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C H A P T E R 1

Notation and conventions

A dataset as a collection of d-tuples (a d-tuple is an ordered list of d elements).
Tuples differ from vectors, because we can always add and subtract vectors, but
we cannot necessarily add or subtract tuples. There are always N items in any
dataset. There are always d elements in each tuple in a dataset. The number of
elements will be the same for every tuple in any given tuple. Sometimes we may
not know the value of some elements in some tuples.

We use the same notation for a tuple and for a vector. Most of our data will
be vectors. We write a vector in bold, so x could represent a vector or a tuple (the
context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out of
them; we write the dataset made out of these items as {xi} (the i is to suggest you
are taking a set of items and making a dataset out of them). If we need to refer

to the j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold,

because it is a component not a vector, and the j is in parentheses because it isn’t
a power). Vectors are always column vectors.
Terms:

• mean ({x}) is the mean of the dataset {x} (definition 1, page 20).

• std (x) is the standard deviation of the dataset {x} (definition 2, page 22).

• var ({x}) is the standard deviation of the dataset {x} (definition 3, page 25).

• median ({x}) is the standard deviation of the dataset {x} (definition 4, page 26).

• percentile({x}, k) is the k% percentile of the dataset {x} (definition 5, page 27).

• iqr{x} is the interquartile range of the dataset {x} (definition 7, page 27).

• {x̂} is the dataset {x}, transformed to standard coordinates (definition 8,
page 32).

• Standard normal data is defined in definition 9, page 33).

• Normal data is defined in definition 10, page 34).

• corr ({(x, y)}) is the correlation between two components x and y of a dataset
(definition 11, page 44).

• ∅ is the empty set.

• Ω is the set of all possible outcomes of an experiment.

• Sets are written as A.

3



Section 1.1 Some Useful Mathematical Facts 4

• Ac is the complement of the set A (i.e. Ω−A).

• E is an event (page 93).

• P ({E}) is the probability of event E (page 93).

• P ({E}|{F}) is the probability of event E , conditioned on event F (page 93).

• p(x) is the probability that random variable X will take the value x; also
written P ({X = x}) (page 93).

• p(x, y) is the probability that random variable X will take the value x and
random variable Y will take the value y; also written P ({X = x} ∩ {Y = y})
(page 93).

• argmax
x

f(x) means the value of x that maximises f(x).

• θ̂ is an estimated value of a parameter θ.

Background information:

• Cards: A standard deck of playing cards contains 52 cards. These cards are
divided into four suits. The suits are: spades and clubs (which are black);
and hearts and diamonds (which are red). Each suit contains 13 cards: Ace,
2, 3, 4, 5, 6, 7, 8, 9, 10, Jack (sometimes called Knave), Queen and King. It
is common to call Jack, Queen and King court cards.

• Dice: If you look hard enough, you can obtain dice with many different
numbers of sides (though I’ve never seen a three sided die). We adopt the
convention that the sides of an N sided die are labeled with the numbers
1 . . .N , and that no number is used twice. Most dice are like this.

• Fairness: Each face of a fair coin or die has the same probability of landing
upmost in a flip or roll.

1.1 SOME USEFUL MATHEMATICAL FACTS

The gamma function Γ(x) is defined by a series of steps. First, we have that for n
an integer,

Γ(n) = (n− 1)!

and then for z a complex number with positive real part (which includes positive
real numbers), we have

Γ(z) =

∫ ∞

0

tz
e−t

t
dt.

By doing this, we get a function on positive real numbers that is a smooth inter-
polate of the factorial function. We won’t do any real work with this function, so
won’t expand on this definition. In practice, we’ll either look up a value in tables
or require a software environment to produce it.
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C H A P T E R 2

First Tools for Looking at Data

The single most important question for a working scientist — perhaps the
single most useful question anyone can ask— is: “what’s going on here?” Answering
this question requires creative use of different ways to make pictures of datasets,
to summarize them, and to expose whatever structure might be there. This is an
activity that is sometimes known as “Descriptive Statistics”. There isn’t any fixed
recipe for understanding a dataset, but there is a rich variety of tools we can use
to get insights.

2.1 DATASETS

A dataset is a collection of descriptions of different instances of the same phe-
nomenon. These descriptions could take a variety of forms, but it is important that
they are descriptions of the same thing. For example, my grandfather collected
the daily rainfall in his garden for many years; we could collect the height of each
person in a room; or the number of children in each family on a block; or whether
10 classmates would prefer to be “rich” or “famous”. There could be more than
one description recorded for each item. For example, when he recorded the con-
tents of the rain gauge each morning, my grandfather could have recorded (say)
the temperature and barometric pressure. As another example, one might record
the height, weight, blood pressure and body temperature of every patient visiting
a doctor’s office.

The descriptions in a dataset can take a variety of forms. A description could
be categorical, meaning that each data item can take a small set of prescribed
values. For example, we might record whether each of 100 passers-by preferred to
be “Rich” or “Famous”. As another example, we could record whether the passers-
by are “Male” or “Female”. Categorical data could be ordinal, meaning that we
can tell whether one data item is larger than another. For example, a dataset giving
the number of children in a family for some set of families is categorical, because it
uses only non-negative integers, but it is also ordinal, because we can tell whether
one family is larger than another.

Some ordinal categorical data appears not to be numerical, but can be as-
signed a number in a reasonably sensible fashion. For example, many readers will
recall being asked by a doctor to rate their pain on a scale of 1 to 10 — a question
that is usually relatively easy to answer, but is quite strange when you think about
it carefully. As another example, we could ask a set of users to rate the usability
of an interface in a range from “very bad” to “very good”, and then record that
using -2 for “very bad”, -1 for “bad”, 0 for “neutral”, 1 for “good”, and 2 for “very
good”.

Many interesting datasets involve continuous variables (like, for example,
height or weight or body temperature) when you could reasonably expect to en-
counter any value in a particular range. For example, we might have the heights of

6



Section 2.1 Datasets 7

all people in a particular room; or the rainfall at a particular place for each day of
the year; or the number of children in each family on a list.

You should think of a dataset as a collection of d-tuples (a d-tuple is an
ordered list of d elements). Tuples differ from vectors, because we can always add
and subtract vectors, but we cannot necessarily add or subtract tuples. We will
always write N for the number of tuples in the dataset, and d for the number of
elements in each tuple. The number of elements will be the same for every tuple,
though sometimes we may not know the value of some elements in some tuples
(which means we must figure out how to predict their values, which we will do
much later).

Index net worth
1 100, 360
2 109, 770
3 96, 860
4 97, 860
5 108, 930
6 124, 330
7 101, 300
8 112, 710
9 106, 740
10 120, 170

Index Taste score Index Taste score
1 12.3 11 34.9
2 20.9 12 57.2
3 39 13 0.7
4 47.9 14 25.9
5 5.6 15 54.9
6 25.9 16 40.9
7 37.3 17 15.9
8 21.9 18 6.4
9 18.1 19 18
10 21 20 38.9

TABLE 2.1: On the left, net worths of people you meet in a bar, in US $; I made
this data up, using some information from the US Census. The index column,
which tells you which data item is being referred to, is usually not displayed in
a table because you can usually assume that the first line is the first item, and
so on. On the right, the taste score (I’m not making this up; higher is better)
for 20 different cheeses. This data is real (i.e. not made up), and it comes from
http:// lib.stat. cmu. edu/DASL/ Datafiles/Cheese.html .

Each element of a tuple has its own type. Some elements might be categorical.
For example, one dataset we shall see several times records entries for Gender;
Grade; Age; Race; Urban/Rural; School; Goals; Grades; Sports; Looks; and Money
for 478 children, so d = 11 and N = 478. In this dataset, each entry is categorical
data. Clearly, these tuples are not vectors because one cannot add or subtract (say)
Genders.

Most of our data will be vectors. We use the same notation for a tuple and
for a vector. We write a vector in bold, so x could represent a vector or a tuple
(the context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out
of them; we write the dataset made out of these items as {xi} (the i is to suggest
you are taking a set of items and making a dataset out of them).

In this chapter, we will work mainly with continuous data. We will see a
variety of methods for plotting and summarizing 1-tuples. We can build these
plots from a dataset of d-tuples by extracting the r’th element of each d-tuple.
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Mostly, we will deal with continuous data. All through the book, we will see many
datasets downloaded from various web sources, because people are so generous
about publishing interesting datasets on the web. In the next chapter, we will look
at 2-dimensional data, and we look at high dimensional data in chapter 4.

2.2 WHAT’S HAPPENING? - PLOTTING DATA

The very simplest way to present or visualize a dataset is to produce a table. Tables
can be helpful, but aren’t much use for large datasets, because it is difficult to get
any sense of what the data means from a table. As a continuous example, table 2.1
gives a table of the net worth of a set of people you might meet in a bar (I made
this data up). You can scan the table and have a rough sense of what is going on;
net worths are quite close to $ 100, 000, and there aren’t any very big or very small
numbers. This sort of information might be useful, for example, in choosing a bar.

People would like to measure, record, and reason about an extraordinary
variety of phenomena. Apparently, one can score the goodness of the flavor of
cheese with a number (bigger is better); table 2.1 gives a score for each of thirty
cheeses (I did not make up this data, but downloaded it from http://lib.stat.

cmu.edu/DASL/Datafiles/Cheese.html). You should notice that a few cheeses
have very high scores, and most have moderate scores. It’s difficult to draw more
significant conclusions from the table, though.

Gender Goal Gender Goal
boy Sports girl Sports
boy Popular girl Grades
girl Popular boy Popular
girl Popular boy Popular
girl Popular boy Popular
girl Popular girl Grades
girl Popular girl Sports
girl Grades girl Popular
girl Sports girl Grades
girl Sports girl Sports

TABLE 2.2: Chase and Dunner (?) collected data on what students thought made
other students popular. As part of this effort, they collected information on (a) the
gender and (b) the goal of students. This table gives the gender (“boy” or “girl”)
and the goal (to make good grades —“Grades”; to be popular — “Popular”; or
to be good at sports — “Sports”). The table gives this information for the first
20 of 478 students; the rest can be found at http:// lib.stat. cmu.edu/ DASL/
Datafiles/PopularKids.html . This data is clearly categorical, and not ordinal.

Table 2.2 shows a table for a set of categorical data. Psychologists collected
data from students in grades 4-6 in three school districts to understand what fac-
tors students thought made other students popular. This fascinating data set
can be found at http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html,
and was prepared by Chase and Dunner (?). Among other things, for each student
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they asked whether the student’s goal was to make good grades (“Grades”, for
short); to be popular (“Popular”); or to be good at sports (“Sports”). They have
this information for 478 students, so a table would be very hard to read. Table 2.2
shows the gender and the goal for the first 20 students in this group. It’s rather
harder to draw any serious conclusion from this data, because the full table would
be so big. We need a more effective tool than eyeballing the table.

boy girl
0

50

100

150

200

250

300
Number of children of each gender

Sports Grades Popular
0

50

100

150

200

250
Number of children choosing each goal

FIGURE 2.1: On the left, a bar chart of the number of children of each gender in
the Chase and Dunner study (). Notice that there are about the same number of
boys and girls (the bars are about the same height). On the right, a bar chart of
the number of children selecting each of three goals. You can tell, at a glance, that
different goals are more or less popular by looking at the height of the bars.

2.2.1 Bar Charts

A bar chart is a set of bars, one per category, where the height of each bar is
proportional to the number of items in that category. A glance at a bar chart often
exposes important structure in data, for example, which categories are common, and
which are rare. Bar charts are particularly useful for categorical data. Figure 2.1
shows such bar charts for the genders and the goals in the student dataset of Chase
and Dunner (). You can see at a glance that there are about as many boys as girls,
and that there are more students who think grades are important than students
who think sports or popularity is important. You couldn’t draw either conclusion
from Table 2.2, because I showed only the first 20 items; but a 478 item table is
very difficult to read.

2.2.2 Histograms

Data is continuous when a data item could take any value in some range or set of
ranges. In turn, this means that we can reasonably expect a continuous dataset
contains few or no pairs of items that have exactly the same value. Drawing a bar
chart in the obvious way — one bar per value — produces a mess of unit height
bars, and seldom leads to a good plot. Instead, we would like to have fewer bars,
each representing more data items. We need a procedure to decide which data
items count in which bar.
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FIGURE 2.2: On the left, a histogram of net worths from the dataset described in the
text and shown in table 2.1. On the right, a histogram of cheese goodness scores
from the dataset described in the text and shown in table 2.1.

A simple generalization of a bar chart is a histogram. We divide the range
of the data into intervals, which do not need to be equal in length. We think of
each interval as having an associated pigeonhole, and choose one pigeonhole for
each data item. We then build a set of boxes, one per interval. Each box sits on its
interval on the horizontal axis, and its height is determined by the number of data
items in the corresponding pigeonhole. In the simplest histogram, the intervals that
form the bases of the boxes are equally sized. In this case, the height of the box is
given by the number of data items in the box.

Figure 2.2 shows a histogram of the data in table 2.1. There are five bars —
by my choice; I could have plotted ten bars — and the height of each bar gives the
number of data items that fall into its interval. For example, there is one net worth
in the range between $102, 500 and $107, 500. Notice that one bar is invisible,
because there is no data in that range. This picture suggests conclusions consistent
with the ones we had from eyeballing the table — the net worths tend to be quite
similar, and around $100, 000.

Figure 2.2 shows a histogram of the data in table 2.1. There are six bars
(0-10, 10-20, and so on), and the height of each bar gives the number of data items
that fall into its interval — so that, for example, there are 9 cheeses in this dataset
whose score is greater than or equal to 10 and less than 20. You can also use the
bars to estimate other properties. So, for example, there are 14 cheeses whose score
is less than 20, and 3 cheeses with a score of 50 or greater. This picture is much
more helpful than the table; you can see at a glance that quite a lot of cheeses have
relatively low scores, and few have high scores.

2.2.3 Conditional Histograms

Most people believe that normal body temperature is 98.4o in Fahrenheit. If you
take other people’s temperatures often (for example, you might have children),
you know that some individuals tend to run a little warmer or a little cooler than
this number. I found data giving the body temperature of a set of individuals at
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FIGURE 2.3: On top, a histogram of body temperatures, from the dataset published
at http: // www2.stetson.edu/~ jrasp/data. htm . These seem to be clustered
fairly tightly around one value. The bottom row shows histograms for each gender
(I don’t know which is which). It looks as though one gender runs slightly cooler
than the other.

http://www2.stetson.edu/~jrasp/data.htm. As you can see from the histogram
(figure 2.3), the body temperatures cluster around a small set of numbers. But what
causes the variation?

One possibility is gender. We can investigate this possibility by compar-
ing a histogram of temperatures for males with histogram of temperatures for fe-
males. Such histograms are sometimes called conditional histograms or class-
conditional histograms, because each histogram is conditioned on something (in
this case, the histogram uses only data that comes from gender).

The dataset gives genders (as 1 or 2 - I don’t know which is male and which
female). Figure 2.3 gives the class conditional histograms. It does seem like indi-
viduals of one gender run a little cooler than individuals of the other, although we
don’t yet have mechanisms to test this possibility in detail (chapter 1).
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2.3 PLOTTING 2D DATA

We take a dataset, choose two different entries, and extract the corresponding
elements from each tuple. The result is a dataset consisting of 2-tuples, and we
think of this as a two dimensional dataset. The first step is to plot this dataset in a
way that reveals relationships. The topic of how best to plot data fills many books,
and we can only scratch the surface here. Categorical data can be particularly
tricky, because there are a variety of choices we can make, and the usefulness of
each tends to depend on the dataset and to some extent on one’s cleverness in
graphic design (section 2.3.1).

For some continuous data, we can plot the one entry as a function of the other
(so, for example, our tuples might consist of the date and the number of robberies;
or the year and the price of lynx pelts; and so on, section 2.3.2).

Mostly, we use a simple device, called a scatter plot. Using and thinking about
scatter plots will reveal a great deal about the relationships between our data items
(section 2.3.3).

b−Pb−G b−S g−Sg−G g−P
0

50

100

150
boy−Popular

boy−Grades

boy−Sports
girl−Sports

girl−Grades

girl−Popular

Number of each gender choosing each goal

FIGURE 2.4: I sorted the children in the Chase and Dunner study into six categories
(two genders by three goals), and counted the number of children that fell into each
cell. I then produced the bar chart on the left, which shows the number of children
of each gender, selecting each goal. On the right, a pie chart of this information.
I have organized the pie chart so it is easy to compare boys and girls by eye — start
at the top; going down on the left side are boy goals, and on the right side are girl
goals. Comparing the size of the corresponding wedges allows you to tell what goals
boys (resp. girls) identify with more or less often.

2.3.1 Categorical Data, Counts, and Charts

Categorical data is a bit special. Assume we have a dataset with several categorical
descriptions of each data item. One way to plot this data is to think of it as belong-
ing to a richer set of categories. Assume the dataset has categorical descriptions,
which are not ordinal. Then we can construct a new set of categories by looking
at each of the cases for each of the descriptions. For example, in the Chase and
Dunner data of table 2.2, our new categories would be: “boy-sports”; “girl-sports”;
“boy-popular”; “girl-popular”; “boy-grades”; and “girl-grades”. A large set of cat-
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egories like this can result in a poor bar chart, though, because there may be too
many bars to group the bars successfully. Figure 2.4 shows such a bar chart. Notice
that it is hard to group categories by eye to compare; for example, you can see that
slightly more girls think grades are important than boys do, but to do so you need
to compare two bars that are separated by two other bars. An alternative is a pie

chart, where a circle is divided into sections whose angle is proportional to the
size of the data item. You can think of the circle as a pie, and each section as a
slice of pie. Figure 2.4 shows a pie chart, where each section is proportional to the
number of students in its category. In this case, I’ve used my judgement to lay the
categories out in a way that makes comparisons easy. I’m not aware of any tight
algorithm for doing this, though.

Pie charts have problems, because it is hard to judge small differences in area
accurately by eye. For example, from the pie chart in figure 2.4, it’s hard to tell
that the “boy-sports” category is slightly bigger than the “boy-popular” category
(try it; check using the bar chart). For either kind of chart, it is quite important
to think about what you plot. For example, the plot of figure 2.4 shows the total
number of respondents, and if you refer to figure 2.1, you will notice that there
are slightly more girls in the study. Is the percentage of boys who think grades are
important smaller (or larger) than the percentage of girls who think so? you can’t
tell from these plots, and you’d have to plot the percentages instead.
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FIGURE 2.5: A heat map of the Chase and Dunner data. The color of each cell
corresponds to the count of the number of elements of that type. The colorbar at
the side gives the correspondence between color and count. You can see at a glance
that the number of boys and girls who prefer grades is about the same; that about
the same number of boys prefer sports and popularity, with sports showing a mild
lead; and that more girls prefer popularity to sports.

An alternative to a pie chart that is very useful for two dimensional data is
a heat map. This is a method of displaying a matrix as an image. Each entry of
the matrix is mapped to a color, and the matrix is represented as an image. For
the Chase and Dunner study, I constructed a matrix where each row corresponds
to a choice of “sports”, “grades”, or “popular”, and each column corresponds to a
choice of “boy” or “girl”. Each entry contains the count of data items of that type.
Zero values are represented as white; the largest values as red; and as the value
increases, we use an increasingly saturated pink. This plot is shown in figure 2.5

If the categorical data is ordinal, the ordering offers some hints for making
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-2 -1 0 1 2
-2 24 5 0 0 1
-1 6 12 3 0 0
0 2 4 13 6 0
1 0 0 3 13 2
2 0 0 0 1 5

TABLE 2.3: I simulated data representing user evaluations of a user interface.
Each cell in the table on the left contains the count of users rating “ease of use”
(horizontal, on a scale of -2 -very bad- to 2 -very good) vs. “enjoyability” (vertical,
same scale). Users who found the interface hard to use did not like using it either.
While this data is categorical, it’s also ordinal, so that the order of the cells is
determined. It wouldn’t make sense, for example, to reorder the columns of the
table or the rows of the table.
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FIGURE 2.6: On the left, a 3D bar chart of the data. The height of each bar is given
by the number of users in each cell. This figure immediately reveals that users
who found the interface hard to use did not like using it either. However, some of
the bars at the back are hidden, so some structure might be hard to infer. On the
right, a heat map of this data. Again, this figure immediately reveals that users
who found the interface hard to use did not like using it either. It’s more apparent
that everyone disliked the interface, though, and it’s clear that there is no important
hidden structure.

a good plot. For example, imagine we are building a user interface. We build an
initial version, and collect some users, asking each to rate the interface on scales for
“ease of use” (-2, -1, 0, 1, 2, running from bad to good) and “enjoyability” (again,
-2, -1, 0, 1, 2, running from bad to good). It is natural to build a 5x5 table, where
each cell represents a pair of “ease of use” and “enjoyability” values. We then count
the number of users in each cell, and build graphical representations of this table.
One natural representation is a 3D bar chart, where each bar sits on its cell in
the 2D table, and the height of the bars is given by the number of elements in the
cell. Table 2.3 shows a table and figure 2.6 shows a 3D bar chart for some simulated
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FIGURE 2.7: Left, the number of burglaries in Hyde Park, by month. Right, a plot
of the number of lynx pelts traded at Hudson Bay and of the price paid per pelt, as
a function of the year. Notice the scale, and the legend box (the number of pelts is
scaled by 100).

data. The main difficulty with a 3D bar chart is that some bars are hidden behind
others. This is a regular nuisance. You can improve things by using an interactive
tool to rotate the chart to get a nice view, but this doesn’t always work. Heatmaps
don’t suffer from this problem (Figure 2.6), another reason they are a good choice.

2.3.2 Series

Sometimes one component of a dataset gives a natural ordering to the data. For
example, we might have a dataset giving the maximum rainfall for each day of the
year. We could record this either by using a two-dimensional representation, where
one dimension is the number of the day and the other is the temperature, or with a
convention where the i’th data item is the rainfall on the i’th day. For example, at
http://lib.stat.cmu.edu/DASL/Datafiles/timeseriesdat.html, you can find
four datasets indexed in this way. It is natural to plot data like this as a function
of time. From this dataset, I extracted data giving the number of burglaries each
month in a Chicago suburb, Hyde Park. I have plotted part this data in Figure 2.7
(I left out the data to do with treatment effects). It is natural to plot a graph of
the burglaries as a function of time (in this case, the number of the month). The
plot shows each data point explicitly. I also told the plotting software to draw
lines joining data points, because burglaries do not all happen on a specific day.
The lines suggest, reasonably enough, the rate at which burglaries are happening
between data points.

As another example, at http://lib.stat.cmu.edu/datasets/Andrews/ you
can find a dataset that records the number of lynx pelts traded to the Hudson’s Bay
company and the price paid for each pelt. This version of the dataset appeared first
in table 3.2 of Data: a Collection of Problems from many Fields for the Student
and Research Worker by D.F. Andrews and A.M. Herzberg, published by Springer
in 1985. I have plotted it in figure 2.7. The dataset is famous, because it shows
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FIGURE 2.8: Snow’s scatter plot of cholera deaths on the left. Each cholera death
is plotted as a small bar on the house in which the bar occurred (for example, the
black arrow points to one stack of these bars, indicating many deaths, in the detail
on the right). Notice the fairly clear pattern of many deaths close to the Broad
street pump (grey arrow in the detail), and fewer deaths further away (where it was
harder to get water from the pump).

a periodic behavior in the number of pelts (which is a good proxy for the number
of lynx), which is interpreted as a result of predator-prey interactions. Lynx eat
rabbits. When there are many rabbits, lynx kittens thrive, and soon there will
be many lynx; but then they eat most of the rabbits, and starve, at which point
the rabbit population rockets. You should also notice that after about 1900, prices
seem to have gone up rather quickly. I don’t know why this is. There is also some
suggestion, as there should be, that prices are low when there are many pelts, and
high when there are few.

2.3.3 Scatter Plots for Spatial Data

It isn’t always natural to plot data as a function. For example, in a dataset con-
taining the temperature and blood pressure of a set of patients, there is no reason
to believe that temperature is a function of blood pressure, or the other way round.
Two people could have the same temperature, and different blood pressures, or
vice-versa. As another example, we could be interested in what causes people to
die of cholera. We have data indicating where each person died in a particular
outbreak. It isn’t helpful to try and plot such data as a function.

The scatter plot is a powerful way to deal with this situation. In the first
instance, assume that our data points actually describe points on the a real map.
Then, to make a scatter plot, we make a mark on the map at a place indicated by
each data point. What the mark looks like, and how we place it, depends on the
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FIGURE 2.9: Left, a scatter plot of arsenic levels in US groundwater, prepared by
the US Geological Survey (you can find the data at http:// water.usgs. gov/

GIS/metadata/usgswrd/XML/ arsenic_map. xml . Here the shape and color of
each marker shows the amount of arsenic, and the spatial distribution of the mark-
ers shows where the wells were sampled. Right, the usage of Nitrogen (a com-
ponent of fertilizer) by US county in 1991, prepared by the US Geological Survey
(you can find the data at http:// water.usgs.gov/ GIS/ metadata/usgswrd/

XML/nit91.xml ). In this variant of a scatter plot (which usually takes specialized
software to prepare) one fills each region with a color indicating the data in that
region.

particular dataset, what we are looking for, how much we are willing to work with
complex tools, and our sense of graphic design.

Figure 2.8 is an extremely famous scatter plot, due to John Snow. Snow —
one of the founders of epidemiology — used a scatter plot to reason about a cholera
outbreak centered on the Broad Street pump in London in 1854. At that time,
the mechanism that causes cholera was not known. Snow plotted cholera deaths as
little bars (more bars, more deaths) on the location of the house where the death
occurred. More bars means more deaths, fewer bars means fewer deaths. There
are more bars per block close to the pump, and few far away. This plot offers quite
strong evidence of an association between the pump and death from cholera. Snow
used this scatter plot as evidence that cholera was associated with water, and that
the Broad Street pump was the source of the tainted water.

Figure 2.9 shows a scatter plot of arsenic levels in groundwater for the United
States, prepared by the US Geological Survey. The data set was collected by
Focazio and others in 2000; by Welch and others in 2000; and then updated by
Ryker 2001. It can be found at http://water.usgs.gov/GIS/metadata/usgswrd/
XML/arsenic_map.xml. One variant of a scatter plot that is particularly useful
for geographic data occurs when one fills regions on a map with different colors,
following the data in that region. Figure 2.9 shows the nitrogen usage by US county
in 1991; again, this figure was prepared by the US Geological Survey.
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FIGURE 2.10: A scatter plot of body temperature against heart rate, from the dataset
at http:// www2.stetson.edu/ ~ jrasp/data.htm ; normtemp.xls. I have sepa-
rated the two genders by plotting a different symbol for each (though I don’t know
which gender is indicated by which letter); if you view this in color, the differences
in color makes for a greater separation of the scatter. This picture suggests, but
doesn’t conclusively establish, that there isn’t much dependence between tempera-
ture and heart rate, and any dependence between temperature and heart rate isn’t
affected by gender.
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FIGURE 2.11: A scatter plots of weight against height, from the dataset at http://
www2.stetson.edu/ ~ jrasp/data.htm . Left: Notice how two outliers dominate
the picture, and to show the outliers, the rest of the data has had to be bunched up.
Right shows the data with the outliers removed. The structure is now somewhat
clearer.

2.3.4 Scatter Plots — Scale is a problem

Scatter plots are natural for geographic data, but a scatter plot is a useful, simple
tool for ferreting out associations in other kinds of data as well. Now we need
some notation. Assume we have a dataset {x} of N data items, x1, . . . , xN . Each
data item is a d dimensional vector (so its components are numbers). We wish to
investigate the relationship between two components of the dataset. For example,
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FIGURE 2.12: Scatter plots of weight against height, from the dataset at http://
www2.stetson.edu/ ~ jrasp/data.htm . Left: data with two outliers removed,
as in figure 2.11. Right: this data, rescaled slightly. Notice how the data looks less
spread out. But there is no difference between the datasets. Instead, your eye is
easily confused by a change of scale.
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FIGURE 2.13: A scatter plot of the price of lynx pelts against the number of pelts.
I have plotted data for 1901 to the end of the series as circles, and the rest of the
data as *’s. It is quite hard to draw any conclusion from this data, because the scale
is confusing. Furthermore, the data from 1900 on behaves quite differently from the
other data.

we might be interested in the 7’th and the 13’th component of the dataset. We
will produce a two-dimensional plot, one dimension for each component. It does
not really matter which component is plotted on the x-coordinate and which on
the y-coordinate (though it will be some pages before this is clear). But it is very
difficult to write sensibly without talking about the x and y coordinates.

We will make a two-dimensional dataset out of the components that interest
us. We must choose which component goes first in the resulting 2-vector. We will
plot this component on the x-coordinate (and we refer to it as the x-coordinate),
and to the other component as the y-coordinate. This is just to make it easier to
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describe what is going on; there’s no important idea here. It really will not matter
which is x and which is y. The two components make a dataset {xi} = {(xi, yi)}.
To produce a scatter plot of this data, we plot a small shape at the location of each
data item.

Such scatter plots are very revealing. For example, figure 2.10 shows a scatter
plot of body temperature against heart rate for humans. In this dataset, the gender
of the subject was recorded (as “1” or “2” — I don’t know which is which), and
so I have plotted a “1” at each data point with gender “1”, and so on. Looking
at the data suggests there isn’t much difference between the blob of “1” labels and
the blob of “2” labels, which suggests that females and males are about the same
in this respect.

The scale used for a scatter plot matters. For example, plotting lengths in
meters gives a very different scatter from plotting lengths in millimeters. Fig-
ure 2.11 shows two scatter plots of weight against height. Each plot is from the
same dataset, but one is scaled so as to show two outliers. Keeping these out-
liers means that the rest of the data looks quite concentrated, just because the
axes are in large units. In the other plot, the axis scale has changed (so you can’t
see the outliers), but the data looks more scattered. This may or may not be a
misrepresentation. Figure 2.12 compares the data with outliers removed, with the
same plot on a somewhat different set of axes. One plot looks as though increasing
height corresponds to increasing weight; the other looks as though it doesn’t. This
is purely due to deceptive scaling — each plot shows the same dataset.

Dubious data can also contribute to scaling problems. Recall that, in fig-
ure 2.7, price data before and after 1900 appeared to behave differently. Figure 2.13
shows a scatter plot of the lynx data, where I have plotted number of pelts against
price. I plotted the post-1900 data as circles, and the rest as asterisks. Notice
how the circles seem to form a quite different figure, which supports the suggestion
that something interesting happened around 1900. The scatter plot does not seem
to support the idea that prices go up when supply goes down, which is puzzling,
because this is a pretty reliable idea. This turns out to be a scale effect. Scale is
an important nuisance, and it’s easy to get misled by scale effects.
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Summaries and Plots

3.1 SUMMARIZING 1D DATA

For the rest of this chapter, we will assume that data items take values that are
continuous real numbers. Furthermore, we will assume that values can be added,
subtracted, and multiplied by constants in a meaningful way. Human heights are
one example of such data; you can add two heights, and interpret the result as a
height (perhaps one person is standing on the head of the other). You can subtract
one height from another, and the result is meaningful. You can multiply a height
by a constant — say, 1/2 — and interpret the result (A is half as high as B). Not
all data is like this. Categorical data is often not like this. For example, you could
not add “Grades” to “Popular” in any useful way.

3.1.1 The Mean

One simple and effective summary of a set of data is its mean. This is sometimes
known as the average of the data.

Definition: 3.1 Mean

Assume we have a dataset {x} of N data items, x1, . . . , xN . Their mean
is

mean ({x}) = 1

N

i=N
∑

i=1

xi.

For example, assume you’re in a bar, in a group of ten people who like to talk
about money. They’re average people, and their net worth is given in table 2.1 (you
can choose who you want to be in this story). The mean of this data is $107, 903.

An important interpretation of the mean is that it is the best guess of the
value of a new data item, given no information at all. In the bar example, if a new
person walked into this bar, and you had to guess that person’s net worth, you
should choose $107, 903.

Properties of the Mean The mean has several important properties you
should remember:

• Scaling data scales the mean: or mean ({kxi}) = kmean ({xi}).

• Translating data translates the mean: or mean ({xi + c}) = mean ({xi}) + c.

21
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• The sum of signed differences from the mean is zero. This means that

N
∑

i=1

(xi −mean ({xi})) = 0.

• Choose the number µ such that the sum of squared distances of data points
to µ is minimized. That number is the mean. In notation

arg min
µ

∑

i

(xi − µ)2 = mean ({xi})

These properties are easy to prove (and so easy to remember). All but one proof
is relegated to the exercises.

Proposition:
arg min

µ

∑

i(xi − µ)2 = mean ({x})

Proof: Choose the number µ such that the sum of squared distances of data
points to µ is minimized. That number is the mean. In notation:

arg min
µ

∑

i

(xi − µ)2 = mean ({x})

We can show this by actually minimizing the expression. We must have that the
derivative of the expression we are minimizing is zero at the value of µ we are
seeking. So we have

d

dµ

N
∑

i=1

(xi − µ)2 =

N
∑

i=1

2(xi − µ)

= 2

N
∑

i=1

(xi − µ)

= 0

so that 2Nmean ({x})− 2Nµ = 0, which means that µ = mean ({x}).
Property 3.1: The Average Squared Distance to the Mean is Minimized

3.1.2 Standard Deviation and Variance

We would also like to know the extent to which data items are close to the mean.
This information is given by the standard deviation, which is the root mean
square of the offsets of data from the mean.
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Definition: 3.2 Standard deviation

Assume we have a dataset {x} of N data items, x1, . . . , xN . The stan-
dard deviation of this dataset is is:

std (xi) =

√

√

√

√

1

N

i=N
∑

i−1

(xi −mean ({x}))2 =
√

mean ({(xi −mean ({x}))2}).

You should think of the standard deviation as a scale. It measures the size of
the average deviation from the mean for a dataset. When the standard deviation
of a dataset is large, there are many items with values much larger than, or much
smaller than, the mean. When the standard deviation is small, most data items
have values close to the mean. This means it is helpful to talk about how many
standard devations away from the mean a particular data item is. Saying that data
item xj is “within k standard deviations from the mean” means that

abs (xj −mean ({x})) ≤ kstd (xi).

Similarly, saying that data item xj is “more than k standard deviations from the
mean” means that

abs (xi −mean ({x})) > kstd (x).

As I will show below, there must be some data at least one standard deviation
away from the mean, and there can be very few data items that are many standard
deviations away from the mean.

Properties of the Standard Deviation Standard deviation has very im-
portant properties:

• Translating data does not change the standard deviation, i.e. std (xi + c) =
std (xi).

• Scaling data scales the standard deviation, i.e. std (kxi) = kstd (xi).

• For any dataset, there can be only a few items that are many standard devi-
ations away from the mean. In particular, assume we have N data items, xi,
whose standard deviation is σ. Then there are at most 1

k2 data points lying
k or more standard deviations away from the mean.

• For any dataset, there must be at least one data item that is at least one
standard deviation away from the mean.

The first two properties are easy to prove, and are relegated to the exercises.
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Proposition: Assume we have a dataset {x} of N data items, x1, . . . , xN .
Assume the standard deviation of this dataset is std (x) = σ. Then there are at
most 1

k2 data points lying k or more standard deviations away from the mean.

Proof: Assume the mean is zero. There is no loss of generality here, because
translating data translates the mean, but doesn’t change the standard deviation.
The way to prove this is to construct a dataset with the largest possible fraction
r of data points lying k or more standard deviations from the mean. To achieve
this, our data should have N(1 − r) data points each with the value 0, because
these contribute 0 to the standard deviation. It should have Nr data points with
the value kσ; if they are further from zero than this, each will contribute more
to the standard deviation, so the fraction of such points will be fewer. Because

std (x) = σ =

√

∑

i x
2
i

N

we have that, for this rather specially constructed dataset,

σ =

√

Nrk2σ2

N

so that

r =
1

k2
.

We constructed the dataset so that r would be as large as possible, so

r ≥ 1

k2

for any kind of data at all.

Property 3.2: For any dataset, it is hard for data items to get many standard
deviations away from the mean.

The bound of box 3.1.2 is true for any kind of data. This bound implies that,
for example, at most 100% of any dataset could be one standard deviation away
from the mean, 25% of any dataset is 2 standard deviations away from the mean
and at most 11% of any dataset could be 3 standard deviations away from the
mean. But the configuration of data that achieves this bound is very unusual. This
means the bound tends to wildly overstate how much data is far from the mean
for most practical datasets. Most data has more random structure, meaning that
we expect to see very much less data far from the mean than the bound predicts.
For example, much data can reasonably be modelled as coming from a normal
distribution (a topic we’ll go into later). For such data, we expect that about
68% of the data is within one standard deviation of the mean, 95% is within two
standard deviations of the mean, and 99.7% is within three standard deviations
of the mean, and the percentage of data that is within ten standard deviations of
the mean is essentially indistinguishable from 100%. This kind of behavior is quite
common; the crucial point about the standard deviation is that you won’t see much
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data that lies many standard deviations from the mean, because you can’t.

Proposition: (std (x))2 ≤ maxi(xi −mean ({x}))2.

Proof: You can see this by looking at the expression for standard deviation.
We have

std (x) =

√

√

√

√

1

N

i=N
∑

i−1

(xi −mean ({x}))2.

Now, this means that

N(std (x))2 =

i=N
∑

i−1

(xi −mean ({x}))2.

But
i=N
∑

i−1

(xi −mean ({x}))2 ≤ N max
i

(xi −mean ({x}))2

so
(std (x))2 ≤ max

i
(xi −mean ({x}))2.

Property 3.3: For any dataset, there must be at least one data item that is at
least one standard deviation away from the mean.

Boxes 3.1.2 and 3.1.2 mean that the standard deviation is quite informative.
Very little data is many standard deviations away from the mean; similarly, at least
some of the data should be one or more standard deviations away from the mean.
So the standard deviation tells us how data points are scattered about the mean.

Potential point of confusion: There is an ambiguity that comes up often
here because two (very slightly) different numbers are called the standard deviation
of a dataset. One — the one we use in this chapter — is an estimate of the scale
of the data, as we describe it. The other differs from our expression very slightly;
one computes

√

∑

i(xi −mean ({x}))2
N − 1

(notice the N −1 for our N). If N is large, this number is basically the same as the
number we compute, but for smaller N there is a difference that can be significant.
Irritatingly, this number is also called the standard deviation; even more irritatingly,
we will have to deal with it, but not yet. I mention it now because you may look
up terms I have used, find this definition, and wonder. Don’t worry - the N in our
expressions is the right thing to use for what we’re doing.

3.1.3 Variance

It turns out that thinking in terms of the square of the standard deviation, which
is known as the variance, will allow us to generalize our summaries to apply to
higher dimensional data.
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Definition: 3.3 Variance

Assume we have a dataset {x} of N data items, x1, . . . , xN . where
N > 1. Their variance is:

var ({x}) = 1

N

(

i=N
∑

i−1

(xi −mean ({x}))2
)

= mean
({

(xi −mean ({x}))2
})

.

One good way to think of the variance is as the mean-square error you would
incur if you replaced each data item with the mean. Another is that it is the square
of the standard deviation.

Properties of the Variance The properties of the variance follow from
the fact that it is the square of the standard deviation. We have that:

• Translating data does not change the variance, i.e. var ({x+ c}) = var ({x}).

• Scaling data scales the variance by a square of the scale, i.e. var ({kx}) =
k2var ({x}).

While one could restate the other two properties of the standard deviation in terms
of the variance, it isn’t really natural to do so. The standard deviation is in the
same units as the original data, and should be thought of as a scale. Because the
variance is the square of the standard deviation, it isn’t a natural scale (unless you
take its square root!).

3.1.4 The Median

One problem with the mean is that it can be affected strongly by extreme values.
Go back to the bar example, of section 3.1.1. Now Warren Buffett (or Bill Gates,
or your favorite billionaire) walks in. What happened to the average net worth?

Assume your billionaire has net worth $ 1, 000, 000, 000. Then the mean net
worth suddenly has become

10× $107, 903+ $1, 000, 000, 000

11
= $91, 007, 184

But this mean isn’t a very helpful summary of the people in the bar. It is prob-
ably more useful to think of the net worth data as ten people together with one
billionaire. The billionaire is known as an outlier.

One way to get outliers is that a small number of data items are very dif-
ferent, due to minor effects you don’t want to model. Another is that the data
was misrecorded, or mistranscribed. Another possibility is that there is just too
much variation in the data to summarize it well. For example, a small number
of extremely wealthy people could change the average net worth of US residents
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dramatically, as the example shows. An alternative to using a mean is to use a
median.

Definition: 3.4 Median

The median of a set of data points is obtained by sorting the data
points, and finding the point halfway along the list. If the list is of
even length, it’s usual to average the two numbers on either side of the
middle. We write

median ({xi})
for the operator that returns the median.

For example,
median ({3, 5, 7}) = 5,

median ({3, 4, 5, 6, 7}) = 5,

and
median ({3, 4, 5, 6}) = 4.5.

For much, but not all, data, you can expect that roughly half the data is smaller
than the median, and roughly half is larger than the median. Sometimes this
property fails. For example,

median ({1, 2, 2, 2, 2, 2, 2, 2, 3}) = 2.

With this definition, the median of our list of net worths is $107, 835. If we insert
the billionaire, the median becomes $108, 930. Notice by how little the number has
changed — it remains an effective summary of the data.

Properties of the median You can think of the median of a dataset as
giving the “middle” or “center” value. This means it is rather like the mean, which
also gives a (slightly differently defined) “middle” or “center” value. The mean has
the important properties that if you translate the dataset, the mean translates, and
if you scale the dataset, the mean scales. The median has these properties, too:

• Translating data translates the median, i.e. median ({x+ c}) = median ({x})+
c.

• Scaling data scales the median by the same scale, i.e. median ({kx}) =
kmedian ({x}).

Each is easily proved, and proofs are relegated to the exercises.

3.1.5 Interquartile Range

Outliers can affect standard deviations severely, too. For our net worth data, the
standard deviation without the billionaire is $9265, but if we put the billionaire
in there, it is $3.014 × 108. When the billionaire is in the dataset, all but one of
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the data items lie about a third of a standard deviation away from the mean; the
other one (the billionaire) is many standard deviations away from the mean. In
this case, the standard deviation has done its work of informing us that there are
huge changes in the data, but isn’t really helpful.

The problem is this: describing the net worth data with billionaire as a having
a mean of $9.101×107 with a standard deviation of $3.014×108 really isn’t terribly
helpful. Instead, the data really should be seen as a clump of values that are
near $100, 000 and moderately close to one another, and one massive number (the
billionaire outlier).

One thing we could do is simply remove the billionaire and compute mean
and standard deviation. This isn’t always easy to do, because it’s often less obvious
which points are outliers. An alternative is to follow the strategy we did when we
used the median. Find a summary that describes scale, but is less affected by
outliers than the standard deviation. This is the interquartile range; to define
it, we need to define percentiles and quartiles, which are useful anyway.

Definition: 3.5 Percentile

The k’th percentile is the value such that k% of the data is less than or
equal to that value. We write percentile({x}, k) for the k’th percentile
of dataset {x}.

Definition: 3.6 Quartiles

The first quartile of the data is the value such that 25% of the data is less
than or equal to that value (i.e. percentile({x}, 25)). The second quar-
tile of the data is the value such that 50% of the data is less than or equal
to that value, which is usually the median (i.e. percentile({x}, 50)). The
third quartile of the data is the value such that 75% of the data is less
than or equal to that value (i.e. percentile({x}, 75)).

Definition: 3.7 Interquartile Range

The interquartile range of a dataset {x} is iqr{x} = percentile({x}, 75)−
percentile({x}, 25).

Like the standard deviation, the interquartile range gives an estimate of how
widely the data is spread out. But it is quite well-behaved in the presence of
outliers. For our net worth data without the billionaire, the interquartile range is
$12350; with the billionaire, it is $17710.
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Properties of the interquartile range You can think of the interquartile
range of a dataset as giving an estimate of the scale of the difference from the mean.
This means it is rather like the standard deviation, which also gives a (slightly
differently defined) scale. The standard deviation has the important properties
that if you translate the dataset, the standard deviation translates, and if you
scale the dataset, the standard deviation scales. The interquartile range has these
properties, too:

• Translating data does not change the interquartile range, i.e. iqr{x+ c} =
iqr{x}.

• Scaling data scales the interquartile range by the same scale, i.e. iqr{kx} =
k2iqr{x}.

Each is easily proved, and proofs are relegated to the exercises.

3.1.6 Using Summaries Sensibly

One should be careful how one summarizes data. For example, the statement
that “the average US family has 2.6 children” invites mockery (the example is from
Andrew Vickers’ bookWhat is a p-value anyway?), because you can’t have fractions
of a child — no family has 2.6 children. A more accurate way to say things might
be “the average of the number of children in a US family is 2.6”, but this is clumsy.
What is going wrong here is the 2.6 is a mean, but the number of children in a
family is a categorical variable. Reporting the mean of a categorical variable is
often a bad idea, because you may never encounter this value (the 2.6 children).
For a categorical variable, giving the median value and perhaps the interquartile
range often makes much more sense than reporting the mean.

For continuous variables, reporting the mean is reasonable because you could
expect to encounter a data item with this value, even if you haven’t seen one in
the particular data set you have. It is sensible to look at both mean and median;
if they’re significantly different, then there is probably something going on that is
worth understanding. You’d want to plot the data using the methods of the next
section before you decided what to report.

You should also be careful about how precisely numbers are reported (equiv-
alently, the number of significant figures). Numerical and statistical software will
produce very large numbers of digits freely, but not all are always useful. This is a
particular nuisance in the case of the mean, because you might add many numbers,
then divide by a large number; in this case, you will get many digits, but some
might not be meaningful. For example, Vickers (ibid) describes a paper reporting
the mean length of pregnancy as 32.833 weeks. That fifth digit suggests we know
the mean length of pregnancy to about 0.001 weeks, or roughly 10 minutes. Neither
medical interviewing nor people’s memory for past events is that detailed. Further-
more, when you interview them about embarrassing topics, people quite often lie.
There is no prospect of knowing this number with this precision.

People regularly report silly numbers of digits because it is easy to miss the
harm caused by doing so. But the harm is there: you are implying to other people,
and to yourself, that you know something more accurately than you do. At some
point, someone will suffer for it.
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FIGURE 3.1: Many histograms are unimodal, like the example on the top; there is
one peak, or mode. Some are bimodal (two peaks; bottom left) or even multimodal
(two or more peaks; bottom right). One common reason (but not the only reason)
is that there are actually two populations being conflated in the histograms. For
example, measuring adult heights might result in a bimodal histogram, if male and
female heights were slightly different. As another example, measuring the weight
of dogs might result in a multimodal histogram if you did not distinguish between
breeds (eg chihauhau, terrier, german shepherd, pyranean mountain dog, etc.).

3.2 PLOTS AND SUMMARIES

Knowing the mean, standard deviation, median and interquartile range of a dataset
gives us some information about what its histogram might look like. In fact, the
summaries give us a language in which to describe a variety of characteristic proper-
ties of histograms that are worth knowing about (Section 3.2.1). Quite remarkably,
many different datasets have the same shape of histogram (Section 3.2.2). For such
data, we know roughly what percentage of data items are how far from the mean.

Complex datasets can be difficult to interpret with histograms alone, because
it is hard to compare many histograms by eye. Section 3.2.3 describes a clever plot
of various summaries of datasets that makes it easier to compare many cases.

3.2.1 Some Properties of Histograms

The tails of a histogram are the relatively uncommon values that are significantly
larger (resp. smaller) than the value at the peak (which is sometimes called the
mode). A histogram is unimodal if there is only one peak; if there are more than
one, it is multimodal, with the special term bimodal sometimes being used for
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FIGURE 3.2: On the top, an example of a symmetric histogram, showing its tails
(relatively uncommon values that are significantly larger or smaller than the peak
or mode). Lower left, a sketch of a left-skewed histogram. Here there are few
large values, but some very small values that occur with significant frequency. We
say the left tail is “long”, and that the histogram is left skewed (confusingly, this
means the main bump is to the right). Lower right, a sketch of a right-skewed
histogram. Here there are few small values, but some very large values that occur
with significant frequency. We say the right tail is “long”, and that the histogram
is right skewed (confusingly, this means the main bump is to the left).

the case where there are two peaks (Figure 3.1). The histograms we have seen
have been relatively symmetric, where the left and right tails are about as long as
one another. Another way to think about this is that values a lot larger than the
mean are about as common as values a lot smaller than the mean. Not all data is
symmetric. In some datasets, one or another tail is longer (figure 3.2). This effect
is called skew.

Skew appears often in real data. SOCR (the Statistics Online Computa-
tional Resource) publishes a number of datasets. Here we discuss a dataset of
citations to faculty publications. For each of five UCLA faculty members, SOCR
collected the number of times each of the papers they had authored had been
cited by other authors (data at http://wiki.stat.ucla.edu/socr/index.php/

SOCR_Data_Dinov_072108_H_Index_Pubs). Generally, a small number of papers
get many citations, and many papers get few citations. We see this pattern in the
histograms of citation numbers (figure 3.3). These are very different from (say) the
body temperature pictures. In the citation histograms, there are many data items
that have very few citations, and few that have many citations. This means that
the right tail of the histogram is longer, so the histogram is skewed to the right.

One way to check for skewness is to look at the histogram; another is to
compare mean and median (though this is not foolproof). For the first citation
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FIGURE 3.3: On the left, a histogram of citations for a faculty member, from
data at http:// wiki.stat. ucla.edu/ socr/index.php/ SOCR_Data_ Dinov_

072108_H_ Index_Pubs . Very few publications have many citations, and many
publications have few. This means the histogram is strongly right-skewed. On the
right, a histogram of birth weights for 44 babies borne in Brisbane in 1997. This
histogram looks slightly left-skewed.

histogram, the mean is 24.7 and the median is 7.5; for the second, the mean is 24.4,
and the median is 11. In each case, the mean is a lot bigger than the median. Recall
the definition of the median (form a ranked list of the data points, and find the
point halfway along the list). For much data, the result is larger than about half
of the data set and smaller than about half the dataset. So if the median is quite
small compared to the mean, then there are many small data items and a small
number of data items that are large — the right tail is longer, so the histogram is
skewed to the right.

Left-skewed data also occurs; figure 3.3 shows a histogram of the birth weights
of 44 babies born in Brisbane, in 1997 (from http://www.amstat.org/publications/

jse/jse_data_archive.htm). This data appears to be somewhat left-skewed, as
birth weights can be a lot smaller than the mean, but tend not to be much larger
than the mean.

Skewed data is often, but not always, the result of constraints. For example,
good obstetrical practice tries to ensure that very large birth weights are rare (birth
is typically induced before the baby gets too heavy), but it may be quite hard to
avoid some small birth weights. This could could skew birth weights to the left
(because large babies will get born, but will not be as heavy as they could be if
obstetricians had not interfered). Similarly, income data can be skewed to the right
by the fact that income is always positive. Test mark data is often skewed —
whether to right or left depends on the circumstances — by the fact that there is
a largest possible mark and a smallest possible mark.

3.2.2 Standard Coordinates and Normal Data

It is useful to look at lots of histograms, because it is often possible to get some
useful insights about data. However, in their current form, histograms are hard to
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compare. This is because each is in a different set of units. A histogram for length
data will consist of boxes whose horizontal units are, say, metres; a histogram
for mass data will consist of boxes whose horizontal units are in, say, kilograms.
Furthermore, these histograms typically span different ranges.

We can make histograms comparable by (a) estimating the “location” of the
plot on the horizontal axis and (b) estimating the “scale” of the plot. The location
is given by the mean, and the scale by the standard deviation. We could then
normalize the data by subtracting the location (mean) and dividing by the standard
deviation (scale). The resulting values are unitless, and have zero mean. They are
often known as standard coordinates.

Definition: 3.8 Standard coordinates

Assume we have a dataset {x} of N data items, x1, . . . , xN . We repre-
sent these data items in standard coordinates by computing

x̂i =
(xi −mean ({x}))

std (x)
.

We write {x̂} for a dataset that happens to be in standard coordinates.

Standard coordinates have some important properties. Assume we have N
data items. Write xi for the i’th data item, and x̂i for the i’th data item in standard
coordinates (I sometimes refer to these as “normalized data items”). Then we have

mean ({x̂}) = 0.

We also have that
std (x̂) = 1.

An extremely important fact about data is that, for many kinds of data,
histograms of these standard coordinates look the same. Many completely different
datasets produce a histogram that, in standard coordinates, has a very specific
appearance. It is symmetric, unimodal; it looks like a narrow bump. If there were
enough data points and the histogram boxes were small enough, the curve would
look like the curve in figure 3.4. This phenomenon is so important that data of this
form has a special name.
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FIGURE 3.4: Data is standard normal data when its histogram takes a stylized,
bell-shaped form, plotted above. One usually requires a lot of data and very small
histogram boxes for this form to be reproduced closely. Nonetheless, the histogram
for normal data is unimodal (has a single bump) and is symmetric; the tails fall
off fairly fast, and there are few data items that are many standard deviations from
the mean. Many quite different data sets have histograms that are similar to the
normal curve; I show three such datasets here.

Definition: 3.9 Standard normal data

Data is standard normal data if, when we have a great deal of data,
the histogram is a close approximation to the standard normal curve.
This curve is given by

y(x) =
1√
2pi

e(−x2/2)

(which is shown in figure 3.4).



Section 3.2 Plots and Summaries 35

Definition: 3.10 Normal data

Data is normal data if, when we subtract the mean and divide by
the standard deviation (i.e. compute standard coordinates), it becomes
standard normal data.

It is not always easy to tell whether data is normal or not, and there are
a variety of tests one can use, which we discuss later. However, there are many
examples of normal data. Figure 3.4 shows a diverse variety of data sets, plotted
as histograms in standard coordinates. These include: the volumes of 30 oysters
(from http://www.amstat.org/publications/jse/jse_data_archive.htm; look
for 30oysters.dat.txt); human heights (from http://www2.stetson.edu/~jrasp/

data.htm; look for bodyfat.xls, with two outliers removed); and human weights
(from http://www2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls, with
two outliers removed).

Properties of normal data For the moment, assume we know that a
dataset is normal. Then we expect it to have the following properties:

• If we normalize it, its histogram will be close to the standard normal curve.
This means, among other things, that the data is not significantly skewed.

• About 68% of the data lie within one standard deviation of the mean. We
will prove this later.

• About 95% of the data lie within two standard deviations of the mean. We
will prove this later.

• About 99% of the data lie within three standard deviations of the mean. We
will prove this later.

In turn, these properties imply that data that contains outliers (points many stan-
dard deviations away from the mean) is not normal. This is usually a very safe
assumption. It is quite common to model a dataset by excluding a small number
of outliers, then modelling the remaining data as normal. For example, if I exclude
two outliers from the height and weight data from http://www2.stetson.edu/

~jrasp/data.htm, the data looks pretty close to normal.

3.2.3 Boxplots

It is usually hard to compare multiple histograms by eye. One problem with com-
paring histograms is the amount of space they take up on a plot, because each
histogram involves multiple vertical bars. This means it is hard to plot multiple
overlapping histograms cleanly. If you plot each one on a separate figure, you have
to handle a large number of separate figures; either you print them too small to see
enough detail, or you have to keep flipping over pages.
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FIGURE 3.5: A boxplot showing the box, the median, the whiskers and two outliers.
Notice that we can compare the two datasets rather easily; the next section explains
the comparison.

A boxplot is a way to plot data that simplifies comparison. A boxplot dis-
plays a dataset as a vertical picture. There is a vertical box whose height corre-
sponds to the interquartile range of the data (the width is just to make the figure
easy to interpret). Then there is a horizontal line for the median; and the behavior
of the rest of the data is indicated with whiskers and/or outlier markers. This
means that each dataset makes is represented by a vertical structure, making it
easy to show multiple datasets on one plot and interpret the plot (Figure 3.5).

To build a boxplot, we first plot a box that runs from the first to the third
quartile. We then show the median with a horizontal line. We then decide which
data items should be outliers. A variety of rules are possible; for the plots I show, I
used the rule that data items that are larger than q3 + 1.5(q3 − q1) or smaller than
q1 − 1.5(q3 − q1), are outliers. This criterion looks for data items that are more
than one and a half interquartile ranges above the third quartile, or more than one
and a half interquartile ranges below the first quartile.

Once we have identified outliers, we plot these with a special symbol (crosses
in the plots I show). We then plot whiskers, which show the range of non-outlier
data. We draw a whisker from q1 to the smallest data item that is not an outlier,
and from q3 to the largest data item that is not an outlier. While all this sounds



Section 3.3 Whose is bigger? Investigating Australian Pizzas 37

24 26 28 30 32
0

10

20

30

40
Histogram of pizza diameters, in inches

FIGURE 3.6: A histogram of pizza diameters from the dataset described in the text.
Notice that there seem to be two populations.

complicated, any reasonable programming environment will have a function that
will do it for you. Figure 3.5 shows an example boxplot. Notice that the rich
graphical structure means it is quite straightforward to compare two histograms.

3.3 WHOSE IS BIGGER? INVESTIGATING AUSTRALIAN PIZZAS

At http://www.amstat.org/publications/jse/jse_data_archive.htm), you will
find a dataset giving the diameter of pizzas, measured in Australia (search for the
word “pizza”). This website also gives the backstory for this dataset. Apparently,
EagleBoys pizza claims that their pizzas are always bigger than Dominos pizzas,
and published a set of measurements to support this claim (the measurements were
available at http://www.eagleboys.com.au/realsizepizza as of Feb 2012, but
seem not to be there anymore).

Whose pizzas are bigger? and why? A histogram of all the pizza sizes appears
in figure 3.6. We would not expect every pizza produced by a restaurant to have
exactly the same diameter, but the diameters are probably pretty close to one
another, and pretty close to some standard value. This would suggest that we’d
expect to see a histogram which looks like a single, rather narrow, bump about a
mean. This is not what we see in figure 3.6 — instead, there are two bumps, which
suggests two populations of pizzas. This isn’t particularly surprising, because we
know that some pizzas come from EagleBoys and some from Dominos.

If you look more closely at the data in the dataset, you will notice that each
data item is tagged with the company it comes from. We can now easily plot
conditional histograms, conditioning on the company that the pizza came from.
These appear in figure 3.7. Notice that EagleBoys pizzas seem to follow the pattern
we expect — the diameters are clustered tightly around one value — but Dominos
pizzas do not seem to be like that. This is reflected in a boxplot (figure 3.8), which
shows the range of Dominos pizza sizes is surprisingly large, and that EagleBoys
pizza sizes have several large outliers. There is more to understand about this data.
The dataset contains labels for the type of crust and the type of topping — perhaps
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FIGURE 3.7: On the left, the class-conditional histogram of Dominos pizza diameters
from the pizza data set; on the right, the class-conditional histogram of EagleBoys
pizza diameters. Notice that EagleBoys pizzas seem to follow the pattern we expect
— the diameters are clustered tightly around a mean, and there is a small standard
deviation — but Dominos pizzas do not seem to be like that. There is more to
understand about this data.
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FIGURE 3.8: Boxplots of the pizza data, comparing EagleBoys and Dominos pizza.
There are several curiosities here: why is the range for Dominos so large (25.5-29)?
EagleBoys has a smaller range, but has several substantial outliers; why? One would
expect pizza manufacturers to try and control diameter fairly closely, because pizzas
that are too small present risks (annoying customers; publicity; hostile advertising)
and pizzas that are too large should affect profits.

these properties affect the size of the pizza?
EagleBoys produces DeepPan, MidCrust and ThinCrust pizzas, and Dominos

produces DeepPan, ClassicCrust and ThinNCrispy pizzas. This may have some-
thing to do with the observed patterns, but comparing six histograms by eye is
unattractive. A boxplot is the right way to compare these cases (figure 3.9). The
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FIGURE 3.9: Boxplots for the pizza data, broken out by type (thin crust, etc.).

boxplot gives some more insight into the data. Dominos thin crust appear to have a
narrow range of diameters (with several outliers), where the median pizza is rather
larger than either the deep pan or the classic crust pizza. EagleBoys pizzas all have
a range of diameters that is (a) rather similar across the types and (b) rather a lot
like the Dominos thin crust. There are outliers, but few for each type.

Another possibility is that the variation in size is explained by the topping.
We can compare types and toppings by producing a set of conditional boxplots (i.e.
the diameters for each type and each topping). This leads to rather a lot of boxes
(figure 3.10), but they’re still easy to compare by eye. The main difficulty is that
the labels on the plot have to be shortened. I made labels using the first letter
from the manufacturer (“D” or “E”); the first letter from the crust type (previous
paragraph); and the first and last letter of the topping. Toppings for Dominos are:
Hawaiian; Supreme; BBQMeatlovers. For EagleBoys, toppings are: Hawaiian; Su-
perSupremo; and BBQMeatlovers. This gives the labels: ’DCBs’; (Dominos; Clas-
sicCrust; BBQMeatlovers); ’DCHn’; ’DCSe’; ’DDBs’; ’DDHn’; ’DDSe’; ’DTBs’;
’DTHn’; ’DTSe’; ’EDBs’; ’EDHn’; ’EDSo’; ’EMBs’; ’EMHn’; ’EMSo’; ’ETBs’;
’ETHn’; ’ETSo’. Figure 3.10 suggests that the topping isn’t what is important, but
the crust (group the boxplots by eye).
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FIGURE 3.10: The pizzas are now broken up by topping as well as crust type (look at
the source for the meaning of the names). I have separated Dominos from Eagleboys
with a vertical line, and grouped each crust type with a box. It looks as though the
issue is not the type of topping, but the crust. Eagleboys seems to have tighter
control over the size of the final pizza.

What could be going on here? One possible explanation is that Eagleboys
have tighter control over the size of the final pizza. One way this could happen is
that all EagleBoys pizzas start the same size and shrink the same amount in baking,
whereas all Dominos pizzas start a standard diameter, but different Dominos crusts
shrink differently in baking. Another way is that Dominos makes different size
crusts for different types, but that the cooks sometimes get confused. Yet another
possibility is that Dominos controls portions by the mass of dough (so thin crust
diameters tend to be larger), but Eagleboys controls by the diameter of the crust.

You should notice that this is more than just a fun story. If you were a manager
at a pizza firm, you’d need to make choices about how to control costs. Labor costs,
rent, and portion control (i.e. how much pizza, topping, etc. a customer gets for
their money) are the main thing to worry about. If the same kind of pizza has a
wide range of diameters, you have a problem, because some customers are getting
too much (which affects your profit) or too little (which means they might call
someone else). But making more regular pizzas might require more skilled (and so
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more expensive) labor. The fact that Dominos and EagleBoys seem to be following
different strategies successfully suggests that more than one strategy might work.
But you can’t choose if you don’t know what’s happening. As I said at the start,
“what’s going on here?” is perhaps the single most useful question anyone can ask.

3.4 NORMALIZED 2D SCATTER PLOTS

As you recall from section 2.3.4, scale is a problem for scatter plots. The way to
avoid the problem is to plot in standard coordinates.
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FIGURE 3.11: A normalized scatter plot of weight against height, from the dataset at
http:// www2.stetson.edu/ ~ jrasp/data.htm . Now you can see that someone
who is a standard deviation taller than the mean will tend to be somewhat heavier
than the mean too.

A natural solution to problems with scale is to normalize the x and y coor-
dinates of the two-dimensional data to standard coordinates. We can normalize
without worrying about the dimension of the data — we normalize each dimen-
sion independently by subtracting the mean of that dimension and dividing by the
standard deviation of that dimension. We continue to use the convention of writing
the normalized x coordinate as x̂ and the normalized y coordinate as ŷ. So, for
example, we can write x̂j = (xj − mean ({x}))/std (x)) for the x̂ value of the j’th
data item in normalized coordinates. Normalizing shows us the dataset on a stan-
dard scale. Once we have done this, it is quite straightforward to read off simple
relationships between variables from a scatter plot.

3.5 CORRELATION

The simplest, and most important, relationship to look for in a scatter plot is this:
when x̂ increases, does ŷ tend to increase, decrease, or stay the same? This is
straightforward to spot in a normalized scatter plot, because each case produces a
very clear shape on the scatter plot. Any relationship is called correlation (we will
see later how to measure this), and the three cases are: positive correlation, which
means that larger x̂ values tend to appear with larger ŷ values; zero correlation,
which means no relationship; and negative correlation, which means that larger x̂
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FIGURE 3.12: Left: A scatter plot of body temperature against heart rate, from
the dataset at http:// www2.stetson.edu/ ~ jrasp/data.htm ; normtemp.xls. I
have separated the two genders by plotting a different symbol for each (though I
don’t know which gender is indicated by which letter); if you view this in color,
the differences in color makes for a greater separation of the scatter. This picture
suggests, but doesn’t conclusively establish, that there isn’t much dependence between
temperature and heart rate, and any dependence between temperature and heart
rate isn’t affected by gender. The scatter plot of the normalized data, in standard
coordinates, on the right supports this view.
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FIGURE 3.13: Left: A scatter plot of the price of lynx pelts against the number of
pelts (this is a repeat of figure 2.13 for reference). I have plotted data for 1901 to
the end of the series as circles, and the rest of the data as *’s. It is quite hard
to draw any conclusion from this data, because the scale is confusing. Right: A
scatter plot of the price of pelts against the number of pelts for lynx pelts. I excluded
data for 1901 to the end of the series, and then normalized both price and number
of pelts. Notice that there is now a distinct trend; when there are fewer pelts, they
are more expensive, and when there are more, they are cheaper.
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FIGURE 3.14: On the left, a normalized scatter plot of weight (y-coordinate) against
height (x-coordinate). On the right, a scatter plot of height (y-coordinate) against
weight (x-coordinate). I’ve put these plots next to one another so you don’t have to
mentally rotate (which is what you should usually do).

values tend to appear with smaller ŷ values. I have shown these cases together
in one figure using a real data example (Figure 3.15), so you can compare the
appearance of the plots.

Positive correlation occurs when larger x̂ values tend to appear with larger
ŷ values. This means that data points with with small (i.e. negative with large
magnitude) x̂ values must have small ŷ values, otherwise the mean of x̂ (resp. ŷ)
would be too big. In turn, this means that the scatter plot should look like a “smear”
of data from the bottom left of the graph to the top right. The smear might be
broad or narrow, depending on some details we’ll discuss below. Figure 3.11 shows
normalized scatter plots of weight against height, and of body temperature against
heart rate. In the weight-height plot, you can clearly see that individuals who are
higher tend to weigh more. The important word here is “tend” — taller people
could be lighter, but mostly they tend not to be. Notice, also, that I did NOT
say that they weighed more because they were taller, but only that they tend to be
heavier.

Zero correlation occurs when there is no relationship. This produces a
characteristic shape in a scatter plot, but it takes a moment to understand why. If
there really is no relationship, then knowing x̂ will tell you nothing about ŷ. All
we know is that mean ({ŷ}) = 0, and var ({ŷ}) = 1. Our value of ŷ should have
this mean and this variance, but it doesn’t depend on x̂ in any way. This is enough
information to predict what the plot will look like. We know that mean ({x̂}) = 0
and var ({x̂}) = 1; so there will be many data points with x̂ value close to zero,
and few with a much larger or much smaller x̂ value. The same applies to ŷ. Now
consider the data points in a strip of x̂ values. If this strip is far away from the
origin, there will be few data points in the strip, because there aren’t many big x̂
values. If there is no relationship, we don’t expect to see large or small ŷ values
in this strip, because there are few data points in the strip and because large or
small ŷ values are uncommon — we see them only if there are many data points,
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FIGURE 3.15: The three kinds of scatter plot are less clean for real data than for
our idealized examples. Here I used the body temperature vs heart rate data for the
zero correlation; the height-weight data for positive correlation; and the lynx data
for negative correlation. The pictures aren’t idealized — real data tends to be messy
— but you can still see the basic structures.

and then seldom. So for a strip with x̂ close to zero, we might see large ŷ values;
but for one that is far away, we expect to see small ŷ values. We should see a blob,
centered at the origin. In the temperature-heart rate plot of figure 3.12, it looks as
though nothing of much significance is happening. The average heart rate seems to
be about the same for people who run warm or who run cool. There is probably
not much relationship here.

Negative correlation occurs when larger x̂ values tend to appear with
smaller ŷ values. This means that data points with with small x̂ values must
have large ŷ values, otherwise the mean of x̂ (resp. ŷ) would be too big. In turn,
this means that the scatter plot should look like a “smear” of data from the top left
of the graph to the bottom right. The smear might be broad or narrow, depending
on some details we’ll discuss below. Figure 3.13 shows a normalized scatter plot of
the lynx pelt-price data, where I have excluded the data from 1901 on. I did so
because there seemed to be some other effect operating to drive prices up, which
was inconsistent with the rest of the series. This plot suggests that when there were
more pelts, prices were lower, as one would expect.

Notice that leaving out data, as I did here, should be done with care. If you
exclude every data point that might disagree with your hypothesis, you may miss
the fact that you are wrong. Leaving out data is an essential component of many
kinds of fraud. You should always reveal whether you have excluded data, and why,
to allow the reader to judge the evidence.

The correlation is not affected by which variable is plotted on the x-axis and
which is plotted on the y-axis. Figure 3.14 compares a plot of height against weight
to one of weight against height. Usually, one just does this by rotating the page, or
by imagining the new picture. The left plot tells you that data points with higher
height value tend to have higher weight value; the right plot tells you that data
points with higher weight value tend to have higher height value — i.e. the plots
tell you the same thing. It doesn’t really matter which one you look at. Again, the
important word is “tend” — the plot doesn’t tell you anything about why, it just
tells you that when one variable is larger the other tends to be, too.
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3.5.1 The Correlation Coefficient

Consider a normalized data set of N two-dimensional vectors. We can write the
i’th data point in standard coordinates (x̂i, ŷi). We already know many important
summaries of this data, because it is in standard coordinates. We havemean ({x̂}) =
0; mean ({ŷ}) = 0; std (x̂) = 1; and std (ŷ) = 1. Each of these summaries is

itself the mean of some monomial. So std (x̂)
2
= mean

({

x̂2
})

= 1; std (ŷ)
2
=

mean
({

ŷ2
})

(the other two are easy). We can rewrite this information in terms

of means of monomials, giving mean ({x̂}) = 0; mean ({ŷ}) = 0; mean
({

x̂2
})

= 1;

and mean
({

ŷ2
})

= 1. There is one monomial missing here, which is x̂ŷ.
The term mean ({x̂ŷ}) captures correlation between x and y. The term is

known as the correlation coefficient or correlation.

Definition: 3.11 Correlation coefficient

Assume we have N data items which are 2-vectors
(x1, y1), . . . , (xN , yN ), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. We
compute the correlation coefficient by first normalizing the x and y

coordinates to obtain x̂i = (xi−mean({x}))
std(x) , ŷi = (yi−mean({y}))

std(y) . The

correlation coefficient is the mean value of x̂ŷ, and can be computed
as:

corr ({(x, y)}) =
∑

i x̂iŷi
N

Correlation is a measure of our ability to predict one value from another.
The correlation coefficient takes values between −1 and 1 (we’ll prove this below).
If the correlation coefficient is close to 1, then we are likely to predict very well.
Small correlation coefficients (under about 0.5, say, but this rather depends on what
you are trying to achieve) tend not to be all that interesting, because (as we shall
see) they result in rather poor predictions. Figure 3.16 gives a set of scatter plots
of different real data sets with different correlation coefficients. These all come
from data set of age-height-weight, which you can find at http://www2.stetson.
edu/~jrasp/data.htm (look for bodyfat.xls). In each case, two outliers have been
removed. Age and height are hardly correlated, as you can see from the figure.
Younger people do tend to be slightly taller, and so the correlation coefficient is
-0.25. You should interpret this as a small correlation. However, the variable
called “adiposity” (which isn’t defined, but is presumably some measure of the
amount of fatty tissue) is quite strongly correlated with weight, with a correlation
coefficient is 0.86. Average tissue density is quite strongly negatively correlated with
adiposity, because muscle is much denser than fat, so these variables are negatively
correlated — we expect high density to appear with low adiposity, and vice versa.
The correlation coefficient is -0.86. Finally, density is very strongly correlated with
body weight. The correlation coefficient is -0.98.

It’s not always convenient or a good idea to produce scatter plots in standard
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FIGURE 3.16: Scatter plots for various pairs of variables for the age-height-weight
dataset from http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. In
each case, two outliers have been removed, and the plots are in standard coordi-
nates (compare to figure 3.17, which shows these data sets plotted in their original
units). The legend names the variables.

coordinates (among other things, doing so hides the units of the data, which can
be a nuisance). Fortunately, scaling or translating data does not change the value
of the correlation coefficient (though it can change the sign if one scale is negative).
This means that it’s worth being able to spot correlation in a scatter plot that
isn’t in standard coordinates (even though correlation is always defined in standard
coordinates). Figure 3.17 shows different correlated datasets plotted in their original
units. These data sets are the same as those used in figure 3.16

Properties of the Correlation Coefficient

You should memorize the following properties of the correlation coefficient:

• The correlation coefficient is symmetric (it doesn’t depend on the order of its
arguments), so

corr ({(x, y)}) = corr ({(y, x)})
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FIGURE 3.17: Scatter plots for various pairs of variables for the age-height-weight
dataset from http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. In
each case, two outliers have been removed, and the plots are NOT in standard coor-
dinates (compare to figure 3.16, which shows these data sets plotted in normalized
coordinates). The legend names the variables.

• The value of the correlation coefficient is not changed by translating the data.
Scaling the data can change the sign, but not the absolute value. For constants
a 6= 0, b, c 6= 0, d we have

corr ({(ax+ b, cx+ d)}) = sign(ab)corr ({(x, y)})

• If ŷ tends to be large (resp. small) for large (resp. small) values of x̂, then
the correlation coefficient will be positive.

• If ŷ tends to be small (resp. large) for large (resp. small) values of x̂, then
the correlation coefficient will be negative.

• If ŷ doesn’t depend on x̂, then the correlation coefficient is zero (or close to
zero).

• The largest possible value is 1, which happens when x̂ = ŷ.
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• The smallest possible value is -1, which happens when x̂ = −ŷ.

The first property is easy, and we relegate that to the exercises. One way to
see that the correlation coefficient isn’t changed by translation or scale is to notice
that it is defined in standard coordinates, and scaling or translating data doesn’t
change those. Another way to see this is to scale and translate data, then write out
the equations; notice that taking standard coordinates removes the effects of the
scale and translation. In each case, notice that if the scale is negative, the sign of
the correlation coefficient changes.

The property that, if ŷ tends to be large (resp. small) for large (resp. small)
values of x̂, then the correlation coefficient will be positive, doesn’t really admit
a formal statement. But it’s relatively straightforward to see what’s going on.
Because mean ({x̂}) = 0, small values of mean ({x̂}) must be negative and large

values must be positive. But corr ({(x, y)}) =

∑

i
x̂iŷi

N ; and for this sum to be
positive, it should contain mostly positive terms. It can contain few or no hugely
positive (or hugely negative) terms, because std (x̂) = std (ŷ) = 1 so there aren’t
many large (or small) numbers. For the sum to contain mostly positive terms, then
the sign of x̂i should be the same as the sign ŷi for most data items. Small changes
to this argument work to show that if if ŷ tends to be small (resp. large) for large
(resp. small) values of x̂, then the correlation coefficient will be negative.

Showing that no relationship means zero correlation requires slightly more
work. Divide the scatter plot of the dataset up into thin vertical strips. There
are S strips. Each strip is narrow, so the x̂ value does not change much for the
data points in a particular strip. For the s’th strip, write N(s) for the number of
data points in the strip, x̂(s) for the x̂ value at the center of the strip, and ŷ(s)
for the mean of the ŷ values within that strip. Now the strips are narrow, so we
can approximate all data points within a strip as having the same value of x̂. This
yields

mean ({x̂ŷ}) ≈ 1

S

∑

s∈strips

x̂(s)
[

N(s)ŷ(s)
]

(where you could replace ≈ with = if the strips were narrow enough). Now assume
that ŷ(s) does not change from strip to strip, meaning that there is no relation-
ship between x̂ and ŷ in this dataset (so the picture is like the left hand side in
figure 3.15). Then each value of ŷ(s) is the same — we write ŷ — and we can
rearrange to get

mean ({x̂ŷ}) ≈ ŷ
1

S

∑

s∈strips

x̂(s).

Now notice that

0 = mean ({ŷ}) ≈ 1

S

∑

s∈strips

N(s)ŷ(s)

(where again you could replace ≈ with = if the strips were narrow enough). This
means that if every strip has the same value of ŷ(s), then that value must be zero.
In turn, if there is no relationship between x̂ and ŷ, we must have mean ({x̂ŷ}) = 0.
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Proposition:

−1 ≤ corr ({(x, y)}) ≤ 1

Proof: Writing x̂, ŷ for the normalized coefficients, we have

corr ({(x, y)}) =
∑

i x̂iŷi
N

and you can think of the value as the inner product of two vectors. We write

x =
1√
N

[x̂1, x̂2, . . . x̂N ] and y =
1√
N

[ŷ1, ŷ2, . . . ŷN ]

and we have corr ({(x, y)}) = xTy. Notice xTx = std (x)
2
= 1, and similarly

for y. But the inner product of two vectors is at its maximum when the two
vectors are the same, and this maximum is 1. This argument is also sufficient to
show that smallest possible value of the correlation is −1, and this occurs when
x̂i = −ŷi for all i.

Property 3.4: The largest possible value of the correlation is 1, and this occurs
when x̂i = ŷi for all i. The smallest possible value of the correlation is −1, and
this occurs when x̂i = −ŷi for all i.

3.5.2 Using Correlation to Predict

Assume we have N data items which are 2-vectors (x1, y1), . . . , (xN , yN), where
N > 1. These could be obtained, for example, by extracting components from
larger vectors. As usual, we will write x̂i for xi in normalized coordinates, and so
on. Now assume that we know the correlation coefficient is r (this is an important,
traditional notation). What does this mean?

One (very useful) interpretation is in terms of prediction. Assume we have a
data point (x0, ?) where we know the x-coordinate, but not the y-coordinate. We
can use the correlation coefficient to predict the y-coordinate. First, we transform
to standard coordinates. Now we must obtain the best ŷ0 value to predict, using
the x̂0 value we have.

We want to construct a prediction function which gives a prediction for any
value of x̂. This predictor should behave as well as possible on our existing data.
For each of the (x̂i, ŷi) pairs in our data set, the predictor should take x̂i and
produce a result as close to ŷi as possible. We can choose the predictor by looking
at the errors it makes at each data point.

We write ŷpi for the value of ŷi predicted at x̂i. The simplest form of predictor
is linear. If we predict using a linear function, then we have, for some unknown
a, b, that ŷpi = ax̂i + b. Now think about ui = ŷi − ŷpi , which is the error in our
prediction. We would like to have mean ({u}) = 0 (otherwise, we could reduce the
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error of the prediction just by subtracting a constant).

mean ({u}) = mean ({ŷ − ŷp})
= mean ({ŷ})−mean ({ax̂i + b})
= mean ({ŷ})− amean ({x̂}) + b

= 0− a0 + b

= 0.

This means that we must have b = 0.
To estimate a, we need to think about var ({u}). We should like var ({u}) to

be as small as possible, so that the errors are as close to zero as possible (remember,
small variance means small standard deviation which means the data is close to the
mean). We have

var ({u}) = var ({ŷ − ŷp})
= mean

({

(ŷ − ax̂)2
})

because mean ({u}) = 0

= mean
({

(ŷ)2 − 2ax̂ŷ + a2(x̂)2
})

= mean
({

(ŷ)2
})

− 2amean ({x̂ŷ}) + a2mean
({

(x̂)2
})

= 1− 2ar + a2,

which we want to minimize by choice of a. At the minimum, we must have

dvar ({ui})
da

= 0 = −2r + 2a

so that a = r and the correct prediction is

ŷp0 = rx̂0

You can use a version of this argument to establish that if we have (?, ŷ0), then
the best prediction for x̂0 (which is in standard coordinates) is rŷ0. It is important
to notice that the coefficient of ŷi is NOT 1/r; you should work this example, which
appears in the exercises. We now have a prediction procedure, outlined below.
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Procedure: 3.1 Predicting a value using correlation

Assume we have N data items which are 2-vectors
(x1, y1), . . . , (xN , yN ), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. Assume
we have an x value x0 for which we want to give the best prediction of
a y value, based on this data. The following procedure will produce a
prediction:

• Transform the data set into standard coordinates, to get

x̂i =
1

std (x)
(xi −mean ({x}))

ŷi =
1

std (y)
(yi −mean ({y}))

x̂0 =
1

std (x)
(x0 −mean ({x})).

• Compute the correlation

r = corr ({(x, y)}) = mean ({x̂ŷ}).

• Predict ŷ0 = rx̂0.

• Transform this prediction into the original coordinate system, to
get

y0 = std (y)rx̂0 +mean ({y})

Now assume we have a y value y0, for which we want to give the best
prediction of an x value, based on this data. The following procedure
will produce a prediction:

• Transform the data set into standard coordinates.

• Compute the correlation.

• Predict x̂0 = rŷ0.

• Transform this prediction into the original coordinate system, to
get

x0 = std (x)rŷ0 +mean ({x})

There is another way of thinking about this prediction procedure, which is
often helpful. Assume we need to predict a value for x0. In normalized coordinates,
our prediction is ŷp = rx̂0; if we revert back to the original coordinate system, the
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prediction becomes

(yp −mean ({y}))
std (y)

= r(
(x0 −mean ({x}))

std (x)
).

This gives a really useful rule of thumb, which I have broken out in the box below.

Procedure: 3.2 Predicting a value using correlation: Rule of thumb - 1

If x0 is k standard deviations from the mean of x, then the predicted
value of y will be rk standard deviations away from the mean of y, and
the sign of r tells whether y increases or decreases.

An even more compact version of the rule of thumb is in the following box.

Procedure: 3.3 Predicting a value using correlation: Rule of thumb - 2

The predicted value of y goes up by r standard deviations when the
value of x goes up by one standard deviation.

We can compute the average root mean square error that this prediction
procedure will make. The square of this error must be

mean
({

u2
})

= mean
({

y2
})

− 2rmean ({xy}) + r2mean
({

x2
})

= 1− 2r2 + r2

= 1− r2

so the root mean square error will be
√
1− r2. This is yet another intepretation of

correlation; if x and y have correlation close to one, then predictions could have very
small root mean square error, and so might be very accurate. In this case, knowing
one variable is about as good as knowing the other. If they have correlation close
to zero, then the root mean square error in a prediction might be as large as the
root mean square error in ŷ — which means the prediction is nearly a pure guess.

The prediction argument means that we can spot correlations for data in
other kinds of plots — one doesn’t have to make a scatter plot. For example, if
we were to observe a child’s height from birth to their 10’th year (you can often
find these observations in ballpen strokes, on kitchen walls), we could plot height
as a function of year. If we also had their weight (less easily found), we could plot
weight as a function of year, too. The prediction argument above say that, if you
can predict the weight from the height (or vice versa) then they’re correlated. One
way to spot this is to look and see if one curve goes up when the other does (or
goes down when the other goes up). You can see this effect in figure 2.7, where
(before 19h00), prices go down when the number of pelts goes up, and vice versa.
These two variables are negatively correlated.
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FIGURE 3.18: This figure, from Vickers (ibid, p184) shows a plot of the stork pop-
ulation as a function of time, and the human birth rate as a function of time, for
some years in Germany. The correlation is fairly clear; but this does not mean that
reducing the number of storks means there are fewer able to bring babies. Instead,
this is the impact of the first world war — a hidden or latent variable.

3.5.3 Confusion caused by correlation

There is one very rich source of potential (often hilarious) mistakes in correlation.
When two variables are correlated, they change together. If the correlation is
positive, that means that, in typical data, if one is large then the other is large,
and if one is small the other is small. In turn, this means that one can make
a reasonable prediction of one from the other. However, correlation DOES NOT
mean that changing one variable causes the other to change (sometimes known as
causation).

Two variables in a dataset could be correlated for a variety of reasons. One
important reason is pure accident. If you look at enough pairs of variables, you
may well find a pair that appears to be correlated just because you have a small
set of observations. Imagine, for example, you have a dataset consisting of only
two vectors — there is a pretty good chance that there is some correlation between
the coefficients. Such accidents can occur in large datasets, particularly if the
dimensions are high.

Another reason variables could be correlated is that there is some causal
relationship — for example, pressing the accelerator tends to make the car go
faster, and so there will be some correlation between accelerator position and car
acceleration. As another example, adding fertilizer does tend to make a plant grow
bigger. Imagine you record the amount of fertilizer you add to each pot, and the
size of the resulting potplant. There should be some correlation.

Yet another reason variables could be correlated is that there is some other
background variable — often called a latent variable — linked causally to each of
the observed variables. For example, in children (as Freedman, Pisani and Purves
note in their excellent Statistics), shoe size is correlated with reading skills. This
DOES NOT mean that making your feet grow will make you read faster, or that
you can make your feet shrink by forgetting how to read. The real issue here is
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the age of the child. Young children tend to have small feet, and tend to have
weaker reading skills (because they’ve had less practice). Older children tend to
have larger feet, and tend to have stronger reading skills (because they’ve had more
practice). You can make a reasonable prediction of reading skills from foot size,
because they’re correlated, even though there is no direct connection.

This kind of effect can mask correlations, too. Imagine you want to study the
effect of fertilizer on potplants. You collect a set of pots, put one plant in each,
and add different amounts of fertilizer. After some time, you record the size of each
plant. You expect to see correlation between fertilizer amount and plant size. But
you might not if you had used a different species of plant in each pot. Different
species of plant can react quite differently to the same fertilizer (some plants just
die if over-fertilized), so the species could act as a latent variable. With an unlucky
choice of the different species, you might even conclude that there was a negative
correlation between fertilizer and plant size. This example illustrates why you need
to take great care in setting up experiments and interpreting their results.

This sort of thing happens often, and it’s an effect you should look for. An-
other nice example comes from Vickers (ibid). The graph, shown in Figure 3.18,
shows a plot of (a) a dataset of the stork population in Europe over a period of
years and (b) a dataset of the birth rate over those years. This isn’t a scatter plot;
instead, the data has been plotted on a graph. You can see by eye that these two
datasets are quite strongly correlated . Even more disturbing, the stork popula-
tion dropped somewhat before the birth rate dropped. Is this evidence that storks
brought babies in Europe during those years? No (the usual arrangement seems
to have applied). For a more sensible explanation, look at the dates. The war
disturbed both stork and human breeding arrangements. Storks were disturbed
immediately by bombs, etc., and the human birth rate dropped because men died
at the front.

3.6 STERILE MALES IN WILD HORSE HERDS

Large herds of wild horses are (apparently) a nuisance, but keeping down numbers
by simply shooting surplus animals would provoke outrage. One strategy that
has been adopted is to sterilize males in the herd; if a herd contains sufficient
sterile males, fewer foals should result. But catching stallions, sterilizing them, and
reinserting them into a herd is a performance — does this strategy work?

We can get some insight by plotting data. At http://lib.stat.cmu.edu/

DASL/Datafiles/WildHorses.html, you can find a dataset covering herd manage-
ment in wild horses. I have plotted part of this dataset in figure 3.19. In this
dataset, there are counts of all horses, sterile males, and foals made on each of a
small number of days in 1986, 1987, and 1988 for each of two herds. I extracted
data for one herd. I have plotted this data as a function of the count of days since
the first data point, because this makes it clear that some measurements were taken
at about the same time, but there are big gaps in the measurements. In this plot,
the data points are shown with a marker. Joining them leads to a confusing plot
because the data points vary quite strongly. However, notice that the size of the
herd drifts down slowly (you could hold a ruler against the plot to see the trend),
as does the number of foals, when there is a (roughly) constant number of sterile
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FIGURE 3.19: A plot of the number of adult horses, sterile males, and foals in horse
herds over a period of three years. The plot suggests that introducing sterile males
might cause the number of foals to go down. Data from http:// lib.stat. cmu.

edu/DASL/ Datafiles/WildHorses.html .

males.
Does sterilizing males result in fewer foals? This is likely hard to answer for

this dataset, but we could ask whether herds with more sterile males have fewer
foals. A scatter plot is a natural tool to attack this question. However, the scatter
plots of figure 3.20 suggest, rather surprisingly, that when there are more sterile
males there are more adults (and vice versa), and when there are more sterile
males there are more foals (and vice versa). This is borne out by a correlation
analysis. The correlation coefficient between foals and sterile males is 0.74, and
the correlation coefficient between adults and sterile males is 0.68. You should find
this very surprising — how do the horses know how many sterile males there are in
the herd? You might think that this is an effect of scaling the plot, but there is a
scatter plot in normalized coordinates in figure 3.20 that is entirely consistent with
the conclusions suggested by the unnormalized plot. What is going on here?

The answer is revealed by the scatter plots of figure 3.21. Here, rather than
plotting a ’*’ at each data point, I have plotted the day number of the observation.
This is in days from the first observation. You can see that the whole herd is
shrinking — observations where there are many adults (resp. sterile adults, foals)
occur with small day numbers, and observations where there are few have large day
numbers. Because the whole herd is shrinking, it is true that when there are more
adults and more sterile males, there are also more foals. Alternatively, you can see
the plots of figure 3.19 as a scatter plot of herd size (resp. number of foals, number
of sterile males) against day number. Then it becomes clear that the whole herd
is shrinking, as is the size of each group. To drive this point home, we can look at
the correlation coefficient between adults and days (-0.24), between sterile adults
and days (-0.37), and between foals and days (-0.61). We can use the rule of thumb
in box 3 to interpret this. This means that every 282 days, the herd loses about
three adults; about one sterile adult; and about three foals. For the herd to have
a stable size, it needs to gain by birth as many foals as it loses both to growing up
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FIGURE 3.20: Scatter plots of the number of sterile males in a horse herd against
the number of adults, and the number of foals against the number of sterile males,
from data of http: // lib. stat.cmu. edu/ DASL/Datafiles/WildHorses.html .
Top: unnormalized; bottom: standard coordinates.
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and to death. If the herd is losing three foals every 282 days, then if they all grow
up to replace the missing adults, the herd will be shrinking slightly (because it is
losing four adults in this time); but if it loses foals to natural accidents, etc., then
it is shrinking rather fast.

The message of this example is important. To understand a simple dataset,
you might need to plot it several ways. You should make a plot, look at it and ask
what it says, and then try to use another type of plot to confirm or refute what
you think might be going on.



C H A P T E R 4

Visualizing High Dimensional Data

Chapter ?? described methods to explore the relationship between two ele-
ments in a dataset. We could extract a pair of elements and construct various plots.
For vector data, we could also compute the correlation between different pairs of
elements. But if each data item is d-dimensional, there could be a lot of pairs to
deal with.

We will think of our dataset as a collection of d dimensional vectors. It turns
out that there are easy generalizations of our summaries. However, is hard to
plot d-dimensional vectors. We need to find some way to make them fit on a 2-
dimensional plot. Some simple methods can offer insights, but to really get what
is going on we need methods that can at all pairs of relationships in a dataset in
one go.

These methods visualize the dataset as a “blob” in a d-dimensional space.
Many such blobs are flattened in some directions, because components of the data
are strongly correlated. Finding the directions in which the blobs are flat yields
methods to compute lower dimensional representations of the dataset.

4.1 SUMMARIES AND SIMPLE PLOTS

In this chapter, we assume that our data items are vectors. This means that we can
add and subtract values and multiply values by a scalar without any distress. This
is an important assumption, but it doesn’t necessarily mean that data is continuous
(for example, you can meaningfully add the number of children in one family to the
number of children in another family). It does rule out a lot of discrete data. For
example, you can’t add “sports” to “grades” and expect a sensible answer.

Notation: Our data items are vectors, and we write a vector as x. The
data items are d-dimensional, and there are N of them. The entire data set is {x}.
When we need to refer to the i’th data item, we write xi. We write {xi} for a new
dataset made up of N items, where the i’th item is xi. If we need to refer to the

j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold, because

it is a component not a vector, and the j is in parentheses because it isn’t a power).
Vectors are always column vectors.

4.1.1 The Mean

For one-dimensional data, we wrote

mean ({x}) =
∑

i xi

N
.

58
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This expression is meaningful for vectors, too, because we can add vectors and
divide by scalars. We write

mean ({x}) =
∑

i xi

N

and call this the mean of the data. Notice that each component of mean ({x}) is the
mean of that component of the data. There is not an easy analogue of the median,
however (how do you order high dimensional data?) and this is a nuisance. Notice
that, just as for the one-dimensional mean, we have

mean ({x−mean ({x})}) = 0

(i.e. if you subtract the mean from a data set, the resulting data set has zero mean).

4.1.2 Parallel Plots

Parallel plots can sometimes reveal information, particularly when the dimension
of the dataset is low. To construct a parallel plot, you compute a normalized
representation of each component of each data item. The component is normalized
by translating and scaling so that the minimum value over the dataset is zero, and
the maximum value over the dataset is one. Now write the i’th normalised data
item as (n1, n2, . . . , nd). For this data item, you plot a broken line joining (1, n1)
to (2, n2) to (3, n3, etc. These plots are superimposed on one another. In the case
of the bodyfat dataset, this yields the plot of figure 4.1.

Some structures in the parallel plot are revealing. Outliers often stick out (in
figure 4.1, it’s pretty clear that there’s a data point with a very low height value,
and also one with a very large weight value). Outliers affect the scaling, and so
make other structures difficult to spot. I have removed them for figure 4.2. In this
figure, you can see that two negatively correlated components next to one another
produce a butterfly like shape (bodyfat and density). In this plot, you can also see
that there are still several data points that are very different from others (two data
items have ankle values that are very different from the others, for example).

4.1.3 Understanding Blobs with Scatterplot Matrices

Plotting high dimensional data is tricky. One strategy that is very useful when
there aren’t too many dimensions is to use a scatterplot matrix. To build one,
you lay out scatterplots for each pair of variables in a matrix. On the diagonal,
you name the variable that is the vertical axis for each plot in the row, and the
horizontal axis in the column. This sounds more complicated than it is; look at the
example of figure 4.3, which shows a scatterplot matrix for four of the variables in
the height weight dataset of http://www2.stetson.edu/~jrasp/data.htm; look
for bodyfat.xls at that URL). This is originally a 16-dimensional dataset, but a 16
by 16 scatterplot matrix is squashed and hard to interpret.

What is nice about this kind of plot is that it’s quite easy to spot correlations
between pairs of variables, though you do need to take into account the coordinates
have not been normalized. For figure 4.3, you can see that weight and adiposity
appear to show quite strong correlations, but weight and age are pretty weakly
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FIGURE 4.1: A parallel plot of the bodyfat dataset, including all data points. I have
named the components on the horizontal axis. It is easy to see that large values
of bodyfat correspond to small values of density, and vice versa. Notice that one
datapoint has height very different from all others; similarly, one datapoint has
weight very different from all others.

correlated. Height and age seem to have a low correlation. It is also easy to
visualize unusual data points. Usually one has an interactive process to do so —
you can move a “brush” over the plot to change the color of data points under the
brush. To show what might happen, figure 4.4 shows a scatter plot matrix with
some points shown as circles. Notice how they lie inside the “blob” of data in some
views, and outside in others. This is an effect of projection.

UC Irvine keeps a large repository of datasets that are important in machine
learning. You can find the repository at http://archive.ics.uci.edu/ml/index.
html. Figures 4.5 and 4.6 show visualizations of a famous dataset to do with the
botanical classification of irises.

Figures ??, ?? and 4.13 show visualizations of another dataset to do with for-
est fires in Portugal, also from the UC Irvine repository (look at http://archive.
ics.uci.edu/ml/datasets/Forest+Fires). In this dataset, there are a variety of
measurements of location, time, temperature, etc. together with the area burned
by a wildfire. It would be nice to know what leads to large fires, and a visualization
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FIGURE 4.2: A plot with those data items removed, so that those components are
renormalized. Two datapoints have rather distinct ankle measurements. Generally,
you can see that large knees go with large ankles and large biceps (the v structure).

is the place to start. Many fires are tiny (or perhaps there was no area measure-
ment?) and so many values of the area are zero. I found it helpful to take the
log of area, and then to divide the values of the logarithm into seven categories.
I ignored the first four variables, because I didn’t think they’d be too important.
Exercise: was I right? I made two scatterplot matrices, because an eight by eight
matrix is too big to view. Generally, this visualization suggests that it would be
hard to predict the size of a fire from these variables.

We can combine tools to analyze datasets. In the UC Irvine repository, you
can find a dataset related to heart disease (look at http://archive.ics.uci.

edu/ml/datasets/Heart+Disease). There are a variety of versions of the dataset;
I used the version in the file “processed.cleveland.data”. This contains a set of 14
features describing individuals under study. The 14’th is a measure of heart disease.
What can we learn from this dataset?

The first thing to notice is that many of the variables are categorical. It is
natural to make some mosaic plots to visualize what is happening. I quantized the
age to five levels (0-20, 20-40, etc.), and quantized the measure of heart disease to
two levels (no disease and disease) to simplify the plot. Figure ?? shows a mosaic



Section 4.1 Summaries and Simple Plots 62

0 50
0

50

100

0 50 100
0

50

100

0 200 400
0

50

100

Age

0 50
100

200

300

400

0 50 100
100

200

300

400

Weight

0 50 100
100

200

300

400

0 50
20

40

60

80

Height

0 200 400
20

40

60

80

0 50 100
20

40

60

80

Adiposity

0 50 100
0

20

40

60

0 200 400
0

20

40

60

0 50 100
0

20

40

60

FIGURE 4.3: This is a scatterplot matrix for four of the variables in the height
weight dataset of http:// www2.stetson.edu/ ~ jrasp/data.htm . Each plot is
a scatterplot of a pair of variables. The name of the variable for the horizontal axis
is obtained by running your eye down the column; for the vertical axis, along the
row. Although this plot is redundant (half of the plots are just flipped versions of
the other half), that redundancy makes it easier to follow points by eye. You can
look at a column, move down to a row, move across to a column, etc. Notice how
you can spot correlations between variables and outliers (the arrows).

plot of the result.

4.1.4 Using Covariance to encode Variance and Correlation

Variance, standard deviation and correlation can each be seen as an instance of a
more general operation on data. Assume that we have two one dimensional data
sets {x} and {y}. Then we can define the covariance of {x} and {y}.
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FIGURE 4.4: You should compare this figure with figure 4.3. I have marked two data
points with circles in this figure; notice that in some panels these are far from the
rest of the data, in others close by. A “brush” in an interactive application can be
used to mark data like this to allow a user to explore a dataset.

Definition: 4.1 Covariance

Assume we have two sets of N data items, {x} and {y}. We compute
the covariance by

cov ({x} , {y}) =
∑

i(xi −mean ({x}))(yi −mean ({y}))
N

Covariance measures the tendency of corresponding elements of {x} and of {y}
to be larger than (resp. smaller than) the mean. Just like mean, standard devia-
tion and variance, covariance can refer either to a property of a dataset (as in the
definition here) or a particular expectation (as in chapter ??). The correspondence
is defined by the order of elements in the data set, so that x1 corresponds to y1,
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FIGURE 4.5: This is a scatterplot matrix for the famous Iris data, originally due to
***. There are four variables, measured for each of three species of iris. I have
plotted each species with a different marker. You can see from the plot that the
species cluster quite tightly, and are different from one another. R code for this plot
is on the website.

x2 corresponds to y2, and so on. If {x} tends to be larger (resp. smaller) than its
mean for data points where {y} is also larger (resp. smaller) than its mean, then
the covariance should be positive. If {x} tends to be larger (resp. smaller) than its
mean for data points where {y} is smaller (resp. larger) than its mean, then the
covariance should be negative.

From this description, it should be clear we have seen examples of covariance
already. Notice that

std (x)
2
= var ({x}) = cov ({x} , {x})

which you can prove by substituting the expressions. Recall that variance measures
the tendency of a dataset to be different from the mean, so the covariance of a
dataset with itself is a measure of its tendency not to be constant.

More important, notice that

corr ({(x, y)}) = cov ({x} , {y})
√

cov ({x} , {x})
√

cov ({y} , {y})
.

This is occasionally a useful way to think about correlation. It says that the corre-
lation measures the tendency of {x} and {y} to be larger (resp. smaller) than their
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FIGURE 4.6: This is a 3D scatterplot for the famous Iris data, originally due to ***.
I have chosen three variables from the four, and have plotted each species with a
different marker. You can see from the plot that the species cluster quite tightly,
and are different from one another. R code for this plot is on the website.

means for the same data points, compared to how much they change on their own.
Working with covariance (rather than correlation) allows us to unify some

ideas. In particular, for data items which are d dimensional vectors, it is straight-
forward to compute a single matrix that captures all covariances between all pairs
of components — this is the covariance matrix.

Definition: 4.2 Covariance Matrix

The covariance matrix is:

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

Notice that it is quite usual to write a covariance matrix as Σ, and we
will follow this convention.

Properties of the Covariance Matrix Covariance matrices are often
written as Σ, whatever the dataset (you get to figure out precisely which dataset is
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FIGURE 4.7: This is a scatterplot matrix for the fire dataset from the UC Irvine
repository. The smallest area fire is ’T1’, and the largest is ’T7’; each is plotted with
a different marker. These plots show severity of the fire, plotted against variables
5-8 of the dataset. You should notice that there isn’t much separation between the
markers. It might be very hard to predict the severity of a fire from these variables.
R code for this plot is on the website.

intended, from context). Generally, when we want to refer to the j, k’th entry of
a matrix A, we will write Ajk, so Σjk is the covariance between the j’th and k’th
components of the data.

• The j, k’th entry of the covariance matrix is the covariance of the j’th and
the k’th components of x, which we write cov

({

x(j)
}

,
{

x(k)
})

.

• The j, j’th entry of the covariance matrix is the variance of the j’th compo-
nent of x.

• The covariance matrix is symmetric.

• The covariance matrix is always positive semi-definite; it is positive definite,
unless there is some vector a such that aT (xi −mean ({xi}) = 0 for all i.
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FIGURE 4.8: This is a scatterplot matrix for the fire dataset from the UC Irvine
repository. The smallest area fire is ’T1’, and the largest is ’T7’; each is plotted with
a different marker. These plots show severity of the fire, plotted against variables
9-12 of the dataset. You should notice that there isn’t much separation between the
markers. It might be very hard to predict the severity of a fire from these variables.
R code for this plot is on the website.

Proposition:

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

Proof: Recall

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

and the j, k’th entry in this matrix will be

∑

i(x
(j)
i −mean

({

x(j)
})

)(x
(k)
i −mean

({

x(k)
})

)T

N

which is cov
({

x(j)
}

,
{

x(k)
})

.



Section 4.1 Summaries and Simple Plots 68

V10
V11

V9

T1
T2
T3

T4
T5
T6

T7

FIGURE 4.9: This is a 3D scatterplot for the fire dataset from the UC Irvine repos-
itory. The smallest area fire is ’T1’, and the largest is ’T7’; each is plotted with
a different marker. These plots show severity of the fire, plotted against variables
9-11 of the dataset. You should notice that there isn’t much separation between the
markers. It might be very hard to predict the severity of a fire from these variables.
R code for this plot is on the website.

Proposition:

Covmat ({xi})jj = Σjj = var
({

x(j)
})

Proof:

Covmat ({x})jj = cov
({

x(j)
}

,
{

x(j)
})

= var
({

x(j)
})
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FIGURE 4.10: This is a mosaic plot of age, gender, and level of disease for the heart
dataset from the UC Irvine repository. Notice that the data consists mainly of
people aged 40-60. There are very few people younger than 20 or older than 80. A
significantly greater percentage of the measurements comes from the gender labelled
1, and in all age groups the percentage of that gender that has the disease level is
higher. This suggests that this gender is male. Notice also that the percentage of
males with the disease is really quite high (at least 50% in each case). This suggests
that either the population is special in some way — perhaps the measurements are
collected from people who are feeling sick — or that the criterion used to determine
whether an individual is diseased is too sensitive. R code for this plot is on the
website.

Proposition:

Covmat ({x}) = Covmat ({x})T

Proof: We have

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

= cov
({

x(k)
}

,
{

x(j)
})

= Covmat ({x})kj
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FIGURE 4.11: This is a mosaic plot of variables six (V6) and seven (V7) and level
of disease for the heart dataset from the UC Irvine repository. These variables
represent some physiological properties of importance, but I don’t know their inter-
pretation. V6 does not seem to be particularly significant, but the population for
which V7 has value 1 has a high incidence of disease. R code for this plot is on the
website.
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FIGURE 4.12: This is a mosaic plot of variables nine (V9) and eleven (V11) and
level of disease for the heart dataset from the UC Irvine repository. These variables
represent some physiological properties of importance, but I don’t know their inter-
pretation. V9 at level one is clearly not a good thing. If V9 is at level 0, then V11
at level 1 is also a problem. R code for this plot is on the website.

Proposition: Write Σ = Covmat ({x}). If there is no vector a such that
aT (xi−mean ({x})) = 0 for all i, then for any vector u, such that ||u || > 0,

uTΣu > 0.

If there is such a vector a, then

uTΣu ≥ 0.

Proof: We have

uTΣu =
1

N

∑

i

[

uT (xi −mean ({x}))
] [

(xi −mean ({x}))Tu
]

=
1

N

∑

i

[

uT (xi −mean ({x}))
]2

.

Now this is a sum of squares. If there is some a such that aT (xi −
mean ({x})) = 0 for every i, then the covariance matrix must be positive
semidefinite (because the sum of squares could be zero in this case).
Otherwise, it is positive definite, because the sum of squares will always
be positive.
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FIGURE 4.13: This is a scatterplot matrix of five variables for the heart dataset
from the UC Irvine repository. The shape of the marker indicates disease or not.
The variable names are taken from the description at that URL. “trestbps” is a
measurement of resting systolic blood pressure, and “chol” of cholesterol (I don’t
know which lipid, or in which units). You should notice that “thal” takes only a
discrete set of values. Notice also that it appears to be unwise to have very large
values of “trestbps”, “chol”, or “oldpeak” (or smal values of “thalach”), it isn’t that
easy to distinguish between the different cases. There isn’t a clear clustering the
way there was in the iris data. R code for this plot is on the website.

4.2 BLOB ANALYSIS OF HIGH-DIMENSIONAL DATA

When we plotted histograms, we saw that mean and variance were a very helpful
description of data that had a unimodal histogram. If the histogram had more than
one mode, one needed to be somewhat careful to interpret the mean and variance;
in the pizza example, we plotted diameters for different manufacturers to try and
see the data as a collection of unimodal histograms.

Generally, mean and covariance are a good description of data that lies in a
“blob” (Figure 4.14). You might not believe that this is a technical term, but it’s
quite widely used. This is because mean and covariance supply a natural coordinate
system in which to interpret the blob. Mean and covariance are less useful as
descriptions of data that forms multiple blobs (Figure 4.14). In chapter 1, we
discuss methods to model data that forms multiple blobs, or other shapes that we
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FIGURE 4.14: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have
plotted the mean of these data points with a ’+’. On the right, a data set that is
best thought of as a collection of five blobs. I have plotted the mean of each with
a ’+’. We could compute the mean and covariance of this data, but it would be
less revealing than the mean and covariance of a single blob. In chapter 1, I will
describe automatic methods to describe this dataset as a series of blobs.

will interpret as a set of blobs. But many datasets really are single blobs, and we
concentrate on such data here. The way to understand a blob is to think about the
coordinate transformations that place a blob into a particularly convenient form.

4.2.1 Transforming High Dimensional Data

Assume we apply an affine transformation to our data set {x}, to obtain a new
dataset {u}, where ui = Axi + b. Here A is any matrix (it doesn’t have to be
square, or symmetric, or anything else; it just has to have second dimension d). It
is easy to compute the mean and covariance of {u}. We have

mean ({u}) = mean ({Ax+ b})
= Amean ({x}) + b,

so you get the new mean by multiplying the original mean by A and adding b.
The new covariance matrix is easy to compute as well. We have:

Covmat ({u}) = Covmat ({Ax+ b})

=

∑

i(ui −mean ({u}))(ui −mean ({u}))T
N

=

∑

i(Axi + b−Amean ({x})− b)(Axi + b−Amean ({x})− b)T

N

=
A∑i(xi −mean ({x}))(xi −mean ({x}))TAT

N

= ACovmat ({x})AT .



C H A P T E R 5

Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class label
for them. There could be two, or many, classes, though it is usual to produce
multi-class classifiers out of two-class classifiers. Classifiers are immensely useful,
and find wide application, because many problems are naturally decision problems.
For example, if you wish to determine whether to place an advert on a web-page or
not, you would use a classifier (i.e. look at the page, and say yes or no according
to some rule). As another example, if you have a program that you found for free
on the web, you would use a classifier to decide whether it was safe to run it (i.e.
look at the program, and say yes or no according to some rule). As yet another
example, you can think of doctors as extremely complex multi-class classifiers.

Classifiers are built by taking a set of labeled examples and using them to come
up with a rule that assigns a label to any new example. In the general problem,
we have a training dataset (xi, yi); each of the feature vectors xi consists of
measurements of the properties of different types of object, and the yi are labels
giving the type of the object that generated the example.

5.1 CLASSIFICATION, ERROR, AND LOSS

You should think of a classifier as a rule, though it might not be implemented that
way. We pass in a feature vector, and the rule returns a class label. We know the
relative costs of mislabeling each class and must come up with a rule that can take
any plausible x and assign a class to it, in such a way that the expected mislabeling
cost is as small as possible, or at least tolerable. For most of this chapter, we will
assume that there are two classes, labeled 1 and −1. Section 5.4.2 shows methods
for building multi-class classifiers from two-class classifiers.

5.1.1 Using Loss to Determine Decisions

The choice of classification rule must depend on the cost of making a mistake. A
two-class classifier can make two kinds of mistake. A false positive occurs when
a negative example is classified positive; a false negative occurs when a positive
example is classified negative. For example, pretend there is only one disease;
then doctors would be classifiers, deciding whether a patient had it or not. If
this disease is dangerous, but is safely and easily treated, then false negatives are
expensive errors, but false positives are cheap. Similarly, if it is not dangerous, but
the treatment is difficult and unpleasant, then false positives are expensive errors
and false negatives are cheap.

74
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5.1.2 Training Error, Test Error, and Overfitting

It can be quite difficult to know a good loss function, but one can usually come up
with a plausible model. If we knew the posterior probabilities, building a classifier
would be straightforward. Usually we don’t, and must build a model from data.
This model could be a model of the posterior probabilities, or an estimate of the
decision boundaries. In either case, we have only the training data to build it with.
Training error is the error a model makes on the training data set.

Generally, we will try to make this training error small. However, what we
really want to minimize is the test error, the error the classifier makes on test
data. We cannot minimize this error directly, because we don’t know the test set
(if we did, special procedures in training apply). However, classifiers that have
small training error might not have small test error. One example of this problem
is the (silly) classifier that takes any data point and, if it is the same as a point
in the training set, emits the class of that point and otherwise chooses randomly
between the classes. This classifier has been learned from data, and has a zero
error rate on the training dataset; it is likely to be unhelpful on any other dataset,
however.

The phenomenon that causes test error to be worse than training error is
sometimes called overfitting (other names include selection bias, because the
training data has been selected and so isn’t exactly like the test data, and gen-

eralizing badly, because the classifier fails to generalize). It occurs because the
classifier has been trained to perform well on the training dataset. The training
dataset is not the same as the test dataset. First, it is quite likely smaller. Second,
it might be biased through a variety of accidents. This means that small training
error may have to do with quirks of the training dataset that don’t occur in other
sets of examples. It is quite possible that, in this case, the test error will be larger
than the training error. Generally, we expect classifiers to perform somewhat bet-
ter on the training set than on the test set. Overfitting can result in a substantial
difference between performance on the training set and performance on the test set.
One consequence of overfitting is that classifiers should always be evaluated on test
data. Doing this creates other problems, which we discuss in Section 5.1.3.

A procedure called regularization attaches a penalty term to the training
error to get a better estimate of the test error. This penalty term could take a vari-
ety of different forms, depending on the requirements of the application. Section 1
describes regularization in further detail.

5.1.3 Error Rate and Cross-Validation

There are a variety of methods to describe the performance of a classifier. Natural,
straightforward choices are to report the error rate, the percentage of classification
attempts on a test set that result in the wrong answer. This presents an important
difficulty. We cannot estimate the error rate of the classifier using training data,
because the classifier has been trained to do well on that data, which will mean our
error rate estimate will be an underestimate. An alternative is to separate out some
training data to form a validation set, then train the classifier on the rest of the
data, and evaluate on the validation set. This has the difficulty that the classifier
will not be the best estimate possible, because we have left out some training data
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when we trained it. This issue can become a significant nuisance when we are
trying to tell which of a set of classifiers to use—did the classifier perform poorly
on validation data because it is not suited to the problem representation or because
it was trained on too little data?

We can resolve this problem with cross-validation, which involves repeat-
edly: splitting data into training and validation sets uniformly and at random,
training a classifier on the training set, evaluating it on the validation set, and
then averaging the error over all splits. This allows an estimate of the likely future
performance of a classifier, at the expense of substantial computation.

Choose some class of subsets of the training set,
for example, singletons.

For each element of that class, construct a classifier by
omitting that element in training, and compute the
mean number of classification errors on the omitted subset.

Average these errors over the class of subsets to estimate
the risk of using the classifier trained on the entire training
dataset.

Algorithm 5.1: Cross-Validation

The most usual form of this algorithm involves omitting single items from
the dataset and is known as leave-one-out cross-validation. Errors are usually
estimated by simply averaging over the class, but more sophisticated estimates
are available. We do not justify this tool mathematically; however, it is worth
noticing that leave-one-out cross-validation, in some sense, looks at the sensitivity
of the classifier to a small change in the training set. If a classifier performs well
under this test, then large subsets of the dataset look similar to one another, which
suggests that a representation of the relevant probabilities derived from the dataset
might be quite good.

5.2 LINEAR CLASSIFIERS

Assume we have a set of N example points xi that belong to two classes, which we
indicate by 1 and −1. These points come with their class labels, which we write as
yi; thus, our dataset can be written as

{(x1, y1), . . . , (xN , yN)} .

We wish to the sign of y for any point x; this rule is our classifier. Write y
(p)
i (x) for

the predicted value of y for a given value of x. assume we have a set of N example
points xi that belong to two classes, which we indicate by 1 and −1. These points
come with their class labels, which we write as yi; thus, our dataset can be written
as

{(x1, y1), . . . , (xN , yN)} .
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We seek a rule that predicts the sign of y for any point x; this rule is our classifier.
We will use a linear rule, so that for a new data item x, we will predict

sign ((w · x+ b)).

You should think of w and b as representing a hyperplane which separates the
positive data from the negative data. This hyperplane is known as the decision

boundary. The particular rule is given by the choice of w and b.

5.2.1 Why a linear rule?

This family of rules may look bad to you. It is easy to come up with examples
that it misclassifies badly. The rule has important strengths: it is easy to estimate
the best choice of rule, it works very well in practice on real data, and it is fast
to evaluate. For practical examples, experience shows that the error rate can be
improved by adding features to the vector x.

Example: 5.1 A linear model with a single feature

Assume we use a linear model with one feature. Then the model has
the form y

(p)
i = sign(axi + b). For any particular example which has

the feature value x∗, this means we will test whether x∗ is larger than,
or smaller than, −b/a.

Example: 5.2 A linear model with two features

Assume we use a linear model with two features. Then the model
has the form y

(p)
i = sign(aTxi + b). The sign changes along the line

aTx + b = 0. You should check that this is, indeed, a line. On one
side of this line, the model makes positive predictions; on the other,
negative. Notice that which side is which is given by

5.2.2 Logistic Regression

We will choose a and b by choosing values that minimize the cost of errors made
by the classifier. In particular, we will adopt a cost function of the form:

Training error cost + penalty term.

For the moment, we will ignore the penalty term. The training error cost will be
of the form

(1/N)
N
∑

i=1

C(y
(p)
i (aTxi + b, yi)
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so at each point in the training data, we compute a cost from the true value of yi
and the predicted value. This cost should be large if yi and y

(p)
i (aTxi + b, yi) have

different signs, and small if they have the same sign. It is convenient to write

γi = y
(p)
i = sign(aTxi + b, yi).

For logistic regression, the cost function using this notation is

C(y
(p)
i (aTxi + b, yi) = log (1 + exp (−yiγi)) .

The function L(1, γ) is plotted in Figure 5.1. This loss is sometimes known as
the logistic loss. This loss very strongly penalizes a large positive γi if yi is
negative (and vice versa). However, there is no significant advantage to having a
large positive γi if yi is positive. This means that the significant components of
the loss function will be due to examples that the classifier gets wrong, but also
due to examples that have γi near zero (i.e., the example is close to the decision
boundary).

You should notice another important property of this loss. Assume we wish
to predict a label for a new data item. The loss we would incur depends quite
strongly on the magnitude of γ. If we produce a large value of γ for that data item
with the wrong sign, then we would incur a very large loss. This means that we
should prefer values of a and b that will tend to produce small values of γ. In turn,
we should prefer small values of a if they give about the same value of training loss.
This is our penalty term. We should use a cost function of the form

Training Loss +
λ

2
(Norm of a)

which is
1

N

∑

i∈examples

{log(1 + exp−yiγi}) +
λ

2
aTa

where λ > 0 is a constant chosen for good performance. Too large a value of λ, and
the classifier will behave poorly on training and test data; too small a value, and
the classifier will behave poorly on test data.

Usually, the value of λ is set with a validation dataset. We train classifiers
with different values of λ on a test dataset, then evaluate them on a validation
set—data whose labels are known, but which is not used for training—and finally
choose the λ that gets the best validation error.

The penalty term is often referred to as a regularizer, because it tends to
discourage solutions that are large (and so have possible high loss on future test
data) but are not strongly supported by the training data.

5.2.3 The Hinge Loss

There are alternate losses, that are very useful. The linear support vector ma-

chine or SVM uses the hinge loss. In this case the loss comparing the label value

yi and the prediction y
(p)
i = (w · xi + b) can be written as

Lh(yi, y
(p)
i ) = max(0, 1− yiy

(p)
i ).
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FIGURE 5.1: The logistic loss, plotted for the case yi = 1. In the case of the logistic
loss, the horizontal variable is the γi = a ·xi of the text. Notice that giving a strong
negative response to this positive example causes a loss that grows linearly as the
magnitude of the response grows. Notice also that giving an insufficiently positive
response also causes a loss. Giving a strongly positive response is cheap or free.

This loss is always non-negative. For the moment, assume y
(p)
i = 1; then, any

prediction by the classifier with value greater than one will incur no loss, and any
smaller prediction will incur a cost that is linear in the prediction value (Figure ??).
This means that minimizing the loss will encourage the classifier to (a) make strong
positive (or negative) predictions for positive (or negative) examples and (b) for
examples it gets wrong, make the most positive (negative) prediction that it can.
The expression

(1/N)

N
∑

i=1

max(0, 1− yi (w · xi + b)) +
λ

2
wTw

fits into the rule of above, where we obtained a classifier by minimizing

Training Loss + Regularizer.

We have just changed the loss.
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FIGURE 5.2: The hinge loss, plotted for the case yi = 1. The horizontal variable
is the γi = a · xi of the text. Notice that giving a strong negative response to this
positive example causes a loss that grows linearly as the magnitude of the response
grows. Notice also that giving an insufficiently positive response also causes a loss.
Giving a strongly positive response is or free. The loss should look a lot like the
hinge loss to you.

5.3 BASIC IDEAS FOR NUMERICAL MINIMIZATION

We must now obtain a classifier that minimizes either logistic or hinge loss. Assume
we have a function g(a), and we wish to obtain a value of a that achieves the
minimum for that function. Sometimes we can solve this problem in closed form
by constructing the gradient and finding a value of a the makes the gradient zero.
More usually we need a numerical method. Implementing these numerical methods
is a specialized business, and it is usual to use general optimization codes. This
section is intended to sketch how such codes work, so you can read manual pages,
etc. more effectively. Personally, I am a happy user of Matlab’s fminunc, although
the many different settings take some getting used to.
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5.3.1 Overview

Typical codes take a description of the objective function (typically, the name of
a function), a start point for the search, and a collection of parameters. All codes
take an estimate a(i), update it to a(i+1), then check to see whether the result is
a minimum. This process is started from the start point. The update is usually
obtained by computing a direction p(i) such that for small values of h, g(a(i)+hp(i))
is smaller than g(a(i)). Such a direction is known as a descent direction.

Assume we have a descent direction. We must now choose how far to travel
along that direction. We can see g(a(i)+hp(i)) as a function of h. Write this function
as φ(h). We start at h = 0 (which is the original value a(i), so φ(0) = g(a(i)), and
move in the direction of increasing h to find a small value of φ(h) that is less than
φ(0). The descent direction was chosen so that for small h > 0, φ(h) < φ(0); one
way to tell we are at a minimum is we cannot choose a descent direction. Searching
for a good value of h is known as line search. Typically, this search involves a
sequence of estimated values of h, which we write hi. One algorithm is to start
with (say) h0 = 1; if φ(hi) is not small enough (and there are other tests we may
need to apply — this is a summary!), we compute h(i+1) = (1/2)hi. This stops
when some hi passes a test, or when it is so small that the step is pointless.

5.3.2 Gradient Descent

One method to choose a descent direction is gradient descent, which uses the
negative gradient of the function. Recall our notation that

a =









a1
a2
. . .
ad









and that

∇g =











∂g
∂a1

∂g
∂a2

. . .
∂g
∂ad











.

We can write a Taylor series expansion for the function g(a(i) + hp(i)). We have
that

g(a(i) + hp(i)) = g(a(i)) + h(∇g)Tp(i)) +O(h2)

This means that we can expect that if

p(i) = −∇g(a(i)),

we expect that, at least for small values of h, g(a(i)+hp(i)) will be less than g(a(i)).
This works (as long as g is differentiable, and quite often when it isn’t) because

g must go down for at least small steps in this direction. There are two ways
to evaluate a gradient. You can require that the software estimate a numerical
derivative for you, which usually slows things down somewhat, or you can supply a
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gradient value. Usually this gradient value must be computed by the same function
that computes the objective function value.

One tip: in my experience, about 99% of problems with numerical optimiza-
tion codes occur because the user didn’t check that the gradient their function
computed is right. Most codes will compute a numerical gradient for you, then
check that against your gradient; if they’re sufficiently different, the code will com-
plain. You don’t want to do this at runtime, because it slows things up, but it’s an
excellent idea to check.

5.3.3 Stochastic Gradient Descent

Assume we wish to minimize some function g(a) = g0(a) + (1/N)
∑N

i=1 gi(a), as a
function of a. Gradient descent would require us to form

−∇g(a) = −
(

∇g0(a) + (1/N)
N
∑

i=1

∇gi(a)

)

and then take a small step in this direction. But if N is large, this is unattractive, as
we might have to sum a lot of terms. This happens a lot in building classifiers, where
you might quite reasonably expect to deal with millions of examples. Touching each
example at each step really is impractical.

Instead, assume that, at each step, we choose a number k in the range 1 . . .N
uniformly and at random, and form

pk = − (∇g0(a) +∇gk(a))

and then take a small step along pk. Our new point becomes

a(i+1) = a(i) + ηp
(i)
k ,

where η is called the steplength (even though it very often isn’t the length of the
step we take!). It is easy to show that

E[pk] = ∇g(a)

(where the expectation is over the random choice of k). This implies that if we take
many small steps along pk, they should average out to a step backwards along the
gradient. This approach is known as stochastic gradient descent (because we’re
not going along the gradient, but along a random vector which is the gradient only
in expectation). It isn’t obvious that stochastic gradient descent is a good idea.
Although each step is easy to take, we may need to take more steps. The question
is then whether we gain in the increased speed of the step what we lose by having
to take more steps. Not much is known theoretically, but in practice the approach
is hugely successful for training classifiers.

Choosing a steplength η takes some work. Line search won’t work, because
we don’t want to evaluate the function g, because doing so involves looking at each
of the gi terms. Instead, one uses a steplength that is large at the start — so that
it can explore large changes in the values of the classifier parameters — and small
steps later — so that it settles down. One useful strategy is to divide training into
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epochs. Each epoch is a block of a fixed number of iterations. Each iteration is one
of the steps given above, with fixed steplength. However, the steplength changes
from epoch to epoch. In particular, in the r’th epoch, the steplength is

η(r) =
a

r + b

where a and b are constants chosen by experiment with small subsets of the dataset.
One cannot really test whether stochastic gradient descent has converged to

the right answer. A better approach is to plot the error as a function of epoch on
a validation set. This should vary randomly, but generally go down as the epochs
proceed.

5.3.4 Example: Training a Support Vector Machine with Stochastic Gradient Descent

We need to choose w and b to minimize

C(w, b) = (1/N)

N
∑

i=1

max(0, 1− yi (w · xi + b)) +
λ

2
wTw.

There are several methods to do so. Section 1 describes some of the many available
support vector machine training packages on the web; it is often, even usually, a
good idea to use one of these. But it is worth understanding how such things work.

For a support vector machine, stochastic gradient descent is particularly easy.
We have estimates w(n) and b(n) of the classifier parameters, and we want to im-
prove the estimates. We pick the k’th example at random. We must now compute

∇
(

max(0, 1− yk (w · xk + b)) +
λ

2
wTw

)

.

Assume that yk (w · xk + b) > 1. In this case, the classifier predicts a score with
the right sign, and a magnitude that is greater than one. Then the first term is
zero, and the gradient of the second term is easy. Now if yk (w · xk + b) < 1, we can
ignore the max, and the first term is 1− yk (w · xk + b); the gradient is again easy.
But what if yk (w · xk + b) = 1? there are two distinct values we could choose for
the gradient, because the max term isn’t differentiable. It turns out not to matter
which term we choose (Figure ??), so we can write the gradient as

pk =























[

λw
0

]

if yk (w · xk + b) ≥ 1

[

λw − ykx
−yk

]

otherwise

We choose a steplength η, and update our estimates using this gradient. This yields:

w(n+1) = w(n) − η

{

λw if yk (w · xk + b) ≥ 1
λw − ykx otherwise

and

b(n+1) = b(n) − η

{

0 if yk (w · xk + b) ≥ 1
−yk otherwise

.
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FIGURE 5.3: On the left, the magnitude of the weight vector w at the end of each
epoch for the first training regime described in the text. On the right, the accu-
racy on held out data at the end of each epoch. Notice how different choices of
regularization parameter lead to different magnitudes of w; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

To construct figures, I downloaded the dataset at http://archive.ics.uci.
edu/ml/datasets/Adult. This dataset apparently contains 48, 842 data items, but
I worked with only the first 32, 000. Each consists of a set of numeric and categorical
features describing a person, together with whether their annual income is larger
than or smaller than 50K$. I ignored the categorical features to prepare these
figures. This isn’t wise if you want a good classifier, but it’s fine for an example.
I used these features to predict whether income is over or under 50K$. I split the
data into 5, 000 test examples, and 27,000 training examples. It’s important to
do so at random. There are 6 numerical features. I subtracted the mean (which
doesn’t usually make much difference) and rescaled each so that the variance was
1 (which is often very important). I used two different training regimes.

In the first training regime, there were 100 epochs. In each epoch, I applied
426 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees
a total of 42, 600 data items. This means that there is a high probability it has
touched each data item once (27, 000 isn’t enough, because we are sampling with
replacement, so some items get seen more than once). I chose 5 different values
for the regularization parameter and trained with a steplength of 1/(0.01 ∗ e+50),
where e is the epoch. At the end of each epoch, I computed wTw and the accuracy
(fraction of examples correctly classified) of the current classifier on the held out
test examples. Figure 5.3 shows the results. You should notice that the accuracy
changes slightly each epoch; that for larger regularizer values wTw is smaller; and
that the accuracy settles down to about 0.8 very quickly.

In the second training regime, there were 100 epochs. In each epoch, I applied
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FIGURE 5.4: On the left, the magnitude of the weight vector w at the end of each
epoch for the second training regime described in the text. On the right, the ac-
curacy on held out data at the end of each epoch. Notice how different choices of
regularization parameter lead to different magnitudes of w; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

50 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees
a total of 5,000 data items, and about 3, 216 unique data items — it hasn’t seen
the whole training set. I chose 5 different values for the regularization parameter
and trained with a steplength of 1/(0.01 ∗ e+50), where e is the epoch. At the end
of each epoch, I computed wTw and the accuracy (fraction of examples correctly
classified) of the current classifier on the held out test examples. Figure 5.4 shows
the results. You should notice that the accuracy changes slightly each epoch; that
for larger regularizer values wTw is smaller; and that the accuracy settles down
to about 0.8 very quickly; and that there isn’t much difference between the two
training regimes. All of these points are relatively typical of stochastic gradient
descent with very large datasets.

5.4 PRACTICAL METHODS FOR BUILDING CLASSIFIERS

We have described several apparently very different classifiers here. But which
classifier should one use for a particular application? Generally, this should be dealt
with as a practical rather than a conceptual question: that is, one tries several, and
uses the one that works best. With all that said, experience suggests that the first
thing to try for most problems is a linear SVM or logistic regression, which tends
to be much the same thing. Nearest neighbor strategies are always useful, and
are consistently competitive with other approaches when there is lots of training
data and one has some idea of appropriate relative scaling of the features. The
main difficulty with nearest neighbors is actually finding the nearest neighbors of a
query. Approximate methods are now very good, and are reviewed in Section ??.
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The attraction of these methods is that it is relatively easy to build multi-class
classifiers, and to add new classes to a system of classifiers.

5.4.1 Manipulating Training Data to Improve Performance

Generally, more training data leads to a better classifier. However, training classi-
fiers with large datasets can be difficult, and it can be hard to get enough training
data. Typically, only a relatively small number of example items are really impor-
tant in determining the behavior of a classifier (we see this phenomenon in greater
detail in Section ??). The really important examples tend to be rare cases that are
quite hard to discriminate. This is because these cases affect the position of the
decision boundary most significantly. We need a large dataset to ensure that these
cases are present.

There are some useful tricks that help.
We train on a subset of the examples, run the resulting classifier on the rest of

the examples, and then insert the false positives and false negatives into the training
set to retrain the classifier. This is because the false positives and false negatives
are the cases that give the most information about errors in the configuration of the
decision boundaries. We may repeat this several times, and in the final stages, we
may use the classifier to seek false positives. For example, we might collect pictures
from the Web, classify them, and then look at the positives for errors. This strategy
is sometimes called bootstrapping (the name is potentially confusing because
there is an unrelated statistical procedure known as bootstrapping; nonetheless,
we’re stuck with it at this point).

There is an extremely important variant of this approach called hard neg-

ative mining. This applies to situations where we have a moderate supply of
positive examples, but an immense number of negative examples. Such situations
occur commonly when we use classifiers to detect objects (Section ??). The general
procedure is to test every image window to tell whether it contains, say, a face.
There are a lot of image windows, and it is quite easy to obtain a lot of images
that are certain not to contain a face. In this case we can’t use all the negative
examples in training, but we need to search for negative examples that are most
likely to improve the classifier’s performance. We can do so by selecting a set of
negative examples, training with these, and then searching the rest of the negative
examples to find ones that generate false positives—these are hard negatives. We
can iterate the procedure of training and searching for hard negatives; typically, we
expand the pool of negative examples at each iteration.

5.4.2 Building Multi-Class Classifiers Out of Binary Classifiers

There are two standard methods to build multi-class classifiers out of binary classi-
fiers. In the all-vs-all approach, we train a binary classifier for each pair of classes.
To classify an example, we present it to each of these classifiers. Each classifier
decides which of two classes the example belongs to, then records a vote for that
class. The example gets the class label with the most votes. This approach is
simple, but scales very badly with the number of classes.

In the one-vs-all approach, we build a binary classifier for each class. This
classifier must distinguish its class from all the other classes. We then take the
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class with the largest classifier score. One possible concern with this method is
that training algorithms usually do not compel classifiers to be good at ranking
examples. We train classifiers so that they give positive scores for positive examples,
and negative scores for negative examples, but we do nothing explicit to ensure that
a more positive score means the example is more like the positive class. Another
important concern is that the classifier scores must be calibrated to one another,
so that when one classifier gives a larger positive score than another, we can be
sure that the first classifier is more certain than the second. Some classifiers, such
as logistic regression, report posterior probabilities, which require no calibration.
Others, such as the SVM, report numbers with no obvious semantics and need
to be calibrated. The usual method to calibrate these numbers is an algorithm
due to ?, which uses logistic regression to fit a simple probability model to SVM
outputs. One-vs-all methods tend to be reliable and effective even when applied to
uncalibrated classifier outputs, most likely because training algorithms do tend to
encourage classifiers to rank examples correctly.

Neither strategy is particularly attractive when the number of classes is large,
because the number of classifiers we must train scales poorly (linearly in one case,
quadratically in the other) with the number of classes. If we were to allocate each
class a distinct binary vector, we would need only logN bits in the vector for N
classes. We could then train one classifier for each bit, and we should be able to
classify into N classes with only logN classifiers. This strategy tends to founder
on questions of which class should get which bit string, because this choice has
significant effects on the ease of training the classifiers. Nonetheless, it gives an
argument that suggests that we should not need as many as N classifiers to tell N
classes apart.

5.4.3 Software for SVM’s

We obtain a support vector machine by solving one of the constrained optimization
problems given above. These problems have quite special structure, and one would
usually use one of the many packages available on the web for SVMs to solve them.

LIBSVM (which can be found using Google, or at http://www.csie.ntu.

edu.tw/~cjlin/libsvm/) is a dual solver that is now widely used; it searches for
nonzero Lagrange multipliers using a clever procedure known as SMO (sequential
minimal optimization). A good primal solver is PEGASOS; source code can be
found using Google, or at http://www.cs.huji.ac.il/~shais/code/index.html.
SVMLight (Google, or http://svmlight.joachims.org/) is a comprehensive

SVM package with numerous features. It can produce sophisticated estimates of
the error rate, learn to rank as well as to classify, and copes with hundreds of thou-
sands of examples. Andrea Vedaldi, Manik Varma, Varun Gulshan, and Andrew
Zisserman publish code for a multiple kernel learning-based image classifier at http:
//www.robots.ox.ac.uk/~vgg/software/MKL/. Manik Varma publishes code for
general multiple-kernel learning at http://research.microsoft.com/en-us/um/
people/manik/code/GMKL/download.html, and for multiple-kernel learning us-
ing SMO at http://research.microsoft.com/en-us/um/people/manik/code/

SMO-MKL/download.html. Peter Gehler and Sebastian Nowozin publish code for
their recent multiple-kernel learning method at http://www.vision.ee.ethz.ch/
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~pgehler/projects/iccv09/index.html.



C H A P T E R 6

Trees and Forests for Classification

TODO: Mainly examples

I described a classifier as a rule that takes a feature, and produces a class.
One way to build such a rule is with a sequence of simple tests, where each test is
allowed to use the results of all previous tests. This class of rule can be drawn as
a tree (Figure ??), where each node represents a test, and the edges represent the
possible outcomes of the test. To classify a test item with such a tree, you present
it to the first node; the outcome of the test determines which node it goes to next;
and so on, until the example arrives at a leaf. When it does arrive at a leaf, we
label the test item with the most common label in the leaf. This object is known
as a decision tree.

Figure ?? shows a simple 2D dataset with four classes, next to a decision tree
that will correctly classify at least the training data. Actually classifying data with
a tree like this is straightforward. The important question is how to get the tree
from data.

It turns out that the best approach for building a tree incorporates a great
deal of randomness. As a result, we will get a different tree each time we train a
tree on a dataset. None of the individual trees will be particularly good (they are
often referred to as “weak learners”). The natural thing to do is to produce many
such trees (a decision forest), and allow each to vote; the class that gets the most
votes, wins. This strategy is extremely effective.

6.1 BUILDING A DECISION TREE

There are many algorithms for building decision trees. We will use an approach
chosen for simplicity and effectiveness; be aware there are others. We will always
use a binary tree, because it’s easier to describe and because that’s usual (it doesn’t
change anything important, though). Each node has a decision function, which
takes data items and returns either 1 or -1.

We train the tree by thinking about its effect on the training data. We pass
the whole pool of training data into the root. Any node splits its incoming data
into two pools, left (all the data that the decision function labels 1) and right (ditto,
-1). Finally, each leaf contains a pool of data, which it can’t split because it is a
leaf.

Training the tree uses a straightforward algorithm. First, we choose a class of
decision functions to use at each node. It turns out that a very effective algorithm
is to choose a single feature at random, then test whether its value is larger than, or
smaller than a threshold. For this approach to work, one needs to be quite careful
about the choice of threshold, which is what we describe in the next section. Some
minor adjustments, described below, are required if the feature chosen isn’t ordinal.
Surprisingly, being clever about the choice of feature doesn’t seem add a great deal

89
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FIGURE 6.1: This — the household robot’s guide to obstacles — is a typical decision
tree. I have labelled only one of the outgoing branches, because the other is the
negation. So if the obstacle moves, bites, but isn’t furry, then it’s a toddler. In
general, an item is passed down the tree until it hits a leaf. It is then labelled with
the leaf ’s label.

of value. We won’t spend more time on other kinds of decision function, though
there are lots.

Now assume we use a decision function as described, and we know how to
choose a threshold. We start with the root node, then recursively either split the
pool of data at that node, passing the left pool left and the right pool right, or stop
splitting and return. Splitting involves choosing a decision function from the class
to give the “best” split for a leaf. The main questions are how to choose the best
split (next section), and when to stop.

Stopping is relatively straightforward. Quite simple strategies for stopping
are very good. It is hard to choose a decision function with very little data, so we
must stop splitting when there is too little data at a node. We can tell this is the
case by testing the amount of data against a threshold, chosen by experiment. If all
the data at a node belongs to a single class, there is no point in splitting. Finally,
constructing a tree that is too deep tends to result in generalization problems, so
we usually allow no more than a fixed depth D of splits. Choosing the best splitting
threshold is more complicated.

6.1.1 Entropy and Information Gain

Figure 6.2 shows two possible splits of a pool of training data. These splits are
obtained by testing the horizontal feature against a threshold. In one case, the left
and the right pools contain about the same fraction of positive (’x’) and negative
(’o’) examples. In the other, the left pool is all positive, and the right pool is mostly
negative. Clearly this is the better choice of threshold. But we need some way to
score what has happened, so we can tell which threshold is best. Notice that, in
the uninformative case, knowing that a data item is on the left (or the right) does
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FIGURE 6.2: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’x’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’x’s, and two-thirds of the points
on the right are ’o’s. This means that knowing which side of the split a point lies
would give us a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are ’x’s and about half on the right are ’x’s
— knowing which side of the split a point lies is much less useful in deciding what
the label is.

not tell me much more about the data than I already knew. This is because

p(1|left pool) ≈ p(1|parent pool).

In the second case, knowing a data item is on the left classifies it completely. In
this case, my uncertainty about what class the data item belongs to is significantly
reduced if I know whether it goes left or right. To choose a good threshold, we need
to keep track of how informative the split is.

It turns out to be straightforward to keep track of information, in simple cases.
We will start with an example. Assume I have 4 classes. There are 8 examples in
class 1, 4 in class 2, 2 in class 3, and 2 in class 4. How much information on
average will you need to send me to tell me the class of a given example? Clearly,
this depends on how you communicate the information. You could send me the
complete works of Edward Gibbon to communicate class 1; the Encyclopaedia for
class 2; and so on. But this would be redundant. The question is how little can
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you send me. Keeping track of the amount of information is easier if we encode it
with bits (i.e. you can send me sequences of ’0’s and ’1’s).

Imagine the following scheme. If an example is in class 1, you send me a ’1’.
If it is in class 2, you send me ’01’; if it is in class 3, you send me ’001’; and in class
4, you send me ’101’. Then the expected number of bits you will send me is

p(class = 1)1 + p(2)2 + p(3)3 + p(4)3 =
1

2
1 +

1

4
2 +

1

8
3 +

1

8
3

which is 1.75 bits. This number doesn’t have to be an integer, because it’s an
expectation.

Notice that for the i’th class, you have sent me − log2 p(i) bits. We can write
the expected number of bits you need to send me as

−
∑

i

p(i) log2 p(i).

This expression handles other simple cases correctly, too. You should try what
happens if you have two classes, each with 8 examples in them; 256 classes, each
with one example in them; and 5 classes, with 16 examples in class 1, 8 in class 2,
etc. If you try other examples, you may find it hard to construct a scheme where
you can send as few bits on average as this expression predicts. It turns out that,
in general, the smallest number of bits you will need to send me is given by the
expression

−
∑

i

p(i) log2 p(i)

under all conditions, though it may be hard or impossible to determine what rep-
resentation is required to achieve this number.

Now we return to the splits. Write P for the set of all data at the node.
Write Pl for the left pool, and Pr for the right pool. The entropy of a pool C is a
function H(C) that scores how many bits would be required to represent the class
of an item in that pool, on average. Write n(i; C) for the number of items of class
i in the pool, and N(C) for the number of items in the pool. Then the entropy of
the pool C is

−
∑

i

n(i; C)
N(C) log2

n(i; C)
N(C .

It is straightforward that H(P) bits are required to classify an item in the parent
pool P . For an item in the left pool, we need H(Pl) bits; for an item in the right
pool, we need H(Pr) bits. If we split the parent pool, we expect to encounter items
in the left pool with probability

Pl

N(Pl)

and items in the right pool with probability

Pr

N(Pr)
.
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This means that, on average, we must supply

Pl

N(Pl)
H(Pl) +

Pr

N(Pr)
H(Pr)

bits to classify data items if we split the parent pool. Now a good split is one that
results in left and right pools that are informative. In turn, we should need fewer
bits to classify once we have split than we need before the split. You can see the
difference

I(Pl,Pr;P) = H(P)−
( Pl

N(Pl)
H(Pl) +

Pr

N(Pr)
H(Pr)

)

as the information gain caused by the split. Better splits have larger information
gain.

6.1.2 Choosing a Split with Information Gain

Recall that our decision function is to choose a feature at random, then test its
value against a threshold. Any data point where the value is larger goes to the left
pool; where the value is smaller goes to the right. This may sound much too simple
to work, but it is actually effective and popular. Assume that we are at a node,
which we will label k. We have the pool of training examples that have reached
that node. The i’th example has a feature vector xi, and each of these feature
vectors is a d dimensional vector.

We choose an integer j in the range 1 . . . d uniformly and at random. We will

split on this feature, and we store j in the node. Recall we write x
(j)
i for the value

of the j’th component of the i’th feature vector. We will choose a threshold tk,

and split by testing the sign of x
(j)
i − tk. Choosing the value of tk is easy. Assume

there are Nk examples in the pool. Then there are Nk − 1 possible values of tk
that lead to different splits. To see this, sort the Nk examples by x(j), then choose
values of tk halfway between example values (Figure ??). For each of these values,
we compute the information gain of the split. We then keep the threshold with the
best information gain.

We can elaborate this procedure in a useful way, by choosing m features at
random, finding the best split for each, then keeping the feature and threshold
value that is best. It is important that m is a lot smaller than the total number of
features — a usual root of thumb is that m is about the square root of the total
number of features. It is usual to choose a single m, and choose that for all the
splits.

Now assume we happen to have chosen to work with a feature that isn’t
ordinal, and so can’t be tested against a threshold. A natural, and effective, strategy
is as follows. We can split such a feature into two pools by flipping an unbiased
coin for each value — if the coin comes up H , any data point with that value goes
left, and if it comes up T , any data point with that value goes right. We chose this
split at random, so it might not be any good. We can come up with a good split by
repeating this procedure F times, computing the information gain for each split,
then keeping the one that has the best information gain. We choose F in advance,
and it usually depends on the number of values the categorical variable can take.



Section 6.2 Decision Forests 94

−5 0 5
−5

0

5

y>.32

x>1.06x>-0.58

*.o+

FIGURE 6.3: A straightforward decision tree

We now have a relatively straightforward blueprint for an algorithm, which I
have put in a box. It’s a blueprint, because there are a variety of ways in which it
can be revised and changed.

Procedure: 6.1 Building a decision tree

Assume we have a data set

TODO: an algorithm block

6.2 DECISION FORESTS

A single decision tree tends to yield poor classifications. One reason is because the
tree is not chosen to give the best classification of its training data. We used a
random selection of splitting variables at each node, so the tree can’t be the “best
possible”. Obtaining the best possible tree presents significant technical difficulties.
It turns out that the tree that gives the best possible results on the training data
can perform rather poorly on test data. The training data is a small subset of
possible examples, and so must differ from the test data. The best possible tree on
the training data might have a large number of small leaves, built using carefully
chosen splits. But the choices that are best for training data might not be best for
test data.

Rather than build the best possible tree, we have built a tree efficiently, but
with number of random choices. If we were to rebuild the tree, we would obtain
a different result. This suggests the following extremely effective strategy: build
many trees, and classify by merging their results.
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6.2.1 Building and Evaluating a Decision Forest

There are two important strategies for building and evaluating decision forests. I
am not aware of evidence strongly favoring one over the other, but different software
packages use different strategies, and you should be aware of the options. In one
strategy, we separate labelled data into a training and a test set. We then build
multiple decision trees, training each using the whole training set. Finally, we
evaluate the forest on the test set. In this approach, the forest has not seen some
fraction of the available labelled data, because we used it to test. However, each
tree has seen every training data item.

In the other strategy, each time we train a tree we randomly subsample the
labelled data with replacement, to yield a training set the same size as the original
set of labelled data. Notice that there will be duplicates in this training set, which
is like a bootstrap replicate. This training set is often called a bag. We keep a
record of the examples that do not appear in the bag (the “out of bag” examples).
Now to evaluate the forest, we evaluate each tree on its out of bag examples, and
average these error terms. In this approach, the entire forest has seen all labelled
data, and we also get an estimate of error, but no tree has seen all the training
data.

TODO: a decision forest
TODO: another R example
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Math Resources

7.1 USEFUL MATERIAL ABOUT MATRICES

Terminology:

• A matrix M is symmetric if M = MT . A symmetric matrix is necessarily
square.

• We write I for the identity matrix.

• A matrix is diagonal if the only non-zero elements appear on the diagonal.
A diagonal matrix is necessarily symmetric.

• A symmetric matrix is positive semidefinite if, for any x such that xTx > 0
(i.e. this vector has at least one non-zero component), we have xTMx ≥ 0.

• A symmetric matrix is positive definite if, for any x such that xTx > 0, we
have xTMx > 0.

• A matrix R is orthonormal if RTR = I = IT = RRT . Orthonormal
matrices are necessarily square.

Orthonormal matrices: You should think of orthonormal matrices as ro-
tations, because they do not change lengths or angles. For x a vector, R an or-
thonormal matrix, and u = Rx, we have uTu = xTRTRx = xTIx = xTx. This
means that R doesn’t change lengths. For y, z both unit vectors, we have that
the cosine of the angle between them is yTx; but, by the same argument as above,
the inner product of Ry and Rx is the same as yTx. This means that R doesn’t
change angles, either.

Eigenvectors and Eigenvalues: Assume S is a d× d symmetric matrix, v
is a d× 1 vector, and λ is a scalar. If we have

Sv = λv

then v is referred to as an eigenvector of S and λ is the corresponding eigenvalue.
Matrices don’t have to be symmetric to have eigenvectors and eigenvalues, but the
symmetric case is the only one of interest to us.

In the case of a symmetric matrix, the eigenvalues are real numbers, and there
are d distinct eigenvectors that are normal to one another, and can be scaled to
have unit length. They can be stacked into a matrix U = [v1, . . . ,vd]. This matrix
is orthonormal, meaning that UTU = I. This means that there is a diagonal matrix
Λ such that

SU = UΛ.

96
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In fact, there is a large number of such matrices, because we can reorder the eigen-
vectors in the matrix U , and the equation still holds with a new Λ, obtained by
reordering the diagonal elements of the original Λ. There is no reason to keep track
of this complexity. Instead, we adopt the convention that the elements of U are
always ordered so that the elements of Λ are sorted along the diagonal, with the
largest value coming first.

Diagonalizing a symmetric matrix: This gives us a particularly impor-
tant procedure. We can convert any symmetric matrix S to a diagonal form by
computing

UTSU = Λ.

This procedure is referred to as diagonalizing a matrix. Again, we assume that
the elements of U are always ordered so that the elements of Λ are sorted along
the diagonal, with the largest value coming first. Diagonalization allows us to
show that positive definiteness is equivalent to having all positive eigenvalues, and
positive semidefiniteness is equivalent to having all non-negative eigenvalues.

Factoring a matrix: Assume that S is symmetric and positive semidefinite.
We have that

S = UΛUT

and all the diagonal elements of Λ are non-negative. Now construct a diagonal
matrix whose diagonal entries are the positive square roots of the diagonal elements
of Λ; call this matrix Λ(1/2). We have Λ(1/2)Λ(1/2) = Λ and (Λ(1/2))T = Λ(1/2).
Then we have that

S = (UΛ(1/2))(Λ(1/2)UT ) = (UΛ(1/2))(UΛ(1/2))T

so we can factor S into the form XX T by computing the eigenvectors and eigen-
values.

7.1.1 Approximating A Symmetric Matrix

Assume we have a k × k symmetric matrix T , and we wish to construct a matrix
A that approximates it. We require that (a) the rank of A is precisely r < k and
(b) the approximation should minimize the Frobenius norm, that is,

||(T − A) ||F 2
=
∑

ij

(Tij −Aij)
2.

It turns out that there is a straightforward construction that yields A.
The first step is to notice that if U is orthonormal and M is any matrix, then

||UM||F = ||MU ||F = ||M||F .

This is true because U is a rotation (as is UT = U−1), and rotations do not change
the length of vectors. So, for example, if we write M as a table of row vectors M =
[m1,m2, ...mk], then UM = [Um1,Um2, ...Umk]. Now ||M||F 2

=
∑k

j=1 ||mj ||2, so
||UM||F 2

=
∑k

i=1 ||Umk ||2. But rotations do not change lengths, so ||Umk ||2 =

||mk ||2, and so ||UM||F = ||M||F . To see the result for the case of MU , just think
of M as a table of row vectors.
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Notice that, if U is the orthonormal matrix whose columns are eigenvectors
of T , then we have

||(T − A) ||F 2 = ||UT (T − A)U ||F
2
.

Now write Λr for UTAU , and Λ for the diagonal matrix of eigenvalues of T . Then
we have

||(T − A) ||F 2
= ||Λ− ΛA ||F 2

,

an expression that is easy to solve for ΛA. We know that Λ is diagonal, so the best
ΛA is diagonal, too. The rank of A must be r, so the rank of ΛA must be r as well.
To get the best ΛA, we keep the r largest diagonal values of Λ, and set the rest
to zero; ΛA has rank r because it has only r non-zero entries on the diagonal, and
every other entry is zero.

Now to recover A from ΛA, we know that UTU = UUT = I (remember, I is
the identity). We have ΛA = UTAU , so

A = UΛAUT .

We can clean up this representation in a useful way. Notice that only the first r
columns of U (and the corresponding rows of UT ) contribute to A. The remaining
k − r are each multiplied by one of the zeros on the diagonal of ΛA. Remember
that, by convention, Λ was sorted so that the diagonal values are in descending
order (i.e. the largest value is in the top left corner). We now keep only the top
left r × r block of ΛA, which we write Λr. We then write Ur for the k × r matrix
consisting of the first r columns of U . Then

A = UrΛrUT

This is so useful a result, I have displayed it in a box; you should remember it.

Procedure: 7.1 Approximating a symmetric matrix with a low rank ma-
trix

Assume we have a symmetric k× k matrix T . We wish to approximate
T with a matrix A that has rank r < k. Write U for the matrix
whose columns are eigenvectors of T , and Λ for the diagonal matrix
of eigenvalues of A (so AU = UΛ). Remember that, by convention, Λ
was sorted so that the diagonal values are in descending order (i.e. the
largest value is in the top left corner).
Now construct Λr from Λ by setting the k − r smallest values of Λ to
zero, and keeping only the top left r× r block. Construct Ur, the k× r
matrix consisting of the first r columns of U . Then

A = UrΛrUT
r

is the best possible rank r approximation to T in the Frobenius norm.



Section 7.1 Useful Material about Matrices 99

Now if A is positive semidefinite (i.e. if at least the r largest eigenvalues of
T are non-negative), then we can factor A as in the previous section. This yields a
procedure to approximate a symmetric matrix by factors. This is so useful a result,
I have displayed it in a box; you should remember it.

Procedure: 7.2 Approximating a symmetric matrix with low dimen-
sional factors

Assume we have a symmetric k× k matrix T . We wish to approximate
T with a matrix A that has rank r < k. We assume that at least the
r largest eigenvalues of T are non-negative. Write U for the matrix
whose columns are eigenvectors of T , and Λ for the diagonal matrix
of eigenvalues of A (so AU = UΛ). Remember that, by convention, Λ
was sorted so that the diagonal values are in descending order (i.e. the
largest value is in the top left corner).
Now construct Λr from Λ by setting the k − r smallest values of Λ

to zero and keeping only the top left r × r block. Construct Λ
(1/2)
r

by replacing each diagonal element of Λ with its positive square root.
Construct Ur, the k × r matrix consisting of the first r columns of U .
Then write V = (UrΛ

(1/2)
r )

A = VVT

is the best possible rank r approximation to T in the Frobenius norm.


