
C H A P T E R 9

Mean Field Inference

Bayesian inference is an important and useful tool, but it comes with a serious
practical problem. It will help to have some notation. Write X for a set of observed
values, H for the unknown (hidden) values of interest, and recall Bayes’ rule has

P (H |X) =
P (X |H)P (H)

P (X)
=

Likelihood× Prior

Normalizing constant
.

The problem is that it is usually very difficult to form posterior distributions,
because the normalizing constant is hard to evaluate for almost every model. This
point is easily dodged in first courses. For MAP inference, we can ignore the
normalizing constant. A careful choice of problem and of conjugate prior can make
things look easy (or, at least, hide the real difficulty). But most of the time we
cannot compute

P (X) =

∫

P (X |H)P (H)dX.

Either the integral is too hard, or – in the case of discrete models – the marginal-
ization requires an unmanageable sum. In such cases, we must approximate.

Warning: The topics of this chapter allow a great deal of room for mathe-
matical finicking, which I shall try to avoid. Generally, when I define something
I’m going to leave out the information that it’s only meaningful under some cir-
cumstances, etc. None of the background detail I’m eliding is difficult or significant
for anything we do. Those who enjoy this sort of thing can supply the ifs ands and
buts without trouble; those who don’t won’t miss them. I will usually just write
an integral sign for marginalization, and I’ll assume that, when the variables are
discrete, everyone’s willing to replace with a sum.

9.1 USEFUL BUT INTRACTABLE EXAMPLES

9.1.1 Boltzmann Machines

Here is a formal model we can use. A Boltzmann machine is a distribution model
for a set of binary random variables. Assume we have N binary random variables
Ui, which take the values 1 or −1. The values of these random variables are not
observed (the true values of the pixels). These binary random variables are not
independent. Instead, we will assume that some (but not all) pairs are coupled.
We could draw this situation as a graph (Figure 9.1), where each node represents
a Ui and each edge represents a coupling. The edges are weighted, so the coupling
strengths vary from edge to edge.

Write N (i) for the set of random variables whose values are coupled to that

239

Section 9.1 Useful but Intractable Examples 240

FIGURE 9.1: On the left, a simple Boltzmann machine. Each Ui has two possible
states, so the whole thing has 16 states. Different choices of the constants coupling
the U ’s along each edge lead to different probability distributions. On the right,
this Boltzmann machine adapted to denoising binary images. The shaded nodes
represent the known pixel values (Xi in the text) and the open nodes represent the
(unknown, and to be inferred) true pixel values Hi. Notice that pixels depend on
their neighbors in the grid.

of i – these are the neighbors of i in the graph. The joint probability model is

logP (U |θ) =

∑

i

∑

j∈N (i)

θijUiUj

− logZ(θ) = −E(U |θ)− logZ(θ).

Now UiUj is 1 when Ui and Uj agree, and −1 otherwise (this is why we chose Ui

to take values 1 or −1). The θij are the edge weights; notice if θij > 0, the model
generally prefers Ui and Uj to agree (as in, it will assign higher probability to states
where they agree, unless other variables intervene), and if θij < 0, the model prefers
they disagree.

Here E(U |θ) is sometimes referred to as the energy (notice the sign - higher
energy corresponds to lower probability) and Z(θ) ensures that the model normal-
izes to 1, so that

Z(θ) =
Σ

all values of U
[exp (−E(U |θ))] .

9.1.2 Denoising Binary Images with Boltzmann Machines

Here is a simple model for a binary image that has been corrupted by noise. At
each pixel, we observe the corrupted value, which is binary. Hidden from us are the
true values of each pixel. The observed value at each pixel is random, but depends
only on the true value. This means that, for example, the value at a pixel can
change, but the noise doesn’t cause blocks of pixels to, say, shift left. This is a
fairly good model for many kinds of transmission noise, scanning noise, and so on.
The true value at each pixel is affected by the true value at each of its neighbors –
a reasonable model, as image pixels tend to agree with their neighbors.

Section 9.1 Useful but Intractable Examples 241

We can apply a Boltzmann machine. We split the U into two groups. One
group represents the observed value at each pixel (I will use Xi, and the convention
that i chooses the pixel), and the other represents the hidden value at each pixel
(I will use Hi). Each observation is either 1 or −1. We arrange the graph so that
the edges between the Hi form a grid, and there is a link between each Xi and its
corresponding Hi (but no other - see Figure 9.1).

Assume we know good values for θ. We have

P (H |X, θ) =
exp(−E(H,X|θ))/Z(θ)

ΣH [exp(−E(H,X|θ))/Z(θ)]
=

exp (−E(H,X |θ))
ΣH exp (−E(H,X |θ))

so posterior inference doesn’t require evaluating the normalizing constant. This
isn’t really good news. Posterior inference still requires a sum over an exponential
number of values. Unless the underlying graph is special (a tree or a forest) or very
small, posterior inference is intractable.

9.1.3 MAP Inference for Boltzmann Machines is Hard

You might think that focusing on MAP inference will solve this problem. Recall
that MAP inference seeks the values of H to maximize P (H |X, θ) or equivalently,
maximizing the log of this function. We seek

argmax
H

logP (H |X, θ) = (−E(H,X |θ))− log [ΣH exp (−E(H,X |θ))]

but the second term is not a function of H , so we could avoid the intractable
sum. This doesn’t mean the problem is tractable. Some pencil and paper work
will establish that there is some set of constants aij and bj so that the solution is
obtained by solving

argmax
H

(

∑

ij aijhihj

)

+
∑

j bjhj

subject to hi ∈ {−1, 1}
.

This is a combinatorial optimization problem with considerable potential for un-
pleasantness. How nasty it is depends on some details of the aij , but with the right
choice of weights aij , the problem is max-cut, which is NP-complete.

9.1.4 A Discrete Markov Random Field

Boltzmann machines are a simple version of a much more complex device widely
used in computer vision and other applications. In a Boltzmann machine, we took
a graph and associated a binary random variable with each node and a coupling
weight with each edge. This produced a probability distribution. We obtain a
Markov random field by placing a random variable (doesn’t have to be binary,
or even discrete) at each node, and a coupling function (almost anything works)
at each edge. Write Ui for the random variable at the i’th node, and θ(Ui, Uj) for
the coupling function associated with the edge from i to j (the arguments tell you
which function; you can have different functions on different edges).

Section 9.1 Useful but Intractable Examples 242

We will ignore the possibility that the random variables are continuous. A
discrete Markov random field has all Ui discrete random variables with a finite
set of possible values. Write Ui for the random variable at each node, and θ(Ui, Uj)
for the coupling function associated with the edge from i to j (the arguments tell
you which function; you can have different functions on different edges). For a
discrete Markov random field, we have

logP (U |θ) =

∑

i

∑

j∈N (i)

θ(Ui, Uj)

− logZ(θ).

It is usual – and a good idea – to think about the random variables as indicator
functions, rather than values. So, for example, if there were three possible values
at node i, we represent Ui with a 3D vector containing one indicator function for
each value. One of the components must be one, and the other two must be zero.
Vectors like this are sometimes know as one-hot vectors. The advantage of this
representation is that it helps keep track of the fact that the values that each
random variable can take are not really to the point; it’s the interaction between
assignments that matters. Another advantage is that we can easily keep track of
the parameters that matter. I will adopt this convention in what follows.

I will write ui for the random variable at location i represented as a vector.
All but one of the components of this vector are zero, and the remaining component
is 1. If there are #(Ui) possible values for Ui and #(Uj) possible values for Uj , we
can represent θ(Ui, Uj) as a #(Ui) × #(Uj) table of values. I will write Θ(ij) for

the table representing θ(Ui, Uj), and θ
(ij)
mn for the m, n’th entry of that table. This

entry is the value of θ(Ui, Uj) when Ui takes its m’th value and Uj takes its n’th

value. I write Θ(ij) for a matrix whose m, n’th component is θ
(ij)
mn . In this notation,

I write
θ(Ui, Uj) = uT

i Θ
(ij)uj .

All this does not simplify computation of the normalizing constant. We have

Z(θ) =
Σ

all values of u

exp

∑

i

∑

j∈N (i)

uT
i Θ

(ij)uj

 .

Note that the collection of all values of u has rather nasty structure, and is very
big – it consists of all possible one-hot vectors representing each U .

9.1.5 Denoising and Segmenting with Discrete MRF’s

A simple denoising model for images that aren’t binary is just like the binary
denoising model. We now use a discrete MRF. We split the U into two groups, H
and X . We observe a noisy image (the X values) and we wish to reconstruct the
true pixel values (the H). For example, if we are dealing with grey level images
with 256 different possible grey values at each pixel, then each H has 256 possible
values. The graph is a grid for the H and one link from an X to the corresponding
H (like Figure 9.1). Now we think about P (H |X, θ). As you would expect, the
model is intractable – the normalizing constant can’t be computed.

Section 9.1 Useful but Intractable Examples 243

Worked example 9.1 A simple discrete MRF for image denoising.

Set up an MRF for grey level image denoising.

Solution: Construct a graph that is a grid. The grid represents the true value
of each pixel, which we expect to be unknown. Now add an extra node for each
grid element, and connect that node to the grid element. These nodes represent
the observed value at each pixel. As before, we will separate the variables U
into two sets, X for observed values and H for hidden values (Figure 9.1). In
most grey level images, pixels take one of 256 (= 28) values. For the moment,
we work with a grey level image, so each variable takes one of 256 values. There
is no reason to believe that any one pixel behaves differently from any other
pixel, so we expect the θ(Hi, Hj) not to depend on the pixel location; there’ll
be one copy of the same function at each grid edge. By far the most usual case
has

θ(Hi, Hj) =

[

0 if Hi = Hj

c otherwise

where c > 0. Representing this function using one-hot vectors is straightfor-
ward. There is no reason to believe that the relationship between observed and
hidden values depends on the pixel location. However, large differences between
observed and hidden values should be more expensive than small differences.
Write Xj for the observed value at node j, where j is the observed value node
corresponding to Hi. We usually have

θ(Hi, Xj) = (Hi −Xj)
2.

If we think of Hi as an indicator function, then this function can be represented
as a vector of values; one of these values is picked out by the indicator. Notice
there is a different vector at each Hi node (because there may be a different
Xi at each).

Now write hi for the hidden variable at location i represented as a vector, etc.
Remember, all but one of the components of this vector are zero, and the remaining
component is 1. The one-hot vector representing an observed value at location i is

xi. I write Θ(ij) for a matrix who’s m, n’th component is θ
(ij)
mn . In this notation, I

write
θ(Hi, Hj) = hT

i Θ
(ij)hj

and
θ(Hi, Xj) = hT

i Θ
(ij)xj = hT

i βi.

In turn, we have

log p(H |X) =

∑

ij

hT
i Θ

(ij)hj

+
∑

i

hT
i βi

+ logZ.

Section 9.1 Useful but Intractable Examples 244

Worked example 9.2 Denoising MRF - II

Write out Θ(ij) for the θ(Hi, Hj) with the form given in example 9.1 using the
one-hot vector notation.

Solution: This is more a check you have the notation. cI is the answer.

Worked example 9.3 Denoising MRF - III

Assume that we have X1 = 128 and θ(Hi, Xj) = (Hi −Xj)
2. What is β1 using

the one-hot vector notation? Assume pixels take values in the range [0, 255].

Solution: Again, a check you have the notation. We have

β1 =

1282 first component
. . .

(i − 128)2 i’th component
. . .
1272

FIGURE 9.2: The graph of an MRF adapted to image segmentation. The shaded
nodes represent the known pixel values (Xi in the text) and the open nodes represent
the (unknown, and to be inferred) labels Hi. A particular hidden node may depend
on many pixels, because we will use all these pixel values to compute the cost of
labelling that node in a particular way.

Segmentation is another application that fits this recipe. We now want to
break the image into a set of regions. Each region will have a label (eg “grass”,
“sky”, “tree”, etc.). The Xi are the observed values of each pixel value, and the
Hi are the labels. In this case, the graph may have quite complex structure (eg

Section 9.1 Useful but Intractable Examples 245

figure 9.2). We must come up with a process that computes the cost of labelling
a given pixel location in the image with a given label. Notice this process could
look at many other pixel values in the image to come up with the label, but not at
other labels. There are many possibilities. For example, we could build a logistic
regression classifier that predicts the label at a pixel from image features around
that pixel (if you don’t know any image feature constructions, assume we use the
pixel color; if you do, you can use anything that pleases you). We then model
the cost of a having a particular label at a particular point as the negative log
probability of the label under that model. We obtain the θ(Hi, Hj) by assuming
that labels on neighboring pixels should agree with one another, as in the case of
denoising.

9.1.6 MAP Inference in Discrete MRF’s can be Hard

As you should suspect, focusing on MAP inference doesn’t make the difficulty go
away for discrete Markov random fields.

Worked example 9.4 Useful facts about MRF’s.

Show that, using the notation of the text, we have: (a) for any i, 1Thi = 1;
(b) the MAP inference problem can be expressed as a quadratic program, with
linear constraints, on discrete variables.

Solution: For (a) the equation is true because exactly one entry in hi is 1,
the others are zero. But (b) is more interesting. MAP inference is equivalent
to maximizing log p(H |X). Recall logZ does not depend on the h. We seek

max
h1,...,hN

∑

ij

hT
i Θ

(ij)hj

+
∑

i

hT
i βi

+ logZ

subject to very important constraints. We must have 1Thi = 1 for all i.
Furthermore, any component of any hi must be either 0 or 1. So we have a
quadratic program (because the cost function is quadratic in the variables),
with linear constraints, on discrete variables.

Example 9.4 is a bit alarming, because it implies (correctly) that MAP infer-
ence in MRF’s can be very hard. You should remember this. Gradient descent is no
use here because the idea is meaningless. You can’t take a gradient with respect to
discrete variables. If you have the background, it’s quite easy to prove by producing
(eg from example 9.4) an MRF where inference is equivalent to max-cut, which is
NP hard.

Section 9.2 Variational Inference 246

Worked example 9.5 MAP inference for MRF’s is a linear program

Show that, using the notation of the text, the MAP inference for an MRF prob-
lem can be expressed as a linear program, with linear constraints, on discrete
variables.

Solution: If you have two binary variables zi and zj both in {0, 1}, then write
qij = zizj. We have that qij ≤ zi, qij ≤ zj , qij ∈ {0, 1}, and qij ≥ zi + zj − 1.
You should check (a) these inequalities and (b) that qij is uniquely identified by
these inequalities. Now notice that each hi is just a bunch of binary variables,
and the quadratic term hT

i Θ
(ij)hj is linear in qij .

Example 9.5 is the start of an extremely rich vein of approximation math-
ematics, which we shall not mine. If you are of a deep mathematical bent, you
can phrase everything in what follows in terms of approximate solutions of linear
programs. For example, this makes it possible to identify MRF’s for which MAP
inference can be done in polynomial time; the family is more than just trees. We
won’t go there.

9.2 VARIATIONAL INFERENCE

We could just ignore intractable models, and stick to tractable models. This isn’t a
good idea, because intractable models are often quite natural. The discrete Markov
random field model of an image is a fairly natural model. Image labels should
depend on pixel values, and on neighboring labels. It is better to try and deal with
the intractable model. One really successful strategy for doing so is to choose a
tractable parametric family of probability models Q(H ; θ), then adjust θ to find
an element that is “close” in the right sense to P (H |X). This process is known as
variational inference.

9.2.1 The KL Divergence: Measuring the Closeness of Probability Distributions

Assume we have two probability distributions P (X) and Q(X). A measure of their
similarity is the KL-divergence (or sometimes Kullback-Leibler divergence)
written

D(P || Q) =

∫

P (X) log
P (X)

Q(X)
dX

(you’ve clearly got to be careful about zeros in P and Q here). This likely strikes
you as an odd measure of similarity, because it isn’t symmetric. It is not the case
that D(P || Q) is the same as D(Q || P), which means you have to watch your P’s
and Q’s. Furthermore, some work will demonstrate that it does not satisfy the
triangle inequality, so KL divergence lacks two of the three important properties of
a metric.

KL divergence has some nice properties, however. First, we have

D(P || Q) ≥ 0

Section 9.2 Variational Inference 247

with equality only if P and Q are equal almost everywhere (i.e. except on a set of
measure zero).

Second, there is a suggestive relationship between KL divergence and maxi-
mum likelihood. Assume that Xi are IID samples from some unknown P (X), and
we wish to fit a parametric model Q(X |θ) to these samples. This is the usual situ-
ation we deal with when we fit a model. Now write H(P) for the entropy of P (X),
defined by

H(P) = −
∫

P (X) logP (X)dx = −EP [logP].

The distribution P is unknown, and so is its entropy, but it is a constant. Now we
can write

D(P || Q) = EP [logP]− EP [logQ]

Then

L(θ) =
∑

i

logQ(Xi|θ) ≈
∫

P (X) logQ(X |θ)dX = EP (X)[logQ(X |θ)]

= −H(P)− D(P || Q)(θ).

Equivalently, we can write

L(θ) + D(P || Q)(θ) = −H(P).

Recall P doesn’t change (though it’s unknown), so H(P) is also constant (though
unknown). This means that when L(θ) goes up, D(P || Q)(θ) must go down. When
L(θ) is at a maximum, D(P || Q)(θ) must be at a minimum. All this means that,
when you choose θ to maximize the likelihood of some dataset given θ for a para-
metric family of models, you are choosing the model in that family with smallest
KL divergence from the (unknown) P (X).

9.2.2 The Variational Free Energy

We have a P (H |X) that is hard to work with (usually because we can’t evaluate
P (X)) and we want to obtain a Q(H) that is “close to” P (H |X). A good choice
of “close to” is to require that

D(Q(H) || P (H |X))

is small. Expand the expression for KL divergence, to get

D(Q(H) || P (H |X)) = EQ[logQ]− EQ[logP (H |X)]

= EQ[logQ]− EQ[logP (H,X)] + EQ[logP (X)]

= EQ[logQ]− EQ[logP (H,X)] + logP (X)

which at first glance may look unpromising, because we can’t evaluate P (X). But
logP (X) is fixed (although unknown). Now rearrange to get

logP (X) = D(Q(H) || P (H |X))− (EQ[logQ]− EQ[logP (H,X)])

= D(Q(H) || P (H |X))− EQ.

Section 9.3 Example: Variational Inference for Boltzmann Machines 248

Here
EQ = (EQ[logQ]− EQ[logP (H,X)])

is referred to as the variational free energy. We can’t evaluate D(Q(H) || P (H |X)).
But, because logP (X) is fixed, when EQ goes down, D(Q(H) || P (H |X)) must
go down too. Furthermore, a minimum of EQ will correspond to a minimum of
D(Q(H) || P (H |X)). And we can evaluate EQ.

We now have a strategy for building approximateQ(H). We choose a family of
approximating distributions. From that family, we obtain the Q(H) that minimises
EQ (which will take some work). The result is theQ(H) in the family that minimizes
D(Q(H) || P (H |X)). We use that Q(H) as our approximation to P (H |X), and
extract whatever information we want from Q(H).

9.3 EXAMPLE: VARIATIONAL INFERENCE FOR BOLTZMANN MACHINES

We want to construct a Q(H) that approximates the posterior for a Boltzmann
machine. We will choose Q(H) to have one factor for each hidden variable, so
Q(H) = q1(H1)q2(H2) . . . qN (HN). We will then assume that all but one of the
terms in Q are known, and adjust the remaining term. We will sweep through the
terms doing this until nothing changes.

The i’th factor in Q is a probability distribution over the two possible values
of Hi, which are 1 and −1. There is only one possible choice of distribution. Each
qi has one parameter πi = P ({Hi = 1}). We have

qi(Hi) = (πi)
(1+Hi)

2 (1− πi)
(1−Hi)

2 .

Notice the trick; the power each term is raised to is either 1 or 0, and I have used
this trick as a switch to turn on or off each term, depending on whether Hi is 1
or −1. So qi(1) = πi and qi(−1) = (1 − πi). This is a standard, and quite useful,
trick. We wish to minimize the variational free energy, which is

EQ = (EQ[logQ]− EQ[logP (H,X)]).

We look at the EQ[logQ] term first. We have

EQ[logQ] = Eq1(H1)...qN (HN)[log q1(H1) + . . . log qN (HN)]

= Eq1(H1)[log q1(H1)] + . . .EqN (HN)[log qN (HN)]

where we get the second step by noticing that

Eq1(H1)...qN (HN)[log q1(H1)] = Eq1(H1)[log q1(H1)]

(write out the expectations and check this if you’re uncertain).
Now we need to deal with EQ[logP (H |X)]. We have

log p(H,X) = −E(H,X)− logZ

=
∑

i∈H

∑

j∈N (i)∩H

θijHiHj +
∑

i∈H

∑

j∈N (i)∩X

θijHiXj +K

Section 9.3 Example: Variational Inference for Boltzmann Machines 249

(where K doesn’t depend on any H and is so of no interest). Assume all the q’s are
known except the i’th term. Write Qî for the distribution obtained by omitting qi
from the product, so Q1̂ = q2(H2)q3(H3) . . . qN (HN), etc. Notice that

EQ[logP (H |X)] =

(

qi(−1)EQî
[logP (H1, . . . , Hi = −1, . . . , HN |X)]+

qi(1)EQî
[logP (H1, . . . , Hi = 1, . . . , HN |X)]

)

.

This means that if we fix all the q terms except qi(Hi), we must choose qi to minimize

qi(−1) log qi(−1) + qi(1) log qi(1) −
qi(−1)EQî

[logP (H1, . . . , Hi = −1, . . . , HN |X)] +

qi(1)EQî
[logP (H1, . . . , Hi = 1, . . . , HN |X)]

subject to the constraint that qi(1) + qi(−1) = 1. Introduce a Lagrange multiplier
to deal with the constraint, differentiate and set to zero, and get

qi(1) =
1

c
exp

(

EQî
[logP (H1, . . . , Hi = 1, . . . , HN |X)]

)

qi(−1) =
1

c
exp

(

EQî
[logP (H1, . . . , Hi = −1, . . . , HN |X)]

)

where c = exp
(

EQî
[logP (H1, . . . , Hi = −1, . . . , HN |X)]

)

+

exp
(

EQî
[logP (H1, . . . , Hi = 1, . . . , HN |X)]

)

.

In turn, this means we need to know EQî
[logP (H1, . . . , Hi = −1, . . . , HN |X)], etc.

only up to a constant. Equivalently, we need to compute only log qi(Hi)+K for K
some unknown constant (because qi(1) + qi(−1) = 1). Now we compute

EQî
[logP (H1, . . . , Hi = −1, . . . , HN |X)].

This is equal to

EQî

∑

j∈N (i)∩H

θij(−1)Hj +
∑

j∈N (i)∩X

θij(−1)Xj + terms not containing Hi

which is the same as

∑

j∈N (i)∩H

θij(−1)EQî
[Hj] +

∑

j∈N (i)∩X

θij(−1)Xj +K

and this is the same as

∑

j∈N (i)∩H

θij(−1)((πj)(1) + (1 − πj)(−1)) +
∑

j∈N (i)∩X

θij(−1)Xj +K

and this is

∑

j∈N (i)∩H

θij(−1)(2πj − 1) +
∑

j∈N (i)∩X

θij(−1)Xj +K.

Section 9.3 Example: Variational Inference for Boltzmann Machines 250

If you thrash through the case for

EQî
[logP (H1, . . . , Hi = 1, . . . , HN |X)]

(which works the same) you will get

log qi(1) = EQî
[logP (H1, . . . , Hi = 1, . . . , HN , X)] +K

=
∑

j∈N (i)∩H

[θij(2πj − 1)] +
∑

j∈N (i)∩X

[θijXj] +K

and

log qi(−1) = EQî
[logP (H1, . . . , Hi = −1, . . . , HN , X)] +K

=
∑

j∈N (i)∩H

[−θij(2πj − 1)] +
∑

j∈N (i)∩X

[−θijXj] +K

All this means that

πi =
e

(

∑

j∈N(i)∩H
[θij(2πj−1)]+

∑

j∈N(i)∩X
[θijXj]

)

e

(

∑

j∈N(i)∩H
[θij(2πj−1)]+

∑

j∈N(i)∩X
[θijXj]

)

+ e

(

∑

j∈N(i)∩H
[−θij(2πj−1)]+

∑

j∈N(i)∩X
[−θijXj]

) .

After this blizzard of calculation, our inference algorithm is straightforward. We
visit each hidden node in turn, set the associated πi to the value of the expression
above assuming all the other πj are fixed at their current values, and repeat until
convergence. We can test convergence by evaluating the variational free energy; an
alternative is to check the size of the change in each πj .

We can now do anything to Q(H) that we would have done to P (H |X).
For example, we might compute the values of H that maximize Q(H) for MAP
inference. It is wise to limit ones ambition here, because Q(H) is an approximation.
It’s straightforward to set up and describe, but it isn’t particularly good. The main
problem is that the variational distribution is unimodal. Furthermore, we chose a
variational distribution by assuming that each Hi was independent of all others.
This means that computing, say, covariances will likely lead to the wrong numbers
(although it’s easy — almost all are zero, and the remainder are easy). Obtaining
an approximation by assuming that Hi is independent of all others is often called
a mean field method.

Section 10.4 Multi-Dimensional Scaling 322

0 1000 2000 3000 4000
0

5

10

15

20
Eigenvalues, total of 213 images

Number of eigenvalue

V
al

ue

0 5 10 15 20
0

5

10

15

20
Eigenvalues, total of 213 images

Number of eigenvalue

V
al

ue

FIGURE 10.13: On the left,the eigenvalues of the covariance of the Japanese facial
expression dataset; there are 4096, so it’s hard to see the curve (which is packed
to the left). On the right, a zoomed version of the curve, showing how quickly the
values of the eigenvalues get small.

remember one adjusts the mean towards a data point by adding (or subtracting)
some scale times the component. So the first few principal components have to
do with the shape of the haircut; by the fourth, we are dealing with taller/shorter
faces; then several components have to do with the height of the eyebrows, the
shape of the chin, and the position of the mouth; and so on. These are all images of
women who are not wearing spectacles. In face pictures taken from a wider set of
models, moustaches, beards and spectacles all typically appear in the first couple
of dozen principal components.

10.4 MULTI-DIMENSIONAL SCALING

One way to get insight into a dataset is to plot it. But choosing what to plot for
a high dimensional dataset could be difficult. Assume we must plot the dataset
in two dimensions (by far the most common choice). We wish to build a scatter
plot in two dimensions — but where should we plot each data point? One natural
requirement is that the points be laid out in two dimensions in a way that reflects
how they sit in many dimensions. In particular, we would like points that are far
apart in the high dimensional space to be far apart in the plot, and points that are
close in the high dimensional space to be close in the plot.

10.4.1 Choosing Low D Points using High D Distances

We will plot the high dimensional point xi at vi, which is a two-dimensional vector.
Now the squared distance between points i and j in the high dimensional space is

D
(2)
ij (x) = (xi − xj)

T (xi − xj)

(where the superscript is to remind you that this is a squared distance). We could
build an N × N matrix of squared distances, which we write D(2)(x). The i, j’th

Section 10.4 Multi-Dimensional Scaling 323

Mean image from Japanese Facial Expression dataset

First sixteen principal components of the Japanese Facial Expression dat

a

FIGURE 10.14: The mean and first 16 principal components of the Japanese facial
expression dataset.

entry in this matrix is D
(2)
ij (x), and the x argument means that the distances are

between points in the high-dimensional space. Now we could choose the vi to make

∑

ij

(

D
(2)
ij (x)−D

(2)
ij (v)

)2

as small as possible. Doing so should mean that points that are far apart in the
high dimensional space are far apart in the plot, and that points that are close in
the high dimensional space are close in the plot.

In its current form, the expression is difficult to deal with, but we can refine
it. Because translation does not change the distances between points, it cannot
change either of the D(2) matrices. So it is enough to solve the case when the mean
of the points xi is zero. We can assume that

1

N

∑

i

xi = 0.

Section 10.4 Multi-Dimensional Scaling 324

Sample Face Image

mean 1 5 10 20 50 100

FIGURE 10.15: Approximating a face image by the mean and some principal compo-
nents; notice how good the approximation becomes with relatively few components.

Now write 1 for the n-dimensional vector containing all ones, and I for the identity
matrix. Notice that

D
(2)
ij = (xi − xj)

T (xi − xj) = xi · xi − 2xi · xj + xj · xj .

Now write

A =

[

I − 1

N
11T

]

.

Using this expression, you can show that the matrix M, defined below,

M(x) = −1

2
AD(2)(x)AT

has i, jth entry xi · xj (exercises). I now argue that, to make D(2)(v) is close to
D(2)(x), it is enough to make M(v) close to M(x). Proving this will take us out
of our way unnecessarily, so I omit a proof.

We need some notation. Take the dataset of N d-dimensional column vectors
xi, and form a matrix X by stacking the vectors, so

X =

xT
1

xT
2

. . .
xT
N

.

In this notation, we have
M(x) = XX T .

Notice M(x) is symmetric, and it is positive semidefinite. It can’t be positive
definite, because the data is zero mean, so M(x)1 = 0.

We can choose a set of vi that makes D(2)(v) close to D(2)(x) quite easily.

To obtain aM(v) that is close toM(x), we need to choose V = [v1,v2, . . . ,vN]T

so that VVT is close to M(x). We are computing an approximate factorization of
the matrix M(x).

Section 10.4 Multi-Dimensional Scaling 325

10.4.2 Factoring a Dot-Product Matrix

We seek a set of k dimensional v that can be stacked into a matrix V . This must
produce a M(v) = VVT that must (a) be as close as possible to M(x) and (b)
have rank at most k. It can’t have rank larger than k because there must be some
V which is N × k so that M(v) = VVT . The rows of this V are our vT

i .
We can obtain the best factorization of M(x) from a diagonalization. Write

write U for the matrix of eigenvectors of M(x) and Λ for the diagonal matrix of
eigenvalues sorted in descending order, so we have

M(x) = UΛUT

and write Λ(1/2) for the matrix of positive square roots of the eigenvalues. Now we
have

M(x) = UΛ1/2Λ1/2UT =
(

UΛ1/2
)(

UΛ1/2
)T

which allows us to write
X = UΛ1/2.

Now think about approximating M(x) by the matrix M(v). The error is a
sum of squares of the entries,

err(M(x),A) =
∑

ij

(mij − aij)
2.

Because U is a rotation, it is straightforward to show that

err(UTM(x)U ,UTM(v)U) = err(M(x),M(v)).

But
UTM(x)U = Λ

which means that we could find M(v) from the best rank k approximation to Λ.
This is obtained by setting all but the k largest entries of Λ to zero. Call the
resulting matrix Λk. Then we have

M(v) = UΛkU

and
V = UΛ(1/2)

k .

The first k columns of V are non-zero. We drop the remaining N − k columns of
zeros. The rows of the resulting matrix are our vi, and we can plot these. This
method for constructing a plot is known as principal coordinate analysis.

This plot might not be perfect, because reducing the dimension of the data
points should cause some distortions. In many cases, the distortions are tolerable.
In other cases, we might need to use a more sophisticated scoring system that
penalizes some kinds of distortion more strongly than others. There are many ways
to do this; the general problem is known as multidimensional scaling.

Section 10.4 Multi-Dimensional Scaling 326

Procedure: 10.3 Principal Coordinate Analysis

Assume we have a matrix D(2) consisting of the squared differences
between each pair of N points. We do not need to know the points. We
wish to compute a set of points in r dimensions, such that the distances
between these points are as similar as possible to the distances in D(2).

• Form A =
[

I − 1
N 11T

]

.

• Form W = 1
2AD(2)AT .

• Form U , Λ, such that WU = UΛ (these are the eigenvectors and
eigenvalues of W). Ensure that the entries of Λ are sorted in
decreasing order.

• Choose r, the number of dimensions you wish to represent. Form

Λr, the top left r × r block of Λ. Form Λ
(1/2)
r , whose entries are

the positive square roots of Λr. Form Ur, the matrix consisting
of the first r columns of U .

Then
VT = Λ(1/2)

r UT
r = [v1, . . . ,vN]

is the set of points to plot.

10.4.3 Example: Mapping with Multidimensional Scaling

Multidimensional scaling gets positions (the V of section 10.4.1) from distances
(the D(2)(x) of section 10.4.1). This means we can use the method to build maps
from distances alone. I collected distance information from the web (I used http://
www.distancefromto.net, but a google search on “city distances” yields a wide range
of possible sources), then applied multidimensional scaling. I obtained distances
between the South African provincial capitals, in kilometers. I then used principal
coordinate analysis to find positions for each capital, and rotated, translated and
scaled the resulting plot to check it against a real map (Figure 10.16).

One natural use of principal coordinate analysis is to see if one can spot any
structure in a dataset. Does the dataset form a blob, or is it clumpy? This isn’t a
perfect test, but it’s a good way to look and see if anything interesting is happening.
In figure 10.17, I show a 3D plot of the spectral data, reduced to three dimensions
using principal coordinate analysis. The plot is quite interesting. You should notice
that the data points are spread out in 3D, but actually seem to lie on a complicated
curved surface — they very clearly don’t form a uniform blob. To me, the structure
looks somewhat like a butterfly. I don’t know why this occurs (perhaps the uni-
verse is doodling), but it certainly suggests that something worth investigating is
going on. Perhaps the choice of samples that were measured is funny; perhaps the

http://www.distancefromto.net
http://www.distancefromto.net

Section 10.4 Multi-Dimensional Scaling 327

−800 −600 −400 −200 0 200 400
−1000

−800

−600

−400

−200

0

200

400

Cape Town

Kimberley

Mahikeng

Nelspruit

Polokwane

Pietermaritzburg

Johannesburg

Bloemfontein

Bhisho

FIGURE 10.16: On the left, a public domain map of South Africa, obtained from
http://commons.wikimedia.org/wiki/File:Map of South Africa.svg , and edited to re-
move surrounding countries. On the right, the locations of the cities inferred by
multidimensional scaling, rotated, translated and scaled to allow a comparison to
the map by eye. The map doesn’t have all the provincial capitals on it, but it’s easy
to see that MDS has placed the ones that are there in the right places (use a piece
of ruled tracing paper to check).

−0.4

−0.2

0

0.2

0.4
−0.3−0.2−0.100.10.2

−0.2

−0.1

0

0.1

0.2

−0.4 −0.2 0 0.2 0.4

−0.3−0.2−0.100.10.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

FIGURE 10.17: Two views of the spectral data of section 10.3.1, plotted as a scatter
plot by applying principal coordinate analysis to obtain a 3D set of points. Notice
that the data spreads out in 3D, but seems to lie on some structure; it certainly isn’t
a single blob. This suggests that further investigation would be fruitful.

measuring instrument doesn’t make certain kinds of measurement; or perhaps there
are physical processes that prevent the data from spreading out over the space.

Our algorithm has one really interesting property. In some cases, we do not
actually know the datapoints as vectors. Instead, we just know distances between
the datapoints. This happens often in the social sciences, but there are important
cases in computer science as well. As a rather contrived example, one could survey
people about breakfast foods (say, eggs, bacon, cereal, oatmeal, pancakes, toast,
muffins, kippers and sausages for a total of 9 items). We ask each person to rate the
similarity of each pair of distinct items on some scale. We advise people that similar

http://commons.wikimedia.org/wiki/File:Map_of_South_Africa.svg

Section 10.5 Example: Understanding Height and Weight 328

−600
−400

−200

−100−50050
−40

−20

0

20

40

−500
−400

−300
−200

−100

0

100
−50

0

50

FIGURE 10.18: Two views of a multidimensional scaling to three dimensions of the
height-weight dataset. Notice how the data seems to lie in a flat structure in 3D,
with one outlying data point. This means that the distances between data points can
be (largely) explained by a 2D representation.

items are ones where, if they were offered both, they would have no particular
preference; but, for dissimilar items, they would have a strong preference for one
over the other. The scale might be “very similar”, “quite similar”, “similar”, “quite
dissimilar”, and “very dissimilar” (scales like this are often called Likert scales).
We collect these similarities from many people for each pair of distinct items, and
then average the similarity over all respondents. We compute distances from the
similarities in a way that makes very similar items close and very dissimilar items
distant. Now we have a table of distances between items, and can compute a V
and produce a scatter plot. This plot is quite revealing, because items that most
people think are easily substituted appear close together, and items that are hard
to substitute are far apart. The neat trick here is that we did not start with a X ,
but with just a set of distances; but we were able to associate a vector with “eggs”,
and produce a meaningful plot.

10.5 EXAMPLE: UNDERSTANDING HEIGHT AND WEIGHT

Recall the height-weight data set of section ?? (from http://www2.stetson.edu/
∼jrasp/data.htm; look for bodyfat.xls at that URL). This is, in fact, a 16-dimensional
dataset. The entries are (in this order): bodyfat; density; age; weight; height; adi-
posity; neck; chest; abdomen; hip; thigh; knee; ankle; biceps; forearm; wrist. We
know already that many of these entries are correlated, but it’s hard to grasp a 16
dimensional dataset in one go. The first step is to investigate with a multidimen-
sional scaling.

Figure ?? shows a multidimensional scaling of this dataset down to three
dimensions. The dataset seems to lie on a (fairly) flat structure in 3D, meaning
that inter-point distances are relatively well explained by a 2D representation. Two
points seem to be special, and lie far away from the flat structure. The structure
isn’t perfectly flat, so there will be small errors in a 2D representation; but it’s clear
that a lot of dimensions are redundant. Figure 10.19 shows a 2D representation of
these points. They form a blob that is stretched along one axis, and there is no sign

http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm

Section 10.5 Example: Understanding Height and Weight 329

−500 −400 −300 −200
−100

−50

0

50
Height−Weight 2D MDS

FIGURE 10.19: A multidimensional scaling to two dimensions of the height-weight
dataset. One data point is clearly special, and another looks pretty special. The
data seems to form a blob, with one axis quite a lot more important than another.

of multiple blobs. There’s still at least one special point, which we shall ignore but
might be worth investigating further. The distortions involved in squashing this
dataset down to 2D seem to have made the second special point less obvious than
it was in figure ??.

2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

bodyfat

density

age

weight

height

adiposity
neck

chest
abdomen

hip

thigh

knee

ankle
bicepsforearm

wrist

Height−Weight mean

FIGURE 10.20: The mean of the bodyfat.xls dataset. Each component is likely in a
different unit (though I don’t know the units), making it difficult to plot the data
without being misleading. I’ve adopted one solution here, by plotting a stem plot.
You shouldn’t try to compare the values to one another. Instead, think of this plot
as a compact version of a table.

The next step is to try a principal component analysis. Figure 10.20 shows
the mean of the dataset. The components of the dataset have different units, and
shouldn’t really be compared. But it is difficult to interpret a table of 16 numbers,
so I have plotted the mean as a stem plot. Figure 10.21 shows the eigenvalues of
the covariance for this dataset. Notice how one dimension is very important, and

Section 10.5 Example: Understanding Height and Weight 330

after the third principal component, the contributions become small. Of course, I
could have said “fourth”, or “fifth”, or whatever — the precise choice depends on
how small a number you think is “small”.

2 4 6 8 10 12 14 16
0

200

400

600

800

1000

1200
Height−weight covariance eigenvalues

0 2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

bodyfat

density

age

weight

height
adiposity

neck

chest
abdomen

hip
thigh

knee
ankle

biceps
forearmwrist

Height−Weight first principal component

FIGURE 10.21: On the left, the eigenvalues of the covariance matrix for the bodyfat
data set. Notice how fast the eigenvalues fall off; this means that most principal
components have very small variance, so that data can be represented well with a
small number of principal components. On the right, the first principal component
for this dataset, plotted using the same convention as for figure 10.20.

Figure 10.21 also shows the first principal component. The eigenvalues justify
thinking of each data item as (roughly) the mean plus some weight times this
principal component. From this plot you can see that data items with a larger
value of weight will also have larger values of most other measurements, except age
and density. You can also see how much larger; if the weight goes up by 8.5 units,
then the abdomen will go up by 3 units, and so on. This explains the main variation
in the dataset.

0 2 4 6 8 10 12 14 16 18
−0.2

0

0.2

0.4

0.6

0.8

bodyfat

density

age

weight
height

adiposityneck

chest

abdomen

hip
thigh

kneeanklebicepsforearm

wrist

Height−Weight second principal component

0 2 4 6 8 10 12 14 16 18
−0.4

−0.2

0

0.2

0.4

0.6

bodyfat

density

ageweightheight

adiposity

neck

chest

abdomen

hipthigh

kneeanklebicepsforearmwrist

Height−Weight third principal component

FIGURE 10.22: On the left, the second principal component, and on the right the
third principal component of the height-weight dataset.

Section 10.5 Example: Understanding Height and Weight 331

In the rotated coordinate system, the components are not correlated, and they
have different variances (which are the eigenvalues of the covariance matrix). You
can get some sense of the data by adding these variances; in this case, we get 1404.
This means that, in the translated and rotated coordinate system, the average data
point is about 37 =

√
1404 units away from the center (the origin). Translations

and rotations do not change distances, so the average data point is about 37 units
from the center in the original dataset, too. If we represent a datapoint by using
the mean and the first three principal components, there will be some error. We
can estimate the average error from the component variances. In this case, the sum
of the first three eigenvalues is 1357, so the mean square error in representing a
datapoint by the first three principal components is

√

(1404− 1357), or 6.8. The
relative error is 6.8/37 = 0.18. Another way to represent this information, which is
more widely used, is to say that the first three principal components explain all but
(1404− 1357)/1404 = 0.034, or 3.4% of the variance; notice that this is the square
of the relative error, which will be a much smaller number.

All this means that explaining a data point as the mean and the first three
principal components produces relatively small errors. Figure 10.23 shows the sec-
ond and third principal component of the data. These two principal components
suggest some further conclusions. As age gets larger, height and weight get slightly
smaller, but the weight is redistributed; abdomen gets larger, whereas thigh gets
smaller. A smaller effect (the third principal component) links bodyfat and ab-
domen. As bodyfat goes up, so does abdomen.

Section 10.6 You should 332

10.6 YOU SHOULD

10.6.1 remember these definitions:

Covariance . 305
Covariance Matrix . 306

10.6.2 remember these terms:

symmetric . 311
eigenvector . 311
eigenvalue . 311
principal components . 318
color constancy . 320
principal coordinate analysis . 325
multidimensional scaling . 325
Likert scales . 328

10.6.3 remember these facts:

Correlation from covariance . 305
Properties of the covariance matrix 306
Orthonormal matrices are rotations 312
You can transform data to zero mean and diagonal covariance 313
A d-D dataset can be represented with s principal components, s < d 318

10.6.4 remember these procedures:

Diagonalizing a symmetric matrix 311
Principal Components Analysis . 319
Principal Coordinate Analysis . 326

10.6.5 be able to:

• Create, plot and interpret the first few principal components of a dataset.

• Compute the error resulting from ignoring some principal components.

C H A P T E R 12

More Neural Networks

12.1 LEARNING TO MAP

Imagine we have a high dimensional dataset. As usual, there are N d-dimensional
points x, where the i’th point is xi. We would like to build a map of this dataset, to
try and visualize its major features. We would like to know, for example, whether
it contains many or few blobs; whether there are many scattered points; and so on.
We might also want to plot this map using different plotting symbols for different
kinds of data points. For example, if the data consists of images, we might be
interested in whether images of cats form blobs that are distinct from images of
dogs, and so on. I will write yi for the point in the map corresponding the xi.
The map is an M dimensional space (though M is almost always two or three in
applications).

We have seen one tool for this exercise (section 8.1). This used eigenvectors to
identify a linear projection of the data that made low dimensional distances similar
to high dimensional distances. I argued that the choice of map should minimize

∑

i,j

(

||yi − yj ||2 − ||xi − xj ||2
)2

then rearranged terms to produce a solution that minimized

∑

i,j

(

yT
i yj − xT

i xj

)2
.

The solution produces a yi that is a linear function of xi, just as a by-product of
the mathematics. There are two problems with this approach (apart from the fact
that I suppressed a bunch of detail). If the data lies on a curved structure in the
high dimensional space, then a linear projection can distort the map very badly.
Figure ??) sketches one example.

You should notice that the original choice of cost function is not a particularly
good idea, because our choice of map is almost entirely determined by points that
are very far apart. This happens because squared differences between big numbers
tend to be a lot bigger than squared differences between small numbers, and so
distances between points that are far apart will be the most important terms in the
cost function. In turn, this could mean our map does not really show the structure
of the data – for example, a small number of scattered points in the original data
could break up clusters in the map (the points in clusters are pushed apart to get a
map that places the scattered points in about the right place with respect to each
other).

292

Section 12.1 Learning to Map 293

12.1.1 Sammon Mapping

Sammon mapping is a method to fix these problems by modifying the cost func-
tion. We attempt to make the small distances more significant in the solution by
minimizing

C(y1, . . . ,yN) =

(

1
∑

i<j ||xi − xj ||

)[

∑

i<j (||yi − yj || − ||xi − xj ||)2

||xi − xj ||

]

.

The first term is a constant that makes the gradient cleaner, but has no other effect.
What is important is we are biasing the cost function to make the error in small
distances much more significant. Unlike straightforward multidimensional scaling,
the range of the sum matters here – if i equals j in the sum, then there will be a
divide by zero.

No closed form solution is known for this cost function. Instead, choosing
the y for each x is by gradient descent on the cost function. You should notice
there is no unique solution here, because rotating, translating or reflecting all the
yi will not change the value of the cost function. Furthermore, there is no reason
to believe that gradient descent necessarily produces the best value of the cost
function. Experience has shown that Sammon mapping works rather well, but has
one annoying feature. If one pair of high dimensional points is very much closer
together than any other, then getting the mapping right for that pair of points is
extremely important to obtain a low value of the cost function. This should seem
like a problem to you, because a distortion in a very tiny distance should not be
much more important than a distortion in a small distance.

12.1.2 T-SNE

We will now build a model by reasoning about probability rather than about dis-
tance (although this story could likely be told as a metric story, too). We will build
a model of the probability that two points in the high dimensional space are neigh-
bors, and another model of the probability that two points in the low dimensional
space are neighbors. We will then adjust the locations of the points in the low
dimensional space so that the KL divergence between these two models is small.

We reason first about the probability that points in the high dimensional
space are neighbors. Write the conditional probability that xj is a neighbor of xi

as pj|i. Write

wj|i = exp

(

||xj − xi ||2
2σ2

i

)

We use the model
pj|i =

wj|i
∑

k wk|i
.

Notice this depends on the scale at point i, written σi. For the moment, we assume
this is known. Now we define pij the joint probability that xi and xj are neighbors
by assuming pii = 0, and for all other pairs

pij =
pj|i + pi|j

2N
.

Section 12.1 Learning to Map 294

FIGURE 12.1: A Sammon mapping of 6,000 samples of a 1,024 dimensional data
set. The data was reduced to 30 dimensions using PCA, then subjected to a Sammon
mapping. This data is a set of 6, 000 samples from the MNIST dataset, consisting
of a collection of handwritten digits which are divided into 10 classes (0, . . . 9).
The class labels were not used in training, but the plot shows class labels. This
helps determine whether the visualization is any good – you could reasonably expect
a visualization to put items in the same class close together and items in very
different classes far apart. As the legend on the side shows, the classes are quite well
separated. Figure from Visualizing Data using t-SNE Journal of Machine Learning
Research 9 (2008) 2579-2605 Laurens van der Maaten and Geoffrey Hinton, to be
replaced with a homemade figure in time.

This is an N ×N table of probabilities; you should check that this table represents
a joint probability distribution (i.e. it’s non-negative, and sums to one).

We use a slightly different probability model in the low dimensional space. We
know that, in a high dimensional space, there is “more room” near a given point
(think of this as a base point) than there is in a low dimensional space. This means
that mapping a set of points from a high dimensional space to a low dimensional
space is almost certain to move some points further away from the base point than
we would like. In turn, this means there is a higher probability that a distant point
in the low dimensional space is still a neighbor of the base point. Our probability
model needs to have “long tails” – the probability that two points are neighbors
should not fall off too quickly with distance. Write qij for the probability that yi

and yj are neighbors. We assume that qii = 0 for all i. For other pairs, we use the
model

qij(y1, . . . ,yN) =
1/1+||yi−yj||2

∑

k,l,k 6=l
1/1+||yi−yk||2

(where you might recognize the form of Student’s t-distribution if you have seen

Section 12.2 Encoders, decoders and auto-encoders 295

that before). You should think about the situation like this. We have a table
representing the probabilities that two points in the high dimensional space are
neighbors, from our model of pij . The values of the y can be used to fill in an
N × N joint probability table representing the probabilities that two points are
neighbors. We would like this tables to be like one another. A natural metric of
similarity is the KL-divergence, of section 8.1. So we will choose y to minimize

Ctsne(y1, . . . ,yN) =
∑

ij

pij log
pij

qij(y1, . . . ,yN)
.

Remember that pii = qii = 0, so adopt the convention that 0 log 0/0 = 0 to avoid
embarrassment (or, if you don’t like that, omit the diagonal terms from the sum).
Gradient descent with a fixed steplength and momentum was be sufficient to min-
imize this in the original papers, though likely the other tricks of section 8.1 might
help.

There are two missing details. First, the gradient has a quite simple form
(which I shall not derive). We have

∇yiCtsne = 4
∑

j

[

(pij − qij)
(yi − yj)

1 + ||yi − yj ||2

]

.

Second, we need to choose σi. There is one such parameter per data point, and
we need them to compute the model of pij . This is usually done by search, but
to understand the search, we need a new term. The perplexity of a probability
distribution with entropy H(P) is defined by

Perp(P) = 2H(P).

The search works as follows: the user chooses a value of perplexity; then, for each i,
a binary search is used to choose σi such that pj|i has that perplexity. Experiments
currently suggest that the results are quite robust to wide changes in the users
choice.

In practical examples, it is quite usual to use PCA to get a somewhat reduced
dimensional version of the x. So, for example, one might reduce dimension from
1,024 to 30 with PCA, then apply t-SNE to the result.

12.2 ENCODERS, DECODERS AND AUTO-ENCODERS

An encoder is a network that can take a signal and produce a code. Typically,
this code is a description of the signal. For us, signals have been images and I
will continue to use images as examples, but you should be aware that all I will
say can be applied to sound and other signals. The code might be “smaller” than
the original signal – in the sense it contains fewer numbers – or it might even
be “bigger” – it will have more numbers, a case referred to as an overcomplete
representation. You should see our image classification networks as encoders. They
take images and produce short representations. A decoder is a network that can
take a code and produce a signal. We have not seen decoders to date.

An auto-encoder is a learned pair of coupled encoder and decoder; the
encoder maps signals into codes, and the decoder reconstructs signals from those

Section 12.2 Encoders, decoders and auto-encoders 296

FIGURE 12.2: A t-sne mapping of 6,000 samples of a 1,024 dimensional data
set. The data was reduced to 30 dimensions using PCA, then subjected to a t-sne
mapping. This data is a set of 6, 000 samples from the MNIST dataset, consisting
of a collection of handwritten digits which are divided into 10 classes (0, . . . 9).
The class labels were not used in training, but the plot shows class labels. This
helps determine whether the visualization is any good – you could reasonably expect
a visualization to put items in the same class close together and items in very
different classes far apart. As the legend on the side shows, the classes are quite well
separated. Figure from Visualizing Data using t-SNE Journal of Machine Learning
Research 9 (2008) 2579-2605 Laurens van der Maaten and Geoffrey Hinton, to be
replaced with a homemade figure in time.

codes. Auto-encoders have great potential to be useful, which we will explore in
the following sections. You should be aware that this potential has been around
for some time, but has been largely unrealized in practice. One application is in
unsupervised feature learning, where we try to construct a useful feature set from
a set of unlabelled images. We could use the code produced by the auto-encoder
as a source of features. Another possible use for an auto-encoder is to produce a
clustering method – we use the auto-encoder codes to cluster the data. Yet another
possible use for an auto-encoder is to generate images. Imagine we can train an
auto-encoder so that (a) you can reconstruct the image from the codes and (b) the
codes have a specific distribution. Then we could try to produce new images by
feeding random samples from the code distribution into the decoder.

Section 12.2 Encoders, decoders and auto-encoders 297

12.2.1 Auto-encoder Problems

Assume we wish to classify images, but have relatively few examples from each
class. We can’t use a deep network, and would likely use an SVM on some set of
features, but we don’t know what feature vectors to use. We could build an auto-
encoder that produced an overcomplete representation, and use that overcomplete
representation as a set of feature vectors. The decoder isn’t of much interest, but
we need to train with a decoder. The decoder ensures that the features actually
describe the image (because you can reconstruct the image from the features). The
big advantage of this approach is we could train the auto-encoder with a very large
number of unlabelled images. We can then reasonably expect that, because the
features describe the images in a quite general way, the SVM can find something
discriminative in the set of features.

We will describe one procedure to produce an auto-encoder. The encoder is a
layer that produces a code. For concreteness, we will discuss grey-level images, and
assume the encoder is one convolutional layer. Write Ii for the i’th input image.
All images will have dimension m×m× 1. We will assume that the encoder has r
distinct units, and so produces a block of data that is s× s× r. Because there may
be stride and convolution edge effects in the encoder, we may have that s is a lot
smaller than m. Alternatively, we may have s = m. Write E(I, θe) for the encoder
applied to image I; here θe are the weights and biases of the units in the encoder.
Write Zi = E(Ii, θe) for the code produced by the encoder for the i’th image. The
decoder must accept the output of the encoder and produce an m×m× l image.
Write D(Z, θd) for the decoder applied to a code Z.

We have Zi = E(Ii, θe), and would like to have D(Zi, θd) close to Ii. We
could enforce this by training the system, by stochastic gradient descent on θe, θd,
to minimize ||D(Zi, θd)− Ii||2. One thing should worry you. If s × s × r is larger
than m×m, then there is the possibility that the code is redundant in uninteresting
ways. For example, if s = m, the encoder could consist of units that just pass on
the input, and the decoder would pass on the input too – in this case, the code is
the original image, and nothing of interest has happened.

12.2.2 The denoising auto-encoder

There is a clever trick to avoid this problem. We can require the codes to be robust,
in the sense that if we feed a noisy image to the encoder, it will produce a code that
recovers the original image. This means that we are requiring a code that not only
describes the image, but is not disrupted by noise. Training an auto-encoder like
this results in a denoising auto-encoder. Now the encoder and decoder can’t
just pass on the image, because the result would be the noisy image. Instead, the
encoder has to try and produce a code that isn’t affected (much) by noise, and the
decoder has to take the possibility of noise into account while decoding.

Depending on the application, we could use one (or more) of a variety of
different noise models. These impose slightly different requirements on the behavior
of the encoder and decoder. There are three natural noise models: add independent
samples of a normal random variable at each pixel (this is sometimes known as
additive gaussian noise); take randomly selected pixels, and replace their values
with 0 (masking noise); and take randomly selected pixels and replace their values

Section 12.2 Encoders, decoders and auto-encoders 298

with a random choice of brightest or darkest value (salt and pepper noise).
In the context of images, it is natural to use the least-squares error as a loss

for training the auto-encoder. I will write noise(Ii) to mean the result of applying
noise to image Ii. We can write out the training loss for example i as

||D(Zi, θd)− Ii||2 where Zi = E(noise(Ii), θe)

You should notice that masking noise and salt and pepper noise are different
to additive gaussian noise, because for masking noise and salt and pepper noise only
some pixels are affected by noise. It is natural to weight the least-square error at
these pixels higher in the reconstruction loss – when we do so, we are insisting that
the encoder learn a representation that is really quite good at predicting missing
pixels. Training is by stochastic gradient descent, using one of the gradient tricks
of section 8.1. Note that each time we draw a training example, we construct a
new instance of noise for that version of the training example, so the encoding and
decoding layer may see the same example with different sets of pixels removed, etc.

12.2.3 Stacking Denoising Auto-encoders

An encoder that consists of a single convolutional layer likely will not produce a
rich enough representation to do anything useful. After all, the output of each unit
depends only on a small neighborhood of pixels. We would like to train a multi-
layer encoder. Experimental evidence over many years suggests that just building
a multi-layer encoder network, hooking it to a multi-layer decoder network, and
proceeding to train with stochastic gradient descent just doesn’t work well. It is
tough to be crisp about the reasons, but the most likely problem seems to be that
interactions between the layers make the problem wildly ambiguous. For example,
each layer could act to undo much of what the previous layer has done.

Here is a strategy that works for several different types of auto-encoder (though
I will describe it only in the context of a denoising auto-encoder). First, we build
a single layer encoder E and decoder D using the denoising auto-encoder strat-
egy to get parameters θe1 and θd1. The number of units, stride, support of units,
etc. are chosen by experiment. We train this auto-encoder to get an acceptable
reconstruction loss in the face of noise, as above.

Now I can think of each block of data Zi1 = E(Ii, θe1) as being “like” an
image; it’s just s× s× r rather than m×m× 1. Notice that Zi1 = E(Ii, θe1) is the
output of the encoder on a real image (rather than a real image with noise). I could
build another denoising auto-encoder that handles Z1’s. In particular, I will build
single layer encoder E and decoder D using the denoising auto-encoder strategy
to get parameters θe2 and θd2. This encoder/decoder pair must auto-encode the
objects produced by the first pair. So I fix θe1, θd1, and the loss for image i as a
function of θe2, θd2 becomes

||D(Zi2, θd2)− Zi1||2 where Zi2 = E(noise(Zi1), θe2)

and Zi1 = E(I1, θe1)

Again, training is by stochastic gradient descent using one of the tricks of section 8.1.
We can clearly apply this approach recursively, to stack train multiple layers.

But more work is required to produce the best auto-encoder. In the two layer

Section 12.3 Making Images from Scratch with Variational Auto-encoders 299

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Image i Z’ Z’ Z O
i1 i2 i1 i

θ θ θ θ
e1 e2 d2 d1

FIGURE 12.3: Two layers of denoising auto-encoder, ready for fine tuning. This
figure should help with the notation in the text.

example, notice that the error does not take into account the effect of the first
decoder on errors made by the second. We can fix this once all the layers have
been trained if we need to use the result as an auto-encoder. This is sometimes
referred to as fine tuning. We now train all the θ’s. So, in the two layer case, the
image passes into the first encoder, the result passes into the second encoder, then
into the second decoder, then into the first decoder, and what emerges should be
similar to the image. This gives a loss for image i in the two layer case as

||D(Zi1, θd1)− Ii||2 where Zi1 = D((Z ′
i2), θd2)

and Z ′
i2 = E(Z ′

i1, θe2)

and Z ′
i1 = E(Ii, θe1)

(Figure 12.3 might be helpful here).

12.2.4 Classification using an Auto-encoder

It isn’t usually the case that we want to use an auto-encoder as a compression
device. Instead, it’s a way to learn features that we hope will be useful for some
other purpose. One important case occurs when we have little labelled image data.
There aren’t enough labels to learn a full convolutional neural network, but we
could hope that using an auto-encoder would produce usable features. The process
involves: fit an auto-encoder to a large set of likely relevant image data; now discard
the decoders, and regard the encoder stack as something that produces features;
pass the code produced by the last layer of the stack into a fully connected layer;
and fine-tune the whole system using labelled training data. There is good evidence
that denoising auto-encoders work rather well as a way of producing features, at
least for MNIST data.

12.3 MAKING IMAGES FROM SCRATCH WITH VARIATIONAL AUTO-ENCODERS

*** This isn’t right - need to explain why I would try to generate from scratch? ***
we talk about himages here, but pretty much everything applies to other signals
too

Section 12.3 Making Images from Scratch with Variational Auto-encoders 300

12.3.1 Auto-Encoding and Latent Variable Models

There is a crucial, basic difficulty building a model to generate images. There is
a lot of structure in an image. For most pixels, the colors nearby are about the
same as the colors at that pixel. At some pixels, there are sharp changes in color.
But these edge points are very highly organized spatially, too – they (largely)
demarcate shapes. There is coherence at quite long spatial scales in images, too.
For example, in an image of a donut sitting on a table, the color of the table
inside the hole is about the same as the color outside. All this means that the
overwhelming majority of arrays of numbers are not images. If you’re suspicious,
and not easily bored, draw samples from a multivariate normal distribution with
unit covariance and see how long it will take before one of them even roughly looks
like an image (hint: it won’t happen in your lifetime, but looking at a few million
samples is a fairly harmless way to spend time).

The structure in an image suggests a strategy. We could try to decode “short”
codes to produce images. Write X for a random variable representing an image,
and z for a code representing a compressed version of the image. Assume we can
find a “good” model for P (X |z, θ). This might be built using a decoder network
whose parameters are θ. Assume also that we can build codes and a decoder such
that anything that comes out of the decoder looks like an image, and the probability
distribution of codes corresponding to images is “easy”. Then we could model P (X)
as

∫

P (X |z, θ)P (z)dz.

Such a model is known as a latent variable model. The codes z are latent
variables – hidden values which, if known, would “explain” the image. In the first
instance, assume we have a model of this form. Then generating an image would
be simple in principle. We draw a sample from P (z), then pass this through the
network and regard the result as a sample from P (X). This means that, for the
model to be useful, we need to be able to actually draw these samples, and this
constrains an appropriate choice of models. It is very natural to choose that P (z)
be a distribution that is easy to draw samples from. We will assume that P (z) is
a standard multivariate normal distribution (i.e. it has mean 0, and its covariance
matrix is the identity). This is by choice – it’s my model, and I made that choice.

However, we need to think very carefully about how to train such a model.
One strategy might be to pass in samples from a normal distribution, then adjust
the network parameters (by stochastic gradient descent, as always) to ensure what
comes out is always an image. This isn’t going to work, because it remains a
remarkably difficult research problem to tell whether some array is an image or
not. An alternative strategy is to build an encoder to make codes out of example
images. We then train so that (a) the encoder produces codes that have a standard
normal distribution and (b) the decoder takes the code computed from the i’th
image and turns it into the i’th image. This isn’t going to work either, because
we’re not taking account of the gaps between codes. We need to be sure that, if
we present the decoder with any sample from a standard normal distribution (not
just the ones we’ve seen), it will give us an image.

The correct strategy is as follows. We train an encoder and a decoder. Write

Section 12.3 Making Images from Scratch with Variational Auto-encoders 301

Xi for the i’th image, E(Xi) = zi for the code produced by the decoder applied to
Xi, D(z) for the image produced by the decoder on code z. For some image Xi, we
produce E(Xi) = zi. We then obtain z close to zi. Finally, we produce D(z). We
train the encoder by requiring that the z “look like” IID samples from a standard
normal distribution. We train the decoder by requiring that D(z) is close to Xi.
Actually doing this will require some wading through probability, but the idea is
quite clean.

12.3.2 Building a Model

Now, at least in principle, we could try to choose θ to maximize
∑

i

logP (Xi|θ).

But we have no way to evaluate the probability model, so this is hopeless. Recall
the variational methods of chapters 8.1 and 8.1. Now choose some variational
distribution Q(z|X). This will have parameters, too, but I will suppress these and
other parameters in the notation until we need to deal with them. Notice that

D(Q(z|X) || P (z|X)) = EQ[logQ(z|X)− logP (z|X)]

= EQ[logQ(z|X)]− EQ[logP (X |z) + logP (z)− logP (X)]

= EQ[logQ(z|X)]− EQ[logP (X |z) + logP (z)] + logP (X))

where the last line works because logP (X) doesn’t depend on z. Recall the defini-
tion of the variational free energy from chapter 8.1. Write

EQ = EQ[logQ]− EQ[logP (X |z) + logP (z)]

and so we have

logP (X)− D(Q(z|X) || P (z|X)) = −EQ.

We would like to maximize logP (X) by choice of parameters, but we can’t because
we can’t compute it. But we do know that D(Q(z|X) || P (z|X)) ≥ 0. This means
that −EQ is a lower bound on logP (X). If we maximize this lower bound (equiva-
lently, minimize the variational free energy), then we can reasonably hope that we
have a large value of logP (X). The big advantage of this observation is that we
can work with −EQ.

12.3.3 Turning the VFE into a Loss

The best case occurs when Q(z|X) = P (z|X) (because then D(Q(z|X) || P (z|X)) =
0, and the lower bound is tight). We don’t expect this to occur in practice, but it
suggests a way of thinking about the problem. We can build our model of Q(z|X)
around an encoder that predicts a code from an image. Similarly, our model of
P (X |z) would be built around a decoder that predicts an image from a code.

We can simplify matters by rewriting the expression for the variational free
energy. We have

−EQ = −EQ[logQ] + EQ[logP (X |z) + logP (z)]

= EQ[logP (X |z)]− D(Q(z|X) || P (z)).

Section 12.3 Making Images from Scratch with Variational Auto-encoders 302

We want to build a model of Q(z|X), which is a probability distribution, using a
neural network. This model accepts an image, X , and needs to produce a random
code z which depends on X . We will do this by using the network to predict the
mean and covariance of a normal distribution, then drawing the code z from a
normal distribution with that mean and covariance. I will write µ(X) for the mean
and Σ(X) for the covariance, where the (X) is there to remind you that these are
functions of the input, and they are modelled by the neural network. We choose
the covariance to be diagonal, because the code might be quite large and we do not
wish to try and learn large covariance matrices.

Now consider the term D(Q(z|X) || P (z)). We get to choose the prior on
the code, and we choose P (z) to be a standard normal distribution (i.e. mean 0,
covariance matrix the identity; I’ll duck the question of the dimension of z for the
moment). We can write

Q(z|X) = N (µ(X); Σ(X)).

We need to compute the KL-divergence between this distribution and a standard
normal distribution. This can be done in closed form. For reference (if you don’t feel
like doing the integrals yourself, and can’t look it up elsewhere), the KL-divergence
between two multivariate normal distributions for k dimensional vectors is

D(N (µ0; Σ0) || N (µ1; Σ1)) =
1

2

(

Tr
(

Σ−1
1 Σ0

)

+ (µ1 − µ0)
T
σ−1
1 (µ1 − µ0)

−k + log
(

Det(Σ1)
Det(Σ0)

)

)

.

In turn, this means that

D(N (µ(X); Σ(X)) || N (0; I)) =
1

2

(

Tr (Σ(X)) + µ(X)Tµ(X)
−k − log (Det (Σ))

)

.

At this point, we are close to having an expression for a loss that we can
actually minimize. We must deal with the term EQ[logP (X |z)]. Recall that we
modelled Q(z|X) by drawing z from a normal distribution with mean µ(X) and
covariance Σ(X). We can obtain such a z by drawing from a standard normal
distribution, then multiplying by Σ(X)1/2 and adding back the mean µ(X). In
equations, we have

u ∼ N (0; I)
z = µ(X) + Σ(X)1/2u

logP (X |z) = logP (X |µ(X) + Σ(X)1/2u).

Our dataX consists of a collection of images which we believe are IID samples
from P (X). I will write Xi for the i’th image. Originally, we wanted to choose
parameters to maximize

logP (X) =
∑

i

logP (Xi)

= D(Q(z|X) || P (z|X))− EQ(z|X)

=
∑

i

[

D(Q(z|Xi) || P (z|Xi))− EQ(z|Xi)

]

.

Section 12.3 Making Images from Scratch with Variational Auto-encoders 303

It’s usual to train networks to minimize losses. We can write the loss as

EQ = −EQ[logQ] + EQ[logP (X |z) + logP (z)]

= D(Q(z|X) || P (z))− EQ[logP (X |z)]
=

∑

i

[

D(Q(z|Xi) || P (z))− EQ(z|Xi)[logP (Xi|z)]
]

.

I am now going to insert parameters. I will write parameters θ, with a sub-
script that tells you what the parameters are for. Recall we modelled Q with
a network that took an image Xi and produced a mean µ(Xi; θµ) and a covari-
ance Σ(Xi; θΣ). This network is an encoder - it makes codes (the means) from
images. We will need a decoder to model P (X |z). We will write D(z; θD) for a
network that produces an image from a code. We assume that images are given by
P (X |z) = N (D(z; θD); I), so that

logP (Xi|z) =
−
(

||Xi −D(z; θD) ||2
)

2
.

So the loss becomes

EQ =
∑

i

[

D(Q(z|Xi) || P (z))− EQ(z|Xi)[logP (Xi|z)]
]

=
∑

i

1
2

(

Tr (Σ(Xi; θΣ)) + µ(Xi; θµ)
Tµ(Xi; θµ)

−k − log (Det (Σ(Xi; θΣ)))

)

−EQ(z|Xi)

[

−
(

||Xi−D(z;θD)||2
)

2

]

.

The expectation term is a nuisance. We will approximate the expectation by draw-
ing one sample from Q(z|X) and averaging over that one sample. Assume ui is an
IID sample of N (0; I). Then we write

EQ =
∑

i

[

D(Q(z|Xi) || P (z))− EQ(z|Xi)[logP (Xi|z)]
]

≈
∑

i

1
2

(

Tr (Σ(Xi; θΣ)) + µ(Xi; θµ)
Tµ(Xi; θµ)− k

− log (Det (Σ(Xi; θΣ)))

)

−−
(

||Xi−D(µ(Xi;θµ)+Σ(Xi;θΣ)1/2ui;θD)||2
)

2

.

This is a loss, and it can be differentiated in θµ, θΣ, and θD. To train a variational
auto-encoder, we use stochastic gradient descent with a variety of tricks on this
loss.

12.3.4 Some Caveats

As of writing, variational auto-encoders are the cutting edge of generative models.
They seem to be better at generating images than any other technology. However,
they are interesting because a really strong generative model for images would
be extremely useful, not because they’re particularly good at generating images.

Section 12.3 Making Images from Scratch with Variational Auto-encoders 304

There are a variety of important problems. Solutions to any, or all, of these problems
would be very exciting, because it is extremely useful to be able to generate images.

Training: Variational auto-encoders are notoriously hard to train. There’s a
strong tendency to get no descent in the initial stages of training. The usual way
to manage this is to weight the loss terms. You can break the loss into two terms.
One measures the similarity of the code distribution to the normal distribution,
the other measures the accuracy of reconstruction. Current practice weights the
reconstruction loss very high in the early stages of training, then reduces that weight
as training proceeds. This seems to help, for reasons I can’t explain and have never
seen explained.

Small images: Variational auto-encoders produce small images. Images
bigger than 64× 64 are tough to produce.

Mysterious code properties: There seems to be some limit to the com-
plexity of the family of images that a variational auto-encoder can produce. This
means that MNIST (for example) pretty much always works quite convincingly,
but auto-encoding all the images in (say) ImageNet doesn’t produce particularly
good results. There is likely some relationship between the size of the code and the
complexity of the family of images, but the effectiveness of training has something
to do with it as well.

Blurry reconstructions: Variational auto-encoders produce blurry images.
This is somewhat predictable from the loss and the training process. I know two
arguments, neither completely rigorous. First, the image loss is L2 error, which
always produces blurry images because it regards a sharp edge in the wrong place as
interchangeable with a slower edge in the right place. Second, the code distributions
predicted by the encoder for two similar images must overlap; this means that the
decoder is being trained to produce two distinct images for the same z, which must
mean it averages and so loses detail.

Gaps in the code space: Codes are typically 32 dimensional. Expecting to
produce a good estimate of an expectation with a single sample in a 32 dimensional
space is a bit ambitious. This means that, in turn, there are many points in the
code space that have never been explored by the encoder, or used in training the
decoder. As a result, it is likely that a small search around a code can produce
another code that generates a truly awful image. Of course, this result will only
appear during an important live demo...

	Pages from learning-book-28-Mar-flight.pdf
	Pages from f-book-361-21-Dec-to-JE-small.pdf
	Pages from learning-book-28-Mar-flight-2.pdf

