . . . , yi−1), meaning that we know
X

+
i−1 and Σ+

i−1.
Filtering is straightforward. We obtain a backward estimate by running

the Þlter backward in time, and treat this as another measurement. Extensive
detail on the Kalman Þlter and derived methods appears in [147, 27].

2.4.2 Data Association

Data association involves determining which pixels or image measurements
should contribute to a track. That data association is a nuisance is a persistent
theme of this work. Data association is genuinely difÞcult to handle satis-
factorily � after all, determining which pixels contribute to which decision
seems to be a core � and often very difÞcult � computer vision problem.
The problem is usually particularly difÞcult when one wishes to track people,
for several reasons. First, standard data association techniques aren�t really
all that much help, as for almost every aspect the image domain covered by
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Dynamic Model:

xi ∼ N(Dixi−1,Σdi
)

yi ∼ N(Mixi,Σmi)

Start Assumptions: x−
0 and Σ−

0 are known
Update Equations: Prediction

x−
i = Dix+

i−1

Σ−
i = Σdi

+ Diσ
+
i−1Di

Update Equations: Correction

Ki = Σ−
i MT

i

[
MiΣ−

i MT
i + Σmi

]−1

x+
i = x−

i + Ki

[
yi −Mix−

i

]
Σ+

i = [Id −KiMi] Σ−
i

Algorithm 2: The Kalman Þlter updates estimates of the mean and covari-
ance of the various distributions encountered while tracking a state variable
of some Þxed dimension using the given dynamic model.

a person changes shape very aggressively, and can do so very fast. Second,
there seem to be a lot of background objects that look like some human body
parts; for example, kinematic tracking of humans in ofÞce scenes is very of-
ten complicated by the fact that many book spines (or book shelves) can look
like forearms.

In tracking by detection, almost all computation is directed at data as-
sociation, which is achieved by minimizing ρ with respect to the template�s
parameters � the support of ρ identiÞes the relevant pixels. Similarly, in
tracking using ßow, data association is achieved by choosing the parameters
of a ßow model to get a good match between domains in frames n and n + 1
� the deÞnition of the domain cuts out the relevant pixels. When these meth-
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ods run awry, it is because these data association methods have failed. Either
one cannot Þnd the template, or one cannot get good parameters for the ßow
model.

There are a variety of simple data association strategies which exploit
the presence of probability models. In particular, we have an estimate of
P (Xn|Y0, ..., Yn−1) and we know P (Yn|Xn). From this we can obtain an
estimate of P (Yn|Y0, ...Yn−1), which gives us hints as to where the measure-
ment might be.

One can use a gate � we look only at measurements that lie in a domain
where P (Yn|Y0, ..., Yn−1) is big enough. This is a method with roots in radar
tracking of missiles and aeroplanes, where one must deal with only a small
number (compared with the number of pixels in an image!) of returns, but the
idea has been useful in visual tracking applications.

One can use nearest neighbours. In the classical version, we have a
small set of possible measurements, and we choose the measurement with
the largest value of P (Yn|Y0, ..., Yn−1). This has all the dangers of wishful
thinking � we are deciding that a measurement is valid because it is consis-
tent with our track � but is often useful in practice (see chapter *** of [135]
for an example of how badly the method can behave). This strategy doesn�t
apply to most cases of tracking people in video because the search to Þnd the
maximising Yn � which would likely be an image region � could be too dif-
Þcult (but see chapter 4). However, it could be applied when one is tracking
markers attached to the body � in this case, we need to know which marker
is which, and this information could be obtained by allocating a measurement
to the marker whose predicted position is closest.

One can use probabilistic data association, where we use a weighted
combination of measurements within a gate, weighted using (a) the predicted
measurement and (b) the probability a measurement has dropped out. Again,
this method has the dangers of wishful thinking, and again does not apply to
most cases of tracking people; however, it could again be applied when one
is tracking markers attached to the body.

2.4.3 Multiple Modes

The Kalman Þlter is the workhorse of estimation, and can give useful results
under many conditions. One doesn�t need a guarantee of linearity to use a
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Kalman Þlter � if the logic of the application indicates that a linear model
is reasonable, there is a good chance a Kalman Þlter will work. Rohr used a
Kalman Þlter to track a walking person successfully, evaluating the measure-
ment by matches to line segments on the outline [365, 364].

More recently, the method tends not to be used because of concerns about
multiple modes. The representation adopted by a Kalman Þlter (the mean
and covariance, sufÞcient statistics for a Gaussian distribution) tends to rep-
resent multimodal distributions poorly. There are several reasons one might
encounter multiple modes.

First, nonlinear dynamics � or nonlinear measurement processes, or both
� can create serious problems. The basic difÞculty is that even quite innocu-
ous looking setups can produce densities that are not normal, and are very
difÞcult to represent and model. For example, let us look at only the hidden
state. Assume that this is one dimensional. Now assume that state updates are
deterministic, with Xi+1 = Xi + ε sin(Xi). If ε is sufÞciently small, we have
that for 0 < Xi < π, Xi < Xi+1 < π; for −π < Xi < 0, −π < Xi+1 < Xi;
and so on. Now assume that P (X0) is normal. For sufÞciently large k, P (Xk)
will not be; there will be �clumps� of probability centered around the points
(2j+1)π for j an integer. These clumps will be very difÞcult to represent, par-
ticularly if P (X0) has very large variance so that many clumps are important.
Notice that what is creating a problem here is that quite small non-linearities
in dynamics can cause probability to be concentrated in ways that are very
difÞcult to represent. In particular, nonlinear dynamics are likely to produce
densities with complicated sufÞcient statistics. There are cases where non-
linear dynamics does lead to densities that can be guaranteed to have Þnite-
dimensional sufÞcient statistics (see [39, 99, 98]); to our knowledge, these
have not been applied to human tracking.

Second, there are practical phenomena in human tracking that tend to
suggest that non-normal distributions are a signiÞcant part of the problem.
Assume we wish to track a 3D model of an arm in a single image. The el-
bow is bent; as it straightens, it will eventually run into an end-stop � the
forearm can�t rotate further without damage. At the end-stop, the posterior on
state can�t be a normal distribution, because a normal distribution would have
some support on the wrong side of the end-stop, and this has a signiÞcant ef-
fect on the shape of the posterior (see Þgure 3.5). Another case that is likely,
but not guaranteed, to cause trouble is a kinematic singularity. For example,
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if the elbow is bent, we will be able to observe rotation about the humerus,
but current observation models will make this unobservable if the elbow is
straight (because the outline of the arm will not change; no current method
can use the changes in appearance of the hand that will result). The dimension
of the state space has collapsed. The posterior might be a normal distribution
in this reduced dimension space, but that would require explicitly represent-
ing the collapse. The alternative, a covariance matrix of reduced rank, creates
unattractive problems of representation. Deutscher et al. produce evidence
that, in both cases, posteriors are not, in fact, normal distributions, and show
that an extended Kalman Þlter can lose track in these cases [106].

Third, kinematic ambiguity in the relations between 3D and 2D are a ma-
jor source of multiple modes. Assume we are tracking a human Þgure using
a 3D representation of the body in a single view. If, for example, many 3D
conÞgurations correspond exactly to a single 2D conÞguration, then we ex-
pect the posterior to have multiple modes. Chapter 3 discusses this issue in
extensive detail.

Fourth, the richest source of multiple modes is data association prob-
lems. An easy example illustrates how nasty this problem can be. Assume
we have a problem with linear dynamics and a linear measurement model.
However, at each tick of the clock we receive more than one measurement,
exactly one of which comes from the process being studied. We will con-
tinue to write the states as Xi, the measurements as Yi; but we now have
δi, an indicator variable that tells which measurement comes from the pro-
cess (and is unknown). P (XN |Y1..N , δ1..N ) is clearly Gaussian. We want
P (XN |Y1..N ) =

∑
histories P (XN |Y1..N , δ1..N )P (δ1..N |Y1..N ), which is

clearly a mixture of Gaussians. The number of components is exponential in
the number of frames � there is one component per history � meaning that
P (XN |Y1..N ) could have a very large number of modes.

The following two chapters discuss main potential sources of multi-modal
behaviour in great detail. Chapter 3 discusses the relations between 2D and
3D models of the body, which are generally agreed to be a source of multiple
modes. Chapter 4 discusses data association methods. In this chapter, there is
a brief discussion of the particle Þlter, a current favorite method for dealing
with multi-modal densities. There are other methods: Beneùs describes a class
of nonlinear dynamical model for which the posterior can be represented with
a sufÞcient statistic of constant Þnite dimension [39]. Daum extends the class
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of models for which this is the case ([98, 99]; see also [380] for an application
and [122] for a comparison with the particle Þlter). Extensive accounts of
particle Þlters appear in [109, 262, 361].





3
Tracking: Relations between 3D and 2D

Many applications require a representation of the body in three dimensions.
Such a track could come from tracking with a 3D representation � perhaps a
set of body segments in 3D, modelled as surfaces, triangle meshes or sample
points � or by building a kinematic track in two dimensions, then �lifting� it
to produce a 3D track. If there is only one camera, relations between the 2D
Þgure and the 3D track are complicated, and may be ambiguous. Ambiguities
appear to be less signiÞcant in the case where there are multiple cameras; we
review this case only brießy (section 3.1).

The heart of the question is the number of possible 3D conÞgurations that
could explain a single image. There is no doubt that there are many if there is
no motion information and if only geometric correspondence information is
used. In other cases, whether there is any ambiguity is uncertain, and appears
to depend quite precisely on the circumstances of measurement. When recon-
struction is ambiguous, one expects to encounter multimodal distributions in
a tracking problem built around 3D representations, because several distinct
inferred 3D conÞgurations could have the same likelihood.

We discuss methods for reconstructing body conÞguration in 3D from
a single view (and perhaps a dynamical history) in considerable detail in
section 3.2. This leads us to the (surprisingly complex and unresolved)

43
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question of the extent and nature of ambiguities in 3D reconstruction (sec-
tion 7.1.1). Furthermore, the lifting procedure adopted may have signiÞ-
cant consequences for how we choose to represent body conÞguration (sec-
tion 7.1.2). All this provides background information to understand tracking
methods that work on 3D body models (section 3.3).

3.1 Kinematic Inference with Multiple Views

If one has multiple views of the body, the problem of reconstruction is consid-
erably simpliÞed. Ideally, the cameras are calibrated, in which case the main
difÞculty is localizing body parts. At least conceptually, one could lift from
one frame using some method chosen from section 3.2, then search all ambi-
guities, evaluating by backprojecting into the other view. It is more sensible
to search conÞgurations with a cost function incorporating all views; this re-
quires the cameras be calibrated. There are generally two questions: the score
used to evaluate a particular reconstruction, and how to search for the best
reconstruction.

Scores can be computed by explicitly reconstructing a three-dimensional
structure from the views, then comparing the body representation to that
structure. Cheung et al.use a volumetric reconstruction of the person � a
quantized approximatation to the visual hull � obtained using Þve views,
and then encode kinematic conÞguration by Þtting a set of ellipsoids to the
3D reconstruction with EM [78]; the process is realtime. Kehl et al.use an
approximate visual hull, estimated by intersecting cones over foreground re-
gions from between 4 and 8 calibrated cameras [221] (Þgure 3.1). The recon-
struction is produced assuming a simple background, so that the cones can
be obtained. The body model is a textured 3D mesh, controlled by a skele-
ton (section 5.1); texture maps are obtained from a modelling view. Tracking
is by minimizing distance between the volumetric reconstruction and sample
points on the mesh (which are a function of the skeleton�s kinematic parame-
ters). The minimization procedure itself is a sophisticated variant of stochastic
gradient descent.

It is not necessary to construct the visual hull explicitly. There are nu-
merous methods that use the visual hull implicitly, by comparing the recon-
structed 3D model with the silhouette in each view. Carranza et al.use an im-
plicit representation, comparing the silhouette of the 3D reconstruction with



3.1. Kinematic Inference with Multiple Views 45

silhouettes in each view using graphics hardware [72]. This yields a cost func-
tion that can be evaluated very fast, allowing real-time tracking.

Fig. 3.1 Þgure 12 of kehl ea, full body tracking using multiple views, multipleview/01467432 Kehl et
al.represent the body as a textured 3D mesh, controlled by a skeleton with a texture map obtained from
a modelling view. They obtain a volumetric reconstruction from a set of calibrated cameras, then track
the body by minimizing distance between sampling points on the mesh and the volumetric reconstruction.
The top row shows frames from one camera with reprojected skeleton superimposed; the bottom row
shows the surface reconstruction at the left of each frame and the original volumetric reconstruction at
the right. The reconstruction is accurate, despite some difÞculties in the volumetric measurement. Figure
from �Full Body Tracking from Multiple Views Using Stochastic Sampling�, Kehl et al., Proc. Computer
Vision and Pattern Recognition, 2005 c© 2005 IEEE

Stereo matches can give greater depth precision than the visual hull can
provide. Plänkers and Fua estimate parameters for a model of the body con-
sisting of a skeleton, metaball muscle model, and skin using stereo and, op-
tionally, silhouette information [338]; the method appears to work with a
complex background. Delamarre and Faugeras use a form of iterated closest
point matching to produce forces that drive a 3D segment model into cor-
respondence with the silhouette in three calibrated views [101, 102]. Drum-
mond and Cipolla model the body with quadric segments, and track by apply-
ing a linearized ßow model (as per section 2.3.5; [60, 61]) to a search for edge
points close to projected sample points on the model [112] (see also [111]
for more information on the formalism, and [110, 113] for information about
tracking changes in camera parameters). Shahrokni et al.use a similar general
approach, but employ a novel texture segmentation model to Þnd silhouette
points [387]. They search along a scan line near and approximately normal
to the predicted silhouette to Þnd points where there is a high posterior of
a texture edge (see also an alternative method for Þnding texture silhouettes
using a classiÞer in [388]; and using an entropy measure in [386]).

Texture information can be registered to the body model. Starck and
Hilton obtain the best conÞguration of a 17 joint, meshed 3D model of the hu-
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man body to Þt stereo, silhouette and feature matches for each frame; texture
is then reprojected onto the body (in [415]; see also [171, 418]). The texture
is then backprojected onto the reconstruction and composited to give a single
texture map. In recent work, Starck and Hilton show that correspondences
between texture maps induced in separate frames yield temporal correspon-
dences and so information on how relevant surfaces deform [416]. Models
of this form allow relatively straightforward synthesis of new views [417].
These methods are oriented to performance capture, and appear to have been
demonstrated for simple backgrounds only.

In principle, texture information registered to the body should yield a
match score and improve matches, if the texture does not move with respect
to the skeleton. We are not aware of methods that use this cue, though it may
prove useful if one wants a detailed surface reconstruction of a model wearing
tight garments. However, one can use a ßow model to register texture from
frame to frame. Yamamoto et al.use a linear ßow model derived from the
kinematic model (cf section 2.3.5) with three cameras to obtain good tracks
from hand-initialized data; they use three calibrated cameras [475]. The pa-
per describes no difÞculties resulting from movement of texture with respect
to the body, but we expect that this effect signiÞcantly limits the precision
of available reconstructions (see also Þgure 2.4, and the discussion in sec-
tion 2.1). Theobalt et al.describe improved conÞgurations obtained from the
method of Carranza et al.([72]) by incorporating an optic ßow model to cor-
rect the estimates of conÞguration [436]. Subjects are not wearing very tight
clothing, and there again seem to be no difÞculties resulting from movement
of texture with respect to the body.

Generally, search methods involve either standard optimization tech-
niques or fairly standard variants. However, Deutscher et al.use a form of
randomized search, described in greater detail in section 3.3.1, to align a 3D
model with silhouette edges [104, 107]. Sigal et al.use a form of belief prop-
agation, described in greater detail in section 3.3.1.1, to infer conÞguration in
three or four views; the method uses detectors to guide a form of search [396].
Carranza et al.use a surface model, controlled by a 17 joint skeleton [72]. The
search for a reconstruction at a time instant uses the reconstruction at the pre-
vious instant as a start point; however, because motion can be fast, and the
sampling rate is relatively slow (15 Hz, p 571), a form of grid search at each
limb separately is necessary to avoid local minima. A texture estimate is ob-
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tained by rectifying all images to the surface model, and blending.
The most comprehensive and recent discussion of 3D reconstruction is-

sues appears in two papers. Cheung et al.give an extensive discussion of rep-
resentations of the visual hull and methods of obtaining them; the methods
they describe can incorporate temporal information, color information, stere-
opsis and silhouette information [79]. Cheung et al.then use these methods to
build a body model from a series of calibration sequences, which give both
surface and skeleton information [80]. This model is then tracked by mini-
mizing the sum of two scores. The Þrst compares the deformed body model
with the silhouettes in each image at a given timestep. The second compares
an object reconstruction obtained at a given timestep with the silhouettes in
each modelling frame. As authors note, there are 3D situations that are either
kinematically ambiguous or at least very difÞcult for a tracking algorithm of
this form. The Þrst occurs when body parts are close together (for example, an
arm pressed against the torso) and may lead to a self-intersecting reconstruc-
tion. This difÞculty appears to be intrinsic to the use of silhouette features.
The second occurs when the arm is straight, making rotation about the axis
of the humerus ambiguous. The difÞculty is that the photometric detail is too
weak to force the method to the right conÞguration of the hand. Curiously,
although Mori and Malik have shown that one can obtain landmark positions
automatically [296], there appears to be no multiple view reconstruction work
that identiÞes landmarks in several views (with, for example, the method of
Mori and Malik, section 3.2.1) and builds a geometric reconstruction this way.

Reducing conÞguration ambiguity is one reason to use multiple cameras;
another is to keep track of individuals who move out of view of a particular
camera (e.g. [287, 226, 67]). Currently, this is done at a coarse scale (people
are blobs).

3.2 Lifting to 3D

There are a variety of methods for lifting a 2D representation of the body to
3D. Different methods draw from different bodies of technique (kinematics,
statistics, computational geometry, optimization, etc.), but the geometry of
lifting gives clear bounds to what ambiguities may appear (subsection 3.2.1).
The extent of ambiguity appears to depend on whether the ambiguous recon-
structions violate kinematic constraints, and whether a dynamical history is
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available. The remarkable fact is that reconstruction ambiguity seems to be
either quite easily evaded or not to manifest itself at all. Thus, while many
papers advocate methods to manage ambiguity, almost any method appears
to work � one doesn�t see many records of systems failing due to ambiguity.
This may be because experiments are poorly conducted; but it is more likely
that the implicit folk mythology � that ambiguous reconstructions are quite
easily avoided � is true. We discuss this point in section 7.1.1.

3.2.1 Geometric Ambiguity and Lifting by Kinematic Inference

The way that people are imaged means that there are very few cases where a
scaled orthographic camera model is not appropriate. One such case to keep
in mind is a person pointing towards the camera; if the hand is quite close,
compared with the length of the arm, one may see distinct perspective effects
over the hand and arm and in extreme cases the hand can occlude much of
the body.

Regard each body segment as a cylinder, for the moment of known length.
If we know the camera scale, and can mark each end of the body segment �
we might do this by hand, as Taylor [433, 434] does and Barrón and Kaka-
diaris [31, 32] do, or by a strategy of matching image patches to marked up
images as Mori and Malik do [296, 297] � then we know the cosine of the
angle between the image plane and the axis of the segment, which means we
have the segment in 3D up to a twofold ambiguity and translation in depth
(Þgure 3.2 gives examples). We can reconstruct each separate segment and
obtain an ambiguity of translation in depth (which is important and often for-
gotten) and a two-fold ambiguity at each segment.

For the moment, assume we know all segment lengths and the camera
scale. We can now reconstruct the body by obtaining a reconstruction for
each segment, and joining them up. Each segment has a single missing degree
of freedom (depth), but the segments must join up, meaning that we have a
discrete set of ambiguities. Depending on circumstances, one might work
with from seven to nine body segments (the head is often omitted; the torso
can reasonably be modelled with several segments), yielding from 128 to 512
possible reconstructions. These ambiguities persist for perspective images;
examples appear in Þgure 3.4.

Barrón and Kakadiaris show that anthropometric parameters can be esti-
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Fig. 3.2 2d3Dlift/cvpr00.pdf, Þgure 5, p 682, CJpaper Two 3D reconstructions obtained by Taylor
[433], for single orthographic views of human Þgures. The image appears left, with joint vertices on the
body identiÞed by hand (the user also identiÞes which vertex on each segment is closer to the camera).
Center shows a rendered reconstruction in the viewing camera, and right shows a rendering from a
different view direction. Figure from �Reconstruction of articulated objects from point correspondences
in a single uncalibrated image�, Taylor, Proc. Computer Vision and Pattern Recognition, 2000 c© 2000
IEEE

mated as well [31, 32]. They do this by constructing a multivariate Gaussian
prior on segment lengths, which do not vary much in size (a factor of 1.5 cov-
ers the range of human heights from four foot six to six foot nine, which deals
with the vast majority of adults). Ratios of body segment lengths vary even
less (e.g. see [314, 31, 32]). Barrón and Kakadiaris assume that, in any view,
two segments are close to parallel to the image plane, meaning that the ratio
of their image lengths is very close to the actual length ratio. They construct
a discrete set of possible bodies, and use image length ratios to index into this
set to obtain a start point for an optimization procedure that obtains the actual
anthropometric parameters by choosing the set that agrees with the image,
meets joint limit constraints, and has highest prior probability (this could be
seen as an MAP estimate).

The discrete ambiguities can be dealt with in a number of ways. One could
ask the user to identify the closer endpoint of each segment (Taylor [433], p.
681). One could simply choose, as Barrón and Kakadiaris appear to do. In
detail, their method uses each kinematically acceptable 3D reconstruction as
a start point for the minimization procedure described above, and chooses the
reconstruction with best value of the objective function. Since this procedure
enforces kinematic constraints but does not apply distinct weights to distinct
kinematic reconstructions, the unconstrained objective function must have a
symmetry corresponding to the reconstruction ambiguity, and so the choice
depends largely on random factors within the optimization procedure. It is
important to notice that this doesn�t seem to cause any problems, which sug-
gests that substantial kinematic ambiguities might be rather rare. We will pick
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Fig. 3.3 Mori+Malik, 2d3dlift/morimecv01.pdf, Þgures 6 and 7 Mori and Malik deal with discrete
ambiguities by matching test image outlines to examplars, which have keypoints marked [296, 297]. The
keypoint markup includes which end of the segment is closer to the view. The images on the left show
example test images, with keypoints established by the matching strategy superimposed. The resulting
reconstruction appears on the right. Figure from �Estimating Human Body ConÞgurations using Shape
Context Matching�, Mori and Malik, IEEE Workshop on Models versus Exemplars in Computer Vision
2001 c© 2001 IEEE

up on this point in section 7.
Mori and Malik deal with discrete ambiguities by matching [296, 297].

They have a set of example images with joint positions marked. The outline of
the body in each example is sampled, and each sample point is encoded with
a shape context (an encoding that represents local image structure at high
resolution and longer scale image structure at a lower resolution). Keypoints
are marked in the examples by hand, and this marking includes a representa-
tion of which end of the body segment is closer to the camera. The outline of
the body is identiÞed in a test image (Mori and Malik use an edge detector;
a cluttered background might present issues here), and sample points on the
outline are matched to sample points in examples. A global matching pro-
cedure then identiÞes appropriate examplars for each body segment and an
appropriate 2D conÞguration. The body is represented as a set of segments,
allowing (a) kinematic deformations in 2D and (b) different body segments
in the test image to be matched to segments in different training images. The
best matching example keypoint can be extracted from the matching proce-
dure, and an estimate of the position of that keypoint in the test image is
obtained from a least-squares Þt transformation which aligns a number of
sample points around that keypoint. The result is a markup of the test image
with labelled joint positions and with which end of the segment is closest
to the camera. A 3D reconstruction follows, as above (Þgure 3.3 gives some
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examples).

Fig. 3.4 Þgure 2 of sminchisescu+triggs, kinematic jump processes, kinematicambiguity/01211339
Ambiguous reconstructions of a 3D Þgure, all consistent with a single view, from Sminchisescu and Triggs
[408]. The ambiguities are most easily visualized by an argument about scaled orthographic cameras,
given in the text, but persist for perspective views as these authors show. Note that the cocked wrist in
the leftmost Þgure violates kinematic constraints � no person with an undamaged wrist can take this
conÞguration. 1

fix this par

Camera scale can be calibrated, and anthropometric parameters estimated, but
the remaining discrete set of ambiguities appears to have substantial practi-
cal consequences. Furthermore, they appear to apply to whatever particular
scheme of reconstruction is adopted, unless the measurement process is more
informative than locating segment endpoints. Schemes that use the silhou-
ette (section 3.2.2) and image matches (section 3.2.3) appear to be subject to
this set of ambiguities (section 7.1.1 discusses further observations that might
help).

Current likelihood models compare some set of predicted with observed
image features (typically, silhouette edges), and so must have multiple peaks
corresponding to the ambiguities described. These peaks appear in the pos-
terior (Þgure 3.5). While this makes the multiple peaks predictable, they are
still a major nuisance. Typically, at each peak in the likelihood there are some
directions where the value of the likelihood varies slowly (small eigenvalues
in the Hessian). This is because localization of either landmarks or silhou-
ette points is difÞcult, and large changes in the estimate of depth to a joint or
of a limb angle can result in small changes to image positions. The problem
directions tend to move a joint in depth (Þgure 3.4).
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(a) (b) (c)

Fig. 3.5 Figure 4, 2a of Sminchisescu and Triggs, Covariance scaled..., particleÞlter/009090509 Sev-
eral nasty phenomena result from kinematic ambiguities and from kinematic limits, as Sminchisescu and
Triggs [404, 407]. Ambiguities in reconstruction � which are caused because body segments can be ori-
ented in 3D either toward or away from the camera, as described in the text � result in multiple modes
in the posterior. The two graphs on the left (a and b) show the Þtting cost (which can be thought of as
a log-likelihood) as a function of the value of two state variables (scaled by their standard deviation).
The state variables refer to the kinematic conÞguration of the 3D model. Note the signiÞcant �bumps�
from the second mode (the vertical arrows). For reference, there is a quadratic approximation shown as
well. Note also the the signiÞcant deformations of modes resulting from a kinematic limit (the horizontal
arrows). This is caused by the fact that no probability can lie on the other side of the limit, so the mode
must be �squashed�. 2

3.2.2 Lifting by Minimization

As we have seen (section 3.1), if one has multiple views, the body conÞgu-
ration can be reconstructed by minimizing an error between the image and
projected conÞguration in each view. A wide variety of view errors are avail-
able, though most involve a comparison between inferred outline points and
an image silhouette. Sminchicescu and Telea show that this approach can
produce a reconstruction from a single view ([403]; see also [402]). Their
error function includes a term to force the projected body to cover as much
silhouette as possible and a term to force the projected body inside the silhou-
ette. It is important to smooth the silhouette (from background subtraction),
because noise components on the silhouette boundary can produce a difÞ-
cult optimization problem. The silhouette is skeletonized and the skeleton is
then pruned and �inßated� using a form of distance transform. The method
produces good reconstructions, but must experience at least reconstruction
ambiguities similar to those experienced by kinematic inference.

Randomized search is a reasonable strategy for attacking the minimiza-
tion. Sminchisescu and Triggs describe various methods to bias the likelihood
function searched by a sampler so that the state will move freely between lo-
cal minima [406, 405, 410]. Sminchisescu and Triggs exploit an explicit rep-
resentation of kinematic ambiguities to help this search, by making proposals
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for large changes of state that have a strong likelihood of being good [409].
Lee and Cohen use a markov chain Monte Carlo method to search the like-
lihood, using both a set of image detectors and a model of kinematic ambi-
guities to propose moves; this gives a set of possible reconstructions for the
upper body [245] and the whole body [246].

3.2.3 Lifting by Regression

Assume we are given a set of example pairs (xi,yi), where xi is a vector of
measurements of image properties and yi is the known 3D conÞguration of
the body for that measurement vector.

We can regard lifting as a regression problem� predict y for a new set
of image measurements x, using the training data. This regression problem
has some nasty properties.

• Dimension: We expect x to be drawn from a high-dimensional
space. Worse, we expect that the possible x that we can observe
lie on a relatively low-dimensional subspace of the original space.
For example, we expect to see arms and legs in a limited range of
conÞgurations; we expect to see people with arms of similar ap-
pearance; we expect to see people with legs of similar appearance;
and so oon.

• Metric distortion: We do not expect that the distance between xi

and xj necessarily reßects the distance between yi and yj . For
example, two quite distinct body conÞgurations could have very
similar images (as a result of geometric ambiguities section 3.2.1).

• Multiple values: Worse, we could have two distinct values of y
that are correctly associated with a single value of x, (as a result
of the discrete ambiguity of section 3.2.1).

Notation: To avoid dealing with isolated constants, we will assume that one
component of x always has the value 1.

3.2.3.1 Lifting using the Nearest Neighbour

The simplest regression method is to use the value associated with the near-
est neighbour. Athitsos and Sclaroff determine 20 kinematic conÞguration
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parameters from an image of a hand by matching the image to a set of ex-
amples [21, 22]. Examples cover a wide range of viewing conditions, and
the cost of obtaining the best match (in a total of 107,328 images) limits the
number of distinct hand conÞgurations to 26.

One can incorporate dynamical information into the distance cost match-
ing entire 3D motion paths to 2D image tracks. Howe computes a match
cost frame by frame, by comparing rendered motion capture data from the
CMU Motion Capture collection (http:whereisit) with image silhou-
ettes [187]. Views are again assumed lateral and orthographic, and are sam-
pled every 10o around the body. Translation and scale could be handled either
by sampling, or by obtaining estimates from a bounding box. The comparison
is scored with a chamfer distance. Write

H(S1, S2) =
∑
p∈S1

min
q∈S2

d(p, q)

(noting a similarity with the Hausdorff distance, section 2.2.2.2), θl for the
3D conÞguration of the l�th frame of motion capture data with respect to the
camera (meaning that rotation, translation and scale are encoded here), Pθl

for the set of pixels covered by a rendering of θl, and PSj for the pixels lying
in the j�th silhouette. The comparison between θl and Sj is now scored as

M(θl, Sj) = H(Pθl , PSj ) + H(PSj , Pθl)

Now write the (unknown) value of θ at time i as Θi � this value could be
any one of the available θl. Howe then constructs a cost linking frames of
motion capture ∆(Θi,Θi−1); this cost could include a charge for extreme
camera motions, though the paper does not explicitly describe this (the cost
used charges for large changes in body conÞguration). The motion is lifted
by applying dynamic programming to

C(Θ1, ...,ΘN ) =
N∑

i=2

∆(Θi,Θi−1) +
N∑

i=1

M(Θi, Si)

There are too many frames of motion capture to implement an exact dynamic
programming solution, and we allow only values θl of Θi such that M(θl, Si)
is less than some threshold. The method appears to produce solutions that are
unambiguous, which is consistent with the view that 3D reconstruction am-
biguities are probably a phenomenon of short, rather than long, time-scales.
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There is also some useful evidence that reconstruction errors or uncertain-
ties do not propagate over long time-scales (Þgure 3.6). However, there is no
attempt to use either N-best dynamic programming or beam search to iden-
tify 3D reconstructions that have cost comparable to the best cost, but are
signiÞcantly different.

Fig. 3.6 01384804, Þgure 7 (8 is incomprehensible, and so omitted) Howe�s formulation lifts to 3D by
comparing projected motion capture data with image silhouettes [187]. There is a frame-frame cost for
the reconstruction, and the Þnal 3D lift is obtained by dynamic programming. In a formalism like this, one
could reasonably fear that a mistaken reconstruction in one frame might result in an entirely wrong path.
In practice, this does not occur. The graph is obtained by constraining the Þrst lifted frame of a sequence
to each of a 1000 different (incorrect) states; the plot shows the number of distinct states found in the
succeeding frames for each path, as a function of frame. The local image evidence quickly overwhelms
the effect of history; by the 10�th frame, there are only two distinct states. Figure from �Silhouette Lookup
for Automatic Pose Tracking�, Howe, Proc. IEEE Workshop on Articulated and Non-Rigid Motion, 2004
c© 2004 IEEE

3.2.3.2 Snippets and Cameras

This work suggests that, while a single frame reconstruction might be am-
biguous, a match from a short 2D track to a short 3D track might not be (in
section 7, we lay out evidence it is not). Howe et al.compare projected motion
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capture data with image tracks, but now use posterior inference to estimate
dynamic parameters [188]. These parameters are an encoding of �snippets�
� 11 frames of motion capture data � which are clustered using a mixture
of Gaussians. Each 11 frame section of the track produces a snippet with
maximal posterior, and the snippets are blended into one another to give a
3D reconstruction. While authors acknowledge the tracker loses track after a
while, the lifting procedure appears to be robust and effective.

Ramanan and Forsyth use a similar approach, but apply constraints to
camera dynamics, too ([355]; see also [354]). They assume that views are lat-
eral, estimate scale and translation from the image, and sample the remaining
camera parameter (rotation about the vertical axis). They constrain the cam-
era speed, and charge for large motions in three dimensions. The best match-
ing sequence can then be obtained by dynamic programming. The method
cannot recover the motion in depth of the root, but successfully recovers the
conÞguration of the body with respect to the root and all root parameters but
depth.

Fig. 3.7 Figure 5.4 from Ramanan�s thesis Left frames are taken from a walking sequence, matched
to motion capture data using the method of Ramanan and Forsyth [355]. Matches are independent from
frame to frame. Note that the lateral view of the body (far left) is ambiguous, and can be reconstructed
inaccurately. This ambiguity does not persist, because the camera cannot move freely from frame to frame.
Right frames show reconstructions obtained using dynamic programming to enforce a model of camera
cost. The correct reconstruction is usually available, because the person does not stay in an ambiguous
conÞguration. The frames are taken from a time sequence, and the graphs below show an automatically
computed annotation sequence � facing left vs. facing right � as a function of time. Note that the case
on the left shows an essentially random choice of direction when the ambiguity is present (the person
appears to ßip from facing left to facing right regularly). This is because the free rotation of the camera
means the ambiguity appears on a per-frame basis. For the case on the right, the smoothing created by
charging for fast camera rotations means that the labels change seldom (and are, in fact, correct). Figure
from Ramanan�s UC Berkeley PhD thesis, �Tracking People and Recognizing their Activities�, 2005 c©
2005 D. Ramanan
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The discrete ambiguity in conÞguration is handled by incorporating infor-
mation about surrounding frames into the match cost. In particular, the cost
of matching a given image frame with a given motion capture frame is aver-
aged over a window of image (resp. motion capture) frames centered around
the frame under consideration. This means that the match uses an implicit (in
the collection of motion capture) dynamical model to resolve these discrete
ambiguities, at the cost of not being able to lift conÞgurations that are not in
the motion capture data.

The charge for camera rotation is reasonable, because cameras do not usu-
ally swing around the body by very large amounts, but it is also important,
because Ramanan and Forsyth�s model does not match heads and so has difÞ-
culty telling which way the body is facing for lateral views, particularly when
the limbs are in line with the body (Þgure 3.7). This results in a lateral view
of a standing person can be interpreted as facing either right or left; the cam-
era rotation charge means that, if the person walks off � and so reveals the
direction in which they are facing � this information can be propagated.

3.2.3.3 Regressing Pose against the Image

Rosales and Sclaroff use of a collection of local experts (�specialized
mappings�) to regress hand conÞguration against image appearance [367].
Shakhnarovich et al.train with a data set of 3D conÞgurations and rendered
frames, obtained using POSER (a program that renders human Þgures, from
Creative Labs). They show error rates on held out data for a variety of re-
gression methods applied to the pool of neighbours obtained using parameter
sensitive hashing. Generally, performance improves with more neighbours,
with using a linear (rather than constant) locally weighted regression, and
if the method is robust. The best is a robust linear locally weighted regres-
sion. Their method produces estimates of joint angles with RMS errors of
approximately 20o for a 13 degree of freedom upper body model [389]; a
version of this approach can produce full 3D shape estimates [162]. Liu et
al.demonstrate a full body reconstruction from silhouettes in Þve views using
a similar regression model; the reconstruction is not evaluated directly, but is
used to control motion synthesis [360].
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3.2.3.4 Disambiguation with the Immediate Past

A major difÞculty with this procedure is the possibility that a single set of
image features may predict multiple poses. This could be a result of weak-
nesses in image features � for example, it is hard to tell which way the actor
is facing in a lateral view of a standing person with current image features
� but is more likely the consequence of the kinematic ambiguities described
above. Reconstructions performed in the past could disambiguate the current
reconstruction. Brand links images with motion capture by Þtting HMM�s
to both motion capture data and image data; these HMM�s share a dynami-
cal model [56]. The HMM�s are Þtted with a variant Þtting algorithm which
tends to obtain models with relatively low entropy (there is some discussion
in [56]; more in [55, 57]). Reconstruction in 3D is obtained by inferring a
state sequence from image data, then choosing a sequence of emitted states
from the motion capture model, using a smoothed approximation rather than
the Viterbi sequence.

We could think of pose as lying on a set of distinct �sheets�, each of
which is a single valued function of image features, and then build distinct
models for each sheet. This leads to tricky problems in identifying the sheets,
however. Agarwal and Triggs observe that the pose in the previous frames,
if correctly computed, should give a good guide to the current pose � one
is unlikely to jump from sheet to sheet in a single frame [3, 6]. This ob-
servation implies that, while yt(xt) might be a multiple valued function,
yt(xt,yt−1,yt−2) is not. At reasonable sampling rates, the pose in the last
two frames should give a fair estimate of the pose in the current frame. Agar-
wal and Triggs Þrst construct a regressed estimate of the pose in frame t,ŷt

from yt−1 and yt−2 using a linear regression. They then compute a regres-
sion estimate of yt from xt and ŷt, using a regression vector machine trained
with a variant algorithm. The method produces estimates of joint angles with
RMS errors of 4o for 55 degrees of freedom (3 angles per joint for an 18 joint
skeleton, and 1 orientation DOF with respect to the camera). We expect the
method to behave badly at singularities of the pose (Þgure 7.1). In a more
recent paper, Agarwal and Triggs encode the �sheets� implicitly with a latent
variable, and obtain improved reconstructions [5].
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3.3 Multiple Modes, Randomized Search and Human
Tracking

We have clear evidence that tracking a 3D representation of the body can
result in multiple modes in the posterior and that these modes do not look
Gaussian locally (Þgure 3.5; but see section 7). The need to manage these
modes has spawned a number of methods, all of which are forms of random-
ized search.

Particle Þlters should be seen as a form of randomized search. One starts a
set of points that tend to be concentrated around large values of the posterior.
These are pushed through the dynamical model, to predict possible conÞg-
urations in the data. The result is a sampled representation of the prior. The
predictions are compared to the data, and those that compare well are given
higher weights, yielding a sampled representation of the posterior. This sim-
ple view provides some insight into why particle Þlters in their most basic
form are not particularly well adapted to kinematic tracking.

There is a problem with dimension. The state vector for most kinematic
tracking problems must be high dimensional. One expects to encounter at
least 20 degrees of freedom (one at each knee, two at each hip, three at each
shoulder, one at each elbow and six for the root) and quite possibly many
more. This means that mismatches between the prior and the likelihood can
generate serious problems. Such mismatches are likely for three reasons.

First, the body can move quickly and unexpectedly, meaning that proba-
bility must be quite widely spread in the prior to account for large accelera-
tions. It is hard to be clear on how much uncertainty there is in the state of
the body at some time given the past, and there are fair arguments either way
(section 7.1.3). However, fast movements do occur, and current methods are
forced to have fairly diffuse dynamical models to cope with them.

Second, the likelihood has multiple peaks, which can be very narrow. Nar-
row peaks occur because some body segments � forearms are a particularly
nasty example � have relatively small cross-section in the image, and so
only a small range of body states will place these segments in about the right
image conÞguration. Multiple peaks occur because there tend to be numerous
objects that look somewhat like body segments (long, narrow, parallel sides,
constant colour). We are now using the predictions of the prior to Þnd the
largest narrow peak in a high-dimensional likelihood � for this to have any
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hope of success, the predictions need to be good or to occur in very large
numbers. But we know the predictions will be poor, because we know people
can generate fast, unexpected movements.

Third, detectors used to produce a likelihood model may be inaccurate.
This can result in small errors in inferred state, which in turn produce po-
tentially large changes in state from frame to frame. As Sminchicescu and
Triggs point out ([407], p. 372), this suggests using a relatively diffuse dy-
namical model as an insurance policy.

The key idea in particle Þlters is the randomized search. One might aban-
don, or at least de-emphasize, probabilistic semantics, and focus on building
an effective search of the likelihood. The key difÞculties are that the peaks
in the likelihood are narrow (and so easy to miss) and that the conÞguration
space is high-dimensional (so that useful search probes may be difÞcult to
Þnd). The narrow peaks in the likelihood could be dealt with by annealing,
and good search probes may be found by considering the ambiguity of 3D
reconstructions. We review these approaches in section 3.3.1.5.

3.3.1 Randomized Search with Particle Filters

There are a series of approaches to deal with problems created by the dimen-
sion of the state space. First, we could reÞne the search using importance sam-
pling methods. Second, we could use sequential inference methods to obtain
more efÞcient samples of the prior. Third, we could build lower-dimensional
dynamical models. Finally, we could build more complex searches of the like-
lihood.

3.3.1.1 Importance Sampling

Importance sampling is a method to concentrate samples in places that seem
likely to be useful. Assume we have a distribution g(Xt) from which we can
draw samples, and which is a better guide to the likelihood than the prior
P (Xt|Y0, . . . ,Yt−1) is. We can then draw samples Xti from g(Xt). Then
the set of samples

(Xti,
P (Xt = Xti|Y0, . . . ,Yt−1)P (Yt|Xt = Xti)

g(Xti)
)
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is a representation of the posterior, as can be established by pattern match-
ing to the expressions above. Given several plausible importance functions,
one could use a mixture of these functions and the prior as an importance
function. Drawing samples from this mixture is straightforward; one draws a
sample according to the mixing weights, and uses this to choose a sampling
strategy. Image observations are a natural source of importance functions. Is-
ard and Blake use this approach to track hands and forearms [201], using a
skin detector to build an importance function. Rittscher and Blake use impor-
tance sampling methods to track contours of motions drawn from two classes
(pure jump and half star jump); the tracker maintains a representation of pos-
terior on the motion class, which can be used to distinguish between motion
classes successfully [362]. Forsyth uses edge detector responses as a source
of proposal mechanisms to Þnd simple boundaries [130], and Zhu et al. �
who call the approach data driven MCMC � use image observations to pro-
pose segmentations [445, 444, 486]. We are not aware of the method being
used for kinematic tracking; however, it is a way to unify the more successful
kinematic tracking methods of section 4.2 with particle Þlter based inference.

If one models a person with a tree-structured kinematic model, then iden-
tifying each body segment in the image is a matter of dynamic programming
(we discuss this issue in greater detail in section 4.2.3). However, adding tem-
poral dependencies produces a structure that does not allow for simple exact
inference, because the state of a limb in frame t has two parents: the state in
time t − 1, and the state of its parent in frame t (Þgure 3.8). Loopy propa-
gation is a method for approximate inference on graphical models which are
not trees. One constructs a spanning tree, passes messages with the usual al-
gorithm on that spanning tree, and then repeats for other choices of spanning
tree. This is an approximation, because some probabilities are overestimated
as a result of cycles in the graph; experiment shows that, under many circum-
stances, the approximation gives usable and helpful results. Useful accounts
of this method appear in [481, 302, 464].

Sigal et al. use loopy propagation, representing messages passed between
nodes using a set of particles [396]. Their template is a 3D model of a person
with links both in time and in space learned from data. The likelihood is
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Fig. 3.8 If one models a person with a kinematic chain, then determining where a given person appears
in a static image involves inference on a tree structured graphical model. On the left, a graphical model
illustrating this point. In the usual language of graphical models, open nodes represent unknowns, arrows
represent dependencies, and shaded nodes represent measurements. Each open node encodes the state
(for example, image position; image position and orientation; 3D position, orientation and scale; and
so on) of the body segment implied by the label (t: torso; lul: left upper leg; and so on). The arrow
represents a model of P (variable at head|variable at tail). The Þlled nodes represent various detector
responses. Notice that each open node has at most one parent, so the open nodes form a tree, so that
inference is a matter of dynamic programming (or, equivalently, message passing; section 4.2.3 or a text
such as [135, 273]). On the right, we show what happens when one has temporal dependencies. We
show only two frames (there�s enough clutter in the drawing), and the gray arcs are temporal links. The
graphical model becomes much more complex. Most open nodes now have two parents, a spatial parent
and a temporal parent, and this means that exact inference is impractical.

modelled with a conditional exponential model, where

P (Y|X) ∝ exp

(
−
∑

i

λigi(X,Y)

)

with parameters λi learned from data. Such models, often called maxi-
mum entropy models and quite popular in the language modelling com-
munity, are commonly Þtted by maximizing likelihood (which requires com-
puting the partition function), using an algorithm known as iterative scaling
(see [96, 335, 40, 370, 210]). Sigal et al. use a series of detectors which are
tuned to body parts (but not, in the nature of such detectors, particularly reli-
able; otherwise there�d be nothing to do) to produce an importance function.
Some percentage of messages passed to limb nodes are drawn from this im-
portance function, giving strong suggestions about the conÞguration in 3D
of a particular body segment. They demonstrate tracks of people in 3D from
three views. Unusually, there is a strong evaluation component, which we
describe in section 4.3.
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Fig. 3.9 Figures 1 and 7 from ParticleÞlters/013150163 Sigal et al. build a 3D model of a person as a
set of segments [396]. Again, the state of each segment but the root has two parents � the corresponding
segment in the previous frame, and that segment�s parent in the model (left). This yields an inference
problem that is too difÞcult in general to do exactly. Sigal et al. track in multiple views using a form of
particle Þlter adapted for loopy belief propagation. The image likelihood is a conditional exponential
model. Authors use a combination of segment detectors and uniformly distributed samples to propose
likely conÞgurations of limbs in the image; these are incorporated in the inference procedure as impor-
tance functions. The Þgure on the right shows camera outputs with superimposed information for two of
four views (rows); column (a) shows limb segments proposed by the detector; (b) shows proposals from a
uniform distribution; (c) shows samples from the belief distribution after 30 frames of belief propagation;
and (d) shows the state with the highest belief.

3.3.1.2 Partitioned Sampling

Partitioned sampling is a variant of importance sampling that uses a se-
quence of samples within each time slice. Assume that the state vector X
has several components; notation etc. is much simpler if we assume only
two, and the more general case follows, so we shall work with two and write
X = (x1,x2). We will also drop the subscript for time to simplify notation.
Now assume that we have an importance function I(X) that is a good guide
to the likelihood (what this means will become apparent), and can be factored
as I(X) = I1(x1)I2(x1,x2) Now if ui is a set of IID samples of P (x1), then

(ui, I1(ui))

represents a probability distribution proportional to P (x1)I1(x1). Take this
representation and resample with replacement according to the weights, to
obtain (uj , 1) which must also be a representation of that distribution. Now
obtain vkj , which are IID samples of P (x2|x1 = uj). Then

((vkj ,uj), I2(uj ,vkj))

represents a probability distribution proportional to
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P (x2|x1)P (x1)I1(x1)I2(x1,x2). Take this representation and in turn
resample with replacement according to the weights, to obtain (vlj , 1),
which is also a representation of that distribution. Finally,

((vlj ,uj),
P (Y |X = (vlj ,uj))
I1(uj)I2(uj ,vlj)

)

represents the posterior. Notice that we have omitted various if�s, and�s and
but�s to do with the support of the importance function and so on, to get to this
point. The advantage of this strategy is that we have guided the search of the
likelihood using our importance function; in particular, the Þrst resampling
step discards particles that lie in spots where there is evidence � supplied by
the importance function � that the marginal of the posterior will be small.
Throwing these particles away allows means that, when we elaborate the par-
ticles to represent the whole state, the resulting particles should tend to lie
in places where the likelihood is large. Of course, all this depends on the
quality of our likelihood functions. MacCormick and Isard track hands using
partitioned sampling [271]. MacCormick and Blake use this method to track
multiple objects [270, 269], where one needs a method to avoid both tracks
lying on the same object. The importance functions are obtained by consid-
ering each object separately, and the likelihood function is a mixture of three
cases: no objects in the tracker gate, one object in the tracker gate, and two
objects in the tracker gate. Again, we are aware of no kinematic trackers of
humans that use this method, but see it as a way to unify the more successful
kinematic tracking methods of section 4.2 with particle Þlter based inference.

3.3.1.3 Lower Dimensional State Models

Sidenbladh et al. build a 3D model of a human as a kinematic chain, with
state encoded as the conÞguration and velocity of each element of this chain
with respect to its parent, and the root with respect to the camera. Each seg-
ment of the model has an attached encoding of appearance, and the likelihood
is computed by comparing a rendering of the state with the image, using the
appearance encoding. There is a separate constant likelihood term for self-
occluded segments, and a discount term for foreshortened segments, because
foreshortening of a segment causes texture foreshortening. The tracker is ini-
tialized by hand. Tracks are obtained using a straightforward particle Þlter,
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Fig. 3.10 Figure 6 and 7 from ParticleÞlters/eccv00.pdf Sidenbladh et al. use particle Þlters to track
a 3D model of a walking person, using a reduced dimensional dynamical model Þtted to motion capture
data of walking people. This means that the dynamics are more predictable, and so the search of the
likelihood is more effective; the difÞculty is that one must know the activity before being able to track. On
the left, a track of a walking person who turns during the walk. The 3D reconstruction of this track is
shown below left. On the right, a �track� of a walking person, initialized as on the left, but now ignoring
image data; this illustrates the strength of the prior. In particular, the �track� continues to walk, but does
not turn when the subject turns.

using a random walk dynamical model and also using a dynamical model
specialized to walking. This walking model is obtained by principal compo-
nents analysis on motion captured walk data. The appearance model appears
to have dynamics to account for changes in illumination; the authors point
out that this advantage over a Þxed appearance template comes at the cost of
potentially increased tracker drift. The random walk model is shown to track
a two segment arm with reasonable success, but authors indicate that more
complex kinematic models are difÞcult to track this way. The advantage of a
low dimensional model of walking dynamics is that the effective dimension of
the state space at the k+1�th frame is relatively small, and this relatively tight
motion prior allows quite good tracking of a walking Þgure (Þgure 3.10). The
difÞculty with this approach is that one might need to choose which activity
is occuring to be able to track it, and that seems difÞcult to do.

3.3.1.4 Probabilistic Searches of the Posterior

Choo and Fleet implement a more extensive search of the posterior using a
Markov chain Monte Carlo (MCMC) method [82]. They interpret the parti-
cles at a particular step as a set of initial states for an MCMC sampler; this
sampler then runs independently on each state. Any such sampler will even-
tually produce a fair sample of the posterior. It is reasonable to expect that
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running an MCMC sampler on a set of particles will produce IID samples
of the posterior. These can, in turn, be passed through the particle Þlter and
reÞned again. Choo and Fleet use Duane et al.�s hybrid Monte Carlo method
to obtain samples (see [115, 306]; there is a brief account in [134]), but other
methods might be used. The method is used to compute 3D conÞgurations
from images of markers. It has not been shown to cope with the dramatic
problems with local maxima one associates with texture and clutter, and it
seems unlikely that it can. The difÞculty here is that it may take very many
steps of the MCMC method to produce samples that have �forgotten� their
start point. In practice, it is extremely difÞcult for such a sampler to pass from
one local maximum of the posterior to another; this means that such a sam-
pler is unlikely to overcome the problems created by a posterior with many
narrow peaks (see [149]; in some applications, for example where there is a
symmetry in the posterior, this may not be a nuisance [134], but one cannot
rely on MCMC methods to discover all peaks in a posterior without quite
strong proofs of good mixing behaviour).

3.3.1.5 Annealing

A variety of search strategies are available. One strategy is to launch an an-
nealed search of the likelihood. We do this by deÞning a set of intermedi-
ate weighting functions, to obtain w0(X) = P (Y|X), w1(X), . . ., wM (X),
where wk is a somewhat smoother version of wk+1. At any time step we
have ui a set of IID samples of P (X). Instead of weighting these samples
by the likelihood, we weight by wM . We resample with replacement accord-
ing to the weights and reset the weights to one, yielding uj . We take each
sample and add noise drawn from a normal distribution with zero mean. We
now weight the resulting samples using wM−1. This process continues un-
til each sample is weighted using the likelihood. Deutscher et al use this
scheme to track a person moving using a 3D model viewed with multiple
cameras [104, 107] (Þgure 3.11). The likelihood is evaluated using both
image values within and edge points near the projected outline; annealing
in effect uses a smoothed version of this (very peaky) likelihood function
to guide samples toward peaks in the likelihood. This method can be given
exact probabilistic semantics by interpreting the annealing procedure as an
importance function, an observation due to Neal [307, 308, 309]. Deutscher
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Particle filter 1 Layer annealed search 10 Layer annealed search
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Fig. 3.11 Figure 8 of DeutscherBlakeReid Deutscher et al. [104] track a moving person in 3D using an
annealed particle Þlter. In effect, particles are passed through the dynamic model, then weighted with a
smoothed version of the likelihood. They are resampled according to weights, then perturbed randomly
and weighted using a less heavily smoothed likelihood. This concentrates particles in regions where the
likelihood is likely to be high. The process continues for some number of layers of annealing. The Þgure
shows tracks for a particular set of frames using three different algorithms. On the left, a straightforward
particle Þlter, which loses track fairly quickly because searching a peaky likelihood using a smooth prior
doesn�t work well. In the center, the results of one layer of annealing. Notice that the right leg is poorly
tracked, but the track has improved. On the right, the results from ten layers of annealing. Notice the much
improved track. The particles no longer have any probabilistic semantics, however, and the ability of the
method to deal with clutter and texture � which can hugely complicate the likelihood function � is not
proven. Figure from �Articulated Body Motion Capture by Annealed Particle Filtering�, Proc. Computer
Vision and Pattern Recognition, Deutscher et al., 2000, c© 2000 IEEE

et al have shown that performance improvements are available by using par-
titioning methods together with an annealed particle Þlter (Þgure 3.12). All
examples show isolated persons on black backgrounds; there is no evidence
that the annealing is powerful enough to cope with the rich range of local
likelihood peaks that can result from, say, texture or clutter.

3.3.2 Multiple Probes from Covariance Analysis

One difÞculty with a sampled model of the posterior is that we don�t know if
there are larger values of the posterior close to each sample. We could regard
each sample as a plausible start point for a search of the posterior. We are now
no longer building a set of particles that explicitly represents the posterior in
the sense above, but are using multiple states to represent the prospect that
the posterior is multi-modal. Each state lies on a mode in the posterior, and
we attempt to ensure that all modes have a state. The origins of this approach
lie with Cham and Rehg [75], who use it to track a 2D kinematic model of
the body.

Sminchisescu and Triggs elaborate this search by analysis of the Hessian
of the log-posterior [404, 407]. They track a 3D model of a person, which has
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Fig. 3.12 Figure 10 and 11 of ParticleÞlters/deutscheretalcvpr2001 Deutscher et al ([107]; see
also [105]) show that one can use partitioning methods with the annealed particle Þlter. They track a
3D model of a person in a single view. On the left, a track and the inferred 3D conÞguration for a running
person. On the right, a track and the inferred 3D conÞguration for a person doing a handstand. Again,
there are no probabilistic semantics, and again the ability of the method to deal with clutter and texture is
not proven. Figure from Automatic Partitioning of High Dimensional Search Spaces Associated with Ar-
ticulated Body Motion Capture, Proc. Computer Vision and Pattern Recognition, Deutscher et al., 2001,
c© 2001 IEEE

parameters giving the kinematic conÞguration, relative proportions of seg-
ments, and deformations of the surface skin. Sminchisescu and Triggs do not
use a dynamical model. However, they do encode joint limits, and so must
represent a model of P (Xk|Yk) (which we call the posterior in what follows;
note that only the current measurement is involved). They regard the recon-
struction at frame k−1 as an initial point for a search of the posterior at frame
k. The likelihood is evaluated by comparing projected model points with im-
age points, using values of edges and other image features. What is known
about state is represented by a collection of tuples; the i�th tuple (ci, µi,Σi),
contains a weight ci, a state value µi and a covariance matrix Σi. Each state
value gives the state at a mode of the likelihood. The covariance is the Hes-
sian of the negative log-posterior at the mode, and the weight is the value of
the posterior at the mode. Weights are normalized to sum to one.

This information is propagated from the k − 1�th frame to the k�th frame
by using these tuples to launch searches of the likelihood. The search pro-
ceeds by:

• Choosing a tuple to propagate by drawing one of the initial tu-
ples randomly according to the weight. Assume we have drawn
tuple i.

• Computing a local covariance scaling by obtaining the k direc-
tions in the Σi where the least change in posterior is likely �
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these directions are those in which the state is most uncertain �
by a singular value decomposition, and computing the restriction
of Σi to this space; call the result Σ

′
i.

• Generating a new tuple by generating a sample s distributed as
N(µi, sΣ

′
i) for some scale parameter s (it is wise to have s > 1).

We start an optimization procedure for the posterior at s; this pro-
duces s

′
. The weight for the new tuple is the value of the posterior

at this point; the mean is s
′
; and the covariance is the Hessian of

the negative log-posterior at s
′
.

These steps are repeated multiple times, to produce a set of tuples represent-
ing the posterior. This set is pruned to remove tuples that represent the same
mode � the states will be the same � and the result represents the new poste-
rior. Numerous variants of this method are possible; for example, it is natural
to produce a large pool of tuples, prune duplicates, and then keep only the K

best. Performance comparisons between these methods appear in [407].

Appendix I: Particle Filter Basics

Probability distributions should be thought of as devices that are used to com-
pute expectations; this means that any procedure that can produce good es-
timates of expectations with respect to a distribution is a representation of
that distribution. Assume we wish to represent a distribution Q(X), and we
can sample some other distribution P (X). Take a set of points si which are
independent identically distributed samples of P (X). If we attach a weight
wi = kQ(si)/P (si) (where k is a constant, perhaps unknown) to each point,
the resulting set of pairs {(si, wi)} is a representation of Q(X). This is be-
cause ∑

i f(si)wi∑
i wi

is an estimate of
EQ(f) =

∫
f(X)Q(X)dX

(by the weak law of large numbers). Samples are commonly thought of as
particles. Notice, by the way, that it is usual in the vision literature to nor-
malize weights so that

∑
i wi = 1, and in the statistics literature to divide by

the sum of weights as we have done; Liu gives an argument that the latter is
better practice [262].
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Priors into posteriors: A useful trick allows us to obtain a representation
of a posterior P (X|Y = y) from a representation of a prior P (X). Assume
the prior is represented by {(si, wi)}. Now∫

f(X)P (X|Y = y)dX =
1
K

∫
f(X)P (Y = y|X)P (X)dX

where
K = P (Y = y) =

∫
P (Y = y|X)P (X)dX

What this means is that ∑
P (Y = y|X = si)wi∑

wi

is an estimate of K. In turn, this means that (si, wiP (Y = y|X = si)) is a
representation of the posterior.
Resampling: Finally, we can turn one representation of a distribution

P (X) into another representation of the same distribution by resampling the
particles. The most important case is if we form a distribution π on the in-
dex from wi, where the probability of drawing the i�th index is wi/

∑
wi.

We now produce a new representation {(sl, 1)}, where the l are independent
identically distributed (henceforth IID) samples from π. This is a represen-
tation of P (X). The easiest way to see this is to assume we have drawn a
very large number of samples. Now if we form

∑
f(sl), we will see samples

from the original set of particles with a frequency proportional to the original
weights.
Prediction: Now assume that we have a set of points and weights (si, wi)

which represents the distribution P (Xk−1|Y0, ...Yk−1). Write (qj(i)) for a
set of N(i) points, indexed by j, drawn from P (Xk|Xk−1 = si). We can
represent P (Xk|Y0, ..., Yk−1) using the set (qj(i), wi/N(i)). This is because∑

i

∑
j f(qj(i))wi/N(i)∑

i wi/N(i)

is an estimate of∫ [∫
f(Xk)P (Xk|Xk−1)dXk

]
P (Xk−1|Y0, ..., Yk−1)

(one can see this by pattern matching to the previous paragraph). This could
be impractical, because the number of samples might grow � perhaps
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N(i) > 1 for all i � but we ignore this possibility for the moment. No-
tice that Xt might live in a space of complex form � for example, multiple
components of different dimension, the product of two spaces encoding very
different types of state etc. � but as long as we can obtain samples, no dif-
Þculty results (e.g. [76, 170]; various formulations and applications appear
in [109, 262, 361]). ).
Correction: The result of the step above is a a set of weighted sam-

ples, (qj(i), wi), which represent P (Xk|Y0, ..., Yk−1). This is a prior. We
apply the recipe above, and obtain a representation of the posterior as
(qj(i), wiP (Yk = yk|Xk = qj(i))).

Practicalities

The recipe above is not much use. First, we cannot manage a pool of particles
that either shrinks or grows too fast. The easiest way to deal with this prob-
lem is to ensure that N(i) = 1, though this may not be the best. Second, as
one can discover with a simple experiment, the variance of the weights tends
to increase as time goes on (there is a theorem to this effect, in [262]). What
this means is that one weight gets very much larger than all the others, which
means that, in effect, only one sample is being used to represent the distribu-
tion. This doesn�t affect the expected value of our estimates, but it does mean
that their variance might be extremely high, and so they are of no practical
use. This effect � known as sample impoverishment � can be countered
by using an estimate of the variance of the weights to determine when it is
occurring, and then resampling the particles. This is effective because we will
tend to drop particles with low weight and keep multiple copies of particles
with high weight. These latter will spawn multiple distinct samples in the
next prediction stage. As a result, we can reasonably hope that our particles
tend to be concentrated near spots where the posterior is large. Algorithm 3
gives a practical particle Þlter; one should realize that numerous variants are
possible (see [109, 262, 361] for examples).

The particle Þlter can be a powerful and effective inference tool. It should
be seen as a form of randomized search. One starts a set of points that tend
to be concentrated around large values of the posterior. These are pushed
through the dynamical model, to predict possible conÞgurations in the data.
The predictions are compared to the data, and those that compare well
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Initialization: Represent P (X0) by a set of N samples{
(sk,−

0 , wk,−
0 )

}
where

sk,−
0 ∼ Ps(S) and wk,−

0 = P (sk,−
0 )/Ps(S = sk,−

0 )

Ideally, P (X0) has a simple form and sk,−
0 ∼ P (X0) and wk,−

0 = 1.
Prediction: Represent P (Xi|y0,yi−1) by{

(sk,−
i , wk,−

i )
}

where

sk,−
i = f(sk,+

i−1) + ξk
i and wk,−

i = wk,+
i−1 and ξk

i ∼ N(0,Σdi
)

Correction: Represent P (Xi|y0,yi) by{
(sk,+

i , wk,+
i )

}
where

sk,+
i = sk,−

i and wk,+
i = P (Yi = yi|Xi = sk,−

i )wk,−
i

Resampling: Normalise the weights so that
∑

i w
k,+
i = 1 and compute

the variance of the normalised weights. If this variance exceeds some
threshold, then construct a new set of samples by drawing, with replace-
ment, N samples from the old set, using the weights as the probability
that a sample will be drawn. The weight of each sample is now 1/N .

Algorithm 3: A practical particle Þlter resamples the posterior.

are given higher weights. This simple view provides some insight into the
strengths of the method, and into what could go wrong.
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Appendix II: Regression

The Nearest Neighbours

One could obtain the k-nearest neighbours, where for a new set of measure-
ments x, we obtain the k examples xi that lie closest to x (using an appropri-
ate distance function, which we discuss below), then average the yi associated
with the examples. There is no reason to expect good results from this method
unless the examples are relatively uniformly spaced � in particular, if the k

nearest neighbours that we obtain are far away from our query example, the
estimate could be very poor. Worse, if y is a multi-valued function of x, the
method might average values associated with distinct �sheets�, and produce
a meaningless result.

Assume, for the moment, that y is not a multi-valued function of x. We
must still obtain the k nearest neighbours for a query x. We expect to require
sufÞcient examples that blank search through the examples is unattractive.
An approximation called (r, ε) nearest-neighbours is attractive, because one
can obtain a solution in time less than linear in the number of examples using
an approach known as locality sensitive hashing. Assume a query point x. If
there is an example xj such that d(x,xj) < r, then with high probability the
algorithm returns xk such that d(x,xk) < (1 + ε)r, otherwise it reports no
point. It does so by computing a hash key from a randomly selected subset of
a locality sensitive family of functions; this key has the property that similar
points have a high probability of colliding, and dissimilar points have a low
probability of colliding. One then obtains a list of possible nearest neighbours
for a query by computing a hash key for the query, obtaining all examples
with which the query collides, then searching this set of examples (details
appear in [150, 95, 196, 195]).

The usual difÞculty in practical applications of nearest neighbours prob-
lems is that it isn�t clear what distance to use. Shakhnarovich et al.argue that
in regression problems, it is important that the distance reßect the distance
between predicted parameters (rather than, say, some canonical distance be-
tween examples) [389]. While their argument applies to the general case, the
application is to lifting. In this case, two quite similar image conÞgurations
xi and xj may predict rather different 3D conÞgurations yi and yj � a query
close to xi should not be seen as close to xj , because the two predictions are
different. This means that we would like the hashing functions we choose to
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tend to generate collisions for examples that have close values of y.
Shakhnarovich et al.achieve this by noting that a hash function acts like

a classiÞer that determines whether two points are close (when they collide)
or not. By searching thresholds T and decision stumps � functions of the
image conÞguration x with the property

φ(x) =

{
1 if φ(x) ≥ T

−1 otherwise

}

they obtain a set of hash functions, on the set of training examples, tend to
cause examples with similar y to collide and those with distinct y not to
collide.

Some Regression Technique

Assume we have a set of examples likely to be relevant for a regression prob-
lem, perhaps as a result of k-nearest neighbours. How are we to obtain an es-
timate? in general, we must Þt some approximation and obtain y = f(x, β),
where β is a vector of parameters chosen by minimizing an error predicted
and observed values. For our purposes, y is a high dimensional vector. This
means that we will not, in general, be able to build a good model of correla-
tions between elements of y, and so will predict its components independent
of one another.

We will concentrate on the l�th component. Our problem is now to predict
a single value from some input vector. Because the components are assumed
independent, we can ignore the question of which component we are dealing
with, and so write (yi,xi) for the i�th example. We write

Y = (y1, ..., yN )T

(i.e. the values to be predicted for each example) X for the matrix⎡
⎢⎣ xT

1

...

xT
N

⎤
⎥⎦

Recall that we assumed that one component of x has the value 1. We can then
write the predictions produced by a vector β as Xβ. The simplest method of
obtaining a prediction is to solve for β that minimizes

(Y −Xβ)T (Y −Xβ)
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(this is linear regression). This is a maximum likelihood solution assuming
that p(y|x, β, σ2) is normal with mean zero and variance σ2. Linear regres-
sion tends to overÞt. One problem is that, if terms in x are strongly correlated
with one another, an appropriate linear combination of these terms is noise;
and multiplying this noise by a large number may lead to a good Þt. This
suggests solving for β that minimizes

(Y −Xβ)T (Y −Xβ) + λβT β

(a practice known as ridge regression). Here λ is usually chosen by cross-
validation [169]. An alternative method to control the size of the coefÞcients
is to solve for β that minimizes

(Y −Xβ)T (Y −Xβ) + λ
∑

i

|βi |

(a practice known as the lasso). The effect of using an L1 penalty is Þrst to
make solutions non-linear in the example values, and � for sufÞciently large
λ � compelling some components of β to be zero.

A relevance vector machine (RVM) uses a Bayesian model to force
weights in the regression to be small or zero. One has a model of
P (y|x, β, σ2) (normal, mean zero and variance σ2, as above). We express
a preference for smaller weights by writing a prior probability distribution
on β, conditioned on hyperparameters α. This distribution, p(β|α), is normal
with mean zero and diagonal covariance; the variance of each component is
1/α. The posterior over weights, p(β|y,x, σ2, α), is obtained from Bayes�
rule. We then obtain p(y|σ2, α) by marginalization, and choose a value of
α that maximizes this likelihood (say α̂). We then choose β to maximize
p(β|y,x, σ2, α̂). Algorithms for each step appear in [123, 437, 438] (with a
variant in [3]); an analysis in [123] shows that some components of α will
tend to be inÞnite, implying a zero component in β.

In each of these cases, one is building a linear model that applies over
the whole of the set of examples. This is unattractive for our application (for
example, there is fair prospect that there is more than one y for a given x,
something that doesn�t happen in linear models). It is natural to try to Þt local
linear models, where the model is linear, but the β varies with the input. We
can do this by weighting errors with weights that depend on how close the
query is to the examples.
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For some input x, we compute a diagonal weight matrix W(x). There are
a variety of possibilities for the diagonal, but using

exp
[
(

1
2σ2

)(x − xj)T (x − xj)
]

for the j�th entry is a sensible choice (errors close to the example have large
weights, those far have small weights; σ may be chosen by cross-validation).
We now use β obtained by minimizing

(Y −Xβ)TW(Y −Xβ) + λβT β

for that example. At the cost of solving a linear system for every query, we
have a Þt that smoothes local linear models into one another without needing
to solve non-linear equations. The method has a good reputation for high-
dimensional x. Notice that the weight penalties described above can be ap-
plied to this problem as well; one computes a ridge regression, lasso, or rele-
vance vector machine for each query as appropriate.

We are assuming that the x we have computed form an appropriate set of
features. However, a more extensive feature representation can be obtained
by comparing the query against examples using a kernel. Assume that we
have a satisfactory kernel functionK(u,v). A popular kernel function is

K(u,v) = exp
(

(
1

2σ2
)(||u − v||)

)

(for a choice of σ usually obtained by cross-validation). We can then consider
a regression of the form

y(x) = β0 +
∑

i∈examples
βiK(x,xi)

Note that this remains linear in β, so that the methods expounded above apply.
Various details and other applications of this useful trick appear in [411].



4
Tracking: Data Association for Human Tracking

Tracking people is a means to an end, and trackers should be assessed in
that way. Human trackers should be reasonably accurate, start automatically
(hardly any practical application can use trackers that can�t be started auto-
matically), run for long times without any particular difÞculties, and not rely
excessively on implausible assumptions about background, etc. These are the
correct criteria by which to judge.

In our opinion, the literature has, until quite recently, placed too much
emphasis on probabilistic inference machinery, while paying insufÞcient at-
tention to the (possibly dull but certainly essential) vision problems implied
by data association. Furthermore, this inference machinery may, in fact, be
being used to solve a non-problem (section 7.1.5).

Early human trackers, which used quite straightforward matching meth-
ods, (for example, Hogg�s 1983 paper [181]; Rohr�s 1994 tracker [365]) could
produce kinematic tracks for people moving without sudden accelerations on
reasonably simple, high-contrast backgrounds if started manually. The advan-
tages of a known, simple background have been thoroughly explored (sec-
tion 2.2.1). The more recent trackers we have described use more complex
inference machinery, but without any great change in competence.

Improvements in competence seem to have come with increased attention

77
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paid to tracking by detection schemes. These are well established in, say,
face tracking. For example, one can build a fairly satisfactory face tracker
by simply running a face detector on frames, and linking over time; smart
linking schemes built around afÞne invariant feature patches can result in very
satisfactory tracks [401]. Tracking by detection is now capable of building
good human kinematic tracks, without relying on background subtraction.

4.1 Detecting Humans

Human detection is difÞcult, and important. It is difÞcult because people
(usually!) wear clothing of widely varying appearance; because changes in
body conÞguration can result in dramatic changes in appearance; and be-
cause different views result in dramatic changes in appearance. There are
several important applications. A huge literature now deals with methods to
detect pedestrians automatically, because this is a function that autonomous
or semi-autonomous motor-cars will need. There is a substantial literature on
detecting and interpreting gestures for human-computer interaction purposes.
There is a smaller but growing literature on using various human detection
and description methods for understanding the content of various multi-media
datasets. There is a small but occasionally startling literature on methods for
detecting sexually explicit images. Interest in these areas is not conÞned to
academia; in each of these areas, there are both research efforts by established
companies and start-up companies appearing regularly.

No published method can Þnd clothed people wearing unknown clothing
in arbitrary conÞgurations in complex images reliably, though, as we shall
see, there is reason to believe that this situation will change. The Þrst standard
approach to this problem involves matching to one or a family of templates,
which might use either spatial or temporal information (or both). We review
this area in section 4.1.1 and section 4.1.2. The second standard approach is
to identify parts of a person and then reasoning about an assembly of these
parts to identify the person. We distinguish between two types of method,
according to the type of part: First, one may use parts that are semantic in
origin (�arms�, �legs�, �faces�, and so on), and we review this approach in
section 4.1.3. Second, one may use parts that are deÞned by statistical criteria
(for example, they form a good codebook for representing the image of the
person), and we review this approach in section 4.1.4.
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4.1.1 Finding People by Matching Static Templates

Approximately half-a-million pedestrians are killed by cars each year (1997
Þgures, in [144]). Car manufacturers and governments have an interest in
ensuring that cars are less dangerous, and there is a considerable body of
research on automated pedestrian detection. Gavrila gives an overview of the
subject in [144], which covers cues such as radar, infrared, and so on, which
have practical importance but are of no interest to us. For our purposes, this is
an example of person detection that may be simpler than the general problem,
and is certainly important.

At relatively low resolution, pedestrians tend to have a characteristic ap-
pearance. Generally, one must cope with lateral or frontal views of a walk. In
these cases, one will see either a �lollipop� shape � the torso is wider than
the legs, which are together in the stance phase of the walk � or a �scissor�
shape � where the legs are swinging in the walk. This encourages the use of
template matching.

Papageorgiou and Poggio represent 128x64 image windows with a mod-
iÞed wavelet expansion, and present the expansion to a support vector ma-
chine (SVM), which determines whether a pedestrian is present [330]. SVM�s
are classiÞers, trained with positive and negative examples. For a brief in-
formative discussion of SVM�s see [448] or [85]. More extensive informa-
tion appears in [382, 390, 447], and discussion in the context of a variety
of other classiÞers is in [169]. The training data consists of windows with
and without people in them; each positive example is scaled such that the
person spans approximately 80 pixels from shoulder to foot. A variety of im-
age representations are tested, with the modiÞed wavelet expansion applied
to colour images performing signiÞcantly better than wavelet expansions ap-
plied to grey-level images, low resolution pixel values for grey-level images,
principal components analysis representations of grey-level images, and the
like. The strength of these wavelet features appears to be that they emphasize
points that are, rather roughly, outline points. This yields a method for ex-
ploiting the restricted range of contours without explicitly encoding contour
templates. The wavelet expansion can be reduced in dimension to obtain a
faster, though somewhat less accurate, matcher. There are several variants of
this approach in the literature [317, 318, 325, 326, 327, 329].

Zhao and Thorpe use stereopsis to segment the image into blocks, then
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present each block to a neural network [484]. The stereo cue acts as a variant
of background subtraction, because there are typically substantial disconti-
nuities in depth between pedestrian and background. A comparison of this
system with that of Papageorgiou et al.(the version in [326]) suggests it is
more accurate, possibly because the stereo segmentation reduces the number
of windows that must be searched.

There are a variety of systems that use edge templates explicitly. Gavrila
describes an approach that matches image contours against a hierarchy of
contour templates using a chamfer distance [142]. The method is oriented to
real-time detection. The image is passed through an edge detector, and then
passed through a smoothed distance transform (see [33]); a template is eval-
uated by computing the sum of distance transform values at template feature
points, so that a small value results in a match. One needs numerous tem-
plates for such a method to be successful (distinct views; distinct phases in
the walk), and Gavrila organizes the set of templates into a hierachy using
an agglomerative clustering method rather like k-means. Each node of the
hierarchy contains a summary template (summaries at nodes deeper in the hi-
erarchy encode more spatial detail), and a representation of the distance of the
examples from that summary. Matching proceeds by computing a cost to the
representative node at the current level, and testing this against a threshold to
determine whether to expand that node or not. A veriÞcation step uses radial
basis functions to classify those image windows that appear to match edge
templates. Gavrila et al.describe an improved version of this method, using
stereo cues and temporal integration [145]. Broggi et al.describe a method
that uses vertical edges, the characteristic appearance of the head and shoul-
ders, and background subtraction to identify pedestrians [62].

Wu et al.build random Þeld models of image windows with and without
a pedestrian, and then detect using a likelihood ratio [473]. Shape is encoded
with a random Þeld, and measurements are assumed to be conditionally inde-
pendent given the shape and some deformation parameters. There is a search
over scale, translation and orientation. The considerable technical difÞculties
involved in evaluating the likelihood are dealt with using a variational ap-
proximation. One would expect a performance penalty for using a generative
formalism in what is, in essence, a discriminative problem (does this window
contain a pedestrian or not?), but ROC curves suggest the method is compa-
rable with strong recent discriminative methods in performance.
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Dalal and Triggs give a comprehensive study of features and their effects
on performance for the pedestrian detection problem [94]. The method that
performs best involves a histogram of oriented gradient responses (a HOG
descriptor). This is a variant of Lowe�s SIFT feature [267]. Each window is
decomposed into blocks (large spatial domains) and cells (smaller spatial do-
mains). A histogram of gradient directions (or edge orientations) is computed
for each cell. In each block, a measure of histogram �energy� is computed,
and used to normalize the histogram for each cell in the block. This supplies
a modicum of illumination invariance. The detection window is tiled with an
overlapping grid, within each cell of which HOG descriptors are computed,
and the resulting feature vector is presented to an SVM. Dalal and Triggs
show this method produces no errors on the 709 image MIT dataset of [330];
they describe an expanded dataset of 1805 images. The paper compares HOG
descriptors with the original method of Papageorgiou and Poggio [330]; with
an extended version of the Haar wavelets of Mohan et al. [290]; with the
PCA-Sift of Ke and Sukthankar ([220]; see also [284]); and with the shape
contexts of Belongie et al. [36]. There is considerable detailed information
on tuning of features.

4.1.2 Templates that include Motion

Static templates most likely work because the outlines of pedestrians tend
to be of limited complexity. While it would be nice to have a formal no-
tion of what this meant, the appropriate comparison is with arbitrary views
of people in arbitrary conÞgurations (say, the Þgure skater of Þgure 4.10).
Pedestrians also tend to move in quite restricted ways � they are typically
either standing or walking. Niyogi and Adelson point out that, if one forms
an XYT image � a stack of frames, registered as to camera motion, origi-
nally due to Baker [26] � these motions produce quite distinctive structures
(Þgure 4.1), which can be used to identify motions [313] or recover some
gait parameters [312]. Polana and Nelson consider spatial patterns of mo-
tion energy, which also have a characteristic structure [346]. There is a sub-
stantial literature on the characteristic appearance of human motion Þelds;
a good start is [53, 340, 341, 342, 344, 345, 347, 254, 255, 256, 255].
Particular efforts have been directed to periodic motion; one might con-
sult [77, 88, 89, 90, 91, 160, 159, 252, 260, 261, 383, 384, 252, 435].
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Fig. 4.1 Þgure 2 of polana nelson recognizing activities , Þgure 2 of Niyogi Adelson recognizing gait
On the left, an XYT image of a human walker. The axes are as shown; the stack has been sliced at values
of Y, to show the pattern that appears in the cross section. Notice that, at the torso there is a straight
line (whose slope gives an estimate of velocity) and at the lower legs there is a characteristic �braid�
pattern, Þrst pointed out by Niyogi and Adelson [313]. On the right, a series of estimates of the spatial
distribution of motion energy (larger white blocks are more energy) for different frames of a walk (top)
and a run (bottom); the frame is rectiÞed to the human Þgure by translation, and one image frame from
each sequence is shown. Notice that, as Polana and Nelson point out, this spatial distribution is quite
characteristic [346]. Figure from �Recognizing Activities�, Polana and Nelson, Proc. Int. Conf. Pattern
Recognition, 1994, c© 1994 IEEEFigure from Analyzing Gait with Spatiotemporal Surfaces, Niyogi and
Adelson, Proc. IEEE Workshop on Nonrigid and Articulated Motion, 1994, c© 1994 IEEE

This characteristic structure can be used to detect pedestrians in a vari-
ety of ways. Papageorgiou and Poggio compute spatial wavelet features for
the frame of interest and the four previous frames, stack these into a feature
vector, and present this feature vector to an SVM, as above [328]. The result
is a fairly signiÞcant improvement in detection rate for given false positive
rate. The performance improvements that Dalal and Triggs obtain by careful
feature engineering (as above) are probably available here, too. The features
encode motion implicitly (by presenting the frames in sequence), but not ex-
plicitly.

Viola et al.use explicit motion features � obtained by computing spa-
tial averages of differences between a frame and a previous frame, possi-
bly shifted spatially � and obtain dramatic improvements in detection rates
over static features ([453, 454]; see also the explicit use of spatial features
in [87, 321, 322], which prunes detect hypotheses by looking for walking
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cues). This work uses a cascade architecture, where detection is by a se-
quence of classiÞers, each of which operates only on windows accepted by
the previous classiÞer. The classiÞers are engineered so that they each have
a low false negative rate, so that classiÞers early in the cascade reject many
windows, and so that the overall cascade is accurate. Features are sums of
spatial averages over box-shaped windows in space and time, and so can be
evaluated in large numbers extremely quickly; the techniques of classiÞer and
features are due to Viola and Jones [450, 451, 452].

Dimitrijevic et al.build a spatio-temporal template as a list of spatial tem-
plates in time-order [108]. The spatial templates are edge templates giving the
silhouette of the Þgure, and are matched with a chamfer distance, as above.
The spatial templates and the spatio-temporal templates (which are accept-
able sequences of spatial templates) are obtained by rendering skinned mo-
tion capture data against a blue background from a wide variety of views.
The match is scored by computing the time average of chamfer distances.
The detector is trained to detect the portion of the walk cycle where both feet
are on the ground (other frames could be handled by various forms of tempo-
ral interpolation or tracking; see also section 4.2.3.2). The paper describes a
variety of optimizations helpful to obtain a reasonable speed.

4.1.3 Traditional Parts

Detecting pedestrians with templates most likely works because pedestrians
appear in a relatively limited range of conÞgurations and views. It appears
certain that using the architecture of constructing features for whole image
windows and then throwing the result into a classiÞers could be used to build
a person-Þnder for arbitrary conÞgurations and arbitrary views only with a
major engineering effort. The set of examples required would be spectacu-
larly large, for example. This is unattractive, because this set of examples
implicitly encodes a set of facts that are relatively easy to make explicit. In
particular, people are made of body segments which individually have a quite
simple structure, and these segments are connected into a kinematic structure
which is quite well understood.

All this suggests Þnding people by Þnding the parts and then reason-
ing about their layout � essentially, building templates with complex in-
ternal kinematics. The core idea is very old (for example, one might con-
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sult [9, 10, 42, 174, 275, 319]) but the details are hard to get right and impor-
tant novel formulations are a regular feature of the current research literature.
It is currently usual to approach this question in terms of 2D representations,
which represent a view of a person as a set of body segments � which could
be represented as image rectangles � linked by rotary (and perhaps transla-
tional) joints.

The advantage of these 2D kinematic templates is that they are relatively
easy to learn. Learning 2D kinematic templates requires the relative scale
of body segments, link probabilities, and an appearance encoding for each
body segment. It is relatively straightforward to obtain scale information from
static images. Link probabilities can be modelled in a variety of ways. It is
usually better to represent translation as well as rotation of a link with respect
to another; if we now use a distribution that is ßat, or near to, within a useful
range, we are preferring no legal kinematic conÞguration over any other. This
isn�t in accord with reality � most of the time in most footage, people are
walking � but is convenient because it doesn�t lock us into any particular
activity. In this form, link probabilities can be modelled using either static
images or anthropometric information.

4.1.3.1 Discriminative Approaches

The Þrst difÞculty is that simply identifying the body parts can be hard. This
is simpliÞed if people are not wearing clothing, because skin has a quite dis-
tinctive appearance in images. Forsyth et al.then search for naked people by
Þnding extended skin regions, and testing them to tell whether they are con-
sistent with body kinematics [132, 133]. The method is effective on their
dataset (and can be extended to Þnd horses [131]), but is not competitive with
more recent methods for Þnding �adult� images (which typically use whole-
image features [16, 51, 209, 479]). Ioffe and Forsyth formalize this process of
testing, and apply it to relatively simple images of clothed people [197, 200].
Their procedure builds a classiÞer that accepts or rejects whole assemblies of
body components; this is then projected onto factors to obtain derived clas-
siÞers that can reject partial assemblies that could never result in acceptable
complete assemblies. Sprague and Luo use this approach to Þnd clothed peo-
ple in more complex images, by reasoning about image segments [414].

Mohan et al.use a discriminative approach not only to identify good as-
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Fig. 4.2 from Mohan et al, Þgures 5 and 10 Mohan et al.use SVM�s to Þnd major body parts (left arm,
right arm, head/shoulders and legs) as in the training examples shown on the top. They then use these
SVM�s to search frames for components; the response of all part SVM�s in each window is pooled and
then presented to an SVM which identiÞes whole Þgures. On the bottom, examples showing good detects;
the whole body window is outlined with lines, and the part windows with dashed lines.

semblies of parts (as above), but also to Þnd body parts [290]. SVM�s are
trained to detect the whole left arm, the whole right arm, the legs and the
head/shoulders (see Þgure 4.2); because these body components are relatively
large, and because the work focuses on pedestrians, it is possible to search for
them in an image centered frame � one can inspect vertical boxes of the right
size and aspect ratio to tell whether an arm is present. The SVM part detec-
tors produce a score (distance to the separating hyperplane). For each 128x64
window, the top score for each type of part is placed in a slot in a vector,
which is presented to a further SVM. Geometric consistency is enforced by
Þnding the top score for each type of part over a subset of the window to be
classiÞed. The approach is applied to pedestrian images, and outperforms the
methods of [317, 329].

4.1.3.2 Generative Approaches

Naked people are easier, because identifying body parts is easier. If we had
an encoding of the appearance of the individual parts, this would simplify
Þnding people, because identifying an instance involves dynamic program-
ming; but, done in a straightforward fashion, this is slow because the likeli-
hood evaluation is slow. Felzenswalb and Huttenlocher show how one may
use distance transforms to speed this process up substantially [124, 125].
In particular, assume that the model is built out of a set of components, the
i�th of which has some conÞguration l. We assume that the components are
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Fig. 4.3 DT�s, F+H CVPR 00, Þg 4 part A pictorial structure is a 2D model of appearance as a kine-
matic tree of segments. Each segment has conÞguration variables which encode the spatial support of
the segment � for example, position and orientation � a local appearance model � for example, the
color of a segment � and there is a cost associated with each edge in the tree � for example, the cost of
Þnding a lower leg far from an upper leg. One can Þnd the best instance of such a structure by discretizing
the conÞguration variables for each segment, then using dynamic programming. Felzenswalb and Hut-
tenlocher show that, for properly deÞned segment-segment costs, the cost-to-go function in the dynamic
programming can be evaluated more cheaply than one would expect, meaning that localization can be
fast [124, 125].

linked in a tree of n nodes. Then to Þnd the best instance, we can discretize
the conÞgurations � assume that we use m sample points � and do dy-
namic programming. However, this will cost O(nm2), which is unattractive
because m is likely to be quite big, particularly if the conÞgurations are high-
dimensional. Felzenswalb and Huttenlocher show that, as long as the link cost
has a particular form, the cost-to-go functions encountered in the dynamic
programming problem are, in fact, generalized distance transforms, and so
can be computed in O(m) time (so that the whole thing costs O(nm), which
is a useful improvement). The paper demonstrates these models being used
in two contexts: Þnding people and Þnding cars. People are modelled with
rectangles of Þxed size and known color (appearance is modelled with image
color) and can be localized quite effectively (Þgure 4.3). Kumar et al.extend
this model to incorporate boundaries into the likelihood and use loopy belief
propagation to apply it to arbitrary graphs (rather than trees); the method is
applied to pictures of cows and horses [240].
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4.1.3.3 Mixed Approaches

Ronfard et al.use a discriminative model to identify body parts, and then a
form of generative model to construct and evaluate assemblies [366]. Their
approach searches for parts that are on a Þner scale than those of Mohan
et al.(upper arms vs. arms), and these can�t be found by looking for boxes
of a Þxed size, orientation and aspect ratio. This makes it a good idea to
search for body parts over scales and orientations � in effect, a search in a
part-centered coordinate system. They compare an SVM part detector and an
RVM (section 3) part detector, both applied to features that consist of Þltered
image grey levels within the window; authors suggest that more sophisticated
features, for example those of Dalal and Triggs (section 4.1.1), might give
improvements. Each of the detectors produces a detection score. People are
modelled as a 2D kinematic chain of parts, with link scores depending on a
weighted sum of position, angle and detector scores. The chain is detected
with dynamic programming, but the savings obtained by Felzenswalb and
Huttenlocher (section 4.1.3.2) do not appear to be available. The weights used
in the sum are obtained by a novel application of SVM�s. The authors collect
a large number of positive and negative examples of links, use a linear SVM
with link terms as features to classify them, then use the weights produced by
that linear SVM as weights in the link cost. Detection performance is strong;
however, there are no standard datasets for evaluating detection of people in
arbitrary conÞgurations so comparisons are difÞcult.

Mikolajczyk et al.use discriminative part detectors, applied to orienta-
tion images and built using methods similar to those of Viola and Jones (see
section 4.1.2), to identify faces, head-and-shoulders, and legs [286]. Non-
maximum suppression isolates detected parts. Once a part is found, it predicts
possible locations for other parts, which are used to drive a search. Finally,
the assemblies that are found are presented to a likelihood ratio classiÞer.
Micilotta et al.use discriminative methods to detect hands, face and legs; a
randomized search through assemblies is used to identify one with a high
likelihood, which is tested against a threshold [282]. Similarly, Roberts et
al.use a randomized search to assemble parts; parts are scored with a genera-
tive model, which is used to obtain a proposal distribution for joints [363].
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4.1.4 Parts as Codebooks

Representing a body by segments may not, in fact, be natural; our goal is
effective encoding for recognition, rather than disarticulation. One might rep-
resent people by image patches chosen to be good at representing people.
Leibe et al.have built the best known pedestrian detection system using this
approach [249]. They Þrst obtain multiple frames of pedestrians, segmented
from the background using a form of background subtraction (section 2.2.1),
to serve as training data. They build similarity covariant neighbourhoods at
interest points (using the methods of [267]), and rectify windows to a Þxed
scale. These rectiÞed windows are clustered, the cluster centers yielding a
codebook. They now build a representation of the probability of encounter-
ing a codebook entry at a particular location in the object frame by counting
matches to codebook entries for each example.

Write λ for position and scale of the object, on for the class of object (we
may be interested in detecting pedestrians and dogs, for example; the back-
ground is one such class), ci for the i�th codebook entry and l for the location
and scale of the codebook entry. We can build a model of P (on, λ|ci, l) �
the probability that an object of class on occurs at location and scale λ con-
ditioned on a codebook entry of type i observed at l � by counting. Write e
for an image patch.

We obtain a model of P (on, λ|ei, l) because we know P (e|ci) and can
marginalize. Local maxima of this model may be instances of the object; they
are obtained with the mean-shift algorithm [84].

Given an hypothesis, we can now determine a probability map giving
whether each pixel lies on that hypothesized object or not. Write p for the
location of a pixel. For P (p = Þgure|on, λ), we obtain

∑
(e,l)�p

∑
i

P (p = Þgure|on, λ, ci, l)
p(on, λ|ci, l)p(ci|e)p(e, l)

p(on, λ)

where the � sign refers to windows and locations that cover the pixel. The
relevant densities can be obtained by counting. All this means that, associ-
ated with each plausible detect, we have a map of pixels that might lie on
a pedestrian. In turn, we can search for collections of pedestrian hypothe-
ses that explain these pixel maps best by evaluating the description length.
The search works by evaluating the change in description length obtained by
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changing hypotheses (the particular greedy search used is a variant of that
in [248, 250]). The hypotheses are reÞned with a form of chamfer matching
applied within the area segmented as belonging to a pedestrian, and a further
description length search applied only to silhouettes yields a Þnal count of
pedestrians.

a b

c d e f

Fig. 4.4 leibeScheile, persondetection/parts/leibe-crowded-scenes The detection and veriÞcation pro-
cess of Leibe and Scheile [249] begins by using image patches to obtain a posterior on pedestrian position
and scale. In turn, this leads to a putative segmentation (see a, which shows the support map for an image
from this stage, with hypotheses leading to the support map shown as green boxes superimposed on the
image). However, because the consistency model is local, these putative segmentations could, for exam-
ple, have extra limbs (see the extra legs in b). Obtaining an accurate count and segmentation requires
the use of global data, supplied by contours and chamfer matching. However, as we see in c, some false
positives lie on top of regions with multiple edges, which could defeat contour matching; if one matches
only to the pixels covered by the support map (d and e), this effect is less pronounced, and only the correct
hypotheses are conÞrmed (f). The bottom row shows a series of results. The red box in the center right
image is a true false positive; in the right, the red box is a detect of a pedestrian who does not appear in
the annotation of the image (because marking up example images accurately is very difÞcult).

4.2 Tracking by Matching Revisited

Methods for tracking humans by detection follow, in rough outline, methods
for detecting humans. One may use either whole person templates, or collec-
tions of parts, which might be traditional or form a codebook. However, there
are some important variations in the question of what appearance model (gen-
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erative vs. discriminative; inferred or provided) one uses and how one scores
the comparison of the model with the image.

4.2.1 Likelihood

Most probabilistic tracking algorithms must compute the likelihood of some
image patch conditioned on the presence of a model at some point. The easy
model to adopt is to produce a template for the patch from the model parame-
ters, subtract that template from the image, and assume that the result consists
of independent noise � that is, that the value at each pixel is independent.
Whether it is wise to use this model or not depends on how the template is
produced � for example, a template that does not encode illumination effects
is going to result in a residual whose pixel values are not independent from
one another (see Sullivan et al.for this example [426]), and so the likelihood
model is going to signiÞcantly misestimate the image likelihood.

The problem occurs in a variety of forms. For example, if one represents
an image patch with a series of Þlter outputs (after, say, [393, 394]), each ele-
ment is unlikely to be independent and errors are unlikely to be independent.
Sullivan et al.describe the problem, and demonstrate a set of actions (includ-
ing building an illumination model and estimating correlation between Þlter
outputs) that tend to ameliorate it, in the context of face Þnding [426]. Roth et
al.build likelihood models for vectors of Þlter outputs using a Gibbs model
(known in other circles as a maximum entropy model or a conditional ex-
ponential model; see section 3.3.1.1) [371]. Their method is trained using
an algorithm due to Liu et al.([263]; see also [257], and one might compare
variants of iterative scaling [40, 96, 210, 335, 370]). There is some evidence
that the likelihood produced using this model is more tightly tuned to � in
their example � the presence and location of a leg. The model is used by
Sigal et al.([396]; section 3.3.1.1) to obtain tracks of people in 3D from three
views.

While it is clear that there is an issue here, it is a bit uncertain how signif-
icant it is. I am not aware of clear evidence that better tracking or localization
results from being careful about this point, and am inclined to believe that the
rough-and-ready nature of current likelihood models is not a major problem.
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4.2.2 Whole Object Templates

Toyama and Blake encode image likelihoods using a mixture built out of
templates, which they call exemplars. Assume we have a single template �
which could be a curve, or an edge map, or some such. These templates may
be subject to the action of some (perhaps local) group, for example transla-
tions, rotations, scale or deformations. We model the likelihood of an image
patch given a template and its deformation with an exponential distribution
on distance between the image patch and the deformed template (one could
regard this as a simpliÞed maximum entropy model; we are not aware of suc-
cessful attempts to add complexity at this point). The normalizing constant is
estimated with Laplace�s method. Multiple templates can be used to encode
the important possible appearances of the foreground object. State is now (a)
the template and (b) the deformation parameters, and the likelihood can be
evaluated conditioned on state as above.

We can think of this method as a collection of template matchers linked
over time with a dynamical model. The templates, and the dynamical model,
are learned from training sequences. Because we are modelling the fore-
ground, the training sequences can be chosen so that their background is
simple, so that responses from (say) edge, curve, and the like detectors all
originate on the moving person. Choosing templates now becomes a matter
of clustering. Once templates have been chosen, a dynamical model is esti-
mated by counting; authors do not discuss this point, but it seems likely that
some form of smoothing would be useful, because if one has many templates
and relatively short training sequences, observing that one template never fol-
lows another does not establish the probability of the event is zero. Smooth-
ing techniques for problems of this form are a popular tool in the statistical
natural language community, and several appear in Manning and Schutze�s
book [274].

What makes the resulting method attractive is that it relies on foreground
enhancement � the template groups together image components that, taken
together, imply a person is present. The main difÞculty with the method is that
many templates may be needed to cover all views of a moving person. Fur-
thermore, inferring state may be quite difÞcult. Authors use a particle Þlter;
but if one views a particle Þlter as a type of randomized search started using
dynamics, as above, then it is clear that this search will be more difÞcult as the
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Fig. 4.5 Figure 3, 6 and 7 from Toyama-Blake IJCV paper Toyama and Blake [443, 442] track a 2D
model of a person by learning a set of templates � which they call exemplars � from other sequences of
moving people. The image consists of a deformed template and noise, and state is given by which template
is rendered, and the deformation through which the template is rendered. The likelihood is obtained from
a comparison between the template and the image. Tracking uses a particle Þlter. On the top, a typical
set of templates, consisting of edge points (one may also use curves, region textures, and so on). On the
lower left, a track displayed by rendering the template deformation pair with the largest posterior. On the
lower right, a track of the same sequence obtained with some frames blank; notice that the dynamical
model Þlls in reasonable templates, suggesting that such a tracker could be robust to brief occlusions.

movement is less predictable and as the number of templates increases. Part
of the difÞculty is that the likelihood may change quite sharply with relatively
small changes in transformation parameters.

Spatial templates can be used to identify key points on the body. Sullivan
and Carlsson encode a motion sequence (of a tennis player) using a small set
of templates, chosen to represent many frames well [427]. These templates
are then marked up with key points on the body, and matched to frames us-
ing a score of edge distance that yields pointwise correspondence; they show
that a rough face and torso track, obtained using a particle Þlter, improves the
correspondence. The key points are transferred to the markup, and the corre-
spondence between edge points is used to deform the matched template to line
up with the image; this deformation carries the keypoints along (Þgure 4.6).
Finally, the conÞguration of the keypoints is signiÞcantly improved using a
particle Þlter for backward smoothing. Loy et al. show that such transferred
keypoints can be used to produce a three dimensional reconstruction of the
conÞguration of the body [268].
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Fig. 4.6 Figure 3, part of 7, 8 part of 11 from Sullivan and Carlsson Devatracker/23500629.pdf
Sullivan and Carlsson encode a motion sequence (of a tennis player) using a small set of templates,
chosen to represent many frames well [427]. Matching uses a topological criterion that can generate large
numbers of matches (a); but by obtaining a rough face and torso track (b), they can localize matches (c).
This makes it possible to transfer key body points marked on the templates by hand to the frames, and by
deforming the templates to obtain good estimates of the image location of these key points (d). Finally, the
conÞguration of the keypoints is signiÞcantly improved using a particle Þlter for backward smoothing.

4.2.3 Traditional Parts

We have already discussed tree-structured models of the body (section 4.1.3).
There are two areas in which tracking humans by detection varies from human
Þnding. The Þrst is in how one models temporal and spatial relations, which
can easily lead to intractable models. The second is in whether the appearance
model is supplied or inferred.

4.2.3.1 Complex Spatio-Temporal Relations

The advantage of a tree-structured kinematic model, that one can use dy-
namic programming for detection, extends to a mixture of such trees. How-
ever, adding temporal dependencies produces a structure that does not allow
for simple exact inference, because the state of a limb in frame t has two
parents: the state in time t − 1, and the state of its parent in frame t (recall
Þgure 3.8). Ioffe and Forsyth attack this problem with a form of coordinate
ascent on P (X0, . . . ,Xk|Y0, . . . ,Yk) [198]. They use a mixture of trees as
a template. Spatial links are learned from static images and temporal links
simply apply a velocity bound. The posterior is maximised by an iterative
procedure, which interleaves two steps maximising over space in a particu-
lar frame while Þxing all others, and maximising over time for a particular
limb segment, while Þxing all other segments. Each step uses dynamic pro-
gramming. Segments are assumed to be white, or close; the model doesn�t
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encode the head position, which occasionally leads to arms and legs getting
confused. As Þgure 4.7 indicates, fair tracks are possible without a dynamical
model. One should see the work of Sigal et al.(section 3.3.1.1; Þgure 3.9) as
involving a similar, but more sophisticated, inference procedure.

4.2.3.2 Known Appearance Models

This difÞculty is quite often ignored, apparently without major consequences.
Mori and Malik use no dynamical model, detecting joints repeatedly in each
frame using the method described in section 3.2.1; the result is a fair track
of a fast-moving skater [296]. Lee and Nevatia use a Markov model of con-
Þguration (but not of appearance), where each body conÞguration depends
only on the previous conÞguration [247]. The model uses the known appear-
ance of skin to identify faces and hands, and contrast with the background to
identify major limbs and torso. Markov chain Monte Carlo is used to give a
randomized search for good matches between conÞguration and image, with
proposals using both forward and backward dynamics.

Agarwal and Triggs build a set of dynamical models, each of which ex-
plains a cluster of motion data well; a mixture of these models is then used
to propose the 2D conÞguration in the i + 1�th frame from the state in the
i�th frame [4]. The models are Þt to a reduced dimensional representation.
The question of how one knows which model to use is dealt with by mix-
ing the models, mixture weights being set by the current frame. The entropy
of these weights tends to be low, as many 2D conÞgurations can arise from
only one of their motions. The result is a model that can make quite accu-
rate dynamical predictions for their example sequences. The predictions are
reÞned by an optimization method, as in [407]. The model is a 2D kinematic
tree, and likelihood is evaluated by warping the image backwards, using the
current state estimate, and comparing that warped image to body part refer-
ence templates that are part of the initialization ([4], p.61). There is no in-
formation about what appearance model the templates encode; one could see
this method as an extension of the people-Þnding approach of Felzenswalb
and Huttenlocher [125] that Þnds local minima suggested by the dynamical
model.
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Fig. 4.7 MOT, part of Þgure 3 Ioffe and Forsyth build a 2D model of a person as a set of segments,
modelled using a mixture of trees to capture aspect phenomena [198]. In an image sequence, each segment
except the root has two parents � the corresponding segment in the previous frame, and that segment�s
parent in the model. The appearance model of each individual segment is crude � segments are light
bars of Þxed scale. Authors Þnd the best sequence of models by interleaving optimization over time with
optimization over space; the result is a fair track, despite signiÞcant changes in aspect.

4.2.3.3 Inferred Generative Appearance Models

This leaves us with building a model of appearance. We must choose an en-
coding of appearance, and determine what appearance each segment has. The
trackers we have described up to this point train models of appearance using
one or another form of training data; but one could try to build these models
on the sequence being tracked. The advantage of doing so is that these ap-
pearance models can be specialized to the individual being tracked � rather
than attempt to encode human appearance generally, which appears to be dif-
Þcult. This is the only place where, for example, we can clearly tell what
color clothing is being worn by the subject.

Ramanan and Forsyth encode appearance using color � the texture
changes produced by shading on folds in clothing make texture descriptors
unhelpful � and determine appearance for each segment by clustering. Their
algorithm assumes known scale and known link probabilities. Since individ-
uals don�t change clothing in track sequences, one can expect that body seg-
ments look the same over the sequence, and so there should be many instances
of the true segments in a long sequence. Furthermore, the correct segments
lie in distinctive conÞgurations with respect to one another in each frame, if
detected. This constraint is more easily exploited by looking for torso seg-
ments Þrst, because they�re larger and tend to move more slowly. Ramanan
and Forsyth use a Þlter tuned to parallel edges separated by a particular im-
age distance to identify candidate torso segments; they then cluster these and
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prune clusters that are stationary. They look for arm and leg segments near
each instance of a candidate torso segment, and if enough are found, declare
that the candidate represents a true torso in appearance. Now the appearance
of each arm and leg segment can be determined by Þnding segments near the
torso that lie in the correct conÞguration and have coherent appearance (this
is simpliÞed by the useful observation that left and right arms and left and
right legs typically look the same). Tracking now becomes a straightforward
matter of detecting instances of each model in each frame, and linking those
that meet a velocity constraint.

Fig. 4.8 Fig 7, CVPR 03, RamananForsyth Ramanan and Forsyth build an appearance model for seg-
ments in a 2D model of a person automatically, using methods described in the text. They then track by
detecting instances of this appearance model in frames and linking instances across time. The advantages
of this tracking by detection strategy are that one can identify particular individuals, recover from oc-
clusions, from errors in the track and from individuals leaving the frame. The top shows frames from a
tracked sequence; on the bottom, appearance models for each of the three individuals identiÞed by their
appearance modelling strategy.

This displays some advantages of a tracking by detection framework, and
the difÞculties that result from relying on a dynamical model. First, recovery
from occlusion, people leaving frame or dropped frames is straightforward;
because we know what each individual looks like, we can detect the indi-
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vidual when they reappear and link the tracks (this point is widely acknowl-
edged; see, for example, [95, 301]). Second, track errors don�t propagate;
when a segment is misidentiÞed in a frame, this doesn�t fatally contaminate
the appearance model. DifÞculties occur if different individuals look the same
(although one may be able to deal with this by instancing) or if we fail to build
a model.

4.2.3.4 Inferred Discriminative Appearance Models

Fig. 4.9 Deva�s thesis, also CVPR05 Ramanan et al. demonstrate that one can build appearance models
by looking for human conÞgurations that show all limbs and are easily detected. It turns out that, even in
quite short sequences of people engaging in quite extreme behaviour, one can Þnd lateral walking views.
Top: These views can be detected by using a pictorial structure model on an edge-based representation,
using quite low entropy links to impose the requirement that one has a lateral view of walking. This detec-
tor is tuned to produce no false positives � false negatives are quite acceptable, as long as one instance
is found. Bottom: Once an instance has been found, we have the basis of a discriminative appearance
model, because we know what each limb segment looks like and we have a lot of pixels that do not lie
on a limb segment. Ramanan et al. build a discriminative appearance model for each body segment using
logistic regression, then apply a pictorial structure model to the output of this process � so that a good
segment match contains many pixels where P (segment|pixel values) are high. The resulting tracker is
illustrated in Þgure 4.10.
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Ramanan et al. demonstrate an alternative method of building a model.
Assume that people occasionally adopt a pose that is (a) highly stylized (and
therefore easy to detect) and (b) displays arms and legs clearly (so that ap-
pearance is easy to read off). Then, if we reliably detect at least one instance
of this pose without false positives, we can read off an appearance model from
the detection. Furthermore, we can make this appearance model discrimina-
tive, because we have a set of pixels that clearly do lie on the segments, and
others that clearly do not. It is an empirical property that people do seem
to adopt such poses, even in sequences of quite complex motions. They are
relatively straightforward to detect by matching an edge template using a pic-
torial structure model. Notice that we are helped by the detection regime here
� we don�t need to detect every instance, just enough to build an appear-
ance model, but we don�t want false positives. Ramanan et al. use logistic
regression to build discriminative models for each limb segment, then a pic-
torial structure model to detect. Again, tracking is a simple matter of detect-
ing instances of the model and linking those that meet a velocity constraint.
These discriminative models signiÞcantly reduce the difÞculty of searching
for an instance of a person, because much of the image is discarded by the
models. In particular, the models can emphasize aspects of appearance that
distinguish a particular individual from that individual�s background. In his
thesis, Ramanan shows that a discriminative model of appearance results in
signiÞcantly better tracking behaviour (Þgure 4.11).

4.2.4 Parts as Codebooks

Song et al. use a variant of tree-structured models to identify human mo-
tion. They identify local image ßows at interest points in an image, using
the Lucas-Tomasi-Kanade procedure for identifying and tracking localizable
points [412, 413]. For a Þxed view of a Þxed activity, ßows at various in-
terest points on the body are strongly related, and discriminative. They build
a triangulated graph, whose nodes represent the state of each interest point
on the body and whose edges represent the existence of a probabilistic rela-
tion between the nodes. Because this graph is triangulated, the junction tree
is straightforward to Þnd and inference is relatively simple (see, for exam-
ple, [208]). They then detect human motion by identifying the best corre-
spondence between image ßow features and graph nodes and testing against
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Fig. 4.10 Deva�s thesis Frames from sequences tracked with the methods of Ramanan et al., where a
discriminative appearance model is built using a specialized detector (Þgure 4.9), and then detected in
each frame using a pictorial structures model. The Þgure shows commercial sports footage with fast and
extreme motions. On the top, results from a 300 frame sequence of a baseball pitch from the 2002 World
Series. On the bottom, results from the complete medal-winning performance of Michelle Kwan from the
1998 Winter Olympics. We label frame numbers from the 7600-frame sequence. For each sequence, the
system Þrst runs a walking pose Þnder on each frame, and uses the single frame with the best score (shown
in the left insets) to train the discriminative appearance models. In the baseball sequence, the system is
able to track through frames with excessive motion blur and interlacing effects (the center inset). In the
skating sequqnce, the system is able to track through extreme poses for thousands of frames. The process
is fully automatic.

a threshold. One requires multiple models for multiple activities, though how
many models might be needed to cover a wide range of activities and aspects
is a difÞcult question. The method is effective at identifying human motion;
note that frames are explicitly not linked over time, something that doesn�t
seem to cause any real difÞculties for the method, which should be seen as an
early track-by-detection method.
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Fig. 4.11 Deva�s thesis Ramanan shows that tracking people is easier with an instance-speciÞc model
as opposed to a generic model []. The top two rows show detections of a pictorial structure where parts
are modeled with edge templates. The Þgure shows both the MAP pose � as boxes � and a visualization
of the entire posterior obtained by overlaying translucent, lightly colored samples (so major peaks in
the posterior give strong coloring). Note that the generic edge model is confused by the texture in the
background, as evident by the bumpy posterior map. The bottom two rows show results using a model
specialized to the subject of the sequence, using methods described above (part appearances are learned
from a stylized detection). This model does a much better job of data association; it eliminates most of
the background pixels. The table quantiÞes this phenomenon by recording the percentage of frames where
limbs are accurately localized � clearly the specialized model does a much better job.

4.3 Evaluation

There is no current consensus on how to evaluate a tracker, and numerical
evaluations are relatively rare; Þgure 4.13 shows results from all evaluations
of which I am aware. There are several numerical evaluations of lifting to
3D; see, for example, [3, 246, 245]. In our opinion, it is insufÞcient to simply
apply it to several video sequences and show some resulting frames (a prac-
tice fairly widespread until recently). Counting the number of frames until the
tracker fails is unhelpful: First, the tracker may not fail. Second, the causes
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Fig. 4.12 devatracker/01206511, Þgs 1 and 8 On the left, two triangulated graph models of the human
Þgure. Each node represents the state of some interest point on the body; because the graph has a triangu-
lated form and simple cliques, the junction tree is easy to obtain and inference is relatively straightforward
(one could use dynamic programming on the junction tree). Song et al. use this representation to detect
people engaged in known activities, using learned models to infer the form of the distributions repre-
sented by the edges of the graph [412, 413]. They detect ßow at interest points in the image, then use
these models to identify the maximum likelihood labelling of the image interest points in terms of the body
interest points; detection is by threshold on the likelihood. On the right, some detection examples. Note
the method is generally successful.

of failure are more interesting than the implicit estimate of their frequency,
which may be poor. Third, this sort of test should be conducted on a very
large scale to be informative, and that is seldom practical. Trackers are �
or should be � a means to a larger end, and evaluation should most likely
focus on this point. In this respect, trackers are probably like edge-detectors,
in that detailed evaluation is both very difÞcult and not wholly relevant. What
matters is whether one can use the resulting representation for other purposes
without too much incovenience.

A fair proxy for this criterion is to regard the tracker as a detector, and
test its accuracy at detection and localization. In particular, if one has a pool
of frames each containing a known number of instances of a person, one
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can (a) compare the correct count with the tracker�s count and (b) check that
the inferred Þgure is in the right place. The Þrst test can be conducted on a
large scale without making unreasonable demands on human attention, but
the second test is difÞcult to do on a large scale. Ramanan and Forsyth use
these criteria; their criterion for whether a particular body segment is in the
right place is to check the predicted segment intersects the image segment
(which is a generous test) [356, 396].

Lee and Nevatia evaluate reprojection error for the tracked person [247].
There might be some difÞculty in using this approach on a large scale. Sigal
et al construct a 3D reconstruction, and so can report the distance in millime-
tres between the true and expected positions (predicted from the posterior) of
markers [396]. Agarwal and Triggs give the RMS error in joint angles com-
pared to motion capture on a 500 frame sequence [5].

There is little consensus on what RMS errors actually mean in terms of the
quality of reported motion. There is some information in [?], which evaluates
compression of motion capture; this boils down to the fact that very small
RMS errors in joint position indicate that the motion is acceptable, but quite
large errors are hard to evaluate. There is no information on what errors in
joint angle mean.
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Ramanan + Forsyth

Sigal et al.

Lee + Nevatia

Agarwal+Triggs

Fig. 4.13 Part of Figure 8 from devatrackers/0135063 and Table 1 of devatrackers/cvprÞnal, Þg
8 from 2d3dliftnew/01565379 and Þg from devatrackers/leemotion05 On the top left, reports of the
percentage of limb segments in the track that overlay the actual limb segments (D) and that are false
alarms (FA) for a series of tracks using the methods of Ramanan and Forsyth, reported in [356]. On the
bottom left, reports of RMS error of backprojected pose in pixels from the work of Lee and Nevatia [247].
On the top right, RMS error in joint angle for 500 tracked frames from Agarwal and Triggs; the zero error
indicates a person was not present [5]. On the bottom right, distance between points on reconstructed 3D
models obtained using the methods of Sigal et al. ([396]) and tracked motion capture markers supplying
ground truth; there are two baselines, the method of Deutscher et al. ([104]), which fairly quickly loses
track, and belief propagation without part detectors, which is surprisingly good.





5
Motion Synthesis

There are a variety of reasons to synthesize convincing looking human mo-
tion. Game platforms are now very powerful and players demand games with
very rich, complex environments, which might include large numbers of non-
player characters (NPC�s � which are controlled by the game engine) en-
gaged in a variety of activities. These Þgures need to move purposefully, re-
act convincingly to impacts, and be able to change their activities on demand.
Ideally, the motions are clean and look human; players can control characters
smoothly; and there are no jumps or jerks resulting from sudden, unantici-
pated demands � which might originate either with a player or with game
AI. Typically, this industry is willing to sacriÞce a degree of quality if it can
produce a very large volume of motions, and do so quickly. The Þlm indus-
try has traditionally been less interested in computational motion synthesis,
largely because human animators � or, for that matter, actors � are still the
best way to get high quality motion. This trend appears to be changing.

Another, perhaps less frivolous in purpose, is the simulation industry.
Commodity graphics hardware has advanced to the point where many of the
�immersive virtual reality� simulation and training applications which were
proposed during the 1990�s are now actually becoming quite practical. Many
of these applications require environments that must be populated with hu-
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mans. Currently, most such applications make do with minimally realistic
human Þgures, but as recent computer games have demonstrated it is now
possible to render humans with very realistic static appearance. Variations in
rendering style alter a viewer�s perception of motions [177, 178]. As the char-
acters� appearance improves so too does viewer expectations concerning the
characters� motion. More realistic characters with a more interesting range of
behaviors present substantial challenges.

Situation simulations used for training milliary, rescue, and other
hazardous-duty personnel are currently predominantly populated by unreal-
istic human characters. While these characters sufÞce for some aspects of
training, they still place strong limitations of the simulation�s potential ef-
fectiveness: a Þre-rescue worker�s response to a mannequin with the word
�victim� is fundamentally different to the response that would be elicited by
a character that behaves and appears like a frightened 10 year old child. Sim-
ilar, but more gruesome, arguments can be advanced concerning the need for
realistic humans in combat simulations [490, 491]. In either case, the desired
goal is that the user become immersed in the simulation to the point where
they behave as if the situation were real, and we believe that realistic simu-
lated humans are required for this to happen.

Finally, an understanding of synthesizing accurate looking human mo-
tions may yield insight into the structure of motions. Possible beneÞts for the
computer vision community include dynamical models for tracking humans,
methods for determining whether a motion is human or not, and insights into
action representation.

5.1 Fundamental Notions

5.1.1 The Motion Capture Process

Motion capture refers to special arrangements made to measure the conÞg-
uration of a human body with (relatively) non-invasive processes. Early sys-
tems involved instrumented exoskeletons (the method is now usually seen
as too invasive to be useful except in special cases) or magnetic transducers
in a calibrated magnetic Þeld (the method is now usually seen as unreliable
in large spaces). More recent systems involve optical markers. One can use
either passive markers (for example, make people wear tight-Þtting black
clothing with small white spots on them) or active markers (for example,
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ßashing infrared lights attached to the body). A collection of cameras views
some open space within which people wearing markers move around. The
3D conÞguration of the markers is reconstructed for each individual; this is
then cleaned up (to remove bad matches, etc.; see below) and mapped to an
appropriate skeleton.

resolution; data association; missing markers

5.1.1.1 Engineering Issues

Motion capture is a complex and sophisticated technology; typical modern
motion capture setups require a substantial quantity of skilled input to pro-
duce data, and there have been many unsuccessful attempts to build systems
(or even to use commercial systems) within the academic community.

There are three main sources of difÞculty. First, one requires high res-
olution, both in time and in space. High temporal resolution is required to
localize in time the sharp accelerations caused both by contacts and by some
kinds of motion � hitting, jumping, etc. InsufÞcient temporal resolution re-
sults in �squashy� motions, and 120Hz cameras are now common. There are
attendant difÞculties of getting pixels out of the camera fast enough. It is now
typical to use cameras that produce only reports of marker position, rather
than full frames of video. High spatial resolution is required to avoid �pops�
� a fast snapping movement from one frame to the next that can be the
result of spatial noise � and jittery looking movement. The result is signiÞ-
cant demands on the camera system, because it is desirable that each marker
is seen by at least two cameras. This is difÞcult to achieve when there are
many people because the body parts occlude one another. Furthermore, actors
must move in a relatively large space, particularly if one wants to capture fast
movements like running. The result of all this is that there must be many cam-
eras, all kept very well calibrated; and because they are far from the markers,
the cameras must have high resolution.

The second difÞculty is data association. One must determine which re-
ported marker position in which frame corresponds to a particular marker
location on the body. Helpful cues include: camera calibration (which gives
epipolar constraints); the relatively fast frame rate (meaning that nearest
neighbours often propagates marker identities well); and the fact that some
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aspects of the geometry of the Þgure to be reconstructed are known. DifÞ-
culties include: the sheer volume of measurements (meaning that there is a
good chance that there are many views in which epipolar constraints are not
as helpful as one would want); the possibility that some markers are seen in
only some views (meaning one cannot afford to simply throw away reports);
the fact that some movements are fast (meaning that nearest neighbours can
be misleading). There is a tendency, in our opinion premature, to feel this
problem is solved (but see, for example, [230]).

The third difÞculty is missing markers. To be reconstructed, a marker
needs to be visible to at least two cameras with sufÞcient baseline, and the
correspondence needs to be unambiguous. Occasionally, this isn�t the case,
usually as a result of occlusion by other bodies or body parts.

5.1.1.2 Cleanup and Skeletonization

Typical workßow involves capturing 3D point positions for markers, dis-
counting or possibly correcting any errors in correspondence by hand, then
using software to link markers across time. There are usually errors, which
are again discounted or corrected by hand. Motions are almost always cap-
tured to animate particular, known models. This means that one must map the
representation of motion from the 3D position of markers to the conÞguration
space of the model, which is typicaly abstracted as a skeleton� a kinematic
tree of joints of known properties and modelled as points separated by seg-
ments of Þxed, known lengths, that approximates the kinematics of the human
body. The anatomy of the major joints of the body is extremely complex, and
accurate physical modelling of a body joint may require many revolute and
prismatic joints with many small segments linking them (the shoulder is a
particularly nasty example [117, 446], but, for example, the drawings in [68]
emphasize the complex kinematics of human joints). This complexity is un-
manageable for most purposes, and so one must choose a much lower dimen-
sional approximation. Different approximations have different properties �
the details are a matter of folklore � and one chooses based on the needs of
the application and the number of degrees of freedom of the skeleton. Skele-
tonization is not innocent, and it is usual to use artists to clean up skeletonized
data, essentially by adjusting it until it looks good. The pernicious practice of
discarding point data once it has been skeletonized is widespread, and it re-
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mains the case that data represented using one skeleton cannot necessarily be
transferred to a different skeleton reliably. Reviews of available techniques in
motion capture appear in, for example [50, 154, 266, 281, 288, 397].

5.1.1.3 ConÞguration Representations

For the moment, Þx a skeleton. While this isn�t usually an exact representa-
tion of the body�s kinematics, we will assume that giving the conÞguration
of this skeleton gives the conÞguration of the body. The conÞguration of the
skeleton can be speciÞed either in terms of its joint angles, or in terms of
the position in 3D of the segment endpoints (joint positions). Not every set
of points in 3D is a legal set of segment endpoints (the segments are of Þxed
lengths), so sets of points that are a legal set of segment endpoints must meet
some skeletal constraints. The set of all legal conÞgurations of the body is
termed the conÞguration space; the joint angles are an explicit parametriza-
tion of this space, and sets of points in 3D taken with constraints can be seen
as an implicit representation.

5.1.1.4 Skinning

I think there are many skinning methods. The most
standard one is linear blend skinning. I don.t

think I.ve ever seen example based skinning in a
realtime character (for the full body).

In animation applications, one wants the motion capture data to drive
some rendered Þgure � when the actor moves an arm, the virtual character
should do the same. The virtual character is represented as a pool of textured
polygons, and one must determine how the vertices of these polygons change
when the arm is lifted. The process of building a mapping from conÞguration
� always represented as joint angles for this purpose � to polygon vertices is
referred to as skinning. Skinning methods typically determine an appropriate
conÞguration for the skin for each of a set of example poses, then interpo-
late [291]. One represents conÞguration as joint angles for skinning purposes
because using joint positions is unwieldy (one would have to manage the
constraints; we are not aware of any advantage to be obtained by doing so).
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5.1.2 Footskate

An important practical problem is footskate, where the feet of a rendered
motion appear to slide on the ground plane. In the vast majority of actual mo-
tions, the feet of the actor stay Þxed when they are in contact with the ßoor
(there are exceptions � skating, various sliding movements). This property
is quite sensitive to measurement problems, which tend to result in recon-
structions where some point quite close to, but not on, the bottom of the foot
is stationary with respect to the ground. The result is that the reconstructed
foot appears to slide on the ground (and sometimes penetrates it). The ef-
fect can be both noticeable and offensive visually. Footskate can be the result
of: poorly placed markers; markers slipping; errors in correspondence across
space or time; reconstruction errors; or attempts to edit, clean up or modify
the motion. Part of the difÞculty is that the requirement that the base of the
foot lie on the ground results in complex and delicate constraints on the struc-
ture of the motion signal at many joints. These constraints appear to have the
property that quite small, quite local changes in the signal violate them. It is
likely that these properties are shared by other kinds of contact constraint (for
example, moving with a hand on the wall), but the issue has not arisen that
much in practice to date.

There are methods for cleaning up footskate. Kovar et al. assume that
constraints that identify whether heel or toe of which foot is planted in which
frame (but not where it is planted) are available [237]. Kovar et al. then:
choose positions for each planted point, determine ankle poses to meet these
constraints; adjust the root position and orientation so that the legs can meet
the resulting ankles; compute legs that join the root and the ankle mainly by
adjusting angles, but occasionally by adjusting leg lengths slightly; and then
smooth the adjustment over multiple frames. The method is effective and
succesful.

Ikemoto et al.demonstrate that one can clean up footskate introduced by
editing and so on automatically [192]. They build a classiÞer that can anno-
tate frames in a collection with toe and heel plant annotations. These anno-
tations are preserved through editing, blending, etc. When a motion has been
assembled from edited frames, the annotations are smoothed over time, and
the method then identiÞes possible footplant positions automatically by look-
ing at the foot position over the time period of the footplant. Finally, inverse
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kinematic methods (section 5.1.3) are used to clean up the frames.

5.1.3 Inverse Kinematics

Footskate cleanup is an example of a more general problem � adjust the
joint angles of a motion so that it meets some constraints on joint positions.
Assume we have a Þxed skeleton; we now wish to clean up a motion referred
to this skeleton, perhaps moving a foot position or ensuring that a contact
occurs between a hand and a doorhandle. This creates a difÞculty for either
representation of conÞguration: if we work with joint angles, we must obtain
joint angles such that the constraint is met; if we work with joint positions,
we must obtain a set of joint positions that meet both this constraint and
the skeletal constraints. We will conÞne our discussion to the case of joint
positions, which is more important in practice.

For the moment, let us consider only a single frame of motion. Write the
vector of joint angles as θ, and the joint positions as a function of joint an-
gles as x(θ). Assume that we would like to meet a set of constraints on joint
positions g(x) = 0. The problem of inverse kinematics is to obtain a θ such
that g(x(θ)) = 0. The constraint is important in the formulation, because
we hardly ever wish to specify a change in every joint position. For example,
assume we wish to move the elbow of a Þgure so it rests on a windowsill �
we would like to adjust the kinematic conÞguration so that the elbow lies at a
point, but we don�t wish to specify every joint position to achieve this. Notice
there is room for some confusion here. In the robotics and theoretical kine-
matics literature, the problem is almost always discussed in terms of choos-
ing joint angles to constrain the endpoint conÞguration of a manipulator. In
graphics applications, the term refers to meeting any kinematic constraint.

Under some conditions, closed form solutions are available for at least
some parameters (e.g. see [232, 233, 439, 440]). Alterantively, a solution can
be interpolated: D�Souza et al.learn inverse kinematics for a humanoid robot
with locally weighted regression [114], and Schaal et al.describe learning
methods for a variety of robot problems, including inverse dynamics [379].

More usually, one must see this as a numerical root Þnding problem. The
update for Newton-Raphson method involves Þnding a small change in con-
Þguration δθ such that g(x(θ0 + δθ)) = 0. We may be able to obtain δθ
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from

0 = g(x(θ0 + δθ))

≈ g(x0 + Jx,θδθ)

≈ g(x0) + Jg,xJx,θδθ

where Jx,θ is the jacobian of x with respect to θ, etc. In the ideal case, the
product of jacobians is square and of full rank, but this seldom happens. For
almost every point in the conÞguration space, the rank of the jacobian Jx,θ

should be the dimension of the conÞguration space (if this isn�t the case, then
we have a redundant angle in our parametrization; we assume that this does
not happen). At some points, the rank of this jacobian will go down � these
are the kinematic singularities of section 2.4.1. The practical consequence of
this is that some position updates may not be attainable (for example, consider
the straightened elbow of section 2.4.1; the only instantaneous hand velocity
attainable is perpendicular to the forearm). The rank of Jg,x may be small.
For example, if our constraint requires that a point be in a particular place, the
rank will be three. This is a manifestation of kinematic redundancy, which
is a major nuisance. A natural strategy to deal with constraint ambiguity is
to obtain a least squares solution for δθ � but the resulting pose may not be
natural (one can use other norms, see [103] ). A second source of difÞculties
in the optimization problem are joint limits, which mean that our optimization
problem is subject to some inequality constraints on the θ. The feasible set of
solutions that meet this constraints is not necessarily convex, which can mean
the general optimization problem is hard.

Kinematic redundancy is a global rather than local matter. There may be
more than one θ such that g(x(θ)) = 0. For example, assume that we wish
to constrain a Þgure to stand with its feet on the ßoor in given spots, and a
hand on a given spot on a wall. Typically, there is either no solution to these
constraints � the wall is too far away � or many. The collection of solutions
is rather rich (stand next to a wall with your hand on the wall; you can move
in all sorts of ways without having your feet move or your hand leave the
wall), and could be continuous or discrete.

All this creates a nasty problem. Applying inverse kinematics on a frame-
by-frame basis may produce solutions at each frame that are inconsistent (as a
result of kinematic redundancy). This is complicated by the presence of mul-
tiple solutions, and the vagaries of root Þnding. For example, assume we want
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a solution where the hand is against the wall, as above. In frame n, the root
Þnder converges to a solution where the elbow is below the shoulder; but the
start point for frame n + 1 is slightly different from that for frame n, and the
root Þnder could Þnd a solution where the elbow is above the shoulder. This
sort of behaviour results in noticeable and annoying �pops� in the motion.
The effect can be countered by adjusting multiple frames simultaneously, but
this is expensive computationally; much of the recent literature is a search for
efÞcient approximation methods.

The use of inverse kinematics in animation dates to at least the work of
Girard and Maciejewski [152]; see also [151] and [166]. Methods for han-
dling singularities are discussed in [272]. A good summary of early work
in animation is [24]. Tolani et al. contains a considerable body of helpful
background and review material [440]. Zhao and Badler approach inverse
kinematics as a nonlinear programming problem � using our notation, Þnd
arg min | g(x(θ)) | subject to joint constraints, etc. � and use a variant of
a standard optimization method; it is not possible to guarantee a global min-
imum (neither the objective function nor the constraints are convex) [482].
Incompatible constraints can be handled by a scheme allocating different pri-
orities to constraints [25]. Shin et al. obtain a real-time solver for a puppetry
application by linking a fast frame-by-frame solver using a mixed analytical-
numerical strategy with a Kalman Þlter smoother [392]. Joints other than the
shoulder have been studied in some detail [295, 331].

5.1.4 Resolving Kinematic Ambiguities with Examples

The danger here is that one may obtain poses that do not look human. Motion
editing deals with this by being interactive, so that an animator who doesn�t
like the results can Þddle with the constraints until something better appears
(see also [334]). An alternative is to allow relatively few degrees of freedom
� for example, allow the animator to adjust only one limb at a time � or
to require similarity to some reference pose [430, 476, 483]. This isn�t al-
ways practical. An alternative, as Grochow et al. demonstrate, is to build a
probabilistic model of poses and then obtain the best pose [164].

One can do this as follows (for consistency within this review, our notation
differs from that of Grochow et al.). Write y for a feature vector describing
a pose x (the feature vector could contain such information as joint posi-
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tions, velocities, accelerations, etc.). Write u for the (unknown) values of a
low dimensional parametrization of the space of poses. Use the subscript i to
identify values associated with the i�th example. Now assume we have a re-
gression model P (y|u, θ) for θ some parameters (which in this case choose a
model and weight components with respect to one another). We could obtain
an inverse kinematic solution by maximizing

P (y(x),u|θ)

with respect to x and u, subject to some kinematic constraints g(x) = 0.
Notice we need x (the conÞguration of the body), y (the feature vector) and u
(the low dimensional representation) here. This is because u does not predict
a unique y � we may need to choose a body conÞguration that is close to, but
not on, the low dimensional structure predicted by the model � and because
many poses might have the same feature representation. The regression model
is built using N examples yi (note we do not know ui for these examples).
We assume the examples are independent and identically distributed (note
the independence assumption needs care with motion data; frames may be
correlated over quite long timescales), and obtain ui, θ to maximise

P (ui, θ|yi)

Grochow et al. use a scaled gaussian process latent variable model as a regres-
sion model, and note that some simpler models tend to overÞt dramatically.
The method produces very good results; authors note that a form of rough-
and-ready smoothing (obtained by interpolating between parameters obtained
with clean training data and training data with added noise) seems to produce
useful models that allow a greater range of legal poses.

While motion editing does not offer direct insight into representing mo-
tion, the artifacts produced by this work have been useful, and it has produced
several helpful insights. The Þrst is that it is quite dangerous to require large
changes in a motion signal; typically, the resulting motion path does not look
human (e.g. [154]). The second is that enforcing some criteria � for example,
conservation of momentum and angular momentum [391]; requiring the zero-
moment point lies within the support polygon [97, 231, 391] � can improve
motion editing results quite signiÞcantly. However, note that one can gener-
ate bad motions without violating any of these constraints, because motion
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is the result of extremely complex considerations. The third is that requiring
motion lie close to examples can help produce quite good results.

5.1.5 Specifying a Motion Demand

One must specify what is desired to a motion synthesis algorithm. While
synthesis algorithms tend to vary quite widely, there are not many options for
constraints. Geometric constraints may constrain: the position or position
and orientation of the root; the position or position and orientation of one
or more body segments; or, in extreme cases, the exact conÞguration of the
body (in which case the frame constraint can be thought of as a keyframe).
Geometric constraints may take various forms involving either equalities or
inequalities. For example, one may constrain a point to lie on a plane, a line,
or a point (which are all equality constraints), or to lie within a region (an
inequality constraint).

Depending on algorithmic details, constraints may be either exact or rep-
resented as a penalty function. Constraints may be either summary con-
straints, applying to the position and orientation of a summary of conÞgura-
tion such as the overall center of gravity or the root, or detailed constraints,
applying to individual body segments or particular points on the body. One
can apply either instantaneous constraints, which constrain at a particular
time, or path constraints, which constrain to a path over a period of time.
It is common, but not universal, to assume that a path constraint comes with
timing information. It is usual to assume that impossible constraints are not
supplied.

Such constraints can be used to sketch out the structure of a motion in
greater or lesser detail, depending on what an algorithm requires. In most
cases, however, they don�t determine the motion. For example, in some cases
quite a precise temporal parametrization of a path may not determine whether
a Þgure must run or walk. Usually, one would like to supply relatively few
constraints (authoring constraints is a nuisance), meaning that the resulting
motion is usually dramatically ambiguous. There are almost always very
many ways to meet instantaneous summary constraints for the start and the
end of a motion (i.e. start here at this time, end there at that time). One might
dawdle at the start, then sprint; walk very slowly; run, walk, then run, then
dawdle, and so on.
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Annotation constraints are intended to reduce this ambiguity. These
constraints are demands that a motion be of a particular type, that are painted
on the timeline. The interesting issue is how one encodes the type of a mo-
tion. Arikan et al. choose a set of 13 terms (�run�, �walk�, �jump�, �wave�,
�pick up�, �crouch�, �stand�, �turn left�, �turn right�, �backwards� �reach�,
�catch�, �carry�) that appear to be useful for their dataset [17]. It is desirable
to respect the fact that motions can compose � for example, one can run
while carrying � and they do so by allowing any combination of these terms
to be an annotation. One can visualize an annotation as a bit vector, with 13
entries, one per term. This model ignores the fact that most combinations of
annotations � e.g. �stand� and �run� � are meaningless; this is deliberate,
because there isn�t a principled way to build a space of legal annotations and
dependencies between annotations may result in nasty inference problems.
Arikan et al. then mark up a collection of motion capture data using classi-
Þers. The features are a representation of a pool of motion frames spanning
the frame to be classiÞed. The classiÞers are trained independently, one per
term, by marking up some frames, Þtting a classiÞer, and then repeatedly
classifying all frames, viewing and correcting a sample of labelled motions,
and Þtting a new classiÞer. This process converges quickly, allowing a large
pool of motion to be marked up relatively quickly, probably because it is easy
to view a large pool of animations and correctly identify mislabelled motions.
The result is a pool of frames of motion capture data, each carrying a vector of
13 bits, each of which is determined independent of the others. Interestingly,
Arikan et al. point out that, although their model does not exclude inconsis-
tent annotations, relatively few of the 213 available annotations are actually
applied, and they observe no inconsistent annotations.

5.2 Motion Signal Processing

Think of a motion as a time-parametrized path on some space describing kine-
matic conÞguration. Now assume we have two such paths that are �close�.
Assume we have a good correspondence between the paths. We expect that
a convex combination of corresponding frames may result in a good mo-
tion, and that this may still be true if the weights are time-varying. It turns
out that these expectations are largely met. In fact, a variety of such opera-
tions on motion are successful, an observation originating with Bruderlin and
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Williams [64].

5.2.1 Temporal Scaling and Alignment

As Bruderlin and Williams point out, if one runs a motion slightly faster or
slightly slower, the result is still usually an acceptable motions [64]. The ad-
vantage of this observation is that we can time align motions. Assume we
have two motions which are sampled at the same rate. An alignment be-
tween the motions is a pair of functions, c1(i) and c2(i), which identiÞes
which frame from the Þrst (resp. second) motion to use at the i�th time-step.
Generally, we want to align motions so that, for some norm,

||X(1)
c1(i)

− X(2)
c2(i)

||

is small. As Kovar and Gleicher show, such an alignment can be computed
with dynamic programming [234]. For most reasonable applications, the
norm should be invariant to the root coordinate system of the frames, and
this can be achieved most easily by representing the frames with joint posi-
tions, and computing the minimum sum-of-squared distances between cor-
responding points over all Euclidean transformations using the method of
Horn [184, 185]. In practice this alignment should be thought of as inserting
(resp. deleting) frames from each motion so that the sequences align best.
Typically, we are interested in i running from 1 to k; if we reindex each mo-
tion so that the Þrst frames of each correspond, we typically want constraints
on the magnitude of c1(i) − i and c2(i) − i. Furthermore, we want each cor-
respondence to advance time, so that for each, c(i) − c(i − 1) ≥ 0. We are
not aware of any alignment methods that interpolate and resample motions
to obtain corresponding frames, but this is a natural extension of the general
blending framework.

5.2.2 Blending, Transitions and Filtering

Now assume we have two motions with a time alignment. At each timestep
ti, we have a pair of frames that could (we believe) be blended. To produce
a blend effectively, we must determine (a) the root coordinate system of the
blended frame and (b) where the two source frames should lie in that root
coordinate system. Assume, for the moment, that these problems have been
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solved. Producing a blend is then straightforward � we form X(1)
c1(i)

φ(ti) +

(1 − φ(ti))X
(2)
c2(i) in the appropriate coordinate system.

Doing all this requires careful handling of the root. If our representation
contains the root, then we will be able to blend very few motions because even
motions that are similar may occur in different places, which is clearly a waste
of data. However, we cannot simply strip every frame of root information,
because the root path is often quite strongly correlated with the body pose. For
example, people use different gaits for fast and slow translational movements.
As another example, an actor trying to move quickly along a root path with a
sharp kink in it typically makes a form of braking and pivoting step.

The solution seems to be to (a) ignore root information for the whole
sequence (rather than per frame; as a result, we preserve velocity and angular
velocity information) and (b) allow small deformations of the root paths so
they line up with one another. It is difÞcult to be precise about what �small�
means here, though a moderate degree of warping in both time and space still
results in a good motion [234].

The root coordinate system of the blended motion is typically obtained
from the motion demand. One may simply rotate and translate the frames
into this coordinate system (as [193] do), or one may interpolate and smooth
the transformations that do so (as [234] do). Furthermore, as Safonova and
Hodgins show, linear blends can produce motions that are physically inoffen-
sive [377].

5.2.2.1 Multi-way Blends

Bruderlin and Williams envisage blending more than two sequences; doing
so leads to better motions [64] (see also [368, 466]). Kovar and Gleicher give
methods to Þnd motions that are similar, and so can be blended, and to cre-
ate parametrized blend spaces involving these examples [235]. Locomotion
is a particularly important and common form of motion. There are several
methods to create parameterized blend spaces for each of walking, running,
and standing [241, 332, 333]. These methods can generate realistic transitions
between these three types of motion.
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5.2.2.2 Transitions

A particularly important application of blending is to produce transitions �
motions that �link� activities, for example, the slowing pace one takes when
moving from a run to a walk. Lee et al. blend to produce links in a motion
graph (section 5.3) [243]. Their method assumes one has two frames known
to be similar, and blends a window in the future of one frame with a window
in the future of the other.

5.2.2.3 Filtering

As Bruderlin and Williams establish, one may apply a Þlter to joint angle or
joint position signals and obtain a good motion by doing so [64]. Ikemoto
and Forsyth show that constant offsets to joint angles sometimes result in
good motions as well [194]. As far as we know, there are no guidelines about
what is likely to be successful here.

5.2.2.4 Physical Blends

Arikan et al.need to produce transitions between distinct motion sequences
on-line to meet realtime demands [19]. At the point of transition, there is
a discontinuity as the motion jumps from the last frame of the working se-
quence to the Þrst frame of the next sequence. Arikan et al.produce a Þnal
frame by adding an offset vector to the measured frames. This offset vector
decays with time as a second order linear system; the discontinuity is avoided
by subtracting from the offset at the transition point, so that the sum of frames
and offset has no discontinuity.

5.2.2.5 What to Blend

It is important to know when two sequences can be blended successfully. Lee
et al.choose to blend when the distance between a pair of frames, evaluated as
a weighted sum of differences in joint angles, is small [243]. Wang and Bo-
denheimer demonstrate that the choice of weights this algorithm for identify-
ing similar frames is important, and show that better weights than those used
in the original paper can be learned from data [460]. One could reasonably
hope for a more extensive criterion than just requiring some frames to be close
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and this seems like a productive area of study. Wang and Bodenheimer show
that the size of the difference between frames gives some cue to the length of
an appropriate transition, as does the velocity [461]. Arikan et al.wish to pro-
duce motions that look like responses to pushes or shoves [19]. To do so, they
produce many possible transitions to many distinct sequences, each with a
physical deformation, then use a regression method to determine which best
serves the motion demand encoded by the push. This strategy of searching
multiple cases for a good motion is extended to blends by Ikemoto et al., who
produce a very large range of blends, then test the resulting blended motions
to see which is good [193]. Doing so successfully requires a good method to
evaluate motions, a difÞcult problem we discuss in section 7.2.1.

5.2.2.6 Finding Similar Motions

Current blending methods blend motions that are �close�; this means we need
methods to Þnd such motions. Kovar and Gleicher describe a method to build
fast searches of a motion collection for matching motions, where a match is
deÞned by time-aligning a pair of motion sequences and then scoring frame-
frame differences in a root-invariant manner [235]. They use a combinatorial
structure (a �match web�) to encode possible search results, so that search is
fast. Time-alignment and scoring may not reveal good matches � for exam-
ple, two walks that are out of phase might look very different, but be good
matches � and Kovar and Gleicher deal with this by repeated matching to
match results.

Forbes and Fiume represent frames of motion on a basis obtained with
weighted PCA (the weights are necessary because small changes in hip an-
gle can generate large variance in toe position, which gives PCA basis that
behaves badly), and match by Þrst searching for discriminative seed points,
then time-aligning the query signal with the motion dataset [129].

These methods work well at matching motions to motion queries, but the
need for a query motion can become burdensome, for example, if an animator
is searching for a motion in a collection. Müller et al.encode motion frames
with binary predicates � for example, is a foot ahead of, or behind, the plane
of the body � and then search for either precise or soft matches to a predi-
cate [299]. These predicates can be surprisingly expressive; for example, an
appropriate combination can recover frames at any phase of a walk (left foot
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forward and right foot back, or right foot forward and left foot back; and so
on).

Wu et al.cluster frames, then match a sequence of cluster centers under
dynamic time warping [472]. Keogh et al.point out that general time warping
can lead to serious alignment problems, and argue that a uniform time scale
is a generally better model ([224]; see also [223, 70] and see [222] for an
exact indexing method under dynamic time warping). They demonstrate an
extremely fast method for Þnding sequences within a uniform time scale of a
given sequence, using a combination of bounds and R-trees.

5.2.2.7 DifÞculties with Blending

Assume we have two motions both captured at the same frequency. Both
contain temporally localized large accelerations (for example, they might be
grabbing or hitting motions). The temporal parametrization of the motions is
slightly different, meaning that the samples are aligned slightly differently in
time with respect to the motions. Even at the best possible time alignment,
if we blend these motions we expect to lose some of the structure at high
temporal frequencies � which would be the large accelerations. The result
is a motion that can be �squashy� in appearance and can lose its temporal
crispness. This problem doesn�t always occur, and might be manageable if
one is careful (for example, it might be worth reconstructing motions using
some form of interpolation, resampling at very high frequencies, then align-
ing the resampled motions). A version of this problem occurs for dimension
reduction methods, too.

5.3 Motion Graphs

Motion capture data is used in very large quantities by, for example, the movie
and computer game industries. For each title that will contain human motion,
an appropriate script of motions is produced; typically, this involves a rela-
tively small set of �complete� motions that can be joined up in a variety of
different ways. This script is captured, and then motions are generated within
the game by attaching an appropriate set of these motion building blocks to-
gether. Motions captured for a particular title are then usually discarded as
re-use presents both economic and legal difÞculties.
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This suggests a form of directed graph structure encoding legal transitions
between motions. The attraction is that if we have such a graph, then any path
is a legal motion; thus, with some luck, much of the work of motion synthesis
could be done in advance. Furthermore, it may be possible to issue quality
guarantees for any synthesized motion if we can do so locally within the
graph. This hope has not yet materialized, but remains an attraction of the
representation. Another attraction of this approach is that it can be used to
synthesize more than just motions; for example, Stone et al.show that one
can use a similar approach to synthesize both motion and synchronized audio
for utterances from a synthetic character [424].

There are several ways to implement this graph structure, but the impor-
tant matter here is a representation of legal motion transitions. The simplest,
which we favour as a conceptual (but not necessarily computational) device
is to regard every frame of motion as a node and insert a directed edge from
a frame to any frame that could succeed it. We will call this object a motion
graph, and always have this representation in mind when we use the term.
An alternative representation is to build a set of unique clips (runs of frames
where there is no choice of successor � one could build these by clumping
together nodes in the previous representation that have only one successor),
use the unique clips as edges and make choice points into nodes. In this rep-
resentation, one thinks of running one clip which ends in a node where we
can choose which clip to run next. Finally, we could make each clip be a
node, and then insert edges between nodes that allow a cut. Here we must be
careful with the semantics, because there could be more than one edge from
node to node � it may be possible to cut from clip A to clip B in different
ways � and our edges need to carry information about where they leave the
source clip and where they arrive at in the target clip. There is no difference
of substance between the representations; we favour the Þrst, as we Þnd it
easier to think about.

5.3.1 Building a Motion Graph

A set of observed motion sequences is a motion graph (there is a pool of
frames, and a set of observed edges). This graph can be made signiÞcantly
more useful by adding directed edges � which we call computed edges �
from each frame to any frame that could succeed it in some sequence. Typ-
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ically, we do so by identifying places where we can build a transition �
a sequence of frames that starts at one frame in the graph (say, frame Ai in
sequence A), ends at another (Bj in sequence B), and joins the frames pre-
ceding the start to those succeeding Þnish in a natural motion � and blending
as in section 5.2.2 to build these transitions. This involves adding frames of
interpolated motion.

5.3.1.1 Links by transitions

Kovar et al. build links by testing pairs of frames Ai and Bj to tell whether a
transition of Þxed length is possible between them, then building that transi-
tion [236]. They compare a window of Þxed length into the future of frame A

with a window of the same length into the past of frame B. Each window is
represented as a set of points in 3D, and there are implicit correspondences.
The distance is then the minimum sum of weighted squared distances be-
tween corresponding points available by choice of rigid-body transformation
applied to one sequence. The weights are necessary because errors in some
joint positions appear to be more noticeable than errors in other positions.
This distance is computed for every pair of frames for which it exists (the
future or the past might be too short). They build transitions between pairs of
frames where the distance is a local minimum (the topology being supplied by
the order of frames in the original sequences) and is lower than a threshold.
The transition is built by aligning the windows with a rigid body transfor-
mation, then blending them. Footskate is avoided by identifying frames with
footplant constraints, and blending in such a way as to preserve these con-
straints. There is no time or space deformation. If the motion graph is to be
used in game applications, there is real value in allowing a designer to interact
with this process, as Gleicher et al.show [158]. In this work, the designer can
choose among possible �to� frames for a given �from� frame, and can dis-
allow (resp. allow) transitions suggested (resp. discouraged) by the criterion
above.
Links by similarity: Lee et al. test for a possible link from Ai to Bj

by testing a distance between Ai and Bj−1, the logic being that if these two
are sufÞciently similar, then their futures could be interchanged ([243]; see
also section 5.2.2). Notice that this suggests that if Ai can be linked with Bj ,
then we should be able to link from Bj to Ai+1. The distance is obtained as
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a weighted sum of differences in joint angles, summed with differences in
velocities at various points across the body (the choice of weights is impor-
tant; see below). Two frames can then be linked if the distance is sufÞciently
small, the velocity term ensuring that the temporal ordering of motion is re-
spected. Links between frames with dissimilar contact states, or that are not
local maxima (again, the topology is given by the order of frames in the orig-
inal sequences), are pruned.

Arikan and Forsyth represent frames as a sets of points in 3D in a coordi-
nate frame centered on the torso, and obtain a distance by summing squared
differences in positions and velocities in that frame taken together with the
differences in velocity and acceleration of the torso frame itself [18]. Any
edge where that distance lies below a threshold is inserted as a computed
edge, with the direction being obtained from considerations of smoothness
as below. They do not require any particular combinatorial structure in their
graph, and so do not post process.

There are some tricks to building motion graphs that are not mentioned in
the literature. It is important to keep carefully in mind that edges are directed.
One should not confuse directedness of edges with symmetry in distances. If
Ai and Bj are similar, that means that four motion sequences are acceptable:
...Ai−1AiAi+1..., ...Ai−1AiAi+1..., ...Ai−1AiBj+1..., and ...Bj−1BjAi+1...

(we do not count motions where Ai and Bj are substituted for one another).
Cleanup: Some applications require a fast decision at each choice point,

meaning it may be hard to look far ahead in the graph when making that
decision. In these cases, it is helpful to remove nodes that lack outgoing
edges and graph components that cannot be escaped (see Þgure 5.1). This is
best achieved by computing the strongly connected components of the graph
(components such that, for any pair of nodes in the component, there is a
directed path between them) and keeping the largest [236, 243].
Open issues: The methods we have described have generally been suc-

cessful at producing usable motion graphs. There remain a number of open
issues in building a motion graph. Identifying pairs of frames that allow one
to build a transition is probably the right approach, but one could quibble
with current implementations. It remains difÞcult to know whether one can
or can�t build transitions between a pair of frames (see section 5.2.2 above).
One has no control over the diameter � the average length of the shortest
path connecting two points in the graph � of the resulting graph. The di-
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Fig. 5.1 Examples of bad motion graphs. On the left, a motion graph where it is possible to get stuck in
one component. This problem can be avoided by computing strongly connected components and taking
the largest, at the possible cost of excluding some frames. The graph on the right has the difÞculty that it
is possible to get caught in a motion where no alternatives are available for many frames. This presents
a difÞculty if one wishes the motion to be responsive. Typically, there is a tension between obtaining high
quality motions � which tend to require relatively few edges in the graph � and responsive motions �
which tend to need as many edges leaving nodes. One would like a graph where the shortest path between
two nodes is guaranteed to be (a) short and (b) good. No current method can guarantee to produce such
a graph.

ameter is important, because it affects the responsiveness of the motion � a
synthesis program could reasonably demand a fast transition from one frame
to another. Because current methods evaluate the goodness of an edge locally
(but not the effect on the graph of incorporating it), they tend not to pro-
duce graphs with good combinatorial properties. Ikemoto et al.investigated a
graph built competently with recent methods, and show that, for a reasonable
choice of threshold, one has both that the shortest path between some quite
similar frames can be very long, and that some pairs of frames are connected
with very bad short paths [193]. It would be most attractive to have automatic
methods that produce graphs of low diameter.

5.3.2 Searching a Motion Graph

We assume that our method of constructing edges is satisfactory, which means
that any path in the motion graph is a motion. We can construct paths in the
motion graph using local or global properties. A local search involves look-
ing ahead some Þxed number of frames. This means that the motion can re-
spond to inputs, but may mean that some constraints can�t be met. A global
search involves looking at entire paths. The resulting motion is less respon-
sive, but more easily constrained.
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Local search methods: Kovar et al concentrate on choosing the next
frame of motion, or, equivalently, choosing one of the outgoing edges at a
choice node in the motion graph [236]. Nodes without outgoing edges are a
problem; they can be removed with a simple graph algorithm. The choice of
edge can be made in a variety of ways: one could look at a game controller,
look at the local tangent direction of the desired root path, look at an anno-
tation constraint (Þgure 5.2), or use a random variable. This latter approach
can generate very good background motion when used with care. The trick
is not to cut between motion sequences too often (because all methods of
constructing motion graphs have ßaws, and a path that contains mainly com-
puted edges in the motion graph will tend to explore those ßaws, and look
bad). This can be achieved, for example, by choosing observed edges with
rather higher probability than computed edges.

Fig. 5.2 Fig 8, Mographs/mograph.pdf These Þgures show motions synthesized using the motion graph
method of Kovar et al.to meet path constraints and annotation constraints. The demand path is the
coloured path on the ground plane; this is yellow for �walking�, green for �sneaking� and blue for
�martial arts move�. The black path shows the projected root path, and the Þgures are frames sampled at
even intervals to give a sense of the motion.

Local searches can run into problems. The motion graph might contain
some frames that can be reached only by making the right choice at a choice
point many frames away. In this case, choosing based only on a local cri-
terion could make it impossible to meet some constraints, or at least meet
them in a timely fashion. This is the horizon problem� a choice now might
lead to trouble that is invisible, because it is on the other side of the hori-
zon separating the future cases we consider from those we don�t. If the graph
were guaranteed by the method of construction to have a short diameter, this
problem would be much easier to handle. Other methods of coping with the
horizon problem include: using a representation of available futures when
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making a choice; choosing paths using some form of global search; and en-
riching the motion graph (the reasoning is that, with enough frames of motion
in the graph, the diameter will be short without any explicit construction).
Taking the future into account: The body is capable of very fast accel-

erations. This suggests that, in a motion graph built with enough data, there is
a fairly short path from any one frame to any other. In turn, this suggests that
the horizon problem wouldn�t be a problem if the horizon looked forward suf-
Þciently far in time. However, in this case the range of futures available from
a particular frame must be very large. Lee et al. encode the future in terms of
clusters of frames [243]. These clusters form a graph, where each cluster is a
node and there is an edge from one node to another if there is an edge from a
frame in the cluster represented by the �from� node to a frame in the cluster
represented by the �to� node. A given frame in the motion graph is associated
with some node in this cluster graph. For any node in the cluster graph, we
can construct a cluster tree � a tree, rooted at the node under consideration,
that gives the nodes in the cluster graph accessible with a Þxed number of
hops. We now represent the available futures at a given frame by the cluster
tree associated with that frame (there is a cluster path from the root to each
leaf).Motions are controlled using either a choice based interface (where the
animator chooses at each choice point), a sketch interface � where the sketch
provides a demand signal � or a vision interface � where background sub-
tracted frames from multiple viewpoints provide a demand signal. In both the
sketch and the vision interface, frames are chosen by scoring the available
cluster paths against the demand signal.

For this method, the choice of clustering criterion depends on the appli-
cation. The alternatives are to represent the body relative to the root of the
body, relative to the root of the body in the frame at the root of the cluster
path, or in absolute coordinates. The Þrst case is appropriate in uncluttered
environments, where one can reasonably expect that any frame can occur at
any location and in any orientation. The second can be appropriate when one
needs anticipation � for example, synthesizing the run-up to a jump which
must leave the ground at a point chosen during the synthesis procedure; this
is a need one associates with animations in computer games that emphasize
complex movements like jumps. The third case is appropriate to a cluttered
environment, where a frame may be usable in only one spot in the motion
domain.
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Motion ambiguity: The family of acceptable paths through a motion
graph that meet a given set of motion constraints is usually very large, a phe-
nomenon we refer to as motion ambiguity. Local motion ambiguity arises
because most motion data collections contain multiple copies of some mo-
tions � typically, walking and running � and that there is a rich collection
of links between frames in these motions. As a result, there is a spectacular
number of walking motion paths available. One could deal with this issue by
clustering, but it isn�t the major source of difÞculty. The real problem is an im-
portant general peculiarity, which we call global motion ambiguity, which
occurs because it is very seldom possible to author constraints on a motion
animation that are unambiguous � the number of constraints required would
be unnaturally large. This seems to be a result of the ways in which people
Þnd it natural to think about human motion (this issue will re-surface in our
discussion of activity representations). For example, if I am instructed to go
from point A to point B in some period of time, I can do so in a very large
number of ways unless the constraints imply maximum velocity at all times.
Some property of my motor control system is able to �Þll in� sensible choices,
so that the ambiguity is not apparent. One consequence of all this is that the
horizon problem should not be a problem in practice because there are lots
of paths that meet a set of constraints. Another is that searches for a global
motion path can be complicated, because of the number of paths available.
Global Search Methods:Arikan and Forsyth search for complete motion

paths that meet given constraints [18]. Such searches are intrinsically off-line
so one must sacriÞce the goal of interaction, but if the search is fast enough
it can be used for authoring animations. Motion ambiguity means that sim-
ply applying Dijkstra�s algorithm doesn�t work, because the algorithm must
manage too many intermediate paths. Arikan and Forsyth use a variant of the
motion graph where each clip of observed motion is a node, and edges repre-
sent acceptable cuts. This means that edges need to be tagged with �from� and
�to� frames within the node, and that there are typically multiple self-edges
and multiple edges between any pair of nodes. They produce a sequence of
compressed version of this graph by clustering edges, so that a pool of edges
with similar �from� and �to� frames can be replaced by a single edge with
approximating �from� and �to� frames in the more heavily clustered version.
They then use a randomized search to Þnd a pool of paths in the most heavily
compressed version of the graph; these paths are either reÞned locally to pro-
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duce paths in less heavily compressed graphs, or modiÞed. The best resulting
path is then reported. They report a trick that can be used to make synthesized
motion paths look as though actors are interacting. One obtains measurements
of an interaction, then uses frame constraints to construct paths into and out
of the interaction.
Low entropy: Human motion appears to be quite predictable in the sense

that one can predict the frame that will occur a short while in the future rather
well using the current frame � we use the term low temporal entropy to
refer to this property. This is in tension with what we have seen already (that
motion constraints are ambiguous, and that it is generally fairly easy to move
between any two frames in the motion graph quite quickly). We discuss this
point in much greater detail in section 7.1.3. This entropy property allows
useful approximations for search algorithms.
Annotation based synthesis: One method to control motion ambiguity

is to require the synthesis process to produce motions that meet annotation
constraints (described in section 5.1.5). Arikan et al.use demands that either
require the annotation to be present, to be absent, or are �don�t care� [17].
The annotations are painted on the timeline. Frames in the motion graph carry
annotations, and we must produce a path that meets position and frame con-
straints, and carries the required annotation at the required time. For the mo-
ment, assume that the only geometric constraint is on the start point. Then
building a path that meets annotation constraints is a matter of dynamic pro-
gramming (there are local costs for failing to meet annotation demands, and
frame-frame costs for continuity). The dynamic programming problem is too
hard to solve in that form, because there are too many frames of motion. In-
stead, Arikan et al.coarsely quantize the graph into blocks of frames that form
sequences and then use dynamic programming on a random subset of these
blocks. There are then two search activities: reÞning blocks, and changing the
(randomly chosen) working set of blocks. This works well, because ambigu-
ity means that one doesn�t miss much structure by random sampling and low
entropy means that a quantized path represents the actual solution quite well.

5.3.3 How good is a Motion Graph?

Methods of producing motion graphs are hard to assess, because it is quite
difÞcult to tell whether a motion graph is good or bad. Reasonable criteria
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include: that there be �few� bad paths (which may not be the same as hav-
ing �few� bad links); that most paths are acceptable; that the diameter of the
graph is small; that almost any spatial path can be synthesized; that there
are only short sequences joined at few, well connected choice points (an ex-
tremely useful property; see [158]). There is little detailed work on this topic
� among other things, the criteria above are mutually contradictory and it
isn�t clear how to build algorithms to that do well on some of them.

Reitsma and Pollard have shown how to determine how well a motion
graph makes goals in an environment reachable [358]. They discretize the
state space (environment and rotation of the Þgure on the plane), then build
a graph on the nodes by recording which node is reached by leaving each
node in the discretized state space using each clip in the motion graph. Links
that pass through obstacles can be pruned. By building a strongly connected
component of this graph, one can count how many states in the environment
are reachable with the current motion graph. SpeciÞc problems can then be
identiÞed: for example, a shortage of stopping and turninng motions in Re-
itsma and Pollard�s motion graph made it difÞcult to get their character into
tight spaces.

5.4 Motion Primitives

Our very rough model of the space of motions above doesn�t really take long
time structure of motions into account. Such structure is evident in how peo-
ple move on a daily basis. One can walk backward for long distances, but one
doesn�t; one can intersperse; for that matter, some can walk on their hands,
but few do for long periods. This sort of structure needs to be thought of in
terms that are probabilistic, rather than deterministic (because the semantics
are that one could but one tends not to).

A natural method for building models of motion on these time scales is
to identify clusters of motion of the same type and then consider the statis-
tics of how these motion primitives are strung together. There are pragmatic
advantages to this approach: we can avoid blending between motions that are
obviously different; we can model and account for long term temporal struc-
ture in motion; and we may be able to compress our representation of motion
with the right choice of primitive model. Finally, a primitive based represen-
tation has some advantages for recognition, and Feng and Perona describe a
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method that Þrst matches motor primitives at short timescales, then identiÞes
the activity by temporal relations between primitives [126]. In animation, the
idea dates at least to the work of Rose et al., who describe motion verbs �
our primitives � and adverbs � parameters that can be supplied to choose
a particular instance from a scattered data interpolate [368]. The verbs ap-
pear to be chosen by hand; within a particular primitive, motions are aligned
(c.f. section 5.2.2) and then a scattered data interpolate produces an instance.
There is a verb graph which gives the combinatorial structure of how verbs
can be joined up.

5.4.1 Primitives by Segmenting and Clustering

Primitives are sometimes called movemes. Matarić et al. represent motor
primitives with force Þelds used to drive controllers for joint torque on a
rigid-body model of the upper body [276, 277]. These force Þelds have a
stationary point at a desired hand conÞguration; different force Þelds can be
superposed to obtain different endpoints. The primitives appear to be cho-
sen by hand. The motions are 3D motion captured arm movement; segment
boundaries are obtained by looking for points where the sum of squares of ve-
locity at all joints is small. Del Vecchio et al. deÞne primitives by considering
all possible motions generated by a parametric family of linear time-invariant
systems; if a split of the parameter space results in two sets of motions that
are always distinct, that split can be used to derive primitives [449]. The deÞ-
nition of the primitives results in a segmentation algorithm, and authors show
that reaching and drawing motions can be distinguished in this framework.

There is quite a lot of evidence that motions segment and cluster well �
meaning that one can use various segmentation and clustering processes as
intermediate steps in motion synthesis, without serious difÞculties resulting.
This is not something one would expect, given the dimension of most motion
representations. Barbiùc et al.compare three motion segmenters, each using a
purely kinematic representation of motion [28]. Their method moves along
a sequence of frames adding frames to the pool, computing a representation
of the pool using the Þrst k principal components, and looking for sharp in-
creases in the residual error of this representation. Their Gaussian mixture
model segmenter regards frames as IID samples from a Gaussian mixture
model, then computes the mixture component from which a frame arises.
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Their probabilistic PCA segmenter works like the PCA segmenter, but ob-
tains a normal probability density from the principal component analysis and
then compute the Mahalanobis of new frames from the mean of this model;
this segmenter appears to be the best of the three. While there is no agreed
way to evaluate a motion segmentation, Barbiùc et al.report segmentations that
look good. For our purposes, the most signiÞcant point here is that distinct
movements tend to be dramatically distinct � one doesn�t need to look at
Þne details of dynamics to segment such motions as �walk�, �stand�, �sit
down� and �run�.
Dimension Reduction: It is natural to expect that any primitive structure

in motions could be exposed by reducing the dimension of the data. Further-
more, dimension reduction methods could yield a conveniently compressed
encoding of a motion primitive. Fod et al. construct primitives by segmenting
motions at points of low total velocity, then subjecting the segments to prin-
cipal component analysis and clustering [128]. Jenkins and Mataric segment
motions using kinematic considerations, then use a variant of Isomap (de-
tailed in [206]) that incorporates temporal information by reducing distances
between frames that have similar temporal neighbours to obtain an embed-
ding for kinematic variables [207]. They cluster in the resulting space to
obtain motion primitives over short temporal scales, then apply isomap again
to obtain primitives on longer temporal scales; they report plausible motions.

There is other evidence that relatively few measurements can yield the
kinematic conÞguration of the body � that is, that a low dimensional repre-
sentation of conÞguration applies. Chai and Hodgins demonstrate a form of
video puppetry � where an animated Þgure is controlled by observations
of an actor � using relatively few markers; this approach most likely works
because motions tend to be conÞned to a low dimensional subspace [74]. Sa-
fonova et al.are able to produce plausible Þgure animations using optimiza-
tion techniques conÞned to a low-dimensional space (see [378], Þgure 5.3
and section 5.5.2.3).

5.4.1.1 DifÞculties with Dimension Reduction

Dimension reduction methods can be subject to the same problems that occur
with blending methods. It is hard to ensure that all sequences used in building
a model are time aligned sufÞciently precisely that the high-frequency struc-
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Fig. 5.3 dimensionreduction/lowdoptimization, Þgures 2 and 3 Safonova et al.synthesize motions
in low-dimensional spaces, constructed by taking a Þxed number of principal components of static
frames [378]. Their work contains extensive evidence that low-dimensional representations of motion
are useful, and appear to Þt data well. On the left, a graph comparing the error (RMS in angles) between
the original motion data and a projection onto this low-dimensional space, for different numbers of prin-
cipal components, and averaged over between ten and twenty motions. The curves are coded with red
(for a reconstruction that is not acceptable visually), blue (for a reconstruction that has minor visual ar-
tifacts) and green (for a good reconstruction). Motions are of several types, including: running, walking,
jumping, climbing, stretching, boxing, drinking, playing football, lifting objects, sitting down and getting
up. Each type of motion is encoded with a different set of principal components. The method appears to
display quite good generalization, as the graph on the right suggests. This shows RMS error in joint angle
for reconstructions with different numbers of principal components for a jumping motion, with the basis
estimated on: (a) the frames being reconstructed (which, not unnaturally, gives the best result); (b) a set
of three similar jumping motions; (c) a set of 20 jumping motions; (d) a single jumping motion; (e) a mix
of behaviours and (f) 20 running motions. The color coding is the same as for the graph on the left. Notice
that, while the basis chosen clearly should depend on the behaviour (because (f) yields a poor basis), once
one has that accounted for, a basis chosen on a different instance still gives quite a good reconstruction
with a relatively low dimension � the generalization is quite good.

ture associated with fast, deÞnite movements doesn�t average out. Squashy-
looking motions can result, as can footskate. It is most likely that one should
separate out these components and then synthesize them independently once
the overall structure of the motion has been established.

5.4.2 Linking Segmentation to the Primitive Model

Segmentation and encoding should interact � we can reasonably expect a
good segmentation results in good primitives, but the other way works, too;
if one has a good representation of each particular primitive, that could drive
segmentation. This is now a commonplace in the machine learning commu-
nity. Li et al. segment and model motions simultaneously using a linear dy-



134 Motion Synthesis

namical system model of each separate primitive and a Markov model to
string the primitives together by specifying the likelihood of encountering
a primitive given the previous primitive [253]. For the moment, assume the
segmentation is known and we wish to identify a primitive from some set
of observations that have been determined to come from that primitive. We
assume that each primitive consists of a sequence of observations Yt, each
generated by a hidden state xt. We would like the system to have second order
dynamics so that the model takes accelerations into account; this is equiva-
lent to assuming that xt is a linear function of xt−1 and xt−2. We can obtain
a Markovian model by stacking two state vectors to obtain Xt = [xt,xt−1]T .
The model of each primitive now takes the form

Xt = AtXt−1 + Vt

Yt = BtXt + Wt

where Vt and Wt are normal random variables with known mean and vari-
ance. Notice that At will have the form(

UtUt−1I0
)

(so that one has the right behaviour from the stacked components of the state
vector). You should compare this model to the HMM�s used for tracking; we
have the same model, but now we wish to obtain the values of A and B from
observations of Yt, rather than estimate the states. The difÞculty here is that
the model is not uniquely speciÞed in this form. For example, assume that Ct
is a sequence of matrices of full rank, then the state sequence X̂t = CtXt

taken with matrices AtC−1
t and BtC−1

t , has the same likelihood. Li et al deal
with this by insisting that the states be the projection of the observations on
to a subset of the principal components of the observations, and can then
estimate At and Bt with maximum likelihood.

Of course, the segmentation is not known. We will estimate the segmen-
tation and primitives together with an iterative procedure: Þx the primitives,
estimate the best segmentation; now re-estimate the primitives with that seg-
mentation; etc. This mirrors EM, but one is now using the maximum likeli-
hood segmentation conditioned on the primitive parameters as an estimate of
the expected segmentation conditioned on the parameters. The segmentation
can be obtained with dynamic programming (Li et al. assume that each prim-
itive emits at least 60 frames, which complicates the representation only very
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slightly). To see that the best segmentation of some sequence of length N

into M primitives of length no shorter than L is available using dynamic pro-
gramming, we build a graph whose nodes consist of statements that frames i

to i + k of the sequence were produced by primitive j; there can be no more
than N2M such nodes. Each node is labelled with the negative log-likelihood
of the relevant sequence under the relevant dynamical model. There is a di-
rected edge from each node to any node that can succeed it, labelled with
the negative log-likelihood that the one primitive follows the other under the
Markov model. We now obtain the minimum value path through this (acyclic,
directed) graph using dynamic programming.

The resulting model can be used generatively to produce new motions. Li
et al. obtain their best results by specifying the body conÞguration at each
change of primitive � so that the model interpolates between these frames.
This avoids phenomena like drift (which must occur because of the random
noise component) causing minor but annoying effects like the feet ßoating
above or below the ground.

5.5 Enriching a Motion Collection

All the methods we have discussed involve �small� changes to existing mo-
tions to obtain new motions that are basically similar. The ideal is to have
methods that can produce completely new, and good, motions from con-
straints and, perhaps, data. Approaches to this area involve reasoning about
the fundamental considerations that produce motion (as opposed to processes
for synthesizing motion to meet immediate needs). There are two types of
method: methods that attempt to obtain new motions by �large� operations
on existing examples, and methods that use physical and variational criteria
to produce novel motions.

5.5.1 Rearranging Existing Motions

Human motions quite clearly have some properties allowing composition
over the body and over time. These properties are a formidable source of
complexity of a form that will defeat naive data-driven methods � for ex-
ample, to synthesize an actor walking while scratching with the left hand, do
we really need to see this particular action? does this mean we need to see
walking while scratching with the right hand to synthesize that, too? must we
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observe scratching different locations with each hand, too?

5.5.1.1 Motion Editing

Gleicher shows that one can usefully edit motions � typically, so that they
meet constraints that are a small revision of constraints met by the original
motion � by adding a displacement [153]. Gleicher minimizes a measure of
the size of the displacement subject to the new constraints. There is no guar-
antee that the resulting motion will necessarily look human, but for small
displacements it tends to; this means that the motion author can manage con-
straints and update process so that the resulting motion looks human. The
optimization problem is nasty. Lee and Shin obtain a more manageable opti-
mization problem by representing the motion as a hierarchical B-spline [244].
The displacement is also a hierarchical B-spline, and they engage in a coarse-
to-Þne search across the hierarchy. The IK solver at the k�th frame at the n�th
level now has the k−1�th frame at that level and all frames at the n−1�th level
available to generate a start point and to constrain the solution. Witkin and
Popović modify motions using parametric warps, so that they pass through
keyframes speciÞed by an animator [470]. Shin et al. use similar methods to
touchup motion to meet physical constraints (for example, motion not in con-
tact is ballistic and preserves angular momentum), while sacriÞcing physical
rigor in the formulation for speed [391]; see also [431, 432]). Motion editing
in this way is useful, and there are several other systems; a review appears
in [156].

5.5.1.2 New Motions by Cut and Paste

Simple methods can produce good results for some composition across the
body, but not for all cases. Ikemoto and Forsyth build new motions from
old by cutting arms or upper bodies off one motion and attaching them to
another [194]. Pairs of motions are selected by several different randomized
proposal mechanisms, components transplanted between them, and the two
results then presented to a classiÞer which attempts to tag sequences that do
not look human. The classiÞer is quite reliable when presented with motions
that are reasonably similar to examples, but tends to be less reliable when
presented with dramatically different motions; this is a difÞculty, because the
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whole point of understanding composition is to synthesize good motions that
are dramatically different from examples.

What is important here is that the classiÞer is necessary; many such trans-
plants are successful, but some apparently innocuous transplants generate
motions that are extremely bad. It is difÞcult to be precise about the source
of difÞculty, but at least one kind of problem appears to result from passive
reactions. For example, assume the actor punches his left arm in the air very
hard; then there is typically a small transient wiggle in the right arm. If one
transplants the right arm to another sequence where there is no such punch,
the resulting sequence often looks very bad, with the right arm apparently the
culprit. One might speculate that humans can identify movements that both
don�t look like as though they have been commanded by the central nervous
system and can�t be explained as a passive phenomenon.

5.5.1.3 Motion Fill-in by Nonparametric Regression

The idea that motion of one part of the body leaves a signature in the motion
of other parts of the body is conÞrmed by work of Pullen and Bregler [351],
who built a motion synthesis system that allows animators to sketch part of
the motion of the body, and then uses a non-parametric regression method
to Þll in the details. Joint angle signals are segmented at local extrema. The
segments are represented at multiple temporal scales. Animators can then
sketch part of a motion � for example, hip and knee angles at a coarse tem-
poral scale � and the system then obtains fragments of joint angle for the
other joints and other scales. These are found by matching the fragments of
sketched motion to a motion capture dataset (allowing a degree of scaling in
both time and angle in the matching process). Typically, there are multiple
matches for each fragment. The set of resulting fragments is searched to pro-
duce signals that tend to have as many consecutive fragments � fragments
that succeed one another in the observed data � as possible. These signals
may not be continuous (and usually are not, unless the fragments are con-
secutive), so discontinuous joins are smoothed using a blending technique.
Multiple motions can result from this process, and it is up to the animator to
choose the best.

The method produces rather good motions, using examples and motion
demands from the same �type� of activity. Conditioning on the kind of mo-
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tion appears to be important � one couldn�t reasonably expect that it would
be possible to synthesize good football motions from observations of dance
� but it is difÞcult to be precise about what one is actually conditioning on.
The fact the method works can be used as evidence in support of the idea that
motions have some form of structure that takes in the whole of the body. It
is probably unwise to use this view to argue against a compositional repre-
sentation of motion, because the experiments in the paper don�t establish that
there is only one possible path for, say, the upper body given a particular set
of lower body motions.

5.5.1.4 Motion Interpolation

In motion interpolation, one attempts to produce motions that interpolate
between, or extrapolate from, existing motion-capture measurements. A nat-
ural procedure is to produce a controller that can track the measurements
and then, when measurements are no longer available, produce motions by
controlling some body parameters. A variety of approaches that make use of
physical simulation have been developed along these lines. Controllers that
track motion data provide a useful mechanism for smoothing recorded er-
rors while also adjusting for disturbances not present in the recorded mo-
tion [120, 348, 488, 489]. Other approaches make use of hand designed
or optimized controllers that operate independently from recorded motion
[118, 119, 165, 180, 350]. Building controllers that generate human-like mo-
tion remains an open research problem.

5.5.2 Motion from Physical Considerations

The motion editing methods we have seen do not require that deformed mo-
tions be physical. In fact, these methods are simpliÞcations that originate in
a body of research to generate human motion from considerations of phys-
ical constraint and energy. This work originates with Witkin and Kass, who
introduced the use of variational methods, widely known as spacetime con-
straints [469].

We have a jointed Þgure, whose conÞguration can be represented by some
set of parameters q. These coordinates can be reduced coordinates, where
any set of values represents a legal conÞguration of the Þgure � these could
be, for example, root coordinates and joint angles. An alternative is to use
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generalized coordinates, where not every choice of values represents a legal
conÞguration of the Þgure � these could be, for example, the pose of each
separate limb segment; in this case we need constraints to ensure that the
limbs don�t ßy apart. The conÞguration of this Þgure is subject to some con-
straints. For example, a Þgure that is sliding on the ßoor will be constrained
to have each foot on the ßoor. This Þgure is subjected to a set of forces and
torques f . Assume the Þgure is moving for the time interval I . From mechan-
ics, the motion of this Þgure achieves an extremal value of the time integral
of the Lagrangian (see, for example [2, 20, 161]). We write the Lagrangian
as L(f(t),q(t), λ, t), where λ are the Lagrange multipliers (which can be
interpreted as the coefÞcients of generalized workless constraint forces that
ensure the motion meets the constraints). Some constraints are dynamical
constraints (which refer to forces, torques, momenta and the like); we shall
write this set as De(f ,q, λ, t) = 0 and Di(f ,q, λ, t) ≤ 0. Others are kine-
matic constraints (which constrain conÞguration); we shall write this set of
constraints as Ke(q, t) = 0 and Ki(q, t) ≤ 0.

Let us conÞne our attention to an interval where we know which kine-
matic constraints are active (i.e. which components of Ki are equal to 0),
and write the set of active kinematic constraints including all the equality
constraints as P(q, t) = 0. Write the remaining set of kinematic inequality
constraints as Pi(q, t) < 0. Any physical motion extremizes the Lagrangian
subject to these constraints, and, from variational calculus, we obtain the
Euler-Lagrange equations, which are differential equations satisÞed by any
motion that does extremize the Lagrangian. We adopt the notation where dif-
ferentiating by a vector results in a vector of derivatives with respect to each
component. Write the Euler-Lagrange equations as

E(f ,q, λ, t) = 0 =

⎛
⎝ d

(
∂L
∂q̇

)
dt − ∂L

∂q − λT ∂P
∂q − f

P(q, t)

⎞
⎠

Notice that we now have algebraic equations that constrain derivatives. Equa-
tions of this form are known as differential-algebraic equations; they have a
(well-deserved) reputation for creating nasty numerical problems (a fair place
to start is [172, 173]).

Now we wish to choose a motion that meets the dynamical constraints,
and where some other criterion � which might measure, for example, work
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� is extremised. Write this criterion as∫
G(q, f , λ, t)dt

The problem becomes

Maximize
∫

G(q, f , λ, t)dt

Subject to:

E(f ,q, λ, t) = 0

De(f ,q, λ, t) = 0

Di(f ,q, λ, t) ≤ 0

Pi(q, t) < 0

Witkin and Kass did not use the idea to generate human motions, but
demonstrated very attractive animations of a bouncing lamp produced using
this method. There are very serious practical difÞculties in producing anima-
tions of human motion like this. The actual minimization process might be
extremely difÞcult. In fact, there is no prospect of getting a useful result by
simply dropping this problem into a commercial optimization package. The
state space has complex geometry caused by the internal degrees of freedom,
joint limits and the like. Contact and frame constraints can produce unpleas-
ant feasible sets, and one should expect the problem not to be convex. One
must encode the function x(t) with some Þnite dimensional parameter space,
and the choice of encoding may create difÞculties; for example, contact con-
straints tend to produce quite high frequency terms in the motion signal (or,
equivalently but rather easier to observe, smoothing the motion signal tends
to lead to footskate). There is some reason to believe that a coarse-to-Þne
representation is useful [265]. One may simplify optimization difÞculties by
choosing simpliÞed characters (e.g. [120, 348, 350, 441]; freefall diving is
a particular interest [86, 264]) or by exploiting interaction with an anima-
tor (e.g. [83]). Ngo and Marks produce motions for quite complex characters
using spacetime optimization by building motions out of stimulus-response
pairs � parametric packets of motion that are triggered by some parametric
test ([310, 311]; see also [279] for other motions built out of packets). The
precise set of packets, and the parameters of those packets, are chosen using
search by a genetic algorithm (see also the work of Sims [398]). There is no
claim that these motions necessarily appear human.
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The choice of objective function can affect the resulting motion and is by
no manner of means obvious. It is occasionally asserted that human motion
should minimize some choice of mechanical energy. One should place little
weight on this idea for most motions because there are too many other impor-
tant considerations that shape how we move. For example, Wu and Popović
need a specially crafted objective function that allows for the enormous en-
ergy expenditure required at takeoff to obtain convincing bird ßights [81]. As
another example, the energy saved by using a slow reaching motion might
be far outweighed by that lost by getting to the target fruit too late. For that
matter, even more energy could be saved by not moving at all; but at some
cost. Liu et al.show a method to obtain simulation parameters from exam-
ples [258].

For these reasons, spacetime optimization has not to our knowledge been
used to generate complete human motions over long periods. Rose et al., who
generate motion transitions � short sequences of motion that join speciÞed
frames �naturally�� using an optimization procedure that minimizes the to-
tal squared torque moving the upper body [369]. The legs are controlled kine-
matically, using either manual or automatically supplied constraints for foot-
plants. Anderson and Pandy describe a simulation of one step of a walk for
a highly detailed dynamic model that produces (using months of supercom-
puter time) a pattern of muscle activations that minimize an effort criterion
and also look like human muscle activation patterns ([15]; see also [323]).
Spacetime optimization has, however, been of tremendous value in deform-
ing existing motions.

5.5.2.1 SimpliÞed Characters

Popović and Witkin use characters with simpliÞed kinematics, and model
muscle forces explicitly (the muscle is modelled as a proportional-
derivative controller attempting to drive a degree of freedom to a set-
point) [350]. Their method produces physically plausible motions that meet
constraints and are close to observations. They represent major features of
motion using handles � vector functions of conÞguration, typically a map
onto some lower dimensional space, the details of which vary between ap-
plications. For example, if one wished to ensure a motion preserved contact,
appropriate handles might be the position of points on the Þgure. A space-
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time optimization is used to Þt the simpliÞed model to observed motion data,
resulting in handles hs(qs); a second spacetime optimization produces a sim-
pliÞed model that meets the constraints with handles ht(qt); and the handles
for the observed data are ho(qo). They now seek to produce a Þnal motion
qf with handles hf (qf ) = ho(qo) + (ht(qt) − hs(qs)) (that is, displace
the handles of the original motion with a displacement computed from the
simpliÞed Þgure).

They do this by optimizing an objective function that penalizes mass dis-
placement, which is computed as a sum of squared magnitudes of differences
in positions between corresponding sample points on the Þnal motion and the
observed motion, weighted by the mass at that sample point. As a result,
degrees of freedom in the Þnal animation that are not constrained by the han-
dles are derived from the original motion. The optimization is constrained by
the requirement on the handles (above) and physical constraints on the mo-
tion. The parameters are conÞguration and muscle demands. The spacetime
method appears to beneÞt considerably from the relatively few degrees of
freedom in the simpliÞed character and the presence of an initial point (the
observed motion).

5.5.2.2 ModiÞed Physics

Liu and Popović produce character animations from rough initial sketches us-
ing an optimization method by breaking the motion into phases, simplifying
the physical constraints, and, where necessary, exploiting the animator�s in-
put [259]. They then identify transitions � where the Þgure moves from one
set of constraints applying to another � and require the animator to provide
frames for these transitions, which tend to be a particular source of difÞculty
for optimization methods. They must now produce a series of motion clips
to Þll in between these transitions. There are two important cases: ballistic
motion, where there is no contact � the body is in ßight, as in jumping,
diving, etc. � and constrained motion, where there is some contact. In bal-
listic motion, if we use reduced coordinates, then all external forces are due
to gravity (so the acceleration of the center of mass is g) and angular mo-
mentum is conserved. Constrained motions are required to have a momentum
curve of a particular form (Þgure 5.4), which is consistent with biomechanical
observations.
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Fig. 5.4 Physicalsmoothing/paper1.pdf, Þgure 6 The angular momentum curve for a whole motion for
the method of Liu and Popović [259], showing total angular momentum as a function of time. The motion
before p1 and after p4 is ballistic, so the total angular momentum is a constant. The form of the momentum
curve is taken from biomechanical models [324, 229]. The form is imposed by smoothly interpolating p1,
p2, p3 and p4, requiring that p2 < p1, d2 < d1 and (p2 − p4)(p3 − p4) < 0. Figure 5.5 shows a
motion obtained using this method.

The objective function is a sum of three terms: a measure of mass dis-
placement ; a measure of coordinate velocity, which penalizes large changes
in the degrees of freedom to enforce frame-frame coherence; and a measure of
static balance, which penalizes large distances between the center of mass
and the location of point constraints. The objective function and the con-
straints are functions of q(t) (and its derivatives) and the control points for
the momentum curve. The method does not constrain forces or torques at
joint, and they do not participate in the objective function, which means that
they can be ignored (this doesn�t mean the motion isn�t physical; it means
that we assume that the body will supply whatever internal forces or torques
are required to follow the motion path). Abe et al.drop the mass displacement
and coordinate velocity terms in favour of a similarity term, and use a vari-
ety of different momentum proÞles to produce further variations on motion



144 Motion Synthesis

Fig. 5.5 Physicalsmoothing/paper1.pdf, Þgure 6 Top: a motion demand supplied by an animator and
bottom a motion synthesized using the procedure of Liu and Popović [259]. The motion is obtained
by (a) inferring constraints from the demand; (b) extracting transitions from an animator; and then (c)
computing a set of clips that meet these transitions and the inferred constraints, have angular momentum
curves of the form of Þgure 5.4 and extremize an objective function that penalizes mass-displacement,
coordinate velocities, and out-of-balance conÞgurations.

capture data [1].
There is a real advantage to not constraining forces and torques and not

allowing them to participate in the objective function: one does not need to
compute them. This means that computing various Jacobians that arise in
the optimization procedure can be made linear (rather than quadratic) in the
number of degrees of freedom, as Fang and Pollard show [121].

5.5.2.3 Reduced Dimensions

Safonova et al.describe a method for synthesizing motions from varia-
tional considerations using a dimension reduced representation of conÞgura-
tion [378]. For each �type� of motion (for example, running, walking, jump-
ing, climbing, stretching, boxing, drinking, playing football, lifting objects,
sitting down and getting up), Safonova et al.construct a basis of principal
components for the frames from that sequence. New motions are now rep-
resented using coefÞcients on this basis. Motions are obtained by optimiz-
ing a sum of three terms: the Þrst, the integral of summed squared torques,
penalizes effort; the second penalizes, the integral of summed squared ve-
locities and accelerations, penalizes high-frequency wobbles; and the third,
the summed Mahalanobis distance of coefÞcients from the mean, penalizes
frames that are strongly unlike examples. This optimization problem is con-
siderably simpliÞed, because effort is focused on a small set of dimensions
that are clearly signiÞcant and independent. Motions are speciÞed with ini-
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tial, Þnal and key frame constraints; time, contact and pose constraints are
also possible. The method imposes torque limits. The method produces good
motions from relatively limited constraints. To obtain a motion, the �type�
of the motion required must be known, and sufÞcient constraints must be
provided, so the method is most useful in a situation where an animator can
interact with the synthesis procedure.

5.5.2.4 Modifying Existing Motions

Hodgins and Pollard describe scaling rules that allow a motion that applies
to one character to be transferred to another character, using methods of di-
mensional analysis ([179]; for dimensional analysis, see [30]). Sulejmanpaùsić
and Popović modify existing motions to obtain revised motions that meet an-
imator demands using a full dynamical model ([425]; see also [349], which
describes a search method to obtain parameters of a rigid body simulation
that is similar to a sketch). The method produces physical motions; each step
of the iteration computes an update direction for positions, torques, reaction
forces, etc. that is the smallest update to meet a linearized version of the de-
mand. There is then a line search along the chosen direction to obtain an
update that gives the smallest constraint error. Authors demonstrate that a
poor choice of scaling for the variables signiÞcantly complicates obtaining a
solution, and describe an experimental procedure for choosing a scaling. The
method produces good motions efÞciently, if the demand is not too far from
the original motion.





6
Describing Activities

Understanding what people are doing is one of the great unsolved problems
of computer vision. A fair solution opens tremendous application possibili-
ties, including: improved surveillance systems; a better understanding of what
people do in public; better architectural design; and better human computer
interfaces. While there has been extensive study of this topic, it still isn�t
terribly well understood. One can obtain statistics of some behaviours from
coarse scale tracks (e.g. for car parks, see [423]; for architectural domains,
see [478]). But understanding activities that depend on detailed information
about the body is still hard. We contend that the major difÞculties have been
(a) that good kinematic tracking is hard; (b) that models typically have too
many parameters to be learned directly from data; and (c) for much everyday
behaviour, there isn�t a clear taxonomy into which to classify observations.

There is a long tradition of research on interpreting activities in the vi-
sion community (see, for example, the extensive survey in [189]). There are
three major threads. First, one can use temporal logics to represent crucial
order relations between states that constrain activities. Second, one can use
spatio-temporal templates to identify instances of activities. Third, one can
use (typically, hidden Markov) models of dynamics.

147
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6.1 What should an Activity Representation do?

There appear to be a series of quite different cases in activity recognition.
First, we distinguish between short, medium and long timescales. Second, we
distinguish between motions that can be sustained (walking, running, wav-
ing) and motions that have a localizable character (catch, throw, punch, kick).
Since we want our complex, composite motions to share a vocabulary of base
units, we use the kinematic conÞguration of the body, limb velocities, and per-
haps accelerations as distinctive features at short timescales � which might
be of the order of a small number of frames. We deÞne acts to be frame la-
bels that can be decided on such very short timescale features � such labels,
(for example, walk-right-leg-stance-left-leg-swing) tend not to have directly
useful semantics.

At medium timescales, we have activities � motions like walking, run-
ning, jumping, standing, waving, whose temporal extent can be short (but
may be long); such motions are typically composites of multiple acts. Fur-
thermore, activities can be sustained for long periods. We use the term actions
for motions that have a localizable character and require medium timescales
to identify. Both actions and activities may be difÞcult to identify with only
a few frames but are relatively easy to identify from hundreds to thousands
of frames. Both actions and activities allow a degree of composition � for
example, one could walk and scratch at the same time.

One�s interpretation of a view of moving humans is strongly affected by
objects nearby. For example, a person standing in an isolated Þeld may be
behaving strangely; the same person in the same conÞguration next to a bus
stop is waiting for a bus. We believe that the most natural level at which to
start inserting considerations of context into activity recognition is that of ac-
tivities � where one can pool object detector responses over a long enough
sequence of frames to expect quite good behaviour � and deÞne the next
layer of the representation to be motions in context. Context applies to both
activities and actions. These occur at medium timescales, but the nature of
the motion in context is determined by both the actions in the sequence and
the response of object detectors. We use the term behaviour to cover motions
at long timescales � typically, behaviours such as Þghting, exercising or vis-
iting an ATM might be composed of a selection of different motions in con-
text, linked up by activities, and organized in a variety of possible ways and
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meeting a variety of constraints on temporal ordering. It has been recognized
for some time that there are other helpful distinctions (e.g. Bobick [46] dis-
tinguishes between movements, activity and actions, corresponding to longer
timescales and increasing complexity of representation; some variants are de-
scribed in two useful review papers [7, 146]).

6.1.1 Necessary Properties of an Activity Representation

The big goal is a theory and mechanism for recognizing a wide range of be-
haviours. There are some important constraints on solutions to this problem.
First, we expect that typical behaviours are a composite of many activities,
and this composite is not unique � the same behaviour may be represented
by multiple sequences of actions, as long as these sequences observe an in-
ternal structure. For example, one may scratch or groom at any time while
visiting an ATM, but one must type a PIN before retrieving money, and in-
sert a card before typing a PIN (notice that one can�t retrieve a card before
inserting it, but at some machines one might retrieve the card before typing a
PIN; at others, the card is retrieved after typing the PIN and before recover-
ing money). Each activity may itself be one of several different composites of
multiple actions, in the same way. Each action might also have compositional
properties � for example, one may walk with three-quarters of one�s body
while scratching with the fourth limb. The modelling strategy must respect
both this hierarchical structure and the compositional nature of motion.

Second, we expect that there is not labelled data for each possible case;
we cannot simply learn models without any human interaction. This applies
to models of actions, activities and behaviours. This difÞculty is created by
the compositional nature of human motion; the sheer richness of available
motions defeats pure data-driven strategies. An important criterion for choos-
ing a modelling strategy is that it be easy for humans to author and to assess
rich models quickly. Such models should be amenable to parameter learning
from data, but it should not be necessary to see an example of every possible
instance of a behaviour to build a model.

Third, we expect that the supervised data that is available may be marked
up somewhat inaccurately. Typically, a behaviour will be marked up with
activity names (an activity with actions, respectively), but the boundaries of
the markup are unlikely to be accurate. We expect the learning algorithm to
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be robust to some segmentation noise.
Finally, we models should have the property that basic activities with the

model � model building, composition, and inference � is relatively straight-
forward. In this, we follow the experience of the statistical natural language
community, that trading expressiveness in models for simplicity of authoring
and inference is often advantageous.

6.1.2 What Data is Available?

An important part of design here is to keep into account what kinds of data
are easy to obtain and what difÞcult, so as to plan model authoring around
what is practical. Experience suggests that it is possible to get from minutes
to hours of reasonable quality motion capture data; relatively few minutes of
video labelled as to actions (these labels are very difÞcult to produce because
they require frame accuracy); minutes to hours of video labelled in reasonable
detail with respect to activities and behaviours, accepting poor temporal reso-
lution in the labels; and of the order of months of public observation video. It
is relatively straightforward to look at large volumes of labelled motion cap-
ture data and correct labels, not least because one can observe many frames
simultaneously (e.g. see [17]).

One important source of difÞculty is that it is hard to tell which aspects of
behaviour should be modelled accurately in order to perform useful tasks. Re-
solving this requires (a) study of ideas in sufÞcient generality that they trans-
fer between tasks and (b) some example tasks. But the selection of example
tasks is not innocuous. In particular, a distinctive feature of everyday activity
is the number of behaviours that appear familiar, but for which the observer
may not know a word or even a compact description. In contrast, in some do-
mains (e.g. ballet [69]; gymnastics [116];tai chi [54, 59]; tennis [427]; walk-
ing [71]) there are quite speciÞc vocabularies that refer to very precisely de-
lineated behaviours. This is an advantage for building demonstration systems,
because one can evaluate them, but may avoid the real difÞculty, which is that
for most activities we want to classify the activity without knowing a precise
or canonical set of classes.
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6.2 Miscellaneous Methods

6.2.1 Activity Representation Methods based around Temporal Logics

Pinhanez and Bobick [336, 337] describe a method for detecting what we
have called behaviours using a representation derived from Allen�s interval
algebra [14], a method for representing temporal relations between a set of
intervals. One authors a description of the behaviour in terms of primitives,
which are indivisible and occupy temporal intervals. The description incor-
porates a set of legal relations between the primitive intervals; a description is
consistent if at least one set of intervals, together with an allocation of those
intervals to primitives, satisÞes it. One determines whether an event is past,
now or future by solving a consistent labelling problem, allowing temporal
propagation. There is no dynamical model � sets of intervals produced by
processes with quite different dynamics could be a consistent labelling; this
can be an advantage at the behaviour level, but probably is a source of dif-
Þculties at the action/activity level. These papers do not show the method
applied to noisy detectors; there are results using simulated detectors on real
data.

Siskind [400, 399] describes methods to infer activities related to objects
� such as throw, pick up, carry, and so on � from an event logic formulated
around a set of physical primitives �- such as translation, support relations,
contact relations, and the like � from a representation of video. A combina-
tion of spatial and temporal criteria are required to infer both relations and
events, using a form of logical inference. The methods are focussed on activ-
ity representation, and do not use real video data; there is no mechanism to
account for missing or noisy interpretations of video.

6.2.2 Activity Representation Methods based on Templates

The notion that a motion produces a characteristic spatio-temporal pattern
dates at least to Polana and Nelson [340, 341, 343, 342, 347]. Spatio-temporal
patterns are used to recognize actions in work by Bobick and Davis [47] and
Davis and Bobick [100]. Ben-Arie et al [38, 37] recognize actions by Þrst
Þnding and tracking body parts using a form of template matcher and voting
on lifted tracks; the tracks are lifted to 3D and a spatio-temporal represen-
tation of each body segment votes separately for an action. The action with
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the most votes is chosen. The method is successful, and has the advantage
that it is robust to composition � if all but the left arm is walking, the ac-
tion will still be recognized. However, the vocabulary consists of eight items
(jump, kneel, pick, put, run, sit, stand, walk) and the vocabulary cannot be
composed. An alternative is to match gestural information directly, incorpo-
rating a timewarp to improve the match. Bobick and Wilson [48, 49] use a
state-based method that encodes gestures as a string of vector-quantized ob-
servation segments; this preserves order, but drops dynamical information.
The advantage is relatively fast training.

6.3 Activity Representation using Hidden Markov Models
and Finite State Representations

6.3.1 The Speech Analogy

Hidden Markov models (HMM�s) pervade studies of motion, gesture and ac-
tivity, and a complete review of their applications here may now be impossi-
ble. HMM�s are models of sequences, and at their heart is a clock. One has a
set of hidden states; at each tick of the clock, a Markov process chooses a new
state, dependent on the previous state and nothing else; and an emission pro-
cess produces an observation from the new state. There are clean solutions for
the standard problems of learning (determining an appropriate state transition
model and emission model for a given state model) and inference (determine
which hidden states occurred given a set of observed states). HMM�s have
been used for understanding human behaviour but typically with quite small
state models.

Very large state models are common in speech recognition, where HMM�s
have been hugely inßuential. This area is a useful source of inspiration by
analogy. Viewed from a great height, a typical speech system has a series
of components: a language model showing how words are built up into sen-
tences; a pronunciation dictionary, giving sequences of context independent
phones that correspond to words; a context dependency model, showing how
local inßuences produce context dependent phones (cphones hereafter) from
context independent phones; an acoustic observation model showing how
acoustic observations result from context dependent phones (this is an ex-
tremely compact description of a highly sophisticated area; more extensive
descriptions appear in [205, 353]). The resulting object is a vast HMM �
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in our example, states can be thought of as being tagged with word-cphone-
phone-sample � to explain each sample.

This HMM has some important, attractive features. Learning and author-
ing can be broken into tractable subproblems � the language model might
be learned with one kind of dataset, the pronunciation dictionary with another
� and as a result, we obtain an HMM on a massive scale, but with little dif-
Þculty in authoring it. While the state space is so big that dynamic program-
ming must be sacriÞced for a beam search, the state transition model is not
impossible to learn, because most state transitions don�t occur. Furthermore,
the model is forced to share parameters in important ways � a phoneme in
one word has the same model as that phoneme in a different word.

6.3.1.1 Finite State Transducers

Finite state models have had considerable success in the speech and lan-
guage community. We introduce some terminology here, from the reviews by
Mohri and others [294, 293, 292]. A Þnite state automaton is a directed graph,
whose nodes are known as states. There is at least one Þnal state and one ini-
tial state; each edge is labelled with an element of an alphabet. The automaton
accepts any string corresponding to a path from an initial state to a Þnal state.
In a Þnite state transducer, transitions are labelled with both an element of
an input alphabet and an element of an output alphabet; any string accepted
by the transducer results in a string of output symbols, and so the transducer
can be seen as representing a relation between families of strings. Transduc-
ers (representing relations between strings) can be composed, and there are
efÞcient algorithms for computing the composition of two transducers.

In a string-to-weight transducer, the output alphabet consists of weights
(typically, in a semiring or better; non-negative reals with addition and min
is common, because it corresponds to the case of Viterbi and negative log-
probabilities); there are initial and Þnal weights. If a string-to-weight trans-
ducer accepts some string, its output for that string is deÞned as the minimum
sum of weights over the paths accepting the string. Particularly attractive are
subsequential string-to-weight transducers, where there is only one path ac-
cepting any given string. Not all transducers can be transformed to this form;
there are algorithms for this process, known as determinization when it is pos-
sible. Furthermore, there are minimization algorithms, that can produce the
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unique (up to automorphism) smallest transducer that implements the same
set of mappings as a given transducer.

6.3.1.2 Why should we Care?

Each of the components of a speech architecture (language model; a pronun-
ciation dictionary; context dependency model; acoustic observation model)
is a string-to-weight transducer. In principle, one could compose the lot to
produce a single, enormous string-to-weight transducer, determinize it, min-
imize the result, and search that (this is equivalent to recognizing that, in the
Þnal analysis, the composition of each component produces an HMM with an
enormous state space). In practice, the object involved is far too large. Instead,
one uses a beam search to produce a reduced string-to-weight transducer (the
word lattice) that contains a reduced pool of higher probability paths. Deter-
minizing and minimizing this transducer is practical and useful; the result is
very much faster searches.

There are two reasons that this material is of interest to us. First, the trick
of reducing a speech signal to a (determinized and minimized) word lattice
produces a highly compact representation of a large number of different tran-
scriptions (each corresponding to a path through the string-to-weight trans-
ducer) that is easy to search and manage. We argue below that we can produce
act, action and activity models which will allow reduction of video to an ac-
tion/activity lattice with the same attractive properties. Second, a Þnite state
automaton (whose states represent actions and activities) is a reasonable rep-
resentation for a behaviour. If one determinizes and minimizes this, standard
algorithms allow one to identify weights associated with instances of such a
transducer in a word lattice extremely fast. This means we could be able to
engage in fast searches for behaviours.

LeCun et al identify other useful building blocks associated with Þnite
state models [242]. Their graph transformers take (weighted directed) graphs
as inputs and produce graphs as outputs; an example of a transformer would
be composition with a Þxed transducer. Particularly useful is the idea of a
Viterbi transformer, a process that (using our terminology) takes a string-to-
weight transducer and applies a beam search to produce a reduced string-
to-weight transducer which is effectively a word lattice. They demonstrate
that gradient based learning can usefully be applied to architectures of such
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objects.

6.3.2 Activity Recognition Methods based around HMM�s

HMM�s have been very widely adopted in activity recognition, but the mod-
els used have tended to be small (for example, one sees three and Þve state
models in [54, 59]). Yamato et al. describe recognizing tennis strokes with
HMM�s [477]. Wilson and Bobick describe the use of HMM�s for recogniz-
ing gestures such as pushes [467]. Yang et al use HMM�s to recognize hand-
writing gestures [480]. Feng and Perona [126] call actions �movelets�, and
build a vocabulary by vector quantizing a representation of image shape, as a
collection of rectangle, varying over time. These codewords are then strung
together by an HMM, representing activities; there is one HMM per activ-
ity. We can then identify a new video by computing the image representation
for each frame, obtaining the movelets, and choosing the particular model
that generated the keyword sequence by a form of maximum likelihood. The
method is not view invariant, depending on an image centered representation.

There has been a great deal of interest in models obtained by modifying
the HMM structure. The intention is to improve the expressive power of the
model without complicating the processes of learning or inference. Brand et
al use coupled HMM�s (CHMM�s), which involve some number of simulta-
neous HMM�s operating to the same clock, where the choice of a particular
model�s hidden state is affected by all other model�s states [54, 59]. Such an
object is clearly itself an HMM, but authors demonstrate a training method
that reduces the number of parameters to learn by coupling but with very
much enlarged state space; however, instead of estimating the parameters of
that object, one projects the parameter estimates to transition parameters for
each separate model. This means that one learns parameters for each sepa-
rate model that tend to couple the two models. They show these models can
distinguish between a set of T�ai Chi moves.

Oliver et al [316, 315] represent behaviours using layered hidden Markov
models (LHMM�s). These models involve a bank of HMM�s at the lowest
level, each generating some portion of the observation. The observations at
higher levels are the maximum likelihood hidden state sequences for the
lower levels. One then obtains for each HMM the maximum likelihood hid-
den state sequence. At the next level, the observations are these states, and this
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continues recursively. The resulting object is an HMM, but of complex struc-
ture; the LHMM form offers authoring advantages. This representation out-
performs a straightforward HMM in recognizing such activities as phone con-
versation from both vision and acoustic data.Similarly, Mori et al build a hi-
erarchical representation out of HMM�s to recognize everyday gesture [298].

Wilson and Bobick [468] use a form of HMM where an unknown, global
parameter applies to all emission models (which they call a parametric hidden
Markov model or PHMM) to model gestures with a parametric form (such as
might accompany �it was this big�). Data is from stereo or a Polhemus. There
are recognition results for classes of gesture such as pointing. Kettnaker and
Brand [225](also, Brand and Kettnaker, [58]) Þt an HMM while penalizing
model entropy; this tends to reduce the number of non-zero parameters, so
that one can Þt models with quite large state spaces satisfactorily (such mod-
els are sometimes known as Entropic HMM�s or EHMM�s). Galata et al.
use variable length Markov models (VLMM�s: a model that generates a state
stochastically based on a variable but bounded length history) to encode be-
haviour and obtain a reduction in perplexity by doing so [138, 139].

Building variant HMM�s is a way to simplify learning the state transition
process from data (if the state space is large, the number of parameters is a
problem). But there is an alternative � one could author the state transition
process in such a way that it has relatively few free parameters, despite a very
large state space, and then learn those parameters.

Finite state methods have been used directly. Hongeng et al. demonstrate
recognition of multiperson activities from video of people at coarse scales
(few kinematic details are available); activities include conversing and block-
ing [183]. Zhao and Nevatia use a Þnite-state model of walking, running and
standing, built from motion capture [485]. Hong et al. use Þnite state ma-
chines to model gesture [182]. We are not aware of material that attempts to
build large hierarchical Þnite state machines, patterned after speech recogni-
tion programs, and using opportunistic learning, as we propose to do.

6.3.3 Sign Language Recognition

The best-known system for sign matching is due to Starner and Pent-
land [419, 420]. Features are image moments of the hand region; signers
either wear coloured gloves, or hands are identiÞed using a skin Þlter. A Hid-
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den Markov Model (HMM) is used to model individual signs; signs are strung
together with a rigid language model (pronoun verbnoun adjective
pronoun). Authors report a recognition rate of 90% with a vocabulary of
40 signs. Grobel and Assan recognize isolated signs under similar conditions
for a 262-word vocabulary using HMM�s [227]. This work was extended to
recognize continuous German sign language with a vocabulary of 97 signs by
Bauer and Hienz [34]. Vogler and Metaxas have built a system that uses es-
timates of arm position, recovered either from a physical sensor mounted on
the body or from a system of three cameras that measures arm position fairly
accurately [455, 456, 459]. For a vocabulary of 53 words, and an independent
word language model, they report a word recognition accuracy of the order of
90%. A more recent system attempted to recognize phonemes with HMM�s;
Vogler and Metaxas were able to recognize signs from a 22 word vocabu-
lary with similar recognition rates for phoneme and word models (without
handshapes in [457], with handshapes in [458]).

Kadous transduced isolated Australian sign language signs with a power-
glove, reporting a recognition rate of 80% using decision trees [305]. Matsuo
et al transduced Japanese sign language with stereo cameras, using decision
tree methods to recognize a vocabulary of 38 signs [278]. Kim et al. transduce
Korean sign language using datagloves, reporting 94% accuracy in recogni-
tion for 131 Korean signs [228]. Al-Jarrah and Halawani report high recogni-
tion accuracy for 30 Arabic manual alphabet signs recognized from monocu-
lar views of a signer using a fuzzy inference system [12]. Gao et al. describe
recognizing isolated signs drawn from a vocabulary of 5177 using datagloves
and an HMM model [141, 465]. Their system is not speaker-independent:
they describe relatively high accuracy for the original signer, and a signiÞ-
cant reduction in performance for other signers. Similarly, Zieren and Kraiss
report high, but not speaker independent, accuracy for monocular recognition
of German sign language drawn from a vocabulary of 152 signs [487]. Akyol
and Canzler describe an information terminal which can recognize 16 signs
with a high, user-independent, recognition rate; their system uses HMM�s
to infer signs from monocular views of users wearing coloured gloves [11].
Bowden et al. use independent component analysis to obtain state estimates
from a set of discriminative visual features; each sign is encoded as a Markov
chain, learned from a single example [52]. They report high accuracy recog-
nition from a lexicon of 49 signs using a very small training set.





7
Discussion

7.1 Representations

The question of how one represents the conÞguration of the body appears
to be important. In tracking applications, the important choice seems to be
whether one tracks 3D or 2D representations, and we discuss this in some
detail below. In many applications one predicts the conÞguration of the body
from some evidence. Examples include a generative model of motion for an-
imation; a dynamical model for tracking; a regression model for lifting from
2D to 3D. There is some reason to believe that the choice of the coordi-
nates one predicts is important, and we discuss this point below. Finally, the
reader will have noticed alarmingly contradictory evidence on the usefulness
of dynamical models in understanding human motion; we try to resolve this
contradiction.

7.1.1 Is 3D ConÞguration Ambiguous?

The work of both Taylor and of Barrón and Kakadiaris suggests that there are
discrete ambiguities in 3D body conÞguration inferred from a single 2D view
(in [31, 32];see section 3.2.1). Depending on how many body segments one
accepts, this ambiguity might be from 16-fold to 1024-fold. Some ambiguous
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reconstructions might be ruled out by kinematic constraints, but one expects
these ambiguities to manifest themselves in any attempt to recover the body
in 3D.

We have seen a variety of strategies to disambiguate reconstructions. One
might have more than one camera (section 3.1). One might observe local fea-
tures that distinguish between a limb pointed towards and away from the cam-
era (section 3.2.1; I have in mind the work of Mori and Malik [296, 297]). One
might maintain a potentially multimodal representation of the posterior (sec-
tion 3.3). One might use reconstructions in previous frames (section 3.2.3.4).

The problem with all this is that there is a body of work that does not
explicitly respect these ambiguities and that does not suffer as a result. Under
just what circumstances is 3D conÞguration ambiguous? I believe the picture
is complex, and we need to break out cases.

7.1.1.1 Single Frames

First, it is clear that the ambiguities exist in a single frame view of the whole
body. One must censor ambiguities using known kinematic limits, and this
means that the extent of the ambiguity is, to an important degree, dependent
on both the body conÞguration and the view direction. The situation is gen-
erally worse than one might expect from our account of geometric methods,
because it is usually not possible to tell the difference between the left and
right arms (resp. legs). These ambiguities are important in practice.

However, in a single frame frontal view of the upper body, there may be
no ambiguity. Left and right arms are easily distinguished. There are several
cases for the arms. First, if the hands are visible and occlude the torso then the
shoulder is not signiÞcantly ambiguous � either the elbow is approximately
on the plane of the torso (the one that passes through shoulders and navel), or
it is in front; there is no need to attend to small angles here. It is possible to get
into a conÞguration where the elbow is well behind the torso and the hands
do not occlude the torso, but it is neither easy nor natural � one may be able
to simply rule this out as possible but unlikely. Because the forearm is about
as long as the upper arm, either the forearm is approximately parallel to the
plane of the torso, or it is extended toward the camera. Often, this is required
because otherwise the hands would be embedded in the torso; when it is not
a kinematic necessity, it is uncomfortable. All this � loose but plausible �
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argument suggests that 3D reconstruction ambiguities cannot contribute sub-
stantial errors to 3D reconstructions of frontal views of the upper body, and
so explains why Shakhnarovich et al.don�t need to deal with ambiguities.

7.1.1.2 Short Timescales

The tracking literature generally sees the posterior on 3D position given past
2D measurements (i.e. P (Xi|Y0, . . . ,Yi)) as multimodal, implying the pres-
ence of ambiguities. Managing these modes is the main thrust of that litera-
ture. However, there is some evidence that knowledge of future frames causes
these ambiguities to disappear. In Howe�s work [187], posessing the whole
2D track leads to an unambiguous 3D reconstruction (via dynamic program-
ming, section 3.2.3.1). Howe et al.reconstruct 3D by matching to snippets of
motion capture, as do Ramanan and Forsyth (section 3.2.3.2).

One possible resolution is as follows. 3D conÞguration (Xi) is a multi-
ple valued function of 2D conÞguration (Yi) (which is best thought of by
considering the graph of the function, Þgure 7.1). A snippet � a short run
� of frames corresponds to several possible paths on this graph. However,
the process of censoring kinematically unacceptable reconstructions leads to
a complicated structure, where parts of the graph are excluded. In turn, for
most motions, very short runs of frames are ambiguous, but longer runs are
not, because the incorrect paths wander into parts of the graph that are not
available. This point is remarked on by Sminchisescu and Triggs ( [407], p
372, �In practice, choosing the wrong minimum rapidly leads to mistrack-
ing...�), and may explain the �glitches� of [6] (p. 49).

This model explains why reconstruction on very short timescales may
be ambiguous, while reconstruction on short timescales is not. The effect
depends on the dynamic model, which must make narrow enough predictions
(see Þgure 7.1). In turn this may explain why the 3D tracking literature (which
uses either no dynamic model or a rather high entropy dynamic model) Þnds
3D reconstructions ambiguous.

We must recognize the limits of the available evidence here. All motion
capture collections are small (and, for the foreseeable future, all possible mo-
tion capture collections will be small compared with the range of available
motions). Furthermore, ambiguities are view dependent in important ways. It
is entirely conceivable that research that Þnds 3D reconstructions by matching
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Fig. 7.1 Some understanding of the behaviour of ambiguities in reconstructing the 3D conÞguration of
the body (X) from 2D image conÞguration (Y) can be obtained by thinking about the graph of the mul-
tivalued function X(Y). The shape of this graph depends on the viewing direction, but it must have sin-
gularities and we expect that the process of censoring kinematically unacceptable reconstructions carves
out holes in some of the sheets. While any single reconstruction may be ambiguous, as in the case shown
here, sequences may not be, assuming that the dynamical model prohibits skips between sheets, etc. This
model suggests several points. First, notice that reconstructing (X1, ...,X7) given (Y1, ...,Y7) is not
ambiguous. Neither is reconstructing (X4,X5) from (Y4,Y5), for that matter. However, (X1, ...,X4)
from (Y1, ...,Y4) is ambiguous. Second, the model does not suggest any difference between reconstruc-
tions that use only the past and those that use both the past and the future. Third, reconstructing X2

conditioned on Y2 and X1 � the procedure of Agarwal and Triggs [3, 6] � is still ambiguous. This
method may encounter serious problems if it makes the wrong choice at this time, because it will then not
be able to explain the measurementY5, (which may explain the �glitches� of [6], p. 49). Again, all these
observations require a dynamical model that is relatively tight, something that matching to snippets �
which implements a non-parametric dynamical model � supplies.

to motion capture simply hasn�t used enough motion capture data to observe
ambiguities, or hasn�t used the right views of the body. I don�t believe this to
be the case, but the matter needs clearer resolution.

7.1.1.3 Long Timescales

Some ambiguities persist over long timescales, and should be resolved by bet-
ter image measurement. The best example is the left-leg/right-leg ambiguity
in lateral views of actions like walking. In principle, there is an ambiguity at
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each frame of such a sequence, but dynamic constraints and camera motion
constraints mean that this ambiguity is of the order of one bit per sequence.
Other cases are left-arm/right-arm ambiguity in lateral views and front/back
ambiguity in some frontal views. I do not know of a complete list of such
cases, though it appears that such a list would be short.

7.1.1.4 Summary

There is a body of evidence, strongly suggestive though not absolutely con-
clusive, that 3D reconstruction from 2D frames has few ambiguities that per-
sist over any but the shortest timescales. Those that do, can persist over quite
long timescales, and have to do with left/right labels rather than the conÞg-
uration. This property depends on the dynamic model adopted, and requires
that one use a snippet of frames.

If I have interpreted this evidence correctly, it suggests that the proper
approach to tracking in 3D is to track in 2D, and then report an estimate of 3D
by matching the 2D track to 3D body conÞguration snippets. This is because
one does not then need to deal explicitly with multiple modes in the posterior.
There are two cases: one could reconstruct Xi from (Yi−k, . . . ,Yi+k), or
from (Yi−2k, . . . ,Yi). I do not see strong evidence to distinguish between
these cases, but I believe that the Þrst may be better where possible, as noise
in the dynamical model may accumulate.

7.1.2 What Representation of 3D ConÞguration should be Adopted?

There are two major options for representing the conÞguration of the body in
3D. One might use joint angles, or one might use joint positions. But which
is better? Apart from the mild complications in passing from joint positions
to joint angles (an entire subject, section 5.1.3), the question is basically
an empirical one. It is an important empirical question that hasn�t received
enough attention. This is because, if one wishes to regress the 3D conÞg-
uration against some variable (section 3.2.3), one needs information about
covariance in the 3D coordinate system.

This need appears in a number of ways, some less obvious than others.
If one is building a straightforward regression, then for something as high-
dimensional as body conÞguration one is forced to assume a reduced form
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(diagonal; a constant scaling of the identity; or some such) for the error co-
variance, which is too big to estimate accurately. If one is building a nearest
neighbour method, it is a good idea to work in coordinates that are largely
independent (or, which is the same thing, to weight distances with an in-
verse covariance matrix). There is some evidence that quite low-dimensional
representations of motion are tolerable for some synthesis applications (for
example, Safonova et al.synthesize motion in low-dimensional spaces with-
out major costs in quality [378]; and see section 5.4.1). One might think that
joint angles are a better coordinate system, because joint positions are clearly
correlated (some points are a Þxed distance apart). There isn�t much evidence
on this point, and all we have favours joint positions as a representation.

Arikan describes a method to compress motion signals by Þtting a para-
metric curve to joint position information, clustering the results, represent-
ing each cluster with principal components, and then using a discrete cosine
transform to represent fast phenomena that occur as a result of contacts [?].
This method is much more effective than compressing any joint angle repre-
sentation, so much so that the overhead of inverse kinematics in decompres-
sion (which is simpliÞed by attaching an extra vertex to each segment and
compressing the overcomplete representation) presents no problem. The pro-
cess of clustering motions, then applying PCA within a cluster, produces a
form of decorrelated representation.

We expect that correlation structure within a motion varies between types
of motion. It isn�t currently possible to be precise about what the term �type�
means here, but a stroll and a walk might be the same type of motion, whereas
a walk and a throw are not. In walking, there is a characteristic oscillatory
motion of both upper and lower body, 180o out of phase with one another. A
good parametric representation of a particular walk might require very few
parameters � frequency and phase might do it. If the intention is to perform
kinematic reconstructions for conÞgurations whose frequencies are well rep-
resented by typical motion capture or video data (in outdoor data, lots of
walking, some running, and other activities very infrequent), then the corre-
lations between joint angles typical of walking are very important.

The correlations observed in walking are very different from those ob-
served in, say, throwing or striking motions. In walking, the arm moves, rather
roughly, like a pendulum. In some throwing or striking motions, there is a
clear proximal-distal sequence by which the joints are activated, leading to a
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whip-like motion (for some cases, see [13, 23, 352]; the effect does not oc-
cur in all sports [136]; it can be used in animation [41]). This means that, for
example, a near-straight elbow implies a particular shoulder position quite
accurately, which is quite unlike walking (where the elbow is always close to
straight, whatever the shoulder position).

There are two issues here. First, talking about correlation requires some
sensible theory about frequencies of events within motions, which appears
to be hard to obtain. We discuss this point below. Second, assuming that we
have some such theory, we should respect it in choice of regression coordinate
system. In particular, we expect that regression predictions of 3D conÞgura-
tion from 2D will perform better or worse with different choices of coordi-
nates. This point doesn�t appear to have been much discussed in the literature,
though it may help motivate to Shakhnarovich et al.�s work on making local-
ity sensitive hashing sensitive to sharp changes in predicted parameters [389].

The frequency with which different motions occur is not much discussed
in the literature, but it�s a difÞcult point with some nasty consequences. For
example, one could produce an (apparently) very effective outdoor surveil-
lance system by simply labelling every activity observed as walking. This
system would be wrong an inÞnitesimal percentage of the time, because most
of the time people are walking; but its output would be unhelpful. Recov-
ering accurate labellings of relatively uncommon events is what is required,
and this means collecting data is tricky and model-building is important. For
example, in years of informal observation of people outside I have never seen
a ßasher, and can so presume that the phenomenon is relatively uncommon,
but we know that it represents a signiÞcant nuisance that engages authority.
Should we represent what a ßasher does with models built from data? if so,
where is the data to come from? if not, how?

The likely differences in covariance structure of different types of motion
suggests that we should impose some sort of hierarchical structure on motion
data. We know this can be done for at least some kinds of structure and some
collections of data, because motion capture data appears to cluster very well;
in many systems, clustering the motion capture data is a Þrst step, and no bad
consequences appear to result. But there hasn�t been much investigation of
what sort of structures are good. A good structure might make 3D from 2D
easier, by using gross motion phenomena to predict the type of motion and
then operating in an advantageous 3D representation. A good structure might
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lead to better dynamical models (section 7.1.3). And a good structure might
make at least some aspects of a vocabulary for actions or activities apparent.

7.1.3 What is the Status of Dynamical Models?

The literature contains a series of positions on dynamical models of mo-
tion. The idea that dynamical models are not helpful, or are even harmful,
in tracking is suggested by, among others, the work of Sminchisescu and
Triggs [407], of Mori and Malik [296, 297], and of Ramanan et al. [356, 357]
(sections 3.3.2, 3.2.1 and 4.2). This work simply dispenses with dynamical
models as an unreliable guide to the future conÞguration of a person. In fact,
Sminchisescu and Triggs suggest that such dynamical models as have been
adopted in the particle Þlter tracking literature, have been built more to com-
pensate for weaknesses in the search process than as predictive models ([407],
p. 373). Furthermore, it has been remarkably difÞcult to build methods that
can reliably tell whether a given motion is a good human motion or not (a
point we discuss in section 7.2.1).

Dynamical models of human motion have tended to lead to animations
of relatively poor quality (it is unfair to name names). One difÞculty seems
to be that, when one Þts a parametric model to motion capture data, the in-
evitable slight errors in temporal alignment smooth out some high frequency
structure, so that motions that should have fast deÞnition (hitting, jumping,
etc.) become �squashy� in appearance. Sometimes important physical prop-
erties of motions are preserved [377] and sometimes they are not. Often, the
motion that results is ugly.

However, we have quite strong evidence that the dynamics of motion is
constrained. There are several points. First, Sidenbladh et al.check
obtain very good tracks from low-dimensional parametric models Þtted to
motion capture data; of course, one must be sure that the person being tracked
engages in the activity to which the model was Þt, but this difÞculty doesn�t
erase the usefulness of the dynamical model. Second, the fact that both Howe
et al. [188] and Ramanan and Forsyth [355] can lift to 3D by matching mul-
tiple frames of motion capture to multiple frames of image data suggests that
some form of dynamical constraint is present. If there wasn�t much constraint
at the relevant time scales (approx 1/6 second), then some of the video snip-
pets would not Þnd a good match and the lift would be grossly inaccurate.
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This suggests (but does not establish) that motion at short time scales has a
fairly rigid structure. The difÞculty regarding this point as comprehensive is
that, in both cases, the collections of video and of motion capture are quite
small � perhaps both sets of authors were lucky. Third, motion capture data
appears to cluster rather well, as we have said. And fourth, Arikan can com-
press motion successfully, by clustering and then compressing snippets of
motion about a second long [?].

There is something here that isn�t as well understood as it needs to be.
I believe the resolution is as follows: at very short time scales (say, 1/60 s),
the number of kinematic conÞgurations that will ever follow a given conÞg-
uration under any circumstances is probably small. There is some difÞculty
being formal, because we don�t really know what a fair sample of motion is,
so it is difÞcult to talk about the frequency of events. This difÞculty isn�t so
signiÞcant at very short timescales; I claim that, whatever one�s model of the
frequency of activities, at very short timescales the conditional entropy of the
next frame of motion given the past frames is very small. At longer timescales
� say, a second � this language is more difÞcult to use because one prob-
ably can get from any one body conÞguration to any other in a second (if
one ignores the root), and one has to deal with the question of how often par-
ticular transitions arise. In current motion capture collections, given that we
think of ourselves as quite mobile, opportunistic movers, the notable feature
is how seldom most transitions occur. In fact, they occur with frequency zero,
which suggests some interesting questions about smoothing here, quite like
those that arise in natural language problems where most pairs of words do
not occur (see [274, 217]).

This view of motion as highly constrained at short timescales is consistent
with the evidence that motion is constrained. But I believe it is also consistent
with the evidence that dynamical models, as currently practiced, aren�t partic-
ularly helpful. If motion behaves as I have described it, most current dynami-
cal models put almost all of their probability in the wrong place, which would
be the problem. This problem may be quite difÞcult to Þx. Body conÞguration
appears to occupy a fairly high-dimensional space, though it is probably con-
Þned to a low-dimensional subset of that space. It is technically quite difÞcult
to build models that make predictions that are conÞned to a �small� subset
of a low-dimensional subset of a high-dimensional space, particularly when
one doesn�t know what the low-dimensional subset is. Nonetheless, the ef-
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fort may be worthwhile, because good dynamical models of motion would be
valuable in animation. The situation in tracking is less clear � one might get
a better result from efforts to improve appearance models than from efforts
to incorporate improved dynamical models. The increased understanding of
motion that would result from an attempt to build improved dynamical mod-
els is certainly worthwhile.

7.1.4 The Space of Human Motions

As we have seen (section 5.1.4), one can obtain good kinematic reconstruc-
tions in the presence of ambiguous constraints by requiring that the recon-
struction be close to a space learned from data. This suggests that relatively
few available body positions are actually occupied. This, the fact that mo-
tion clusters well (section 5.3.2; section 5.4.1), and the fact that motion can
be compressed effectively ([?]), suggest it may be helpful to think about the
space of human motions as a geometrical object.

For the moment, let us adopt some encoding of the state of the body (the
details don�t matter for this discussion, but we�d expect to see the conÞgu-
ration of the root, the conÞguration of the body relative to the root, veloci-
ties and most likely accelerations in this encoding). Because segment lengths
don�t vary, because velocities are limited and because there are torque limits,
not every point in this state space represents a legal motion. It is useful to
think of the legal motions as forming a �sheet� in this space. We make no
claim on the topology of this object, not even that it is a manifold. We can
think of motions as functions from time to this space. These functions must
meet some obvious constraints � for example, velocities computed as time
derivatives of kinematic conÞguration need to be the same as corresponding
velocities recorded in the state vector. We expect other local constraints, too,
resulting from torque limits and the like. We can represent the space of human
motions by all acceptable functions from time to our space. There should be
some form of structure at long time scales � we know, for example, that it is
possible to walk backwards for long distances, but that it is very seldom done
� but shorter time scales are easier to handle at present.

This object is intimately related to blending. Assume we have two le-
gal states x1 and x2 that are close. For many such pairs, we can expect that
states that lie on the line segment joining them are also legal. Another way
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to put this point is that, if the two states are sufÞciently close, then the vec-
tor x2 − x1 should lie on the tangent space at x1. Now assume we have two
observed motions f1(t) and f2(t), which run for similar time periods and are
sufÞciently similar to one another (I do not know how to be precise what
this means). We expect � and can observe in data � that repeated versions
of the same movement have slightly different temporal parametrizations. For
example, each step of a walk can take a slightly different span of time. This
means that we will need to massage the temporal parametrization, which is
what time alignment does. Assume we can place states in correspondence
by a small � again, it isn�t currently possible to be precise � change in
temporal parametrization τ(t), so that f1(t) is close to f2(τ(t)). Under these
circumstances, we can expect that f1(t) − f2(τ(t)) lies close to the tangent
space to the space of human motions.

We know that good blends can be obtained from nearby motions, and that
viable deformations include Þltering angles, adding constant offsets, deform-
ing the root path, applying a global rigid-body transformation and applying
small time deformations. Can we infer others from seeing blends as tangents
to the space of motions? There is some reason to hope that we can, because
all the deformations I have described form actions of a local group, and this
implies a structure to the tangent space.

7.1.5 Is Human Tracking Multimodal?

Time, space, and available energy have limited the number of citations to
the vast literature on human tracking. Much of this literature is about a sin-
gle point: how to manage inference in the presence of multimodal posteriors,
possibly in a high-dimensional space. The main methods are variants of the
particle Þlter, section 3.3.1. However, other methods are possible. For exam-
ple, in a multiple hypothesis tracker, one Kalman Þlter keeps track of each
of a Þxed number mode, and we must determine methods to prune the num-
ber of modes. This method was used by Cham and Rehg [75], to track a 2D
kinematic model of the body � note that this was adopted explicitly to cope
with data association difÞculties, and they make no argument that posteriors
for 2D human tracking are intrinsically multimodal. One might maintain a
mixture of gaussians, a mixture of other densities, or some form of kernel
representation; all the options have been thoroughly explored.
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A core thesis of this work is that all this effort is unnecessary. We do not
need to deal with multiple modes resulting from data association problems, if
we deal with data association directly. There are now excellent tools for doing
so, as chapter 4 has demonstrated. These tools support only 2D tracking, how-
ever, and we might reasonably wish to report the conÞguration of the body in
3D. To do so, we may have to deal with ambiguities in the likelihood, which
will result in multiple modes. As we have argued above (section 7.1.1), there
are several ways to avoid ambiguity. First, better image measurement may
reduce ambiguity (after Mori and Malik [296, 297]). Second, it is very likely
that 2D tracks allow unambiguous lifts to 3D for �snippets.� Third, for some
situations the ambiguity may not, in fact, appear.

The point is a general one: good features combined with simple inference
(resp. classiÞcation) methods seem to be better than bad features combined
with sophisticated methods. Given Þnite resources, we should pay more atten-
tion to visual features and phenomena than to the alluring world of statistical
algorithms.

7.2 Generalization

Many of the methods we have described can loosely be described as a statis-
tical view of motion � in essence, we are expecting, usually implicitly, that
a model that is good at representing the motions that one has seen will be
good at representing the motions that one will see. This property of a model
and a dataset is known as generalization in the machine learning commu-
nity, where quite strong guarantees are available if one has an appropriately
representative data set and if the model adopted meets certain criteria (e.g.
see [447, 448]). There is no reason to believe that these guarantees are avail-
able in the case of human motion; it appears likely that they never will be.

This is a problem that has to do with both data and models. There is
an important issue of datasets here that clouds the picture somewhat. In our
opinion, it probably is the case that many signiÞcant motion distinctions are
�large� � in the sense that they involve huge changes in kinematic conÞg-
uration � and so quite simple clustering and dimension reduction methods
can expose much structure in motion. What remains uncertain is the extent
to which the vocabulary of motions that are well-behaved in this way can be
used to encode what one does every day � current experimental work covers
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relatively small ranges of motion, because motion data is difÞcult to collect
in large volumes. Furthermore, it isn�t currently possible to collect data with-
out being intrusive � there are no collections of motion data that can be said
to represent �what people do�. Finally, there is a signiÞcant difÞculty with
rare motions. In some applications, not encoding a motion that people do rel-
atively seldom is entirely appropriate (for most animation applications, for
example, relatively small amounts of sensibly collected motion data is quite
sufÞcient). In other applications, one should be able to encode even very rare
behaviours (think contortionist), so that they can be reported.

This difÞculty manifests itself in two important, and related technical
problems that are largely unsolved. First, all automatic methods for scoring
motions generalize poorly. Second, data-driven methods for generating mo-
tion cannot produce satisfactory motions that are signiÞcantly different from
the input data (or, equivalently, generalize poorly). Motions appear to have
structural properties � like composition across the body � that produce a
very large range of motions, too large to sample and observe with current
methods. The problem seems to be that good generalization will require good
models for these properties, and we don�t have them.

7.2.1 Which Motions are Human?

People are often extremely sensitive to the detailed structure of a motion.
Several researchers have used light-dot displays, also referred to as biolog-
ical motion stimuli, to study perception of human movements [137]. The
light-dot displays show only dots or patches of light that move with the main
joints of walking Þgures, but even these minimal cues have been shown to
be sufÞcient for viewers to make detailed assessments of the nature of both
the motion and the underlying Þgure[211]. Work by Cutting and Kozlowski
showed that viewers easily recognized friends by their walking gaits on light-
dot displays[92]. They also reported that the gender of unfamiliar walkers was
readily identiÞable, even after the number of lights had been reduced to just
two located on the ankles[238]. In a published note, they later explained that
the two light-dot decisions were probably attributable to stride length[239].
Continuing this work, Barclay, Cutting, and Kozlowski showed that gen-
der recognition based on walking gait required between 1.6 and 2.7 sec-
onds of display, or about two step cycles[29, 93]. Not much is known about
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what inclines people toward or away from the judgement that a motion is
�good� or �natural�. It is known that the choice of rendering has an effect,
with more naturalistic renderings making people more inclined to reject mo-
tions [178, 177].

A device that could tell good, human-like motions from bad ones would
be very useful. One could animate new motions using hypothesize-and-test
using such a device. Ideally, the device might produce some information
about what looks good or bad about the animation. One could use it to test
tracks of activities that had never before been seen to tell whether the track
represented a human motion or a tracker failure. Ideally, the device might
produce some probability that the observation had come from a person.

Building one is difÞcult. There have been several attempts. Generaliza-
tion � giving an accurate score to motions very different from the training
motions � is a notoriously difÞcult problem. Ikemoto and Forsyth use a clas-
siÞer to evaluate motions produced by a cut-and-paste method, and Þnd the
classiÞer signiÞcantly less accurate on novel motions [194]. The classiÞer is
trained using both positive and negative examples. There is some advantage
to not using negative examples, which can be both difÞcult to obtain and inac-
curate. Ren et al. Þt an ensemble of generative models to positive examples;
motion is scored by taking the lowest likelihood over all models to obtain a
conservative score [359]. While the combined model gives the best behaviour
in practice, their hidden Markov model (HMM) is almost as accurate as the
combined model. There is no information on generalization behaviour.

Arikan et al.use a regression method (built using scattered data interpola-
tion) to predict the goodness of applying a particular deformation to a partic-
ular motion to represent a push or a shove [19]. Their oracle agrees roughly
with the behaviour of human observers in a two-alternative forced-choice test.
In particular, the probability that a human will say a motion is good when the
oracle says it is bad, is low. The probability that a human will say a motion is
good when the oracle says it is good is around 50% (the exact value depends
on the study group). This needs to be compared with the probability that a
human will say that pure motion capture is good, which is approximately the
same. The logic of their application means that the oracle is never presented
with examples that are strongly different from the training set.

However, if negative examples are available, we expect that models
trained discriminatively are likely to perform better, because they possess
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more information about the location of the boundary between good and bad
motion. Ikemoto et al.train several scoring functions on 400 short motion
transitions, annotated as good or bad motions by hand [193]. Methods in-
clude: likelihood under an HMM Þtted to positive motion examples repre-
sented by an acceleration feature vector; logistic regression applied to an ac-
celeration feature vector; the minimum score of this logistic regression and
another applied to a feature that encodes footskate; and a score of footskate.
The scoring methods that encode footskate outperform the others, and the
pure footskate score is the best. There is no information on generalization.

There are several reasons it is difÞcult to build this device. There is a
painful shortage of useful data. While there is a lot of motion capture data
available, no collection of practical size can explore all that a body can do. At
least in part, the relative poverty of collected motion data is because one can
compose motions across time and across the body � it is possible to walk
while scratching with either hand. The structural models necessary to encode
this property do not yet exist. Some data may not be as useful as it looks.
Arikan et al.�s subjects were inclined to regard rendered motion capture data
as unnatural about half the time in two-alternative (good/bad) forced choice
tests [19]. This may have to do with the motion capture pipeline. It is hard to
get good marker placements and good measurements, and quite often motion
is cleaned up.

Furthermore, data is encoded in a high-dimensional space, with all the at-
tendant difÞculties, and while we know there are correlations between dimen-
sions (above), we don�t know much about what they are, even at the level of
practical scientiÞc folklore. To make things worse, it isn�t clear what features
expose the phenomena that make a motion look good or bad. For example,
intuition might suggest that whether a motion was �physical� is an impor-
tant criterion, but there is little evidence in support of this view. Similarly,
footskate doesn�t appear to be much more than a detail, but the presence of
footskate seems to be quite a good test for whether a motion is good or not.
Finally, the relatively constrained structure of motion (if one accepts the argu-
ment above), means that building a good classiÞer or scoring function might
be quite difÞcult, because it must cut out a very small and complicated portion
of a spatio-temporal encoding of motion.
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7.3 Resources

Getting good motion capture data requires considerable effort, skill and
expense. Relatively few groups have found it useful to have their own
motion capture studio. For those who wish to, major manufacturers of
motion capture equipment include Vicon (http://www.vicon.com)
and Motion Analysis (http://www.motionanalysis.com). Hod-
gins� group at CMU has done a great service to the research community
by collecting and publishing some 1700 motion sequences, available at
http://mocap.cs.cmu.edu/.

There are several other reviews of aspects of human motion. In animation,
Hodgins et al.give a general review of computer animation [176]; Multon et
al.survey computer animation of human walking [300]; and Gleicher gives
a brief survey of animation from examples, motion capture and motion edit-
ing [155].

There are more reviews of tracking methods, none particularly recent.
There is a special issue of Computer Vision and Image Understanding dedi-
cated to vision based understanding of shape, appearance and movement (vol-
ume 81, 2001). Moeslund and Granum give an extensive survey of computer
vision based methods for human motion capture [288]. Gleicher and Ferrier
give a critical review of methods to recover 3D conÞguration from video,
concentrating on single views [157]. Aggarwal et al.review articulated mo-
tion understanding [8]; Aggarwal and Cai review human motion analysis [7].
Gavrila surveys visual analysis of human movement [143]. Hu et al.survey
visual surveillance of object motion and behaviour [190]. Wang and Singh
survey video analysis of human dynamics [462].
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