
Contents

1 Notation and conventions 4
1.1 Some Useful Mathematical Facts . 5
1.2 Acknowledgements . 6

2 First Tools for Looking at Data 7
2.1 Datasets . 7
2.2 What’s Happening? - Plotting Data 9

2.2.1 Bar Charts . 10
2.2.2 Histograms . 10
2.2.3 Conditional Histograms . 11

2.3 Plotting 2D Data . 13
2.3.1 Categorical Data, Counts, and Charts 13
2.3.2 Series . 16
2.3.3 Scatter Plots for Spatial Data 17
2.3.4 Scatter Plots — Scale is a problem 19

3 Summaries and Plots 22
3.1 Summarizing 1D Data . 22

3.1.1 The Mean . 22
3.1.2 Standard Deviation and Variance 23
3.1.3 Variance . 26
3.1.4 The Median . 27
3.1.5 Interquartile Range . 28
3.1.6 Using Summaries Sensibly . 30

3.2 Plots and Summaries . 31
3.2.1 Some Properties of Histograms 31
3.2.2 Standard Coordinates and Normal Data 33
3.2.3 Boxplots . 36

3.3 Whose is bigger? Investigating Australian Pizzas 38
3.4 Normalized 2D Scatter Plots . 42
3.5 Correlation . 42

3.5.1 The Correlation Coefficient 46
3.5.2 Using Correlation to Predict 50
3.5.3 Confusion caused by correlation 54

3.6 Sterile Males in Wild Horse Herds 55

4 Visualizing High Dimensional Data 59
4.1 Summaries and Simple Plots . 59

4.1.1 The Mean . 59
4.1.2 Parallel Plots . 60
4.1.3 Understanding Blobs with Scatterplot Matrices 60
4.1.4 Using Covariance to encode Variance and Correlation 63

4.2 Blob Analysis of High-Dimensional Data 73

1

2

4.2.1 Transforming High Dimensional Data 74

5 Learning to Classify 75
5.1 Classification, Error, and Loss . 75

5.1.1 Using Loss to Determine Decisions 75
5.1.2 Training Error, Test Error, and Overfitting 76
5.1.3 Error Rate and Cross-Validation 76

5.2 Linear Classifiers . 77
5.2.1 Why a linear rule? . 78
5.2.2 Logistic Regression . 78
5.2.3 The Hinge Loss . 79

5.3 Basic Ideas for Numerical Minimization 81
5.3.1 Overview . 82
5.3.2 Gradient Descent . 82
5.3.3 Stochastic Gradient Descent 83
5.3.4 Example: Training a Support Vector Machine with Stochastic

Gradient Descent . 84
5.4 Practical Methods for Building Classifiers 86

5.4.1 Manipulating Training Data to Improve Performance 87
5.4.2 Building Multi-Class Classifiers Out of Binary Classifiers . . 88
5.4.3 Class Confusion Matrices . 88
5.4.4 Software for SVM’s . 89

6 Classifying with Random Forests 90
6.1 Building a Decision Tree . 90

6.1.1 Entropy and Information Gain 91
6.1.2 Choosing a Split with Information Gain 94

6.2 Forests . 95
6.2.1 Building and Evaluating a Decision Forest 95
6.2.2 Classifying Data Items with a Decision Forest 96

7 Exploiting your Neighbors 99
7.1 Classifying with Nearest Neighbors 99

7.1.1 Using Nearest Neighbors in Practice 99
7.2 Finding your Nearest Neighbors . 100

7.2.1 Finding the Nearest Neighbors and Hashing 100

8 Regression 105
8.1 Linear Regression and Least Squares 106

8.1.1 Linear Regression . 107
8.1.2 Checking Goodness of Fit Qualitatively 111
8.1.3 Evaluating Goodness of Fit 113
8.1.4 Linear Regression: Examples 116

8.2 Producing Good Linear Regressions 116
8.2.1 Problem Data Points . 116
8.2.2 Explanatory variables . 118

8.3 Which Variables are Important? . 122

3

8.3.1 Regularizing Linear Regressions 122
8.3.2 Hypothesis Testing for Regression Coefficients - NEED MA-

TERIAL . 125
8.3.3 Which Variables should Contribute? The LASSO 125

9 Exploiting your Neighbors for Regression 127
9.1 Filling Holes in Images by Matching 127

9.1.1 Filling a Small Hole by Matching Neighborhoods 127
9.2 Filling in More than One Missing Pixel 128

9.2.1 Filling Large Holes with Whole Images 129
9.3 Regression using Neighbors . 130

9.3.1 Distance Weighted Averages 132
9.3.2 Distance Weighted Linear Regressions 132

10 Models of High Dimensional Data 134
10.1 The Curse of Dimension . 134
10.2 Agglomerative and Divisive Clustering 136

10.2.1 Clustering and Distance . 138
10.2.2 Example: Agglomerative Clustering 138

10.3 The K-Means Algorithm and Variants 139
10.3.1 How to choose K . 143
10.3.2 Soft Assignment . 144
10.3.3 General Comments on K-Means 145

10.4 Describing Repetition with Vector Quantization 147
10.4.1 Applications of Image Classification 148
10.4.2 Vector Quantization and Textons 150
10.4.3 Hierarchical K Means . 151
10.4.4 Using Textons . 152

C H A P T E R 1

Notation and conventions

A dataset as a collection of d-tuples (a d-tuple is an ordered list of d elements).
Tuples differ from vectors, because we can always add and subtract vectors, but
we cannot necessarily add or subtract tuples. There are always N items in any
dataset. There are always d elements in each tuple in a dataset. The number of
elements will be the same for every tuple in any given tuple. Sometimes we may
not know the value of some elements in some tuples.

We use the same notation for a tuple and for a vector. Most of our data will
be vectors. We write a vector in bold, so x could represent a vector or a tuple (the
context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out of
them; we write the dataset made out of these items as {xi} (the i is to suggest you
are taking a set of items and making a dataset out of them). If we need to refer

to the j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold,

because it is a component not a vector, and the j is in parentheses because it isn’t
a power). Vectors are always column vectors.
Terms:

• mean ({x}) is the mean of the dataset {x} (definition 1, page 22).

• std (x) is the standard deviation of the dataset {x} (definition 2, page 24).

• var ({x}) is the standard deviation of the dataset {x} (definition 3, page 27).

• median ({x}) is the standard deviation of the dataset {x} (definition 4, page 28).

• percentile({x}, k) is the k% percentile of the dataset {x} (definition 5, page 29).

• iqr{x} is the interquartile range of the dataset {x} (definition 7, page 29).

• {x̂} is the dataset {x}, transformed to standard coordinates (definition 8,
page 34).

• Standard normal data is defined in definition 9, page 35).

• Normal data is defined in definition 10, page 36).

• corr ({(x, y)}) is the correlation between two components x and y of a dataset
(definition 11, page 46).

• ∅ is the empty set.

• Ω is the set of all possible outcomes of an experiment.

• Sets are written as A.

4

Section 1.1 Some Useful Mathematical Facts 5

• Ac is the complement of the set A (i.e. Ω−A).

• E is an event (page 114).

• P ({E}) is the probability of event E (page 114).

• P ({E}|{F}) is the probability of event E , conditioned on event F (page 114).

• p(x) is the probability that random variable X will take the value x; also
written P ({X = x}) (page 114).

• p(x, y) is the probability that random variable X will take the value x and
random variable Y will take the value y; also written P ({X = x} ∩ {Y = y})
(page 114).

• argmax
x

f(x) means the value of x that maximises f(x).

• θ̂ is an estimated value of a parameter θ.

Background information:

• Cards: A standard deck of playing cards contains 52 cards. These cards are
divided into four suits. The suits are: spades and clubs (which are black);
and hearts and diamonds (which are red). Each suit contains 13 cards: Ace,
2, 3, 4, 5, 6, 7, 8, 9, 10, Jack (sometimes called Knave), Queen and King. It
is common to call Jack, Queen and King court cards.

• Dice: If you look hard enough, you can obtain dice with many different
numbers of sides (though I’ve never seen a three sided die). We adopt the
convention that the sides of an N sided die are labeled with the numbers
1 . . .N , and that no number is used twice. Most dice are like this.

• Fairness: Each face of a fair coin or die has the same probability of landing
upmost in a flip or roll.

1.1 SOME USEFUL MATHEMATICAL FACTS

The gamma function Γ(x) is defined by a series of steps. First, we have that for n
an integer,

Γ(n) = (n− 1)!

and then for z a complex number with positive real part (which includes positive
real numbers), we have

Γ(z) =

∫ ∞

0

tz
e−t

t
dt.

By doing this, we get a function on positive real numbers that is a smooth inter-
polate of the factorial function. We won’t do any real work with this function, so
won’t expand on this definition. In practice, we’ll either look up a value in tables
or require a software environment to produce it.

Section 1.2 Acknowledgements 6

1.2 ACKNOWLEDGEMENTS

Typos spotted by: Han Chen (numerous!), Yusuf Sobh, Scott Walters, Eric Huber,
— Your Name Here —

C H A P T E R 2

First Tools for Looking at Data

The single most important question for a working scientist — perhaps the
single most useful question anyone can ask— is: “what’s going on here?” Answering
this question requires creative use of different ways to make pictures of datasets,
to summarize them, and to expose whatever structure might be there. This is an
activity that is sometimes known as “Descriptive Statistics”. There isn’t any fixed
recipe for understanding a dataset, but there is a rich variety of tools we can use
to get insights.

2.1 DATASETS

A dataset is a collection of descriptions of different instances of the same phe-
nomenon. These descriptions could take a variety of forms, but it is important that
they are descriptions of the same thing. For example, my grandfather collected
the daily rainfall in his garden for many years; we could collect the height of each
person in a room; or the number of children in each family on a block; or whether
10 classmates would prefer to be “rich” or “famous”. There could be more than
one description recorded for each item. For example, when he recorded the con-
tents of the rain gauge each morning, my grandfather could have recorded (say)
the temperature and barometric pressure. As another example, one might record
the height, weight, blood pressure and body temperature of every patient visiting
a doctor’s office.

The descriptions in a dataset can take a variety of forms. A description could
be categorical, meaning that each data item can take a small set of prescribed
values. For example, we might record whether each of 100 passers-by preferred to
be “Rich” or “Famous”. As another example, we could record whether the passers-
by are “Male” or “Female”. Categorical data could be ordinal, meaning that we
can tell whether one data item is larger than another. For example, a dataset giving
the number of children in a family for some set of families is categorical, because it
uses only non-negative integers, but it is also ordinal, because we can tell whether
one family is larger than another.

Some ordinal categorical data appears not to be numerical, but can be as-
signed a number in a reasonably sensible fashion. For example, many readers will
recall being asked by a doctor to rate their pain on a scale of 1 to 10 — a question
that is usually relatively easy to answer, but is quite strange when you think about
it carefully. As another example, we could ask a set of users to rate the usability
of an interface in a range from “very bad” to “very good”, and then record that
using -2 for “very bad”, -1 for “bad”, 0 for “neutral”, 1 for “good”, and 2 for “very
good”.

Many interesting datasets involve continuous variables (like, for example,
height or weight or body temperature) when you could reasonably expect to en-
counter any value in a particular range. For example, we might have the heights of

7

Section 2.1 Datasets 8

all people in a particular room; or the rainfall at a particular place for each day of
the year; or the number of children in each family on a list.

You should think of a dataset as a collection of d-tuples (a d-tuple is an
ordered list of d elements). Tuples differ from vectors, because we can always add
and subtract vectors, but we cannot necessarily add or subtract tuples. We will
always write N for the number of tuples in the dataset, and d for the number of
elements in each tuple. The number of elements will be the same for every tuple,
though sometimes we may not know the value of some elements in some tuples
(which means we must figure out how to predict their values, which we will do
much later).

Index net worth
1 100, 360
2 109, 770
3 96, 860
4 97, 860
5 108, 930
6 124, 330
7 101, 300
8 112, 710
9 106, 740
10 120, 170

Index Taste score Index Taste score
1 12.3 11 34.9
2 20.9 12 57.2
3 39 13 0.7
4 47.9 14 25.9
5 5.6 15 54.9
6 25.9 16 40.9
7 37.3 17 15.9
8 21.9 18 6.4
9 18.1 19 18
10 21 20 38.9

TABLE 2.1: On the left, net worths of people you meet in a bar, in US $; I made
this data up, using some information from the US Census. The index column,
which tells you which data item is being referred to, is usually not displayed in
a table because you can usually assume that the first line is the first item, and
so on. On the right, the taste score (I’m not making this up; higher is better)
for 20 different cheeses. This data is real (i.e. not made up), and it comes from
http:// lib.stat. cmu. edu/DASL/ Datafiles/Cheese.html .

Each element of a tuple has its own type. Some elements might be categorical.
For example, one dataset we shall see several times records entries for Gender;
Grade; Age; Race; Urban/Rural; School; Goals; Grades; Sports; Looks; and Money
for 478 children, so d = 11 and N = 478. In this dataset, each entry is categorical
data. Clearly, these tuples are not vectors because one cannot add or subtract (say)
Genders.

Most of our data will be vectors. We use the same notation for a tuple and
for a vector. We write a vector in bold, so x could represent a vector or a tuple
(the context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out
of them; we write the dataset made out of these items as {xi} (the i is to suggest
you are taking a set of items and making a dataset out of them).

In this chapter, we will work mainly with continuous data. We will see a
variety of methods for plotting and summarizing 1-tuples. We can build these
plots from a dataset of d-tuples by extracting the r’th element of each d-tuple.

Section 2.2 What’s Happening? - Plotting Data 9

Mostly, we will deal with continuous data. All through the book, we will see many
datasets downloaded from various web sources, because people are so generous
about publishing interesting datasets on the web. In the next chapter, we will look
at 2-dimensional data, and we look at high dimensional data in chapter 4.

2.2 WHAT’S HAPPENING? - PLOTTING DATA

The very simplest way to present or visualize a dataset is to produce a table. Tables
can be helpful, but aren’t much use for large datasets, because it is difficult to get
any sense of what the data means from a table. As a continuous example, table 2.1
gives a table of the net worth of a set of people you might meet in a bar (I made
this data up). You can scan the table and have a rough sense of what is going on;
net worths are quite close to $ 100, 000, and there aren’t any very big or very small
numbers. This sort of information might be useful, for example, in choosing a bar.

People would like to measure, record, and reason about an extraordinary
variety of phenomena. Apparently, one can score the goodness of the flavor of
cheese with a number (bigger is better); table 2.1 gives a score for each of thirty
cheeses (I did not make up this data, but downloaded it from http://lib.stat.

cmu.edu/DASL/Datafiles/Cheese.html). You should notice that a few cheeses
have very high scores, and most have moderate scores. It’s difficult to draw more
significant conclusions from the table, though.

Gender Goal Gender Goal
boy Sports girl Sports
boy Popular girl Grades
girl Popular boy Popular
girl Popular boy Popular
girl Popular boy Popular
girl Popular girl Grades
girl Popular girl Sports
girl Grades girl Popular
girl Sports girl Grades
girl Sports girl Sports

TABLE 2.2: Chase and Dunner (?) collected data on what students thought made
other students popular. As part of this effort, they collected information on (a) the
gender and (b) the goal of students. This table gives the gender (“boy” or “girl”)
and the goal (to make good grades —“Grades”; to be popular — “Popular”; or
to be good at sports — “Sports”). The table gives this information for the first
20 of 478 students; the rest can be found at http:// lib.stat. cmu.edu/ DASL/
Datafiles/PopularKids.html . This data is clearly categorical, and not ordinal.

Table 2.2 shows a table for a set of categorical data. Psychologists collected
data from students in grades 4-6 in three school districts to understand what fac-
tors students thought made other students popular. This fascinating data set
can be found at http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html,
and was prepared by Chase and Dunner (?). Among other things, for each student

Section 2.2 What’s Happening? - Plotting Data 10

they asked whether the student’s goal was to make good grades (“Grades”, for
short); to be popular (“Popular”); or to be good at sports (“Sports”). They have
this information for 478 students, so a table would be very hard to read. Table 2.2
shows the gender and the goal for the first 20 students in this group. It’s rather
harder to draw any serious conclusion from this data, because the full table would
be so big. We need a more effective tool than eyeballing the table.

boy girl
0

50

100

150

200

250

300
Number of children of each gender

Sports Grades Popular
0

50

100

150

200

250
Number of children choosing each goal

FIGURE 2.1: On the left, a bar chart of the number of children of each gender in
the Chase and Dunner study (). Notice that there are about the same number of
boys and girls (the bars are about the same height). On the right, a bar chart of
the number of children selecting each of three goals. You can tell, at a glance, that
different goals are more or less popular by looking at the height of the bars.

2.2.1 Bar Charts

A bar chart is a set of bars, one per category, where the height of each bar is
proportional to the number of items in that category. A glance at a bar chart often
exposes important structure in data, for example, which categories are common, and
which are rare. Bar charts are particularly useful for categorical data. Figure 2.1
shows such bar charts for the genders and the goals in the student dataset of Chase
and Dunner (). You can see at a glance that there are about as many boys as girls,
and that there are more students who think grades are important than students
who think sports or popularity is important. You couldn’t draw either conclusion
from Table 2.2, because I showed only the first 20 items; but a 478 item table is
very difficult to read.

2.2.2 Histograms

Data is continuous when a data item could take any value in some range or set of
ranges. In turn, this means that we can reasonably expect a continuous dataset
contains few or no pairs of items that have exactly the same value. Drawing a bar
chart in the obvious way — one bar per value — produces a mess of unit height
bars, and seldom leads to a good plot. Instead, we would like to have fewer bars,
each representing more data items. We need a procedure to decide which data
items count in which bar.

Section 2.2 What’s Happening? - Plotting Data 11

0.95 1 1.05 1.1 1.15 1.2 1.25
0

1

2

3

4

5
N

um
be

r
of

 d
at

a
ite

m
s

Net worth, in $100, 000s

Histogram of net worth for 10 individuals

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

N
um

be
r

of
 d

at
a

ite
m

s

Cheese goodness, in cheese goodness units

Histogram of cheese goodness score for 30 cheeses

FIGURE 2.2: On the left, a histogram of net worths from the dataset described in the
text and shown in table 2.1. On the right, a histogram of cheese goodness scores
from the dataset described in the text and shown in table 2.1.

A simple generalization of a bar chart is a histogram. We divide the range
of the data into intervals, which do not need to be equal in length. We think of
each interval as having an associated pigeonhole, and choose one pigeonhole for
each data item. We then build a set of boxes, one per interval. Each box sits on its
interval on the horizontal axis, and its height is determined by the number of data
items in the corresponding pigeonhole. In the simplest histogram, the intervals that
form the bases of the boxes are equally sized. In this case, the height of the box is
given by the number of data items in the box.

Figure 2.2 shows a histogram of the data in table 2.1. There are five bars —
by my choice; I could have plotted ten bars — and the height of each bar gives the
number of data items that fall into its interval. For example, there is one net worth
in the range between $102, 500 and $107, 500. Notice that one bar is invisible,
because there is no data in that range. This picture suggests conclusions consistent
with the ones we had from eyeballing the table — the net worths tend to be quite
similar, and around $100, 000.

Figure 2.2 shows a histogram of the data in table 2.1. There are six bars
(0-10, 10-20, and so on), and the height of each bar gives the number of data items
that fall into its interval — so that, for example, there are 9 cheeses in this dataset
whose score is greater than or equal to 10 and less than 20. You can also use the
bars to estimate other properties. So, for example, there are 14 cheeses whose score
is less than 20, and 3 cheeses with a score of 50 or greater. This picture is much
more helpful than the table; you can see at a glance that quite a lot of cheeses have
relatively low scores, and few have high scores.

2.2.3 Conditional Histograms

Most people believe that normal body temperature is 98.4o in Fahrenheit. If you
take other people’s temperatures often (for example, you might have children),
you know that some individuals tend to run a little warmer or a little cooler than
this number. I found data giving the body temperature of a set of individuals at

Section 2.2 What’s Happening? - Plotting Data 12

96 98 100 102
0

2

4

6

8

10

12

14
Histogram of body temperatures in Fahrenheit

96 98 100 102
0

2

4

6

8

10

12

14
Gender 1 body temperatures in Fahrenheit

96 98 100 102
0

2

4

6

8

10

12

14
Gender 2 body temperatures in Fahrenheit

FIGURE 2.3: On top, a histogram of body temperatures, from the dataset published
at http: // www2.stetson.edu/~ jrasp/data. htm . These seem to be clustered
fairly tightly around one value. The bottom row shows histograms for each gender
(I don’t know which is which). It looks as though one gender runs slightly cooler
than the other.

http://www2.stetson.edu/~jrasp/data.htm. As you can see from the histogram
(figure 2.3), the body temperatures cluster around a small set of numbers. But what
causes the variation?

One possibility is gender. We can investigate this possibility by compar-
ing a histogram of temperatures for males with histogram of temperatures for fe-
males. Such histograms are sometimes called conditional histograms or class-
conditional histograms, because each histogram is conditioned on something (in
this case, the histogram uses only data that comes from gender).

The dataset gives genders (as 1 or 2 - I don’t know which is male and which
female). Figure 2.3 gives the class conditional histograms. It does seem like indi-
viduals of one gender run a little cooler than individuals of the other, although we
don’t yet have mechanisms to test this possibility in detail (chapter 1).

Section 2.3 Plotting 2D Data 13

2.3 PLOTTING 2D DATA

We take a dataset, choose two different entries, and extract the corresponding
elements from each tuple. The result is a dataset consisting of 2-tuples, and we
think of this as a two dimensional dataset. The first step is to plot this dataset in a
way that reveals relationships. The topic of how best to plot data fills many books,
and we can only scratch the surface here. Categorical data can be particularly
tricky, because there are a variety of choices we can make, and the usefulness of
each tends to depend on the dataset and to some extent on one’s cleverness in
graphic design (section 2.3.1).

For some continuous data, we can plot the one entry as a function of the other
(so, for example, our tuples might consist of the date and the number of robberies;
or the year and the price of lynx pelts; and so on, section 2.3.2).

Mostly, we use a simple device, called a scatter plot. Using and thinking about
scatter plots will reveal a great deal about the relationships between our data items
(section 2.3.3).

b−Pb−G b−S g−Sg−G g−P
0

50

100

150
boy−Popular

boy−Grades

boy−Sports
girl−Sports

girl−Grades

girl−Popular

Number of each gender choosing each goal

FIGURE 2.4: I sorted the children in the Chase and Dunner study into six categories
(two genders by three goals), and counted the number of children that fell into each
cell. I then produced the bar chart on the left, which shows the number of children
of each gender, selecting each goal. On the right, a pie chart of this information.
I have organized the pie chart so it is easy to compare boys and girls by eye — start
at the top; going down on the left side are boy goals, and on the right side are girl
goals. Comparing the size of the corresponding wedges allows you to tell what goals
boys (resp. girls) identify with more or less often.

2.3.1 Categorical Data, Counts, and Charts

Categorical data is a bit special. Assume we have a dataset with several categorical
descriptions of each data item. One way to plot this data is to think of it as belong-
ing to a richer set of categories. Assume the dataset has categorical descriptions,
which are not ordinal. Then we can construct a new set of categories by looking
at each of the cases for each of the descriptions. For example, in the Chase and
Dunner data of table 2.2, our new categories would be: “boy-sports”; “girl-sports”;
“boy-popular”; “girl-popular”; “boy-grades”; and “girl-grades”. A large set of cat-

Section 2.3 Plotting 2D Data 14

egories like this can result in a poor bar chart, though, because there may be too
many bars to group the bars successfully. Figure 2.4 shows such a bar chart. Notice
that it is hard to group categories by eye to compare; for example, you can see that
slightly more girls think grades are important than boys do, but to do so you need
to compare two bars that are separated by two other bars. An alternative is a pie
chart, where a circle is divided into sections whose angle is proportional to the
size of the data item. You can think of the circle as a pie, and each section as a
slice of pie. Figure 2.4 shows a pie chart, where each section is proportional to the
number of students in its category. In this case, I’ve used my judgement to lay the
categories out in a way that makes comparisons easy. I’m not aware of any tight
algorithm for doing this, though.

Pie charts have problems, because it is hard to judge small differences in area
accurately by eye. For example, from the pie chart in figure 2.4, it’s hard to tell
that the “boy-sports” category is slightly bigger than the “boy-popular” category
(try it; check using the bar chart). For either kind of chart, it is quite important
to think about what you plot. For example, the plot of figure 2.4 shows the total
number of respondents, and if you refer to figure 2.1, you will notice that there
are slightly more girls in the study. Is the percentage of boys who think grades are
important smaller (or larger) than the percentage of girls who think so? you can’t
tell from these plots, and you’d have to plot the percentages instead.

bo
y

gir
l

Sports

Grades

Popular
 40

 60

 80

100

120

FIGURE 2.5: A heat map of the Chase and Dunner data. The color of each cell
corresponds to the count of the number of elements of that type. The colorbar at
the side gives the correspondence between color and count. You can see at a glance
that the number of boys and girls who prefer grades is about the same; that about
the same number of boys prefer sports and popularity, with sports showing a mild
lead; and that more girls prefer popularity to sports.

An alternative to a pie chart that is very useful for two dimensional data is
a heat map. This is a method of displaying a matrix as an image. Each entry of
the matrix is mapped to a color, and the matrix is represented as an image. For
the Chase and Dunner study, I constructed a matrix where each row corresponds
to a choice of “sports”, “grades”, or “popular”, and each column corresponds to a
choice of “boy” or “girl”. Each entry contains the count of data items of that type.
Zero values are represented as white; the largest values as red; and as the value
increases, we use an increasingly saturated pink. This plot is shown in figure 2.5

If the categorical data is ordinal, the ordering offers some hints for making

Section 2.3 Plotting 2D Data 15

-2 -1 0 1 2
-2 24 5 0 0 1
-1 6 12 3 0 0
0 2 4 13 6 0
1 0 0 3 13 2
2 0 0 0 1 5

TABLE 2.3: I simulated data representing user evaluations of a user interface.
Each cell in the table on the left contains the count of users rating “ease of use”
(horizontal, on a scale of -2 -very bad- to 2 -very good) vs. “enjoyability” (vertical,
same scale). Users who found the interface hard to use did not like using it either.
While this data is categorical, it’s also ordinal, so that the order of the cells is
determined. It wouldn’t make sense, for example, to reorder the columns of the
table or the rows of the table.

−2 −1 0 1 2

−2
−1

0
1

2

0

10

20

30

Ease of use

Counts of user responses for a user interface

Enjoyability Ease of use

E
nj

oy
ab

ili
ty

−2 −1 0 1 2

−2

−1

0

1

2
 0

 5

10

15

20

FIGURE 2.6: On the left, a 3D bar chart of the data. The height of each bar is given
by the number of users in each cell. This figure immediately reveals that users
who found the interface hard to use did not like using it either. However, some of
the bars at the back are hidden, so some structure might be hard to infer. On the
right, a heat map of this data. Again, this figure immediately reveals that users
who found the interface hard to use did not like using it either. It’s more apparent
that everyone disliked the interface, though, and it’s clear that there is no important
hidden structure.

a good plot. For example, imagine we are building a user interface. We build an
initial version, and collect some users, asking each to rate the interface on scales for
“ease of use” (-2, -1, 0, 1, 2, running from bad to good) and “enjoyability” (again,
-2, -1, 0, 1, 2, running from bad to good). It is natural to build a 5x5 table, where
each cell represents a pair of “ease of use” and “enjoyability” values. We then count
the number of users in each cell, and build graphical representations of this table.
One natural representation is a 3D bar chart, where each bar sits on its cell in
the 2D table, and the height of the bars is given by the number of elements in the
cell. Table 2.3 shows a table and figure 2.6 shows a 3D bar chart for some simulated

Section 2.3 Plotting 2D Data 16

0 10 20 30 40
0

20

40

60

80

100

month

nu
m

be
r

of
 b

ur
gl

ar
ie

s
Burglaries each month in Hyde Park

1840 1860 1880 1900 1920
0

500

1000

1500

year

Lynx pelts traded at Hudson Bay and price

number of pelts/100
price in pence

FIGURE 2.7: Left, the number of burglaries in Hyde Park, by month. Right, a plot
of the number of lynx pelts traded at Hudson Bay and of the price paid per pelt, as
a function of the year. Notice the scale, and the legend box (the number of pelts is
scaled by 100).

data. The main difficulty with a 3D bar chart is that some bars are hidden behind
others. This is a regular nuisance. You can improve things by using an interactive
tool to rotate the chart to get a nice view, but this doesn’t always work. Heatmaps
don’t suffer from this problem (Figure 2.6), another reason they are a good choice.

2.3.2 Series

Sometimes one component of a dataset gives a natural ordering to the data. For
example, we might have a dataset giving the maximum rainfall for each day of the
year. We could record this either by using a two-dimensional representation, where
one dimension is the number of the day and the other is the temperature, or with a
convention where the i’th data item is the rainfall on the i’th day. For example, at
http://lib.stat.cmu.edu/DASL/Datafiles/timeseriesdat.html, you can find
four datasets indexed in this way. It is natural to plot data like this as a function
of time. From this dataset, I extracted data giving the number of burglaries each
month in a Chicago suburb, Hyde Park. I have plotted part this data in Figure 2.7
(I left out the data to do with treatment effects). It is natural to plot a graph of
the burglaries as a function of time (in this case, the number of the month). The
plot shows each data point explicitly. I also told the plotting software to draw
lines joining data points, because burglaries do not all happen on a specific day.
The lines suggest, reasonably enough, the rate at which burglaries are happening
between data points.

As another example, at http://lib.stat.cmu.edu/datasets/Andrews/ you
can find a dataset that records the number of lynx pelts traded to the Hudson’s Bay
company and the price paid for each pelt. This version of the dataset appeared first
in table 3.2 of Data: a Collection of Problems from many Fields for the Student
and Research Worker by D.F. Andrews and A.M. Herzberg, published by Springer
in 1985. I have plotted it in figure 2.7. The dataset is famous, because it shows

Section 2.3 Plotting 2D Data 17

FIGURE 2.8: Snow’s scatter plot of cholera deaths on the left. Each cholera death
is plotted as a small bar on the house in which the bar occurred (for example, the
black arrow points to one stack of these bars, indicating many deaths, in the detail
on the right). Notice the fairly clear pattern of many deaths close to the Broad
street pump (grey arrow in the detail), and fewer deaths further away (where it was
harder to get water from the pump).

a periodic behavior in the number of pelts (which is a good proxy for the number
of lynx), which is interpreted as a result of predator-prey interactions. Lynx eat
rabbits. When there are many rabbits, lynx kittens thrive, and soon there will
be many lynx; but then they eat most of the rabbits, and starve, at which point
the rabbit population rockets. You should also notice that after about 1900, prices
seem to have gone up rather quickly. I don’t know why this is. There is also some
suggestion, as there should be, that prices are low when there are many pelts, and
high when there are few.

2.3.3 Scatter Plots for Spatial Data

It isn’t always natural to plot data as a function. For example, in a dataset con-
taining the temperature and blood pressure of a set of patients, there is no reason
to believe that temperature is a function of blood pressure, or the other way round.
Two people could have the same temperature, and different blood pressures, or
vice-versa. As another example, we could be interested in what causes people to
die of cholera. We have data indicating where each person died in a particular
outbreak. It isn’t helpful to try and plot such data as a function.

The scatter plot is a powerful way to deal with this situation. In the first
instance, assume that our data points actually describe points on the a real map.
Then, to make a scatter plot, we make a mark on the map at a place indicated by
each data point. What the mark looks like, and how we place it, depends on the

Section 2.3 Plotting 2D Data 18

FIGURE 2.9: Left, a scatter plot of arsenic levels in US groundwater, prepared by
the US Geological Survey (you can find the data at http:// water.usgs. gov/

GIS/metadata/usgswrd/XML/ arsenic_map. xml . Here the shape and color of
each marker shows the amount of arsenic, and the spatial distribution of the mark-
ers shows where the wells were sampled. Right, the usage of Nitrogen (a com-
ponent of fertilizer) by US county in 1991, prepared by the US Geological Survey
(you can find the data at http:// water.usgs.gov/ GIS/ metadata/usgswrd/

XML/nit91.xml). In this variant of a scatter plot (which usually takes specialized
software to prepare) one fills each region with a color indicating the data in that
region.

particular dataset, what we are looking for, how much we are willing to work with
complex tools, and our sense of graphic design.

Figure 2.8 is an extremely famous scatter plot, due to John Snow. Snow —
one of the founders of epidemiology — used a scatter plot to reason about a cholera
outbreak centered on the Broad Street pump in London in 1854. At that time,
the mechanism that causes cholera was not known. Snow plotted cholera deaths as
little bars (more bars, more deaths) on the location of the house where the death
occurred. More bars means more deaths, fewer bars means fewer deaths. There
are more bars per block close to the pump, and few far away. This plot offers quite
strong evidence of an association between the pump and death from cholera. Snow
used this scatter plot as evidence that cholera was associated with water, and that
the Broad Street pump was the source of the tainted water.

Figure 2.9 shows a scatter plot of arsenic levels in groundwater for the United
States, prepared by the US Geological Survey. The data set was collected by
Focazio and others in 2000; by Welch and others in 2000; and then updated by
Ryker 2001. It can be found at http://water.usgs.gov/GIS/metadata/usgswrd/
XML/arsenic_map.xml. One variant of a scatter plot that is particularly useful
for geographic data occurs when one fills regions on a map with different colors,
following the data in that region. Figure 2.9 shows the nitrogen usage by US county
in 1991; again, this figure was prepared by the US Geological Survey.

Section 2.3 Plotting 2D Data 19

96 98 100 102

60

70

80

90

1 1
1

1

1
1

1

1

111
1

1

1

11

1
1
1

1

1

1

1
1
1

1

1
1

1
1

1

1

11
1

11

1

1
1
1

1
1

1
1

11

1

1
1

1

1

11
1
1
1

1
1
1

1

1

1

1

1

2

2

2

2
2

2
2

2

2

2

2

2
22

2
2

2

2

2

2

2

2

22

2
2

2

22
22
2

22

222
22

2

2

2

2

22

2

2

2

2

2

2
2

2

2
2
22

2
2

2
2

2
22 2

Body temperature

H
ea

rt
 r

at
e

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

1 11
1
11
1

1
111
1
1
1
11
1
1
1

1

1
1

111
1
11
11

1
1
111
11

1

1
11

11

11
11
1

1
1

1

1
111111

11

1

1

1
1
1

2
2

2
22
22

2

2

2

2
222
22
2
2
2

2
2
2
22
22

2

22222
22
22222
2
2
2

2
22

2

2
2

2
2

22
2
22
22
22
22
2 22 2

Normalized body temperature

N
or

m
al

iz
ed

 h
ea

rt
 r

at
e

FIGURE 2.10: A scatter plot of body temperature against heart rate, from the dataset
at http:// www2.stetson.edu/ ~ jrasp/data.htm ; normtemp.xls. I have sepa-
rated the two genders by plotting a different symbol for each (though I don’t know
which gender is indicated by which letter); if you view this in color, the differences
in color makes for a greater separation of the scatter. This picture suggests, but
doesn’t conclusively establish, that there isn’t much dependence between tempera-
ture and heart rate, and any dependence between temperature and heart rate isn’t
affected by gender.

20 40 60 80
100

150

200

250

300

350

400

Heights

W
ei

gh
ts

60 65 70 75 80
100

150

200

250

300

Heights, outliers removed

W
ei

gh
ts

, o
ut

lie
rs

 r
em

ov
ed

FIGURE 2.11: A scatter plots of weight against height, from the dataset at http://
www2.stetson.edu/ ~ jrasp/data.htm . Left: Notice how two outliers dominate
the picture, and to show the outliers, the rest of the data has had to be bunched up.
Right shows the data with the outliers removed. The structure is now somewhat
clearer.

2.3.4 Scatter Plots — Scale is a problem

Scatter plots are natural for geographic data, but a scatter plot is a useful, simple
tool for ferreting out associations in other kinds of data as well. Now we need
some notation. Assume we have a dataset {x} of N data items, x1, . . . , xN . Each
data item is a d dimensional vector (so its components are numbers). We wish to
investigate the relationship between two components of the dataset. For example,

Section 2.3 Plotting 2D Data 20

60 65 70 75 80
100

150

200

250

300

Heights, outliers removed

W
ei

gh
ts

, o
ut

lie
rs

 r
em

ov
ed

60 65 70 75 80
0

100

200

300

400

Heights

W
ei

gh
ts

FIGURE 2.12: Scatter plots of weight against height, from the dataset at http://
www2.stetson.edu/ ~ jrasp/data.htm . Left: data with two outliers removed,
as in figure 2.11. Right: this data, rescaled slightly. Notice how the data looks less
spread out. But there is no difference between the datasets. Instead, your eye is
easily confused by a change of scale.

0 2 4 6 8
x 10

4

0

500

1000

1500

number of pelts traded

pr
ic

e
of

 p
el

ts
, i

n
pe

nn
ie

s

FIGURE 2.13: A scatter plot of the price of lynx pelts against the number of pelts.
I have plotted data for 1901 to the end of the series as circles, and the rest of the
data as *’s. It is quite hard to draw any conclusion from this data, because the scale
is confusing. Furthermore, the data from 1900 on behaves quite differently from the
other data.

we might be interested in the 7’th and the 13’th component of the dataset. We
will produce a two-dimensional plot, one dimension for each component. It does
not really matter which component is plotted on the x-coordinate and which on
the y-coordinate (though it will be some pages before this is clear). But it is very
difficult to write sensibly without talking about the x and y coordinates.

We will make a two-dimensional dataset out of the components that interest
us. We must choose which component goes first in the resulting 2-vector. We will
plot this component on the x-coordinate (and we refer to it as the x-coordinate),
and to the other component as the y-coordinate. This is just to make it easier to

Section 2.3 Plotting 2D Data 21

describe what is going on; there’s no important idea here. It really will not matter
which is x and which is y. The two components make a dataset {xi} = {(xi, yi)}.
To produce a scatter plot of this data, we plot a small shape at the location of each
data item.

Such scatter plots are very revealing. For example, figure 2.10 shows a scatter
plot of body temperature against heart rate for humans. In this dataset, the gender
of the subject was recorded (as “1” or “2” — I don’t know which is which), and
so I have plotted a “1” at each data point with gender “1”, and so on. Looking
at the data suggests there isn’t much difference between the blob of “1” labels and
the blob of “2” labels, which suggests that females and males are about the same
in this respect.

The scale used for a scatter plot matters. For example, plotting lengths in
meters gives a very different scatter from plotting lengths in millimeters. Fig-
ure 2.11 shows two scatter plots of weight against height. Each plot is from the
same dataset, but one is scaled so as to show two outliers. Keeping these out-
liers means that the rest of the data looks quite concentrated, just because the
axes are in large units. In the other plot, the axis scale has changed (so you can’t
see the outliers), but the data looks more scattered. This may or may not be a
misrepresentation. Figure 2.12 compares the data with outliers removed, with the
same plot on a somewhat different set of axes. One plot looks as though increasing
height corresponds to increasing weight; the other looks as though it doesn’t. This
is purely due to deceptive scaling — each plot shows the same dataset.

Dubious data can also contribute to scaling problems. Recall that, in fig-
ure 2.7, price data before and after 1900 appeared to behave differently. Figure 2.13
shows a scatter plot of the lynx data, where I have plotted number of pelts against
price. I plotted the post-1900 data as circles, and the rest as asterisks. Notice
how the circles seem to form a quite different figure, which supports the suggestion
that something interesting happened around 1900. The scatter plot does not seem
to support the idea that prices go up when supply goes down, which is puzzling,
because this is a pretty reliable idea. This turns out to be a scale effect. Scale is
an important nuisance, and it’s easy to get misled by scale effects.

C H A P T E R 3

Summaries and Plots

3.1 SUMMARIZING 1D DATA

For the rest of this chapter, we will assume that data items take values that are
continuous real numbers. Furthermore, we will assume that values can be added,
subtracted, and multiplied by constants in a meaningful way. Human heights are
one example of such data; you can add two heights, and interpret the result as a
height (perhaps one person is standing on the head of the other). You can subtract
one height from another, and the result is meaningful. You can multiply a height
by a constant — say, 1/2 — and interpret the result (A is half as high as B). Not
all data is like this. Categorical data is often not like this. For example, you could
not add “Grades” to “Popular” in any useful way.

3.1.1 The Mean

One simple and effective summary of a set of data is its mean. This is sometimes
known as the average of the data.

Definition: 3.1 Mean

Assume we have a dataset {x} of N data items, x1, . . . , xN . Their mean
is

mean ({x}) = 1

N

i=N
∑

i=1

xi.

For example, assume you’re in a bar, in a group of ten people who like to talk
about money. They’re average people, and their net worth is given in table 2.1 (you
can choose who you want to be in this story). The mean of this data is $107, 903.

An important interpretation of the mean is that it is the best guess of the
value of a new data item, given no information at all. In the bar example, if a new
person walked into this bar, and you had to guess that person’s net worth, you
should choose $107, 903.

Properties of the Mean The mean has several important properties you
should remember:

• Scaling data scales the mean: or mean ({kxi}) = kmean ({xi}).

• Translating data translates the mean: or mean ({xi + c}) = mean ({xi}) + c.

22

Section 3.1 Summarizing 1D Data 23

• The sum of signed differences from the mean is zero. This means that

N
∑

i=1

(xi −mean ({xi})) = 0.

• Choose the number µ such that the sum of squared distances of data points
to µ is minimized. That number is the mean. In notation

arg min
µ

∑

i

(xi − µ)2 = mean ({xi})

These properties are easy to prove (and so easy to remember). All but one proof
is relegated to the exercises.

Proposition:
arg min

µ

∑

i(xi − µ)2 = mean ({x})

Proof: Choose the number µ such that the sum of squared distances of data
points to µ is minimized. That number is the mean. In notation:

arg min
µ

∑

i

(xi − µ)2 = mean ({x})

We can show this by actually minimizing the expression. We must have that the
derivative of the expression we are minimizing is zero at the value of µ we are
seeking. So we have

d

dµ

N
∑

i=1

(xi − µ)2 =

N
∑

i=1

2(xi − µ)

= 2

N
∑

i=1

(xi − µ)

= 0

so that 2Nmean ({x})− 2Nµ = 0, which means that µ = mean ({x}).
Property 3.1: The Average Squared Distance to the Mean is Minimized

3.1.2 Standard Deviation and Variance

We would also like to know the extent to which data items are close to the mean.
This information is given by the standard deviation, which is the root mean
square of the offsets of data from the mean.

Section 3.1 Summarizing 1D Data 24

Definition: 3.2 Standard deviation

Assume we have a dataset {x} of N data items, x1, . . . , xN . The stan-
dard deviation of this dataset is is:

std (xi) =

√

√

√

√

1

N

i=N
∑

i−1

(xi −mean ({x}))2 =
√

mean ({(xi −mean ({x}))2}).

You should think of the standard deviation as a scale. It measures the size of
the average deviation from the mean for a dataset. When the standard deviation
of a dataset is large, there are many items with values much larger than, or much
smaller than, the mean. When the standard deviation is small, most data items
have values close to the mean. This means it is helpful to talk about how many
standard devations away from the mean a particular data item is. Saying that data
item xj is “within k standard deviations from the mean” means that

abs (xj −mean ({x})) ≤ kstd (xi).

Similarly, saying that data item xj is “more than k standard deviations from the
mean” means that

abs (xi −mean ({x})) > kstd (x).

As I will show below, there must be some data at least one standard deviation
away from the mean, and there can be very few data items that are many standard
deviations away from the mean.

Properties of the Standard Deviation Standard deviation has very im-
portant properties:

• Translating data does not change the standard deviation, i.e. std (xi + c) =
std (xi).

• Scaling data scales the standard deviation, i.e. std (kxi) = kstd (xi).

• For any dataset, there can be only a few items that are many standard devi-
ations away from the mean. In particular, assume we have N data items, xi,
whose standard deviation is σ. Then there are at most 1

k2 data points lying
k or more standard deviations away from the mean.

• For any dataset, there must be at least one data item that is at least one
standard deviation away from the mean.

The first two properties are easy to prove, and are relegated to the exercises.

Section 3.1 Summarizing 1D Data 25

Proposition: Assume we have a dataset {x} of N data items, x1, . . . , xN .
Assume the standard deviation of this dataset is std (x) = σ. Then there are at
most 1

k2 data points lying k or more standard deviations away from the mean.

Proof: Assume the mean is zero. There is no loss of generality here, because
translating data translates the mean, but doesn’t change the standard deviation.
The way to prove this is to construct a dataset with the largest possible fraction
r of data points lying k or more standard deviations from the mean. To achieve
this, our data should have N(1 − r) data points each with the value 0, because
these contribute 0 to the standard deviation. It should have Nr data points with
the value kσ; if they are further from zero than this, each will contribute more
to the standard deviation, so the fraction of such points will be fewer. Because

std (x) = σ =

√

∑

i x
2
i

N

we have that, for this rather specially constructed dataset,

σ =

√

Nrk2σ2

N

so that

r =
1

k2
.

We constructed the dataset so that r would be as large as possible, so

r ≥ 1

k2

for any kind of data at all.

Property 3.2: For any dataset, it is hard for data items to get many standard
deviations away from the mean.

The bound of box 3.1.2 is true for any kind of data. This bound implies that,
for example, at most 100% of any dataset could be one standard deviation away
from the mean, 25% of any dataset is 2 standard deviations away from the mean
and at most 11% of any dataset could be 3 standard deviations away from the
mean. But the configuration of data that achieves this bound is very unusual. This
means the bound tends to wildly overstate how much data is far from the mean
for most practical datasets. Most data has more random structure, meaning that
we expect to see very much less data far from the mean than the bound predicts.
For example, much data can reasonably be modelled as coming from a normal
distribution (a topic we’ll go into later). For such data, we expect that about
68% of the data is within one standard deviation of the mean, 95% is within two
standard deviations of the mean, and 99.7% is within three standard deviations
of the mean, and the percentage of data that is within ten standard deviations of
the mean is essentially indistinguishable from 100%. This kind of behavior is quite
common; the crucial point about the standard deviation is that you won’t see much

Section 3.1 Summarizing 1D Data 26

data that lies many standard deviations from the mean, because you can’t.

Proposition: (std (x))2 ≤ maxi(xi −mean ({x}))2.

Proof: You can see this by looking at the expression for standard deviation.
We have

std (x) =

√

√

√

√

1

N

i=N
∑

i−1

(xi −mean ({x}))2.

Now, this means that

N(std (x))2 =

i=N
∑

i−1

(xi −mean ({x}))2.

But
i=N
∑

i−1

(xi −mean ({x}))2 ≤ N max
i

(xi −mean ({x}))2

so
(std (x))2 ≤ max

i
(xi −mean ({x}))2.

Property 3.3: For any dataset, there must be at least one data item that is at
least one standard deviation away from the mean.

Boxes 3.1.2 and 3.1.2 mean that the standard deviation is quite informative.
Very little data is many standard deviations away from the mean; similarly, at least
some of the data should be one or more standard deviations away from the mean.
So the standard deviation tells us how data points are scattered about the mean.

Potential point of confusion: There is an ambiguity that comes up often
here because two (very slightly) different numbers are called the standard deviation
of a dataset. One — the one we use in this chapter — is an estimate of the scale
of the data, as we describe it. The other differs from our expression very slightly;
one computes

√

∑

i(xi −mean ({x}))2
N − 1

(notice the N −1 for our N). If N is large, this number is basically the same as the
number we compute, but for smaller N there is a difference that can be significant.
Irritatingly, this number is also called the standard deviation; even more irritatingly,
we will have to deal with it, but not yet. I mention it now because you may look
up terms I have used, find this definition, and wonder. Don’t worry - the N in our
expressions is the right thing to use for what we’re doing.

3.1.3 Variance

It turns out that thinking in terms of the square of the standard deviation, which
is known as the variance, will allow us to generalize our summaries to apply to
higher dimensional data.

Section 3.1 Summarizing 1D Data 27

Definition: 3.3 Variance

Assume we have a dataset {x} of N data items, x1, . . . , xN . where
N > 1. Their variance is:

var ({x}) = 1

N

(

i=N
∑

i−1

(xi −mean ({x}))2
)

= mean
({

(xi −mean ({x}))2
})

.

One good way to think of the variance is as the mean-square error you would
incur if you replaced each data item with the mean. Another is that it is the square
of the standard deviation.

Properties of the Variance The properties of the variance follow from
the fact that it is the square of the standard deviation. We have that:

• Translating data does not change the variance, i.e. var ({x+ c}) = var ({x}).

• Scaling data scales the variance by a square of the scale, i.e. var ({kx}) =
k2var ({x}).

While one could restate the other two properties of the standard deviation in terms
of the variance, it isn’t really natural to do so. The standard deviation is in the
same units as the original data, and should be thought of as a scale. Because the
variance is the square of the standard deviation, it isn’t a natural scale (unless you
take its square root!).

3.1.4 The Median

One problem with the mean is that it can be affected strongly by extreme values.
Go back to the bar example, of section 3.1.1. Now Warren Buffett (or Bill Gates,
or your favorite billionaire) walks in. What happened to the average net worth?

Assume your billionaire has net worth $ 1, 000, 000, 000. Then the mean net
worth suddenly has become

10× $107, 903+ $1, 000, 000, 000

11
= $91, 007, 184

But this mean isn’t a very helpful summary of the people in the bar. It is prob-
ably more useful to think of the net worth data as ten people together with one
billionaire. The billionaire is known as an outlier.

One way to get outliers is that a small number of data items are very dif-
ferent, due to minor effects you don’t want to model. Another is that the data
was misrecorded, or mistranscribed. Another possibility is that there is just too
much variation in the data to summarize it well. For example, a small number
of extremely wealthy people could change the average net worth of US residents

Section 3.1 Summarizing 1D Data 28

dramatically, as the example shows. An alternative to using a mean is to use a
median.

Definition: 3.4 Median

The median of a set of data points is obtained by sorting the data
points, and finding the point halfway along the list. If the list is of
even length, it’s usual to average the two numbers on either side of the
middle. We write

median ({xi})
for the operator that returns the median.

For example,
median ({3, 5, 7}) = 5,

median ({3, 4, 5, 6, 7}) = 5,

and
median ({3, 4, 5, 6}) = 4.5.

For much, but not all, data, you can expect that roughly half the data is smaller
than the median, and roughly half is larger than the median. Sometimes this
property fails. For example,

median ({1, 2, 2, 2, 2, 2, 2, 2, 3}) = 2.

With this definition, the median of our list of net worths is $107, 835. If we insert
the billionaire, the median becomes $108, 930. Notice by how little the number has
changed — it remains an effective summary of the data.

Properties of the median You can think of the median of a dataset as
giving the “middle” or “center” value. This means it is rather like the mean, which
also gives a (slightly differently defined) “middle” or “center” value. The mean has
the important properties that if you translate the dataset, the mean translates, and
if you scale the dataset, the mean scales. The median has these properties, too:

• Translating data translates the median, i.e. median ({x+ c}) = median ({x})+
c.

• Scaling data scales the median by the same scale, i.e. median ({kx}) =
kmedian ({x}).

Each is easily proved, and proofs are relegated to the exercises.

3.1.5 Interquartile Range

Outliers can affect standard deviations severely, too. For our net worth data, the
standard deviation without the billionaire is $9265, but if we put the billionaire
in there, it is $3.014 × 108. When the billionaire is in the dataset, all but one of

Section 3.1 Summarizing 1D Data 29

the data items lie about a third of a standard deviation away from the mean; the
other one (the billionaire) is many standard deviations away from the mean. In
this case, the standard deviation has done its work of informing us that there are
huge changes in the data, but isn’t really helpful.

The problem is this: describing the net worth data with billionaire as a having
a mean of $9.101×107 with a standard deviation of $3.014×108 really isn’t terribly
helpful. Instead, the data really should be seen as a clump of values that are
near $100, 000 and moderately close to one another, and one massive number (the
billionaire outlier).

One thing we could do is simply remove the billionaire and compute mean
and standard deviation. This isn’t always easy to do, because it’s often less obvious
which points are outliers. An alternative is to follow the strategy we did when we
used the median. Find a summary that describes scale, but is less affected by
outliers than the standard deviation. This is the interquartile range; to define
it, we need to define percentiles and quartiles, which are useful anyway.

Definition: 3.5 Percentile

The k’th percentile is the value such that k% of the data is less than or
equal to that value. We write percentile({x}, k) for the k’th percentile
of dataset {x}.

Definition: 3.6 Quartiles

The first quartile of the data is the value such that 25% of the data is less
than or equal to that value (i.e. percentile({x}, 25)). The second quar-
tile of the data is the value such that 50% of the data is less than or equal
to that value, which is usually the median (i.e. percentile({x}, 50)). The
third quartile of the data is the value such that 75% of the data is less
than or equal to that value (i.e. percentile({x}, 75)).

Definition: 3.7 Interquartile Range

The interquartile range of a dataset {x} is iqr{x} = percentile({x}, 75)−
percentile({x}, 25).

Like the standard deviation, the interquartile range gives an estimate of how
widely the data is spread out. But it is quite well-behaved in the presence of
outliers. For our net worth data without the billionaire, the interquartile range is
$12350; with the billionaire, it is $17710.

Section 3.1 Summarizing 1D Data 30

Properties of the interquartile range You can think of the interquartile
range of a dataset as giving an estimate of the scale of the difference from the mean.
This means it is rather like the standard deviation, which also gives a (slightly
differently defined) scale. The standard deviation has the important properties
that if you translate the dataset, the standard deviation translates, and if you
scale the dataset, the standard deviation scales. The interquartile range has these
properties, too:

• Translating data does not change the interquartile range, i.e. iqr{x+ c} =
iqr{x}.

• Scaling data scales the interquartile range by the same scale, i.e. iqr{kx} =
k2iqr{x}.

Each is easily proved, and proofs are relegated to the exercises.

3.1.6 Using Summaries Sensibly

One should be careful how one summarizes data. For example, the statement
that “the average US family has 2.6 children” invites mockery (the example is from
Andrew Vickers’ bookWhat is a p-value anyway?), because you can’t have fractions
of a child — no family has 2.6 children. A more accurate way to say things might
be “the average of the number of children in a US family is 2.6”, but this is clumsy.
What is going wrong here is the 2.6 is a mean, but the number of children in a
family is a categorical variable. Reporting the mean of a categorical variable is
often a bad idea, because you may never encounter this value (the 2.6 children).
For a categorical variable, giving the median value and perhaps the interquartile
range often makes much more sense than reporting the mean.

For continuous variables, reporting the mean is reasonable because you could
expect to encounter a data item with this value, even if you haven’t seen one in
the particular data set you have. It is sensible to look at both mean and median;
if they’re significantly different, then there is probably something going on that is
worth understanding. You’d want to plot the data using the methods of the next
section before you decided what to report.

You should also be careful about how precisely numbers are reported (equiv-
alently, the number of significant figures). Numerical and statistical software will
produce very large numbers of digits freely, but not all are always useful. This is a
particular nuisance in the case of the mean, because you might add many numbers,
then divide by a large number; in this case, you will get many digits, but some
might not be meaningful. For example, Vickers (ibid) describes a paper reporting
the mean length of pregnancy as 32.833 weeks. That fifth digit suggests we know
the mean length of pregnancy to about 0.001 weeks, or roughly 10 minutes. Neither
medical interviewing nor people’s memory for past events is that detailed. Further-
more, when you interview them about embarrassing topics, people quite often lie.
There is no prospect of knowing this number with this precision.

People regularly report silly numbers of digits because it is easy to miss the
harm caused by doing so. But the harm is there: you are implying to other people,
and to yourself, that you know something more accurately than you do. At some
point, someone will suffer for it.

Section 3.2 Plots and Summaries 31

mode

modes

Population 1 Population 2

Bimodal

modes

Population 1 Population 2

Multimodal

Population 3

FIGURE 3.1: Many histograms are unimodal, like the example on the top; there is
one peak, or mode. Some are bimodal (two peaks; bottom left) or even multimodal
(two or more peaks; bottom right). One common reason (but not the only reason)
is that there are actually two populations being conflated in the histograms. For
example, measuring adult heights might result in a bimodal histogram, if male and
female heights were slightly different. As another example, measuring the weight
of dogs might result in a multimodal histogram if you did not distinguish between
breeds (eg chihauhau, terrier, german shepherd, pyranean mountain dog, etc.).

3.2 PLOTS AND SUMMARIES

Knowing the mean, standard deviation, median and interquartile range of a dataset
gives us some information about what its histogram might look like. In fact, the
summaries give us a language in which to describe a variety of characteristic proper-
ties of histograms that are worth knowing about (Section 3.2.1). Quite remarkably,
many different datasets have the same shape of histogram (Section 3.2.2). For such
data, we know roughly what percentage of data items are how far from the mean.

Complex datasets can be difficult to interpret with histograms alone, because
it is hard to compare many histograms by eye. Section 3.2.3 describes a clever plot
of various summaries of datasets that makes it easier to compare many cases.

3.2.1 Some Properties of Histograms

The tails of a histogram are the relatively uncommon values that are significantly
larger (resp. smaller) than the value at the peak (which is sometimes called the
mode). A histogram is unimodal if there is only one peak; if there are more than
one, it is multimodal, with the special term bimodal sometimes being used for

Section 3.2 Plots and Summaries 32

left

tail

right

tail

mode, median, mean, all on top of

Symmetric Histogram

one another

left

tail

right

tail

mode
median

mean

Left Skew

left

tail
right

tail

mode
median

mean

Right Skew

FIGURE 3.2: On the top, an example of a symmetric histogram, showing its tails
(relatively uncommon values that are significantly larger or smaller than the peak
or mode). Lower left, a sketch of a left-skewed histogram. Here there are few
large values, but some very small values that occur with significant frequency. We
say the left tail is “long”, and that the histogram is left skewed (confusingly, this
means the main bump is to the right). Lower right, a sketch of a right-skewed
histogram. Here there are few small values, but some very large values that occur
with significant frequency. We say the right tail is “long”, and that the histogram
is right skewed (confusingly, this means the main bump is to the left).

the case where there are two peaks (Figure 3.1). The histograms we have seen
have been relatively symmetric, where the left and right tails are about as long as
one another. Another way to think about this is that values a lot larger than the
mean are about as common as values a lot smaller than the mean. Not all data is
symmetric. In some datasets, one or another tail is longer (figure 3.2). This effect
is called skew.

Skew appears often in real data. SOCR (the Statistics Online Computa-
tional Resource) publishes a number of datasets. Here we discuss a dataset of
citations to faculty publications. For each of five UCLA faculty members, SOCR
collected the number of times each of the papers they had authored had been
cited by other authors (data at http://wiki.stat.ucla.edu/socr/index.php/

SOCR_Data_Dinov_072108_H_Index_Pubs). Generally, a small number of papers
get many citations, and many papers get few citations. We see this pattern in the
histograms of citation numbers (figure 3.3). These are very different from (say) the
body temperature pictures. In the citation histograms, there are many data items
that have very few citations, and few that have many citations. This means that
the right tail of the histogram is longer, so the histogram is skewed to the right.

One way to check for skewness is to look at the histogram; another is to
compare mean and median (though this is not foolproof). For the first citation

Section 3.2 Plots and Summaries 33

0 100 200 300 400 500
0

100

200

300

400
Histogram of citations for faculty member A

1000 2000 3000 4000 5000
0

5

10

15
Birth weights for 44 babies born in Brisbane

FIGURE 3.3: On the left, a histogram of citations for a faculty member, from
data at http:// wiki.stat. ucla.edu/ socr/index.php/ SOCR_Data_ Dinov_

072108_H_ Index_Pubs . Very few publications have many citations, and many
publications have few. This means the histogram is strongly right-skewed. On the
right, a histogram of birth weights for 44 babies borne in Brisbane in 1997. This
histogram looks slightly left-skewed.

histogram, the mean is 24.7 and the median is 7.5; for the second, the mean is 24.4,
and the median is 11. In each case, the mean is a lot bigger than the median. Recall
the definition of the median (form a ranked list of the data points, and find the
point halfway along the list). For much data, the result is larger than about half
of the data set and smaller than about half the dataset. So if the median is quite
small compared to the mean, then there are many small data items and a small
number of data items that are large — the right tail is longer, so the histogram is
skewed to the right.

Left-skewed data also occurs; figure 3.3 shows a histogram of the birth weights
of 44 babies born in Brisbane, in 1997 (from http://www.amstat.org/publications/

jse/jse_data_archive.htm). This data appears to be somewhat left-skewed, as
birth weights can be a lot smaller than the mean, but tend not to be much larger
than the mean.

Skewed data is often, but not always, the result of constraints. For example,
good obstetrical practice tries to ensure that very large birth weights are rare (birth
is typically induced before the baby gets too heavy), but it may be quite hard to
avoid some small birth weights. This could could skew birth weights to the left
(because large babies will get born, but will not be as heavy as they could be if
obstetricians had not interfered). Similarly, income data can be skewed to the right
by the fact that income is always positive. Test mark data is often skewed —
whether to right or left depends on the circumstances — by the fact that there is
a largest possible mark and a smallest possible mark.

3.2.2 Standard Coordinates and Normal Data

It is useful to look at lots of histograms, because it is often possible to get some
useful insights about data. However, in their current form, histograms are hard to

Section 3.2 Plots and Summaries 34

compare. This is because each is in a different set of units. A histogram for length
data will consist of boxes whose horizontal units are, say, metres; a histogram
for mass data will consist of boxes whose horizontal units are in, say, kilograms.
Furthermore, these histograms typically span different ranges.

We can make histograms comparable by (a) estimating the “location” of the
plot on the horizontal axis and (b) estimating the “scale” of the plot. The location
is given by the mean, and the scale by the standard deviation. We could then
normalize the data by subtracting the location (mean) and dividing by the standard
deviation (scale). The resulting values are unitless, and have zero mean. They are
often known as standard coordinates.

Definition: 3.8 Standard coordinates

Assume we have a dataset {x} of N data items, x1, . . . , xN . We repre-
sent these data items in standard coordinates by computing

x̂i =
(xi −mean ({x}))

std (x)
.

We write {x̂} for a dataset that happens to be in standard coordinates.

Standard coordinates have some important properties. Assume we have N
data items. Write xi for the i’th data item, and x̂i for the i’th data item in standard
coordinates (I sometimes refer to these as “normalized data items”). Then we have

mean ({x̂}) = 0.

We also have that
std (x̂) = 1.

An extremely important fact about data is that, for many kinds of data,
histograms of these standard coordinates look the same. Many completely different
datasets produce a histogram that, in standard coordinates, has a very specific
appearance. It is symmetric, unimodal; it looks like a narrow bump. If there were
enough data points and the histogram boxes were small enough, the curve would
look like the curve in figure 3.4. This phenomenon is so important that data of this
form has a special name.

Section 3.2 Plots and Summaries 35

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5
The Standard Normal Curve

−6 −4 −2 0 2 4 6
0

1

2

3

4

5
Volumes of oysters, standard coordinates

−6 −4 −2 0 2 4 6
0

10

20

30

40

50

60
Human heights, standard coordinates

−6 −4 −2 0 2 4 6
0

10

20

30

40

50

60
Human weights, standard coordinates

FIGURE 3.4: Data is standard normal data when its histogram takes a stylized,
bell-shaped form, plotted above. One usually requires a lot of data and very small
histogram boxes for this form to be reproduced closely. Nonetheless, the histogram
for normal data is unimodal (has a single bump) and is symmetric; the tails fall
off fairly fast, and there are few data items that are many standard deviations from
the mean. Many quite different data sets have histograms that are similar to the
normal curve; I show three such datasets here.

Definition: 3.9 Standard normal data

Data is standard normal data if, when we have a great deal of data,
the histogram is a close approximation to the standard normal curve.
This curve is given by

y(x) =
1√
2pi

e(−x2/2)

(which is shown in figure 3.4).

Section 3.2 Plots and Summaries 36

Definition: 3.10 Normal data

Data is normal data if, when we subtract the mean and divide by
the standard deviation (i.e. compute standard coordinates), it becomes
standard normal data.

It is not always easy to tell whether data is normal or not, and there are
a variety of tests one can use, which we discuss later. However, there are many
examples of normal data. Figure 3.4 shows a diverse variety of data sets, plotted
as histograms in standard coordinates. These include: the volumes of 30 oysters
(from http://www.amstat.org/publications/jse/jse_data_archive.htm; look
for 30oysters.dat.txt); human heights (from http://www2.stetson.edu/~jrasp/

data.htm; look for bodyfat.xls, with two outliers removed); and human weights
(from http://www2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls, with
two outliers removed).

Properties of normal data For the moment, assume we know that a
dataset is normal. Then we expect it to have the following properties:

• If we normalize it, its histogram will be close to the standard normal curve.
This means, among other things, that the data is not significantly skewed.

• About 68% of the data lie within one standard deviation of the mean. We
will prove this later.

• About 95% of the data lie within two standard deviations of the mean. We
will prove this later.

• About 99% of the data lie within three standard deviations of the mean. We
will prove this later.

In turn, these properties imply that data that contains outliers (points many stan-
dard deviations away from the mean) is not normal. This is usually a very safe
assumption. It is quite common to model a dataset by excluding a small number
of outliers, then modelling the remaining data as normal. For example, if I exclude
two outliers from the height and weight data from http://www2.stetson.edu/

~jrasp/data.htm, the data looks pretty close to normal.

3.2.3 Boxplots

It is usually hard to compare multiple histograms by eye. One problem with com-
paring histograms is the amount of space they take up on a plot, because each
histogram involves multiple vertical bars. This means it is hard to plot multiple
overlapping histograms cleanly. If you plot each one on a separate figure, you have
to handle a large number of separate figures; either you print them too small to see
enough detail, or you have to keep flipping over pages.

Section 3.2 Plots and Summaries 37

26

27

28

29

30

31

Dominos EagleBoys

Box

q

q

1

3

In
terq

u
artile ran

g
eMedian

Whisker

Outlier

FIGURE 3.5: A boxplot showing the box, the median, the whiskers and two outliers.
Notice that we can compare the two datasets rather easily; the next section explains
the comparison.

A boxplot is a way to plot data that simplifies comparison. A boxplot dis-
plays a dataset as a vertical picture. There is a vertical box whose height corre-
sponds to the interquartile range of the data (the width is just to make the figure
easy to interpret). Then there is a horizontal line for the median; and the behavior
of the rest of the data is indicated with whiskers and/or outlier markers. This
means that each dataset makes is represented by a vertical structure, making it
easy to show multiple datasets on one plot and interpret the plot (Figure 3.5).

To build a boxplot, we first plot a box that runs from the first to the third
quartile. We then show the median with a horizontal line. We then decide which
data items should be outliers. A variety of rules are possible; for the plots I show, I
used the rule that data items that are larger than q3 + 1.5(q3 − q1) or smaller than
q1 − 1.5(q3 − q1), are outliers. This criterion looks for data items that are more
than one and a half interquartile ranges above the third quartile, or more than one
and a half interquartile ranges below the first quartile.

Once we have identified outliers, we plot these with a special symbol (crosses
in the plots I show). We then plot whiskers, which show the range of non-outlier
data. We draw a whisker from q1 to the smallest data item that is not an outlier,
and from q3 to the largest data item that is not an outlier. While all this sounds

Section 3.3 Whose is bigger? Investigating Australian Pizzas 38

24 26 28 30 32
0

10

20

30

40
Histogram of pizza diameters, in inches

FIGURE 3.6: A histogram of pizza diameters from the dataset described in the text.
Notice that there seem to be two populations.

complicated, any reasonable programming environment will have a function that
will do it for you. Figure 3.5 shows an example boxplot. Notice that the rich
graphical structure means it is quite straightforward to compare two histograms.

3.3 WHOSE IS BIGGER? INVESTIGATING AUSTRALIAN PIZZAS

At http://www.amstat.org/publications/jse/jse_data_archive.htm), you will
find a dataset giving the diameter of pizzas, measured in Australia (search for the
word “pizza”). This website also gives the backstory for this dataset. Apparently,
EagleBoys pizza claims that their pizzas are always bigger than Dominos pizzas,
and published a set of measurements to support this claim (the measurements were
available at http://www.eagleboys.com.au/realsizepizza as of Feb 2012, but
seem not to be there anymore).

Whose pizzas are bigger? and why? A histogram of all the pizza sizes appears
in figure 3.6. We would not expect every pizza produced by a restaurant to have
exactly the same diameter, but the diameters are probably pretty close to one
another, and pretty close to some standard value. This would suggest that we’d
expect to see a histogram which looks like a single, rather narrow, bump about a
mean. This is not what we see in figure 3.6 — instead, there are two bumps, which
suggests two populations of pizzas. This isn’t particularly surprising, because we
know that some pizzas come from EagleBoys and some from Dominos.

If you look more closely at the data in the dataset, you will notice that each
data item is tagged with the company it comes from. We can now easily plot
conditional histograms, conditioning on the company that the pizza came from.
These appear in figure 3.7. Notice that EagleBoys pizzas seem to follow the pattern
we expect — the diameters are clustered tightly around one value — but Dominos
pizzas do not seem to be like that. This is reflected in a boxplot (figure 3.8), which
shows the range of Dominos pizza sizes is surprisingly large, and that EagleBoys
pizza sizes have several large outliers. There is more to understand about this data.
The dataset contains labels for the type of crust and the type of topping — perhaps

Section 3.3 Whose is bigger? Investigating Australian Pizzas 39

26 28 30 32
0

5

10

15

20

25

30
Dominos pizza diameters, in inches

26 28 30 32
0

5

10

15

20

25

30
EagleBoys pizza diameters, in inches

FIGURE 3.7: On the left, the class-conditional histogram of Dominos pizza diameters
from the pizza data set; on the right, the class-conditional histogram of EagleBoys
pizza diameters. Notice that EagleBoys pizzas seem to follow the pattern we expect
— the diameters are clustered tightly around a mean, and there is a small standard
deviation — but Dominos pizzas do not seem to be like that. There is more to
understand about this data.

26

27

28

29

30

31

Dominos EagleBoys

Box plots of pizzas by maker

FIGURE 3.8: Boxplots of the pizza data, comparing EagleBoys and Dominos pizza.
There are several curiosities here: why is the range for Dominos so large (25.5-29)?
EagleBoys has a smaller range, but has several substantial outliers; why? One would
expect pizza manufacturers to try and control diameter fairly closely, because pizzas
that are too small present risks (annoying customers; publicity; hostile advertising)
and pizzas that are too large should affect profits.

these properties affect the size of the pizza?
EagleBoys produces DeepPan, MidCrust and ThinCrust pizzas, and Dominos

produces DeepPan, ClassicCrust and ThinNCrispy pizzas. This may have some-
thing to do with the observed patterns, but comparing six histograms by eye is
unattractive. A boxplot is the right way to compare these cases (figure 3.9). The

Section 3.3 Whose is bigger? Investigating Australian Pizzas 40

26

27

28

29

30

31

D−ThinNCrispy D−DeepPan D−ClassicCrust E−MidCrust E−DeepPan E−ThinCrust

Box plots of pizzas by maker and type

FIGURE 3.9: Boxplots for the pizza data, broken out by type (thin crust, etc.).

boxplot gives some more insight into the data. Dominos thin crust appear to have a
narrow range of diameters (with several outliers), where the median pizza is rather
larger than either the deep pan or the classic crust pizza. EagleBoys pizzas all have
a range of diameters that is (a) rather similar across the types and (b) rather a lot
like the Dominos thin crust. There are outliers, but few for each type.

Another possibility is that the variation in size is explained by the topping.
We can compare types and toppings by producing a set of conditional boxplots (i.e.
the diameters for each type and each topping). This leads to rather a lot of boxes
(figure 3.10), but they’re still easy to compare by eye. The main difficulty is that
the labels on the plot have to be shortened. I made labels using the first letter
from the manufacturer (“D” or “E”); the first letter from the crust type (previous
paragraph); and the first and last letter of the topping. Toppings for Dominos are:
Hawaiian; Supreme; BBQMeatlovers. For EagleBoys, toppings are: Hawaiian; Su-
perSupremo; and BBQMeatlovers. This gives the labels: ’DCBs’; (Dominos; Clas-
sicCrust; BBQMeatlovers); ’DCHn’; ’DCSe’; ’DDBs’; ’DDHn’; ’DDSe’; ’DTBs’;
’DTHn’; ’DTSe’; ’EDBs’; ’EDHn’; ’EDSo’; ’EMBs’; ’EMHn’; ’EMSo’; ’ETBs’;
’ETHn’; ’ETSo’. Figure 3.10 suggests that the topping isn’t what is important, but
the crust (group the boxplots by eye).

Section 3.3 Whose is bigger? Investigating Australian Pizzas 41

26

27

28

29

30

31

DCBsDCHnDCSeDDBsDDHnDDSeDTBsDTHnDTSeEDBsEDHnEDSoEMBsEMHnEMSoETBsETHnETSo

Box plots of pizzas by maker, type, and topping

EagleBoysDominos

ClassicCrust DeepPan

ThinCrust

ThinCrust

MidCrust

DeepPan

FIGURE 3.10: The pizzas are now broken up by topping as well as crust type (look at
the source for the meaning of the names). I have separated Dominos from Eagleboys
with a vertical line, and grouped each crust type with a box. It looks as though the
issue is not the type of topping, but the crust. Eagleboys seems to have tighter
control over the size of the final pizza.

What could be going on here? One possible explanation is that Eagleboys
have tighter control over the size of the final pizza. One way this could happen is
that all EagleBoys pizzas start the same size and shrink the same amount in baking,
whereas all Dominos pizzas start a standard diameter, but different Dominos crusts
shrink differently in baking. Another way is that Dominos makes different size
crusts for different types, but that the cooks sometimes get confused. Yet another
possibility is that Dominos controls portions by the mass of dough (so thin crust
diameters tend to be larger), but Eagleboys controls by the diameter of the crust.

You should notice that this is more than just a fun story. If you were a manager
at a pizza firm, you’d need to make choices about how to control costs. Labor costs,
rent, and portion control (i.e. how much pizza, topping, etc. a customer gets for
their money) are the main thing to worry about. If the same kind of pizza has a
wide range of diameters, you have a problem, because some customers are getting
too much (which affects your profit) or too little (which means they might call
someone else). But making more regular pizzas might require more skilled (and so

Section 3.4 Normalized 2D Scatter Plots 42

more expensive) labor. The fact that Dominos and EagleBoys seem to be following
different strategies successfully suggests that more than one strategy might work.
But you can’t choose if you don’t know what’s happening. As I said at the start,
“what’s going on here?” is perhaps the single most useful question anyone can ask.

3.4 NORMALIZED 2D SCATTER PLOTS

As you recall from section 2.3.4, scale is a problem for scatter plots. The way to
avoid the problem is to plot in standard coordinates.

−4 −2 0 2 4
−4

−2

0

2

4

Heights, outliers removed, normalizedW
ei

gh
ts

, o
ut

lie
rs

 r
em

ov
ed

, n
or

m
al

iz
ed

FIGURE 3.11: A normalized scatter plot of weight against height, from the dataset at
http:// www2.stetson.edu/ ~ jrasp/data.htm . Now you can see that someone
who is a standard deviation taller than the mean will tend to be somewhat heavier
than the mean too.

A natural solution to problems with scale is to normalize the x and y coor-
dinates of the two-dimensional data to standard coordinates. We can normalize
without worrying about the dimension of the data — we normalize each dimen-
sion independently by subtracting the mean of that dimension and dividing by the
standard deviation of that dimension. We continue to use the convention of writing
the normalized x coordinate as x̂ and the normalized y coordinate as ŷ. So, for
example, we can write x̂j = (xj − mean ({x}))/std (x)) for the x̂ value of the j’th
data item in normalized coordinates. Normalizing shows us the dataset on a stan-
dard scale. Once we have done this, it is quite straightforward to read off simple
relationships between variables from a scatter plot.

3.5 CORRELATION

The simplest, and most important, relationship to look for in a scatter plot is this:
when x̂ increases, does ŷ tend to increase, decrease, or stay the same? This is
straightforward to spot in a normalized scatter plot, because each case produces a
very clear shape on the scatter plot. Any relationship is called correlation (we will
see later how to measure this), and the three cases are: positive correlation, which
means that larger x̂ values tend to appear with larger ŷ values; zero correlation,
which means no relationship; and negative correlation, which means that larger x̂

Section 3.5 Correlation 43

96 98 100 102

60

70

80

90

1 1
1

1

1
1

1

1

111
1

1

1

11

1
1
1

1

1

1

1
1
1

1

1
1

1
1

1

1

11
1

11

1

1
1
1

1
1

1
1

11

1

1
1

1

1

11
1
1
1

1
1
1

1

1

1

1

1

2

2

2

2
2

2
2

2

2

2

2

2
22

2
2

2

2

2

2

2

2

22

2
2

2

22
22
2

22

222
22

2

2

2

2

22

2

2

2

2

2

2
2

2

2
2
22

2
2

2
2

2
22 2

Body temperature

H
ea

rt
 r

at
e

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

1 11
1
11
1

1
111
1
1
1
11
1
1
1

1

1
1

111
1
11
11

1
1
111
11

1

1
11

11

11
11
1

1
1

1

1
111111

11

1

1

1
1
1

2
2

2
22
22

2

2

2

2
222
22
2
2
2

2
2
2
22
22

2

22222
22
22222
2
2
2

2
22

2

2
2

2
2

22
2
22
22
22
22
2 22 2

Normalized body temperature

N
or

m
al

iz
ed

 h
ea

rt
 r

at
e

FIGURE 3.12: Left: A scatter plot of body temperature against heart rate, from
the dataset at http:// www2.stetson.edu/ ~ jrasp/data.htm ; normtemp.xls. I
have separated the two genders by plotting a different symbol for each (though I
don’t know which gender is indicated by which letter); if you view this in color,
the differences in color makes for a greater separation of the scatter. This picture
suggests, but doesn’t conclusively establish, that there isn’t much dependence between
temperature and heart rate, and any dependence between temperature and heart
rate isn’t affected by gender. The scatter plot of the normalized data, in standard
coordinates, on the right supports this view.

0 2 4 6 8
x 10

4

0

500

1000

1500

number of pelts traded

pr
ic

e
of

 p
el

ts
, i

n
pe

nn
ie

s

−2 −1 0 1 2 3
−2

−1

0

1

2

3

4

normalized number of pelts

no
rm

al
iz

ed
 p

ric
e

FIGURE 3.13: Left: A scatter plot of the price of lynx pelts against the number of
pelts (this is a repeat of figure 2.13 for reference). I have plotted data for 1901 to
the end of the series as circles, and the rest of the data as *’s. It is quite hard
to draw any conclusion from this data, because the scale is confusing. Right: A
scatter plot of the price of pelts against the number of pelts for lynx pelts. I excluded
data for 1901 to the end of the series, and then normalized both price and number
of pelts. Notice that there is now a distinct trend; when there are fewer pelts, they
are more expensive, and when there are more, they are cheaper.

Section 3.5 Correlation 44

−4 −2 0 2 4
−4

−2

0

2

4

Heights, outliers removed, normalizedW
ei

gh
ts

, o
ut

lie
rs

 r
em

ov
ed

, n
or

m
al

iz
ed

−4 −2 0 2 4
−4

−2

0

2

4

H
ei

gh
ts

, o
ut

lie
rs

 r
em

ov
ed

, n
or

m
al

iz
ed

Weights, outliers removed, normalized

FIGURE 3.14: On the left, a normalized scatter plot of weight (y-coordinate) against
height (x-coordinate). On the right, a scatter plot of height (y-coordinate) against
weight (x-coordinate). I’ve put these plots next to one another so you don’t have to
mentally rotate (which is what you should usually do).

values tend to appear with smaller ŷ values. I have shown these cases together
in one figure using a real data example (Figure 3.15), so you can compare the
appearance of the plots.

Positive correlation occurs when larger x̂ values tend to appear with larger
ŷ values. This means that data points with with small (i.e. negative with large
magnitude) x̂ values must have small ŷ values, otherwise the mean of x̂ (resp. ŷ)
would be too big. In turn, this means that the scatter plot should look like a “smear”
of data from the bottom left of the graph to the top right. The smear might be
broad or narrow, depending on some details we’ll discuss below. Figure 3.11 shows
normalized scatter plots of weight against height, and of body temperature against
heart rate. In the weight-height plot, you can clearly see that individuals who are
higher tend to weigh more. The important word here is “tend” — taller people
could be lighter, but mostly they tend not to be. Notice, also, that I did NOT
say that they weighed more because they were taller, but only that they tend to be
heavier.

Zero correlation occurs when there is no relationship. This produces a
characteristic shape in a scatter plot, but it takes a moment to understand why. If
there really is no relationship, then knowing x̂ will tell you nothing about ŷ. All
we know is that mean ({ŷ}) = 0, and var ({ŷ}) = 1. Our value of ŷ should have
this mean and this variance, but it doesn’t depend on x̂ in any way. This is enough
information to predict what the plot will look like. We know that mean ({x̂}) = 0
and var ({x̂}) = 1; so there will be many data points with x̂ value close to zero,
and few with a much larger or much smaller x̂ value. The same applies to ŷ. Now
consider the data points in a strip of x̂ values. If this strip is far away from the
origin, there will be few data points in the strip, because there aren’t many big x̂
values. If there is no relationship, we don’t expect to see large or small ŷ values
in this strip, because there are few data points in the strip and because large or
small ŷ values are uncommon — we see them only if there are many data points,

Section 3.5 Correlation 45

−4 −2 0 2 4
−4

−2

0

2

4

Heights, outliers removed, normalizedW
ei

g
h

ts
,

o
u
tl

ie
rs

 r
em

o
v

ed
,

n
o

rm
al

iz
ed

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

1 1
1
1

11

1

1
111
1
1

1
11
1
1
1

1

1

1

111
1

1
1

1
1

1
1
111

11

1

1
11

11

1
1
11
1

1
1

1

1
11
1
11
1
11

1

1

1

1
1

2
2

2
22

2
2

2

2

2

2
222

22

2
2
2

2
2
2
22
2
2

2

22222
22

2222
2
2
2
2

2
22

2

2
2

2
2

2
2

2
22
22
22

22
2 22 2

Normalized body temperature

N
o

rm
al

iz
ed

 h
ea

rt
 r

at
e

−2 −1 0 1 2 3
−2

−1

0

1

2

3

4

normalized number of pelts

n
o

rm
al

iz
ed

 p
ri

ce

No Correlation Positive Correlation Negative Correlation

FIGURE 3.15: The three kinds of scatter plot are less clean for real data than for
our idealized examples. Here I used the body temperature vs heart rate data for the
zero correlation; the height-weight data for positive correlation; and the lynx data
for negative correlation. The pictures aren’t idealized — real data tends to be messy
— but you can still see the basic structures.

and then seldom. So for a strip with x̂ close to zero, we might see large ŷ values;
but for one that is far away, we expect to see small ŷ values. We should see a blob,
centered at the origin. In the temperature-heart rate plot of figure 3.12, it looks as
though nothing of much significance is happening. The average heart rate seems to
be about the same for people who run warm or who run cool. There is probably
not much relationship here.

Negative correlation occurs when larger x̂ values tend to appear with
smaller ŷ values. This means that data points with with small x̂ values must
have large ŷ values, otherwise the mean of x̂ (resp. ŷ) would be too big. In turn,
this means that the scatter plot should look like a “smear” of data from the top left
of the graph to the bottom right. The smear might be broad or narrow, depending
on some details we’ll discuss below. Figure 3.13 shows a normalized scatter plot of
the lynx pelt-price data, where I have excluded the data from 1901 on. I did so
because there seemed to be some other effect operating to drive prices up, which
was inconsistent with the rest of the series. This plot suggests that when there were
more pelts, prices were lower, as one would expect.

Notice that leaving out data, as I did here, should be done with care. If you
exclude every data point that might disagree with your hypothesis, you may miss
the fact that you are wrong. Leaving out data is an essential component of many
kinds of fraud. You should always reveal whether you have excluded data, and why,
to allow the reader to judge the evidence.

The correlation is not affected by which variable is plotted on the x-axis and
which is plotted on the y-axis. Figure 3.14 compares a plot of height against weight
to one of weight against height. Usually, one just does this by rotating the page, or
by imagining the new picture. The left plot tells you that data points with higher
height value tend to have higher weight value; the right plot tells you that data
points with higher weight value tend to have higher height value — i.e. the plots
tell you the same thing. It doesn’t really matter which one you look at. Again, the
important word is “tend” — the plot doesn’t tell you anything about why, it just
tells you that when one variable is larger the other tends to be, too.

Section 3.5 Correlation 46

3.5.1 The Correlation Coefficient

Consider a normalized data set of N two-dimensional vectors. We can write the
i’th data point in standard coordinates (x̂i, ŷi). We already know many important
summaries of this data, because it is in standard coordinates. We havemean ({x̂}) =
0; mean ({ŷ}) = 0; std (x̂) = 1; and std (ŷ) = 1. Each of these summaries is

itself the mean of some monomial. So std (x̂)
2
= mean

({

x̂2
})

= 1; std (ŷ)
2
=

mean
({

ŷ2
})

(the other two are easy). We can rewrite this information in terms

of means of monomials, giving mean ({x̂}) = 0; mean ({ŷ}) = 0; mean
({

x̂2
})

= 1;

and mean
({

ŷ2
})

= 1. There is one monomial missing here, which is x̂ŷ.
The term mean ({x̂ŷ}) captures correlation between x and y. The term is

known as the correlation coefficient or correlation.

Definition: 3.11 Correlation coefficient

Assume we have N data items which are 2-vectors
(x1, y1), . . . , (xN , yN), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. We
compute the correlation coefficient by first normalizing the x and y

coordinates to obtain x̂i = (xi−mean({x}))
std(x) , ŷi = (yi−mean({y}))

std(y) . The

correlation coefficient is the mean value of x̂ŷ, and can be computed
as:

corr ({(x, y)}) =
∑

i x̂iŷi
N

Correlation is a measure of our ability to predict one value from another.
The correlation coefficient takes values between −1 and 1 (we’ll prove this below).
If the correlation coefficient is close to 1, then we are likely to predict very well.
Small correlation coefficients (under about 0.5, say, but this rather depends on what
you are trying to achieve) tend not to be all that interesting, because (as we shall
see) they result in rather poor predictions. Figure 3.16 gives a set of scatter plots
of different real data sets with different correlation coefficients. These all come
from data set of age-height-weight, which you can find at http://www2.stetson.
edu/~jrasp/data.htm (look for bodyfat.xls). In each case, two outliers have been
removed. Age and height are hardly correlated, as you can see from the figure.
Younger people do tend to be slightly taller, and so the correlation coefficient is
-0.25. You should interpret this as a small correlation. However, the variable
called “adiposity” (which isn’t defined, but is presumably some measure of the
amount of fatty tissue) is quite strongly correlated with weight, with a correlation
coefficient is 0.86. Average tissue density is quite strongly negatively correlated with
adiposity, because muscle is much denser than fat, so these variables are negatively
correlated — we expect high density to appear with low adiposity, and vice versa.
The correlation coefficient is -0.86. Finally, density is very strongly correlated with
body weight. The correlation coefficient is -0.98.

It’s not always convenient or a good idea to produce scatter plots in standard

Section 3.5 Correlation 47

−4 −2 0 2 4
−4

−2

0

2

4

Age, normalized

H
ei

gh
t,

no
rm

al
iz

ed
Age and height, correlation=−0.25

−4 −2 0 2 4
−4

−2

0

2

4

Adiposity, normalized

W
ei

gh
ts

, n
or

m
al

iz
ed

Adiposity and weight, correlation=0.86

−4 −2 0 2 4
−4

−2

0

2

4

6

Density, normalized

A
di

po
si

ty
, n

or
m

al
iz

ed

Density and Adiposity, correlation=−0.73

−4 −2 0 2 4
−4

−2

0

2

4

Density, normalized

B
od

yf
at

, n
or

m
al

iz
ed

Density and Body Fat, correlation=−0.98

FIGURE 3.16: Scatter plots for various pairs of variables for the age-height-weight
dataset from http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. In
each case, two outliers have been removed, and the plots are in standard coordi-
nates (compare to figure 3.17, which shows these data sets plotted in their original
units). The legend names the variables.

coordinates (among other things, doing so hides the units of the data, which can
be a nuisance). Fortunately, scaling or translating data does not change the value
of the correlation coefficient (though it can change the sign if one scale is negative).
This means that it’s worth being able to spot correlation in a scatter plot that
isn’t in standard coordinates (even though correlation is always defined in standard
coordinates). Figure 3.17 shows different correlated datasets plotted in their original
units. These data sets are the same as those used in figure 3.16

Properties of the Correlation Coefficient
You should memorize the following properties of the correlation coefficient:

• The correlation coefficient is symmetric (it doesn’t depend on the order of its
arguments), so

corr ({(x, y)}) = corr ({(y, x)})

Section 3.5 Correlation 48

20 40 60 80 100
60

65

70

75

80

Age, NOT normalized

H
ei

gh
t,

N
O

T
 n

or
m

al
iz

ed
Age and height, correlation=−0.25

15 20 25 30 35 40
100

150

200

250

300

Adiposity, NOT normalized

W
ei

gh
ts

, N
O

T
 n

or
m

al
iz

ed

Adiposity and weight, correlation=0.86

0.9 1 1.1 1.2 1.3
15

20

25

30

35

40

Density, NOT normalized

A
di

po
si

ty
, N

O
T

 n
or

m
al

iz
ed

Density and Adiposity, correlation=−0.73

0.9 1 1.1 1.2 1.3
0

10

20

30

40

50

Density, NOT normalized

B
od

yf
at

, N
O

T
 n

or
m

al
iz

ed

Density and Body Fat, correlation=−0.98

FIGURE 3.17: Scatter plots for various pairs of variables for the age-height-weight
dataset from http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. In
each case, two outliers have been removed, and the plots are NOT in standard coor-
dinates (compare to figure 3.16, which shows these data sets plotted in normalized
coordinates). The legend names the variables.

• The value of the correlation coefficient is not changed by translating the data.
Scaling the data can change the sign, but not the absolute value. For constants
a 6= 0, b, c 6= 0, d we have

corr ({(ax+ b, cx+ d)}) = sign(ab)corr ({(x, y)})

• If ŷ tends to be large (resp. small) for large (resp. small) values of x̂, then
the correlation coefficient will be positive.

• If ŷ tends to be small (resp. large) for large (resp. small) values of x̂, then
the correlation coefficient will be negative.

• If ŷ doesn’t depend on x̂, then the correlation coefficient is zero (or close to
zero).

• The largest possible value is 1, which happens when x̂ = ŷ.

Section 3.5 Correlation 49

• The smallest possible value is -1, which happens when x̂ = −ŷ.

The first property is easy, and we relegate that to the exercises. One way to
see that the correlation coefficient isn’t changed by translation or scale is to notice
that it is defined in standard coordinates, and scaling or translating data doesn’t
change those. Another way to see this is to scale and translate data, then write out
the equations; notice that taking standard coordinates removes the effects of the
scale and translation. In each case, notice that if the scale is negative, the sign of
the correlation coefficient changes.

The property that, if ŷ tends to be large (resp. small) for large (resp. small)
values of x̂, then the correlation coefficient will be positive, doesn’t really admit
a formal statement. But it’s relatively straightforward to see what’s going on.
Because mean ({x̂}) = 0, small values of mean ({x̂}) must be negative and large

values must be positive. But corr ({(x, y)}) =

∑

i
x̂iŷi

N ; and for this sum to be
positive, it should contain mostly positive terms. It can contain few or no hugely
positive (or hugely negative) terms, because std (x̂) = std (ŷ) = 1 so there aren’t
many large (or small) numbers. For the sum to contain mostly positive terms, then
the sign of x̂i should be the same as the sign ŷi for most data items. Small changes
to this argument work to show that if if ŷ tends to be small (resp. large) for large
(resp. small) values of x̂, then the correlation coefficient will be negative.

Showing that no relationship means zero correlation requires slightly more
work. Divide the scatter plot of the dataset up into thin vertical strips. There
are S strips. Each strip is narrow, so the x̂ value does not change much for the
data points in a particular strip. For the s’th strip, write N(s) for the number of
data points in the strip, x̂(s) for the x̂ value at the center of the strip, and ŷ(s)
for the mean of the ŷ values within that strip. Now the strips are narrow, so we
can approximate all data points within a strip as having the same value of x̂. This
yields

mean ({x̂ŷ}) ≈ 1

S

∑

s∈strips

x̂(s)
[

N(s)ŷ(s)
]

(where you could replace ≈ with = if the strips were narrow enough). Now assume
that ŷ(s) does not change from strip to strip, meaning that there is no relation-
ship between x̂ and ŷ in this dataset (so the picture is like the left hand side in
figure 3.15). Then each value of ŷ(s) is the same — we write ŷ — and we can
rearrange to get

mean ({x̂ŷ}) ≈ ŷ
1

S

∑

s∈strips

x̂(s).

Now notice that

0 = mean ({ŷ}) ≈ 1

S

∑

s∈strips

N(s)ŷ(s)

(where again you could replace ≈ with = if the strips were narrow enough). This
means that if every strip has the same value of ŷ(s), then that value must be zero.
In turn, if there is no relationship between x̂ and ŷ, we must have mean ({x̂ŷ}) = 0.

Section 3.5 Correlation 50

Proposition:
−1 ≤ corr ({(x, y)}) ≤ 1

Proof: Writing x̂, ŷ for the normalized coefficients, we have

corr ({(x, y)}) =
∑

i x̂iŷi
N

and you can think of the value as the inner product of two vectors. We write

x =
1√
N

[x̂1, x̂2, . . . x̂N] and y =
1√
N

[ŷ1, ŷ2, . . . ŷN]

and we have corr ({(x, y)}) = xTy. Notice xTx = std (x)
2
= 1, and similarly

for y. But the inner product of two vectors is at its maximum when the two
vectors are the same, and this maximum is 1. This argument is also sufficient to
show that smallest possible value of the correlation is −1, and this occurs when
x̂i = −ŷi for all i.

Property 3.4: The largest possible value of the correlation is 1, and this occurs
when x̂i = ŷi for all i. The smallest possible value of the correlation is −1, and
this occurs when x̂i = −ŷi for all i.

3.5.2 Using Correlation to Predict

Assume we have N data items which are 2-vectors (x1, y1), . . . , (xN , yN), where
N > 1. These could be obtained, for example, by extracting components from
larger vectors. As usual, we will write x̂i for xi in normalized coordinates, and so
on. Now assume that we know the correlation coefficient is r (this is an important,
traditional notation). What does this mean?

One (very useful) interpretation is in terms of prediction. Assume we have a
data point (x0, ?) where we know the x-coordinate, but not the y-coordinate. We
can use the correlation coefficient to predict the y-coordinate. First, we transform
to standard coordinates. Now we must obtain the best ŷ0 value to predict, using
the x̂0 value we have.

We want to construct a prediction function which gives a prediction for any
value of x̂. This predictor should behave as well as possible on our existing data.
For each of the (x̂i, ŷi) pairs in our data set, the predictor should take x̂i and
produce a result as close to ŷi as possible. We can choose the predictor by looking
at the errors it makes at each data point.

We write ŷpi for the value of ŷi predicted at x̂i. The simplest form of predictor
is linear. If we predict using a linear function, then we have, for some unknown
a, b, that ŷpi = ax̂i + b. Now think about ui = ŷi − ŷpi , which is the error in our
prediction. We would like to have mean ({u}) = 0 (otherwise, we could reduce the

Section 3.5 Correlation 51

error of the prediction just by subtracting a constant).

mean ({u}) = mean ({ŷ − ŷp})
= mean ({ŷ})−mean ({ax̂i + b})
= mean ({ŷ})− amean ({x̂}) + b

= 0− a0 + b

= 0.

This means that we must have b = 0.
To estimate a, we need to think about var ({u}). We should like var ({u}) to

be as small as possible, so that the errors are as close to zero as possible (remember,
small variance means small standard deviation which means the data is close to the
mean). We have

var ({u}) = var ({ŷ − ŷp})
= mean

({

(ŷ − ax̂)2
})

because mean ({u}) = 0

= mean
({

(ŷ)2 − 2ax̂ŷ + a2(x̂)2
})

= mean
({

(ŷ)2
})

− 2amean ({x̂ŷ}) + a2mean
({

(x̂)2
})

= 1− 2ar + a2,

which we want to minimize by choice of a. At the minimum, we must have

dvar ({ui})
da

= 0 = −2r + 2a

so that a = r and the correct prediction is

ŷp0 = rx̂0

You can use a version of this argument to establish that if we have (?, ŷ0), then
the best prediction for x̂0 (which is in standard coordinates) is rŷ0. It is important
to notice that the coefficient of ŷi is NOT 1/r; you should work this example, which
appears in the exercises. We now have a prediction procedure, outlined below.

Section 3.5 Correlation 52

Procedure: 3.1 Predicting a value using correlation

Assume we have N data items which are 2-vectors
(x1, y1), . . . , (xN , yN), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. Assume
we have an x value x0 for which we want to give the best prediction of
a y value, based on this data. The following procedure will produce a
prediction:

• Transform the data set into standard coordinates, to get

x̂i =
1

std (x)
(xi −mean ({x}))

ŷi =
1

std (y)
(yi −mean ({y}))

x̂0 =
1

std (x)
(x0 −mean ({x})).

• Compute the correlation

r = corr ({(x, y)}) = mean ({x̂ŷ}).

• Predict ŷ0 = rx̂0.

• Transform this prediction into the original coordinate system, to
get

y0 = std (y)rx̂0 +mean ({y})

Now assume we have a y value y0, for which we want to give the best
prediction of an x value, based on this data. The following procedure
will produce a prediction:

• Transform the data set into standard coordinates.

• Compute the correlation.

• Predict x̂0 = rŷ0.

• Transform this prediction into the original coordinate system, to
get

x0 = std (x)rŷ0 +mean ({x})

There is another way of thinking about this prediction procedure, which is
often helpful. Assume we need to predict a value for x0. In normalized coordinates,
our prediction is ŷp = rx̂0; if we revert back to the original coordinate system, the

Section 3.5 Correlation 53

prediction becomes

(yp −mean ({y}))
std (y)

= r(
(x0 −mean ({x}))

std (x)
).

This gives a really useful rule of thumb, which I have broken out in the box below.

Procedure: 3.2 Predicting a value using correlation: Rule of thumb - 1

If x0 is k standard deviations from the mean of x, then the predicted
value of y will be rk standard deviations away from the mean of y, and
the sign of r tells whether y increases or decreases.

An even more compact version of the rule of thumb is in the following box.

Procedure: 3.3 Predicting a value using correlation: Rule of thumb - 2

The predicted value of y goes up by r standard deviations when the
value of x goes up by one standard deviation.

We can compute the average root mean square error that this prediction
procedure will make. The square of this error must be

mean
({

u2
})

= mean
({

y2
})

− 2rmean ({xy}) + r2mean
({

x2
})

= 1− 2r2 + r2

= 1− r2

so the root mean square error will be
√
1− r2. This is yet another intepretation of

correlation; if x and y have correlation close to one, then predictions could have very
small root mean square error, and so might be very accurate. In this case, knowing
one variable is about as good as knowing the other. If they have correlation close
to zero, then the root mean square error in a prediction might be as large as the
root mean square error in ŷ — which means the prediction is nearly a pure guess.

The prediction argument means that we can spot correlations for data in
other kinds of plots — one doesn’t have to make a scatter plot. For example, if
we were to observe a child’s height from birth to their 10’th year (you can often
find these observations in ballpen strokes, on kitchen walls), we could plot height
as a function of year. If we also had their weight (less easily found), we could plot
weight as a function of year, too. The prediction argument above say that, if you
can predict the weight from the height (or vice versa) then they’re correlated. One
way to spot this is to look and see if one curve goes up when the other does (or
goes down when the other goes up). You can see this effect in figure 2.7, where
(before 19h00), prices go down when the number of pelts goes up, and vice versa.
These two variables are negatively correlated.

Section 3.5 Correlation 54

FIGURE 3.18: This figure, from Vickers (ibid, p184) shows a plot of the stork pop-
ulation as a function of time, and the human birth rate as a function of time, for
some years in Germany. The correlation is fairly clear; but this does not mean that
reducing the number of storks means there are fewer able to bring babies. Instead,
this is the impact of the first world war — a hidden or latent variable.

3.5.3 Confusion caused by correlation

There is one very rich source of potential (often hilarious) mistakes in correlation.
When two variables are correlated, they change together. If the correlation is
positive, that means that, in typical data, if one is large then the other is large,
and if one is small the other is small. In turn, this means that one can make
a reasonable prediction of one from the other. However, correlation DOES NOT
mean that changing one variable causes the other to change (sometimes known as
causation).

Two variables in a dataset could be correlated for a variety of reasons. One
important reason is pure accident. If you look at enough pairs of variables, you
may well find a pair that appears to be correlated just because you have a small
set of observations. Imagine, for example, you have a dataset consisting of only
two vectors — there is a pretty good chance that there is some correlation between
the coefficients. Such accidents can occur in large datasets, particularly if the
dimensions are high.

Another reason variables could be correlated is that there is some causal
relationship — for example, pressing the accelerator tends to make the car go
faster, and so there will be some correlation between accelerator position and car
acceleration. As another example, adding fertilizer does tend to make a plant grow
bigger. Imagine you record the amount of fertilizer you add to each pot, and the
size of the resulting potplant. There should be some correlation.

Yet another reason variables could be correlated is that there is some other
background variable — often called a latent variable — linked causally to each of
the observed variables. For example, in children (as Freedman, Pisani and Purves
note in their excellent Statistics), shoe size is correlated with reading skills. This
DOES NOT mean that making your feet grow will make you read faster, or that
you can make your feet shrink by forgetting how to read. The real issue here is

Section 3.6 Sterile Males in Wild Horse Herds 55

the age of the child. Young children tend to have small feet, and tend to have
weaker reading skills (because they’ve had less practice). Older children tend to
have larger feet, and tend to have stronger reading skills (because they’ve had more
practice). You can make a reasonable prediction of reading skills from foot size,
because they’re correlated, even though there is no direct connection.

This kind of effect can mask correlations, too. Imagine you want to study the
effect of fertilizer on potplants. You collect a set of pots, put one plant in each,
and add different amounts of fertilizer. After some time, you record the size of each
plant. You expect to see correlation between fertilizer amount and plant size. But
you might not if you had used a different species of plant in each pot. Different
species of plant can react quite differently to the same fertilizer (some plants just
die if over-fertilized), so the species could act as a latent variable. With an unlucky
choice of the different species, you might even conclude that there was a negative
correlation between fertilizer and plant size. This example illustrates why you need
to take great care in setting up experiments and interpreting their results.

This sort of thing happens often, and it’s an effect you should look for. An-
other nice example comes from Vickers (ibid). The graph, shown in Figure 3.18,
shows a plot of (a) a dataset of the stork population in Europe over a period of
years and (b) a dataset of the birth rate over those years. This isn’t a scatter plot;
instead, the data has been plotted on a graph. You can see by eye that these two
datasets are quite strongly correlated . Even more disturbing, the stork popula-
tion dropped somewhat before the birth rate dropped. Is this evidence that storks
brought babies in Europe during those years? No (the usual arrangement seems
to have applied). For a more sensible explanation, look at the dates. The war
disturbed both stork and human breeding arrangements. Storks were disturbed
immediately by bombs, etc., and the human birth rate dropped because men died
at the front.

3.6 STERILE MALES IN WILD HORSE HERDS

Large herds of wild horses are (apparently) a nuisance, but keeping down numbers
by simply shooting surplus animals would provoke outrage. One strategy that
has been adopted is to sterilize males in the herd; if a herd contains sufficient
sterile males, fewer foals should result. But catching stallions, sterilizing them, and
reinserting them into a herd is a performance — does this strategy work?

We can get some insight by plotting data. At http://lib.stat.cmu.edu/

DASL/Datafiles/WildHorses.html, you can find a dataset covering herd manage-
ment in wild horses. I have plotted part of this dataset in figure 3.19. In this
dataset, there are counts of all horses, sterile males, and foals made on each of a
small number of days in 1986, 1987, and 1988 for each of two herds. I extracted
data for one herd. I have plotted this data as a function of the count of days since
the first data point, because this makes it clear that some measurements were taken
at about the same time, but there are big gaps in the measurements. In this plot,
the data points are shown with a marker. Joining them leads to a confusing plot
because the data points vary quite strongly. However, notice that the size of the
herd drifts down slowly (you could hold a ruler against the plot to see the trend),
as does the number of foals, when there is a (roughly) constant number of sterile

Section 3.6 Sterile Males in Wild Horse Herds 56

0 200 400 600 800
0

20

40

60

80

Day

N
um

be
r

of
 h

or
se

s

Number of horses vs. day

Adults
Sterile Males
Foals

FIGURE 3.19: A plot of the number of adult horses, sterile males, and foals in horse
herds over a period of three years. The plot suggests that introducing sterile males
might cause the number of foals to go down. Data from http:// lib.stat. cmu.

edu/DASL/ Datafiles/WildHorses.html .

males.
Does sterilizing males result in fewer foals? This is likely hard to answer for

this dataset, but we could ask whether herds with more sterile males have fewer
foals. A scatter plot is a natural tool to attack this question. However, the scatter
plots of figure 3.20 suggest, rather surprisingly, that when there are more sterile
males there are more adults (and vice versa), and when there are more sterile
males there are more foals (and vice versa). This is borne out by a correlation
analysis. The correlation coefficient between foals and sterile males is 0.74, and
the correlation coefficient between adults and sterile males is 0.68. You should find
this very surprising — how do the horses know how many sterile males there are in
the herd? You might think that this is an effect of scaling the plot, but there is a
scatter plot in normalized coordinates in figure 3.20 that is entirely consistent with
the conclusions suggested by the unnormalized plot. What is going on here?

The answer is revealed by the scatter plots of figure 3.21. Here, rather than
plotting a ’*’ at each data point, I have plotted the day number of the observation.
This is in days from the first observation. You can see that the whole herd is
shrinking — observations where there are many adults (resp. sterile adults, foals)
occur with small day numbers, and observations where there are few have large day
numbers. Because the whole herd is shrinking, it is true that when there are more
adults and more sterile males, there are also more foals. Alternatively, you can see
the plots of figure 3.19 as a scatter plot of herd size (resp. number of foals, number
of sterile males) against day number. Then it becomes clear that the whole herd
is shrinking, as is the size of each group. To drive this point home, we can look at
the correlation coefficient between adults and days (-0.24), between sterile adults
and days (-0.37), and between foals and days (-0.61). We can use the rule of thumb
in box 3 to interpret this. This means that every 282 days, the herd loses about
three adults; about one sterile adult; and about three foals. For the herd to have
a stable size, it needs to gain by birth as many foals as it loses both to growing up

Section 3.6 Sterile Males in Wild Horse Herds 57

0 5 10 15
0

5

10

15

20

Number of sterile adults

N
um

be
r

of
 fo

al
s

Foals vs. sterile adults

20 30 40 50 60 70
0

5

10

15

Number of adults

N
um

be
r

of
 s

te
ril

e
ad

ul
ts

Sterile adults vs. adults

−2 −1 0 1 2 3
−1

0

1

2

3

N sterile adults (standard coordinates)

N
 fo

al
s

(s
ta

nd
ar

d
co

or
di

na
te

s) Foals vs. sterile adults (standard coordinates)

−2 −1 0 1 2
−2

−1

0

1

2

3

N adults (standard coordinates)N
 s

te
ril

e
ad

ul
ts

 (
st

an
da

rd
 c

oo
rd

in
at

es
)

Sterile adults vs. adults (standard coordinates)

FIGURE 3.20: Scatter plots of the number of sterile males in a horse herd against
the number of adults, and the number of foals against the number of sterile males,
from data of http: // lib. stat.cmu. edu/ DASL/Datafiles/WildHorses.html .
Top: unnormalized; bottom: standard coordinates.

−2 −1 0 1 2

−2

−1

0

1

2

0

6

39

40

66

67

335

336

360

361

374
375

404

696
700

710
738 742

772

N adults (standard coordinates)

N
 fo

al
s

(s
ta

nd
ar

d
co

or
di

na
te

s) Foals vs. adults (standard coordinates)

−2 −1 0 1 2

−2

−1

0

1

2

0

6

39

40

66

67

335

336

360

361 374

375

404

696

700

710 738

742772

N adults (standard coordinates)N
 s

te
ril

e
ad

ul
ts

 (
st

an
da

rd
 c

oo
rd

in
at

es
)

Sterile adults vs. adults (standard coordinates)

FIGURE 3.21:

Section 3.6 Sterile Males in Wild Horse Herds 58

and to death. If the herd is losing three foals every 282 days, then if they all grow
up to replace the missing adults, the herd will be shrinking slightly (because it is
losing four adults in this time); but if it loses foals to natural accidents, etc., then
it is shrinking rather fast.

The message of this example is important. To understand a simple dataset,
you might need to plot it several ways. You should make a plot, look at it and ask
what it says, and then try to use another type of plot to confirm or refute what
you think might be going on.

C H A P T E R 4

Visualizing High Dimensional Data

Chapter ?? described methods to explore the relationship between two ele-
ments in a dataset. We could extract a pair of elements and construct various plots.
For vector data, we could also compute the correlation between different pairs of
elements. But if each data item is d-dimensional, there could be a lot of pairs to
deal with.

We will think of our dataset as a collection of d dimensional vectors. It turns
out that there are easy generalizations of our summaries. However, is hard to
plot d-dimensional vectors. We need to find some way to make them fit on a 2-
dimensional plot. Some simple methods can offer insights, but to really get what
is going on we need methods that can at all pairs of relationships in a dataset in
one go.

These methods visualize the dataset as a “blob” in a d-dimensional space.
Many such blobs are flattened in some directions, because components of the data
are strongly correlated. Finding the directions in which the blobs are flat yields
methods to compute lower dimensional representations of the dataset.

4.1 SUMMARIES AND SIMPLE PLOTS

In this chapter, we assume that our data items are vectors. This means that we can
add and subtract values and multiply values by a scalar without any distress. This
is an important assumption, but it doesn’t necessarily mean that data is continuous
(for example, you can meaningfully add the number of children in one family to the
number of children in another family). It does rule out a lot of discrete data. For
example, you can’t add “sports” to “grades” and expect a sensible answer.

Notation: Our data items are vectors, and we write a vector as x. The
data items are d-dimensional, and there are N of them. The entire data set is {x}.
When we need to refer to the i’th data item, we write xi. We write {xi} for a new
dataset made up of N items, where the i’th item is xi. If we need to refer to the

j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold, because

it is a component not a vector, and the j is in parentheses because it isn’t a power).
Vectors are always column vectors.

4.1.1 The Mean

For one-dimensional data, we wrote

mean ({x}) =
∑

i xi

N
.

59

Section 4.1 Summaries and Simple Plots 60

This expression is meaningful for vectors, too, because we can add vectors and
divide by scalars. We write

mean ({x}) =
∑

i xi

N

and call this the mean of the data. Notice that each component of mean ({x}) is the
mean of that component of the data. There is not an easy analogue of the median,
however (how do you order high dimensional data?) and this is a nuisance. Notice
that, just as for the one-dimensional mean, we have

mean ({x−mean ({x})}) = 0

(i.e. if you subtract the mean from a data set, the resulting data set has zero mean).

4.1.2 Parallel Plots

Parallel plots can sometimes reveal information, particularly when the dimension
of the dataset is low. To construct a parallel plot, you compute a normalized
representation of each component of each data item. The component is normalized
by translating and scaling so that the minimum value over the dataset is zero, and
the maximum value over the dataset is one. Now write the i’th normalised data
item as (n1, n2, . . . , nd). For this data item, you plot a broken line joining (1, n1)
to (2, n2) to (3, n3, etc. These plots are superimposed on one another. In the case
of the bodyfat dataset, this yields the plot of figure 4.1.

Some structures in the parallel plot are revealing. Outliers often stick out (in
figure 4.1, it’s pretty clear that there’s a data point with a very low height value,
and also one with a very large weight value). Outliers affect the scaling, and so
make other structures difficult to spot. I have removed them for figure 4.2. In this
figure, you can see that two negatively correlated components next to one another
produce a butterfly like shape (bodyfat and density). In this plot, you can also see
that there are still several data points that are very different from others (two data
items have ankle values that are very different from the others, for example).

4.1.3 Understanding Blobs with Scatterplot Matrices

Plotting high dimensional data is tricky. One strategy that is very useful when
there aren’t too many dimensions is to use a scatterplot matrix. To build one,
you lay out scatterplots for each pair of variables in a matrix. On the diagonal,
you name the variable that is the vertical axis for each plot in the row, and the
horizontal axis in the column. This sounds more complicated than it is; look at the
example of figure 4.3, which shows a scatterplot matrix for four of the variables in
the height weight dataset of http://www2.stetson.edu/~jrasp/data.htm; look
for bodyfat.xls at that URL). This is originally a 16-dimensional dataset, but a 16
by 16 scatterplot matrix is squashed and hard to interpret.

What is nice about this kind of plot is that it’s quite easy to spot correlations
between pairs of variables, though you do need to take into account the coordinates
have not been normalized. For figure 4.3, you can see that weight and adiposity
appear to show quite strong correlations, but weight and age are pretty weakly

Section 4.1 Summaries and Simple Plots 61

BODYFATDENSITY AGE WEIGHTHEIGHTADIPOSITYNECK CHESTABDOMEN HIP THIGH KNEE ANKLE BICEPSFOREARMWRIST
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 4.1: A parallel plot of the bodyfat dataset, including all data points. I have
named the components on the horizontal axis. It is easy to see that large values
of bodyfat correspond to small values of density, and vice versa. Notice that one
datapoint has height very different from all others; similarly, one datapoint has
weight very different from all others.

correlated. Height and age seem to have a low correlation. It is also easy to
visualize unusual data points. Usually one has an interactive process to do so —
you can move a “brush” over the plot to change the color of data points under the
brush. To show what might happen, figure 4.4 shows a scatter plot matrix with
some points shown as circles. Notice how they lie inside the “blob” of data in some
views, and outside in others. This is an effect of projection.

UC Irvine keeps a large repository of datasets that are important in machine
learning. You can find the repository at http://archive.ics.uci.edu/ml/index.
html. Figures 4.5 and 4.6 show visualizations of a famous dataset to do with the
botanical classification of irises.

Figures ??, ?? and 4.13 show visualizations of another dataset to do with for-
est fires in Portugal, also from the UC Irvine repository (look at http://archive.
ics.uci.edu/ml/datasets/Forest+Fires). In this dataset, there are a variety of
measurements of location, time, temperature, etc. together with the area burned
by a wildfire. It would be nice to know what leads to large fires, and a visualization

Section 4.1 Summaries and Simple Plots 62

BODYFATDENSITY AGE WEIGHTHEIGHTADIPOSITYNECK CHESTABDOMEN HIP THIGH KNEE ANKLE BICEPSFOREARMWRIST
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 4.2: A plot with those data items removed, so that those components are
renormalized. Two datapoints have rather distinct ankle measurements. Generally,
you can see that large knees go with large ankles and large biceps (the v structure).

is the place to start. Many fires are tiny (or perhaps there was no area measure-
ment?) and so many values of the area are zero. I found it helpful to take the
log of area, and then to divide the values of the logarithm into seven categories.
I ignored the first four variables, because I didn’t think they’d be too important.
Exercise: was I right? I made two scatterplot matrices, because an eight by eight
matrix is too big to view. Generally, this visualization suggests that it would be
hard to predict the size of a fire from these variables.

We can combine tools to analyze datasets. In the UC Irvine repository, you
can find a dataset related to heart disease (look at http://archive.ics.uci.

edu/ml/datasets/Heart+Disease). There are a variety of versions of the dataset;
I used the version in the file “processed.cleveland.data”. This contains a set of 14
features describing individuals under study. The 14’th is a measure of heart disease.
What can we learn from this dataset?

The first thing to notice is that many of the variables are categorical. It is
natural to make some mosaic plots to visualize what is happening. I quantized the
age to five levels (0-20, 20-40, etc.), and quantized the measure of heart disease to
two levels (no disease and disease) to simplify the plot. Figure ?? shows a mosaic

Section 4.1 Summaries and Simple Plots 63

0 50
0

50

100

0 50 100
0

50

100

0 200 400
0

50

100

Age

0 50
100

200

300

400

0 50 100
100

200

300

400

Weight

0 50 100
100

200

300

400

0 50
20

40

60

80

Height

0 200 400
20

40

60

80

0 50 100
20

40

60

80

Adiposity

0 50 100
0

20

40

60

0 200 400
0

20

40

60

0 50 100
0

20

40

60

FIGURE 4.3: This is a scatterplot matrix for four of the variables in the height
weight dataset of http:// www2.stetson.edu/ ~ jrasp/data.htm . Each plot is
a scatterplot of a pair of variables. The name of the variable for the horizontal axis
is obtained by running your eye down the column; for the vertical axis, along the
row. Although this plot is redundant (half of the plots are just flipped versions of
the other half), that redundancy makes it easier to follow points by eye. You can
look at a column, move down to a row, move across to a column, etc. Notice how
you can spot correlations between variables and outliers (the arrows).

plot of the result.

4.1.4 Using Covariance to encode Variance and Correlation

Variance, standard deviation and correlation can each be seen as an instance of a
more general operation on data. Assume that we have two one dimensional data
sets {x} and {y}. Then we can define the covariance of {x} and {y}.

Section 4.1 Summaries and Simple Plots 64

0 50
0

50

100

0 50 100
0

50

100

0 200 400
0

50

100

Age

0 50
100

200

300

400

0 50 100
100

200

300

400

Weight

0 50 100
100

200

300

400

0 50
20

40

60

80

Height

0 200 400
20

40

60

80

0 50 100
20

40

60

80

Adiposity

0 50 100
0

20

40

60

0 200 400
0

20

40

60

0 50 100
0

20

40

60

FIGURE 4.4: You should compare this figure with figure 4.3. I have marked two data
points with circles in this figure; notice that in some panels these are far from the
rest of the data, in others close by. A “brush” in an interactive application can be
used to mark data like this to allow a user to explore a dataset.

Definition: 4.1 Covariance

Assume we have two sets of N data items, {x} and {y}. We compute
the covariance by

cov ({x} , {y}) =
∑

i(xi −mean ({x}))(yi −mean ({y}))
N

Covariance measures the tendency of corresponding elements of {x} and of {y}
to be larger than (resp. smaller than) the mean. Just like mean, standard devia-
tion and variance, covariance can refer either to a property of a dataset (as in the
definition here) or a particular expectation (as in chapter ??). The correspondence
is defined by the order of elements in the data set, so that x1 corresponds to y1,

Section 4.1 Summaries and Simple Plots 65

Scatter Plot Matrix

Sepal
Length

7

8
7 8

5

6

5 6

Sepal
Width

3.5

4.0

4.5
3.5 4.0 4.5

2.0

2.5

3.0

2.0 2.5 3.0

Petal
Length

4

5

6

7
4 5 6 7

1

2

3

4

1 2 3 4

Petal
Width

1.5

2.0

2.5
1.5 2.0 2.5

0.0

0.5

1.0

0.0 0.5 1.0

setosa versicolor virginica

FIGURE 4.5: This is a scatterplot matrix for the famous Iris data, originally due to
***. There are four variables, measured for each of three species of iris. I have
plotted each species with a different marker. You can see from the plot that the
species cluster quite tightly, and are different from one another. R code for this plot
is on the website.

x2 corresponds to y2, and so on. If {x} tends to be larger (resp. smaller) than its
mean for data points where {y} is also larger (resp. smaller) than its mean, then
the covariance should be positive. If {x} tends to be larger (resp. smaller) than its
mean for data points where {y} is smaller (resp. larger) than its mean, then the
covariance should be negative.

From this description, it should be clear we have seen examples of covariance
already. Notice that

std (x)
2
= var ({x}) = cov ({x} , {x})

which you can prove by substituting the expressions. Recall that variance measures
the tendency of a dataset to be different from the mean, so the covariance of a
dataset with itself is a measure of its tendency not to be constant.

More important, notice that

corr ({(x, y)}) = cov ({x} , {y})
√

cov ({x} , {x})
√

cov ({y} , {y})
.

This is occasionally a useful way to think about correlation. It says that the corre-
lation measures the tendency of {x} and {y} to be larger (resp. smaller) than their

Section 4.1 Summaries and Simple Plots 66

Sepal.Length
Petal.Width

Petal.Length

setosa versicolor virginica

FIGURE 4.6: This is a 3D scatterplot for the famous Iris data, originally due to ***.
I have chosen three variables from the four, and have plotted each species with a
different marker. You can see from the plot that the species cluster quite tightly,
and are different from one another. R code for this plot is on the website.

means for the same data points, compared to how much they change on their own.
Working with covariance (rather than correlation) allows us to unify some

ideas. In particular, for data items which are d dimensional vectors, it is straight-
forward to compute a single matrix that captures all covariances between all pairs
of components — this is the covariance matrix.

Definition: 4.2 Covariance Matrix

The covariance matrix is:

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

Notice that it is quite usual to write a covariance matrix as Σ, and we
will follow this convention.

Properties of the Covariance Matrix Covariance matrices are often
written as Σ, whatever the dataset (you get to figure out precisely which dataset is

Section 4.1 Summaries and Simple Plots 67

Scatter Plot Matrix

FFMC60

80
60 80

20

40

20 40

DMC150

200

250

300
150 250

0

50

100

150

0 50 100

DC400

600

800 400 600 800

0

200

400

0 200 400

ISI30

40

50 30 40 50

0

10

20

0 10 20

T1
T2
T3

T4
T5
T6

T7

FIGURE 4.7: This is a scatterplot matrix for the fire dataset from the UC Irvine
repository. The smallest area fire is ’T1’, and the largest is ’T7’; each is plotted with
a different marker. These plots show severity of the fire, plotted against variables
5-8 of the dataset. You should notice that there isn’t much separation between the
markers. It might be very hard to predict the severity of a fire from these variables.
R code for this plot is on the website.

intended, from context). Generally, when we want to refer to the j, k’th entry of
a matrix A, we will write Ajk, so Σjk is the covariance between the j’th and k’th
components of the data.

• The j, k’th entry of the covariance matrix is the covariance of the j’th and
the k’th components of x, which we write cov

({

x(j)
}

,
{

x(k)
})

.

• The j, j’th entry of the covariance matrix is the variance of the j’th compo-
nent of x.

• The covariance matrix is symmetric.

• The covariance matrix is always positive semi-definite; it is positive definite,
unless there is some vector a such that aT (xi −mean ({xi}) = 0 for all i.

Section 4.1 Summaries and Simple Plots 68

Scatter Plot Matrix

temp
20

25

30 20 25 30

5

10

15

5 10 15

RH60

80

100
60 80 100

20

40

60

20 40 60

wind
4

6

8
4 6 8

0

2

4

0 2 4

rain3

4

5

6 3 4 5 6

0

1

2

3

0 1 2 3

T1
T2
T3

T4
T5
T6

T7

FIGURE 4.8: This is a scatterplot matrix for the fire dataset from the UC Irvine
repository. The smallest area fire is ’T1’, and the largest is ’T7’; each is plotted with
a different marker. These plots show severity of the fire, plotted against variables
9-12 of the dataset. You should notice that there isn’t much separation between the
markers. It might be very hard to predict the severity of a fire from these variables.
R code for this plot is on the website.

Proposition:

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

Proof: Recall

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

and the j, k’th entry in this matrix will be

∑

i(x
(j)
i −mean

({

x(j)
})

)(x
(k)
i −mean

({

x(k)
})

)T

N

which is cov
({

x(j)
}

,
{

x(k)
})

.

Section 4.1 Summaries and Simple Plots 69

V10
V11

V9

T1
T2
T3

T4
T5
T6

T7

FIGURE 4.9: This is a 3D scatterplot for the fire dataset from the UC Irvine repos-
itory. The smallest area fire is ’T1’, and the largest is ’T7’; each is plotted with
a different marker. These plots show severity of the fire, plotted against variables
9-11 of the dataset. You should notice that there isn’t much separation between the
markers. It might be very hard to predict the severity of a fire from these variables.
R code for this plot is on the website.

Proposition:

Covmat ({xi})jj = Σjj = var
({

x(j)
})

Proof:

Covmat ({x})jj = cov
({

x(j)
}

,
{

x(j)
})

= var
({

x(j)
})

Section 4.1 Summaries and Simple Plots 70

V2

qa
ge

ye
sn

o

(8
0,

 In
f]

(0
.1

, I
nf

]
(−

In
f,0

.1
]

(6
0,

80
]

(0
.1

, I
nf

]
(−

In
f,0

.1
]

(4
0,

60
]

(0
.1

, I
nf

]
(−

In
f,0

.1
]

(2
0,

40
]

(0
.1

, I
nf

]
(−

In
f,0

.1
]

(−
In

f,2
0] 0 1

(0
.1

, I
nf

]
(−

In
f,0

.1
]

FIGURE 4.10: This is a mosaic plot of age, gender, and level of disease for the heart
dataset from the UC Irvine repository. Notice that the data consists mainly of
people aged 40-60. There are very few people younger than 20 or older than 80. A
significantly greater percentage of the measurements comes from the gender labelled
1, and in all age groups the percentage of that gender that has the disease level is
higher. This suggests that this gender is male. Notice also that the percentage of
males with the disease is really quite high (at least 50% in each case). This suggests
that either the population is special in some way — perhaps the measurements are
collected from people who are feeling sick — or that the criterion used to determine
whether an individual is diseased is too sensitive. R code for this plot is on the
website.

Proposition:
Covmat ({x}) = Covmat ({x})T

Proof: We have

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

= cov
({

x(k)
}

,
{

x(j)
})

= Covmat ({x})kj

Section 4.1 Summaries and Simple Plots 71

V7

V
6

ye
sn

o

1

(0
.1

, I
nf

]
(−

In
f,0

.1
]

0

0 1 2

(0
.1

, I
nf

]
(−

In
f,0

.1
]

FIGURE 4.11: This is a mosaic plot of variables six (V6) and seven (V7) and level
of disease for the heart dataset from the UC Irvine repository. These variables
represent some physiological properties of importance, but I don’t know their inter-
pretation. V6 does not seem to be particularly significant, but the population for
which V7 has value 1 has a high incidence of disease. R code for this plot is on the
website.

Section 4.1 Summaries and Simple Plots 72

V11

V
9

ye
sn

o

1

(0
.1

, I
nf

]
(−

In
f,0

.1
]

0

1 2 3

(0
.1

, I
nf

]
(−

In
f,0

.1
]

FIGURE 4.12: This is a mosaic plot of variables nine (V9) and eleven (V11) and
level of disease for the heart dataset from the UC Irvine repository. These variables
represent some physiological properties of importance, but I don’t know their inter-
pretation. V9 at level one is clearly not a good thing. If V9 is at level 0, then V11
at level 1 is also a problem. R code for this plot is on the website.

Proposition: Write Σ = Covmat ({x}). If there is no vector a such that
aT (xi−mean ({x})) = 0 for all i, then for any vector u, such that ||u || > 0,

uTΣu > 0.

If there is such a vector a, then

uTΣu ≥ 0.

Proof: We have

uTΣu =
1

N

∑

i

[

uT (xi −mean ({x}))
] [

(xi −mean ({x}))Tu
]

=
1

N

∑

i

[

uT (xi −mean ({x}))
]2

.

Now this is a sum of squares. If there is some a such that aT (xi −
mean ({x})) = 0 for every i, then the covariance matrix must be positive
semidefinite (because the sum of squares could be zero in this case).
Otherwise, it is positive definite, because the sum of squares will always
be positive.

Section 4.2 Blob Analysis of High-Dimensional Data 73

Scatter Plot Matrix

trestbps
160

180

200
160 200

100
120

140

100 140

chol
400

500 400500

200

300

200300

thalach140
160
180
200

140 180

80
100
120
140

80 120

oldpeak3
4
5
6

3 4 5 6

0
1
2
3

0 1 2 3

thal
6.0

7.0

6.
0

7.
0

?

3.0

? 3.
0

No
Yes

FIGURE 4.13: This is a scatterplot matrix of five variables for the heart dataset
from the UC Irvine repository. The shape of the marker indicates disease or not.
The variable names are taken from the description at that URL. “trestbps” is a
measurement of resting systolic blood pressure, and “chol” of cholesterol (I don’t
know which lipid, or in which units). You should notice that “thal” takes only a
discrete set of values. Notice also that it appears to be unwise to have very large
values of “trestbps”, “chol”, or “oldpeak” (or smal values of “thalach”), it isn’t that
easy to distinguish between the different cases. There isn’t a clear clustering the
way there was in the iris data. R code for this plot is on the website.

4.2 BLOB ANALYSIS OF HIGH-DIMENSIONAL DATA

When we plotted histograms, we saw that mean and variance were a very helpful
description of data that had a unimodal histogram. If the histogram had more than
one mode, one needed to be somewhat careful to interpret the mean and variance;
in the pizza example, we plotted diameters for different manufacturers to try and
see the data as a collection of unimodal histograms.

Generally, mean and covariance are a good description of data that lies in a
“blob” (Figure 4.14). You might not believe that this is a technical term, but it’s
quite widely used. This is because mean and covariance supply a natural coordinate
system in which to interpret the blob. Mean and covariance are less useful as
descriptions of data that forms multiple blobs (Figure 4.14). In chapter 1, we
discuss methods to model data that forms multiple blobs, or other shapes that we

Section 4.2 Blob Analysis of High-Dimensional Data 74

FIGURE 4.14: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have
plotted the mean of these data points with a ’+’. On the right, a data set that is
best thought of as a collection of five blobs. I have plotted the mean of each with
a ’+’. We could compute the mean and covariance of this data, but it would be
less revealing than the mean and covariance of a single blob. In chapter 1, I will
describe automatic methods to describe this dataset as a series of blobs.

will interpret as a set of blobs. But many datasets really are single blobs, and we
concentrate on such data here. The way to understand a blob is to think about the
coordinate transformations that place a blob into a particularly convenient form.

4.2.1 Transforming High Dimensional Data

Assume we apply an affine transformation to our data set {x}, to obtain a new
dataset {u}, where ui = Axi + b. Here A is any matrix (it doesn’t have to be
square, or symmetric, or anything else; it just has to have second dimension d). It
is easy to compute the mean and covariance of {u}. We have

mean ({u}) = mean ({Ax+ b})
= Amean ({x}) + b,

so you get the new mean by multiplying the original mean by A and adding b.
The new covariance matrix is easy to compute as well. We have:

Covmat ({u}) = Covmat ({Ax+ b})

=

∑

i(ui −mean ({u}))(ui −mean ({u}))T
N

=

∑

i(Axi + b−Amean ({x})− b)(Axi + b−Amean ({x})− b)T

N

=
A∑i(xi −mean ({x}))(xi −mean ({x}))TAT

N

= ACovmat ({x})AT .

C H A P T E R 5

Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class label
for them. There could be two, or many, classes, though it is usual to produce
multi-class classifiers out of two-class classifiers. Classifiers are immensely useful,
and find wide application, because many problems are naturally decision problems.
For example, if you wish to determine whether to place an advert on a web-page or
not, you would use a classifier (i.e. look at the page, and say yes or no according
to some rule). As another example, if you have a program that you found for free
on the web, you would use a classifier to decide whether it was safe to run it (i.e.
look at the program, and say yes or no according to some rule). As yet another
example, you can think of doctors as extremely complex multi-class classifiers.

Classifiers are built by taking a set of labeled examples and using them to come
up with a rule that assigns a label to any new example. In the general problem,
we have a training dataset (xi, yi); each of the feature vectors xi consists of
measurements of the properties of different types of object, and the yi are labels
giving the type of the object that generated the example.

5.1 CLASSIFICATION, ERROR, AND LOSS

You should think of a classifier as a rule, though it might not be implemented that
way. We pass in a feature vector, and the rule returns a class label. We know the
relative costs of mislabeling each class and must come up with a rule that can take
any plausible x and assign a class to it, in such a way that the expected mislabeling
cost is as small as possible, or at least tolerable. For most of this chapter, we will
assume that there are two classes, labeled 1 and −1. Section 5.4.2 shows methods
for building multi-class classifiers from two-class classifiers.

5.1.1 Using Loss to Determine Decisions

The choice of classification rule must depend on the cost of making a mistake. A
two-class classifier can make two kinds of mistake. A false positive occurs when
a negative example is classified positive; a false negative occurs when a positive
example is classified negative. For example, pretend there is only one disease;
then doctors would be classifiers, deciding whether a patient had it or not. If
this disease is dangerous, but is safely and easily treated, then false negatives are
expensive errors, but false positives are cheap. Similarly, if it is not dangerous, but
the treatment is difficult and unpleasant, then false positives are expensive errors
and false negatives are cheap.

75

Section 5.1 Classification, Error, and Loss 76

5.1.2 Training Error, Test Error, and Overfitting

It can be quite difficult to know a good loss function, but one can usually come up
with a plausible model. If we knew the posterior probabilities, building a classifier
would be straightforward. Usually we don’t, and must build a model from data.
This model could be a model of the posterior probabilities, or an estimate of the
decision boundaries. In either case, we have only the training data to build it with.
Training error is the error a model makes on the training data set.

Generally, we will try to make this training error small. However, what we
really want to minimize is the test error, the error the classifier makes on test
data. We cannot minimize this error directly, because we don’t know the test set
(if we did, special procedures in training apply). However, classifiers that have
small training error might not have small test error. One example of this problem
is the (silly) classifier that takes any data point and, if it is the same as a point
in the training set, emits the class of that point and otherwise chooses randomly
between the classes. This classifier has been learned from data, and has a zero
error rate on the training dataset; it is likely to be unhelpful on any other dataset,
however.

The phenomenon that causes test error to be worse than training error is
sometimes called overfitting (other names include selection bias, because the
training data has been selected and so isn’t exactly like the test data, and gen-
eralizing badly, because the classifier fails to generalize). It occurs because the
classifier has been trained to perform well on the training dataset. The training
dataset is not the same as the test dataset. First, it is quite likely smaller. Second,
it might be biased through a variety of accidents. This means that small training
error may have to do with quirks of the training dataset that don’t occur in other
sets of examples. It is quite possible that, in this case, the test error will be larger
than the training error. Generally, we expect classifiers to perform somewhat bet-
ter on the training set than on the test set. Overfitting can result in a substantial
difference between performance on the training set and performance on the test set.
One consequence of overfitting is that classifiers should always be evaluated on test
data. Doing this creates other problems, which we discuss in Section 5.1.3.

A procedure called regularization attaches a penalty term to the training
error to get a better estimate of the test error. This penalty term could take a vari-
ety of different forms, depending on the requirements of the application. Section 1
describes regularization in further detail.

5.1.3 Error Rate and Cross-Validation

There are a variety of methods to describe the performance of a classifier. Natural,
straightforward choices are to report the error rate, the percentage of classification
attempts on a test set that result in the wrong answer. This presents an important
difficulty. We cannot estimate the error rate of the classifier using training data,
because the classifier has been trained to do well on that data, which will mean our
error rate estimate will be an underestimate. An alternative is to separate out some
training data to form a validation set, then train the classifier on the rest of the
data, and evaluate on the validation set. This has the difficulty that the classifier
will not be the best estimate possible, because we have left out some training data

Section 5.2 Linear Classifiers 77

when we trained it. This issue can become a significant nuisance when we are
trying to tell which of a set of classifiers to use—did the classifier perform poorly
on validation data because it is not suited to the problem representation or because
it was trained on too little data?

We can resolve this problem with cross-validation, which involves repeat-
edly: splitting data into training and validation sets uniformly and at random,
training a classifier on the training set, evaluating it on the validation set, and
then averaging the error over all splits. This allows an estimate of the likely future
performance of a classifier, at the expense of substantial computation.

Choose some class of subsets of the training set,
for example, singletons.

For each element of that class, construct a classifier by
omitting that element in training, and compute the
mean number of classification errors on the omitted subset.

Average these errors over the class of subsets to estimate
the risk of using the classifier trained on the entire training
dataset.

Algorithm 5.1: Cross-Validation

The most usual form of this algorithm involves omitting single items from
the dataset and is known as leave-one-out cross-validation. Errors are usually
estimated by simply averaging over the class, but more sophisticated estimates
are available. We do not justify this tool mathematically; however, it is worth
noticing that leave-one-out cross-validation, in some sense, looks at the sensitivity
of the classifier to a small change in the training set. If a classifier performs well
under this test, then large subsets of the dataset look similar to one another, which
suggests that a representation of the relevant probabilities derived from the dataset
might be quite good.

5.2 LINEAR CLASSIFIERS

Assume we have a set of N example points xi that belong to two classes, which we
indicate by 1 and −1. These points come with their class labels, which we write as
yi; thus, our dataset can be written as

{(x1, y1), . . . , (xN , yN)} .

We wish to the sign of y for any point x; this rule is our classifier. Write y
(p)
i (x) for

the predicted value of y for a given value of x. assume we have a set of N example
points xi that belong to two classes, which we indicate by 1 and −1. These points
come with their class labels, which we write as yi; thus, our dataset can be written
as

{(x1, y1), . . . , (xN , yN)} .

Section 5.2 Linear Classifiers 78

We seek a rule that predicts the sign of y for any point x; this rule is our classifier.
We will use a linear rule, so that for a new data item x, we will predict

sign ((w · x+ b)).

You should think of w and b as representing a hyperplane which separates the
positive data from the negative data. This hyperplane is known as the decision
boundary. The particular rule is given by the choice of w and b.

5.2.1 Why a linear rule?

This family of rules may look bad to you. It is easy to come up with examples
that it misclassifies badly. The rule has important strengths: it is easy to estimate
the best choice of rule, it works very well in practice on real data, and it is fast
to evaluate. For practical examples, experience shows that the error rate can be
improved by adding features to the vector x.

Example: 5.1 A linear model with a single feature

Assume we use a linear model with one feature. Then the model has
the form y

(p)
i = sign(axi + b). For any particular example which has

the feature value x∗, this means we will test whether x∗ is larger than,
or smaller than, −b/a.

Example: 5.2 A linear model with two features

Assume we use a linear model with two features. Then the model
has the form y

(p)
i = sign(aTxi + b). The sign changes along the line

aTx + b = 0. You should check that this is, indeed, a line. On one
side of this line, the model makes positive predictions; on the other,
negative. Which side is which can be swapped by multiplying a and b
by −1.

5.2.2 Logistic Regression

We will choose a and b by choosing values that minimize the cost of errors made
by the classifier. In particular, we will adopt a cost function of the form:

Training error cost + penalty term.

For the moment, we will ignore the penalty term. The training error cost will be
of the form

(1/N)

N
∑

i=1

C((aTxi + b), yi)

Section 5.2 Linear Classifiers 79

so at each point in the training data, we compute a cost from the true value of yi
and the predicted value. This cost should be large if yi and y

(p)
i (aTxi + b, yi) have

different signs, and small if they have the same sign. It is convenient to write

γi = (aTxi + b, yi).

For logistic regression, the cost function using this notation is

C((aTxi + b), yi) = C(γi, yi) = log (1 + exp (−yiγi)) .

The function L(1, γ) is plotted in Figure 5.1. This loss is sometimes known as
the logistic loss. This loss very strongly penalizes a large positive γi if yi is
negative (and vice versa). However, there is no significant advantage to having a
large positive γi if yi is positive. This means that the significant components of
the loss function will be due to examples that the classifier gets wrong, but also
due to examples that have γi near zero (i.e., the example is close to the decision
boundary).

You should notice another important property of this loss. Assume we wish
to predict a label for a new data item. The loss we would incur depends quite
strongly on the magnitude of γ. If we produce a large value of γ for that data item
with the wrong sign, then we would incur a very large loss. This means that we
should prefer values of a and b that will tend to produce small values of γ. In turn,
we should prefer small values of a if they give about the same value of training loss.
This is our penalty term. We should use a cost function of the form

Training Loss +
λ

2
(Norm of a)

which is




1

N

∑

i∈examples

{log(1 + exp−yiγi})



+
λ

2
aTa

where λ > 0 is a constant chosen for good performance. Too large a value of λ, and
the classifier will behave poorly on training and test data; too small a value, and
the classifier will behave poorly on test data.

Usually, the value of λ is set with a validation dataset. We train classifiers
with different values of λ on a test dataset, then evaluate them on a validation
set—data whose labels are known, but which is not used for training—and finally
choose the λ that gets the best validation error. The error is not usually all that
sensitive to the choice of λ, so searching values by factors of 10 is usually fine.

The penalty term is often referred to as a regularizer, because it tends to
discourage solutions that are large (and so have possible high loss on future test
data) but are not strongly supported by the training data.

5.2.3 The Hinge Loss

There are alternate losses, that are very useful. The linear support vector ma-
chine or SVM uses the hinge loss. In this case the loss comparing the label value
yi and the prediction γi = (w · xi + b) can be written as

Lh(yi, γi) = max(0, 1− yiγi).

Section 5.2 Linear Classifiers 80

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

γ

L
o
ss

Logistic loss for a single example

with y=1

FIGURE 5.1: The logistic loss, plotted for the case yi = 1. In the case of the logistic
loss, the horizontal variable is the γi = a ·xi of the text. Notice that giving a strong
negative response to this positive example causes a loss that grows linearly as the
magnitude of the response grows. Notice also that giving an insufficiently positive
response also causes a loss. Giving a strongly positive response is cheap or free.

This loss is always non-negative. For the moment, assume yi = 1; then, any
prediction by the classifier with value greater than one will incur no loss, and any
smaller prediction will incur a cost that is linear in the prediction value (Figure ??).
This means that minimizing the loss will encourage the classifier to (a) make strong
positive (or negative) predictions for positive (or negative) examples and (b) for
examples it gets wrong, make the most positive (negative) prediction that it can.
The expression

[

(1/N)

N
∑

i=1

max(0, 1− yi (w · xi + b))

]

+
λ

2
wTw

fits into the rule of above, where we obtained a classifier by minimizing

Training Loss + Regularizer.

We have just changed the loss.

Section 5.3 Basic Ideas for Numerical Minimization 81

−4 −2 0 2 4
0

1

2

3

4

5
Hinge loss for a single example

with y=1

L
o
ss

γ

FIGURE 5.2: The hinge loss, plotted for the case yi = 1. The horizontal variable
is the γi = a · xi of the text. Notice that giving a strong negative response to this
positive example causes a loss that grows linearly as the magnitude of the response
grows. Notice also that giving an insufficiently positive response also causes a loss.
Giving a strongly positive response is or free. The loss should look a lot like the
hinge loss to you.

5.3 BASIC IDEAS FOR NUMERICAL MINIMIZATION

We must now obtain a classifier that minimizes either logistic or hinge loss. Assume
we have a function g(a), and we wish to obtain a value of a that achieves the
minimum for that function. Sometimes we can solve this problem in closed form
by constructing the gradient and finding a value of a the makes the gradient zero.
More usually we need a numerical method. Implementing these numerical methods
is a specialized business, and it is usual to use general optimization codes. This
section is intended to sketch how such codes work, so you can read manual pages,
etc. more effectively. Personally, I am a happy user of Matlab’s fminunc, although
the many different settings take some getting used to.

Section 5.3 Basic Ideas for Numerical Minimization 82

5.3.1 Overview

Typical codes take a description of the objective function (typically, the name of
a function), a start point for the search, and a collection of parameters. All codes
take an estimate a(i), update it to a(i+1), then check to see whether the result is
a minimum. This process is started from the start point. The update is usually
obtained by computing a direction p(i) such that for small values of h, g(a(i)+hp(i))
is smaller than g(a(i)). Such a direction is known as a descent direction.

Assume we have a descent direction. We must now choose how far to travel
along that direction. We can see g(a(i)+hp(i)) as a function of h. Write this function
as φ(h). We start at h = 0 (which is the original value a(i), so φ(0) = g(a(i)), and
move in the direction of increasing h to find a small value of φ(h) that is less than
φ(0). The descent direction was chosen so that for small h > 0, φ(h) < φ(0); one
way to tell we are at a minimum is we cannot choose a descent direction. Searching
for a good value of h is known as line search. Typically, this search involves a
sequence of estimated values of h, which we write hi. One algorithm is to start
with (say) h0 = 1; if φ(hi) is not small enough (and there are other tests we may
need to apply — this is a summary!), we compute h(i+1) = (1/2)hi. This stops
when some hi passes a test, or when it is so small that the step is pointless.

5.3.2 Gradient Descent

One method to choose a descent direction is gradient descent, which uses the
negative gradient of the function. Recall our notation that

a =









a1
a2
. . .
ad









and that

∇g =











∂g
∂a1

∂g
∂a2

. . .
∂g
∂ad











.

We can write a Taylor series expansion for the function g(a(i) + hp(i)). We have
that

g(a(i) + hp(i)) = g(a(i)) + h(∇g)Tp(i) +O(h2)

This means that we can expect that if

p(i) = −∇g(a(i)),

we expect that, at least for small values of h, g(a(i)+hp(i)) will be less than g(a(i)).
This works (as long as g is differentiable, and quite often when it isn’t) because

g must go down for at least small steps in this direction. There are two ways
to evaluate a gradient. You can require that the software estimate a numerical
derivative for you, which usually slows things down somewhat, or you can supply a

Section 5.3 Basic Ideas for Numerical Minimization 83

gradient value. Usually this gradient value must be computed by the same function
that computes the objective function value.

One tip: in my experience, about 99% of problems with numerical optimiza-
tion codes occur because the user didn’t check that the gradient their function
computed is right. Most codes will compute a numerical gradient for you, then
check that against your gradient; if they’re sufficiently different, the code will com-
plain. You don’t want to do this at runtime, because it slows things up, but it’s an
excellent idea to check.

5.3.3 Stochastic Gradient Descent

Assume we wish to minimize some function g(a) = g0(a) + (1/N)
∑N

i=1 gi(a), as a
function of a. Gradient descent would require us to form

−∇g(a) = −
(

∇g0(a) + (1/N)
N
∑

i=1

∇gi(a)

)

and then take a small step in this direction. But if N is large, this is unattractive, as
we might have to sum a lot of terms. This happens a lot in building classifiers, where
you might quite reasonably expect to deal with millions of examples. Touching each
example at each step really is impractical.

Instead, assume that, at each step, we choose a number k in the range 1 . . .N
uniformly and at random, and form

pk = − (∇g0(a) +∇gk(a))

and then take a small step along pk. Our new point becomes

a(i+1) = a(i) + ηp
(i)
k ,

where η is called the steplength (even though it very often isn’t the length of the
step we take!). It is easy to show that

E[pk] = ∇g(a)

(where the expectation is over the random choice of k). This implies that if we take
many small steps along pk, they should average out to a step backwards along the
gradient. This approach is known as stochastic gradient descent (because we’re
not going along the gradient, but along a random vector which is the gradient only
in expectation). It isn’t obvious that stochastic gradient descent is a good idea.
Although each step is easy to take, we may need to take more steps. The question
is then whether we gain in the increased speed of the step what we lose by having
to take more steps. Not much is known theoretically, but in practice the approach
is hugely successful for training classifiers.

Choosing a steplength η takes some work. Line search won’t work, because
we don’t want to evaluate the function g, because doing so involves looking at each
of the gi terms. Instead, one uses a steplength that is large at the start — so that
it can explore large changes in the values of the classifier parameters — and small
steps later — so that it settles down. One useful strategy is to divide training into

Section 5.3 Basic Ideas for Numerical Minimization 84

epochs. Each epoch is a block of a fixed number of iterations. Each iteration is one
of the steps given above, with fixed steplength. However, the steplength changes
from epoch to epoch. In particular, in the r’th epoch, the steplength is

η(r) =
a

r + b

where a and b are constants chosen by experiment with small subsets of the dataset.
One cannot really test whether stochastic gradient descent has converged to

the right answer. A better approach is to plot the error as a function of epoch on
a validation set. This should vary randomly, but generally go down as the epochs
proceed.

5.3.4 Example: Training a Support Vector Machine with Stochastic Gradient Descent

We need to choose w and b to minimize

C(w, b) = (1/N)

N
∑

i=1

max(0, 1− yi (w · xi + b)) +
λ

2
wTw.

There are several methods to do so. Section 1 describes some of the many available
support vector machine training packages on the web; it is often, even usually, a
good idea to use one of these. But it is worth understanding how such things work.

For a support vector machine, stochastic gradient descent is particularly easy.
We have estimates w(n) and b(n) of the classifier parameters, and we want to im-
prove the estimates. We pick the k’th example at random. We must now compute

∇
(

max(0, 1− yk (w · xk + b)) +
λ

2
wTw

)

.

Assume that yk (w · xk + b) > 1. In this case, the classifier predicts a score with
the right sign, and a magnitude that is greater than one. Then the first term is
zero, and the gradient of the second term is easy. Now if yk (w · xk + b) < 1, we can
ignore the max, and the first term is 1− yk (w · xk + b); the gradient is again easy.
But what if yk (w · xk + b) = 1? there are two distinct values we could choose for
the gradient, because the max term isn’t differentiable. It turns out not to matter
which term we choose (Figure ??), so we can write the gradient as

pk =























[

λw
0

]

if yk (w · xk + b) ≥ 1

[

λw − ykx
−yk

]

otherwise

We choose a steplength η, and update our estimates using this gradient. This yields:

w(n+1) = w(n) − η

{

λw if yk (w · xk + b) ≥ 1
λw − ykx otherwise

and

b(n+1) = b(n) − η

{

0 if yk (w · xk + b) ≥ 1
−yk otherwise

.

Section 5.3 Basic Ideas for Numerical Minimization 85

0 50 100
0

1

2

3

4

5

6

Epoch

S
iz

e
of

 w

1e−7
1e−5
1e−3
1e−1
1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epoch

H
el

d
ou

t e
rr

or

FIGURE 5.3: On the left, the magnitude of the weight vector w at the end of each
epoch for the first training regime described in the text. On the right, the accu-
racy on held out data at the end of each epoch. Notice how different choices of
regularization parameter lead to different magnitudes of w; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

To construct figures, I downloaded the dataset at http://archive.ics.uci.
edu/ml/datasets/Adult. This dataset apparently contains 48, 842 data items, but
I worked with only the first 32, 000. Each consists of a set of numeric and categorical
features describing a person, together with whether their annual income is larger
than or smaller than 50K$. I ignored the categorical features to prepare these
figures. This isn’t wise if you want a good classifier, but it’s fine for an example.
I used these features to predict whether income is over or under 50K$. I split the
data into 5, 000 test examples, and 27,000 training examples. It’s important to
do so at random. There are 6 numerical features. I subtracted the mean (which
doesn’t usually make much difference) and rescaled each so that the variance was
1 (which is often very important). I used two different training regimes.

In the first training regime, there were 100 epochs. In each epoch, I applied
426 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees
a total of 42, 600 data items. This means that there is a high probability it has
touched each data item once (27, 000 isn’t enough, because we are sampling with
replacement, so some items get seen more than once). I chose 5 different values
for the regularization parameter and trained with a steplength of 1/(0.01 ∗ e+50),
where e is the epoch. At the end of each epoch, I computed wTw and the accuracy
(fraction of examples correctly classified) of the current classifier on the held out
test examples. Figure 5.3 shows the results. You should notice that the accuracy
changes slightly each epoch; that for larger regularizer values wTw is smaller; and
that the accuracy settles down to about 0.8 very quickly.

In the second training regime, there were 100 epochs. In each epoch, I applied

Section 5.4 Practical Methods for Building Classifiers 86

0 50 100
0

1

2

3

4

5

6

Epoch

S
iz

e
of

 w

1e−7
1e−5
1e−3
1e−1
1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epoch

H
el

d
ou

t e
rr

or

FIGURE 5.4: On the left, the magnitude of the weight vector w at the end of each
epoch for the second training regime described in the text. On the right, the ac-
curacy on held out data at the end of each epoch. Notice how different choices of
regularization parameter lead to different magnitudes of w; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

50 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees
a total of 5,000 data items, and about 3, 216 unique data items — it hasn’t seen
the whole training set. I chose 5 different values for the regularization parameter
and trained with a steplength of 1/(0.01 ∗ e+50), where e is the epoch. At the end
of each epoch, I computed wTw and the accuracy (fraction of examples correctly
classified) of the current classifier on the held out test examples. Figure 5.4 shows
the results. You should notice that the accuracy changes slightly each epoch; that
for larger regularizer values wTw is smaller; and that the accuracy settles down
to about 0.8 very quickly; and that there isn’t much difference between the two
training regimes. All of these points are relatively typical of stochastic gradient
descent with very large datasets.

5.4 PRACTICAL METHODS FOR BUILDING CLASSIFIERS

We have described several apparently very different classifiers here. But which
classifier should one use for a particular application? Generally, this should be dealt
with as a practical rather than a conceptual question: that is, one tries several, and
uses the one that works best. With all that said, experience suggests that the first
thing to try for most problems is a linear SVM or logistic regression, which tends
to be much the same thing. Nearest neighbor strategies are always useful, and
are consistently competitive with other approaches when there is lots of training
data and one has some idea of appropriate relative scaling of the features. The
main difficulty with nearest neighbors is actually finding the nearest neighbors of a
query. Approximate methods are now very good, and are reviewed in Section 7.2.1.

Section 5.4 Practical Methods for Building Classifiers 87

The attraction of these methods is that it is relatively easy to build multi-class
classifiers, and to add new classes to a system of classifiers.

5.4.1 Manipulating Training Data to Improve Performance

Generally, more training data leads to a better classifier. However, training classi-
fiers with large datasets can be difficult, and it can be hard to get enough training
data. Typically, only a relatively small number of example items are really impor-
tant in determining the behavior of a classifier (we see this phenomenon in greater
detail in Section ??). The really important examples tend to be rare cases that are
quite hard to discriminate. This is because these cases affect the position of the
decision boundary most significantly. We need a large dataset to ensure that these
cases are present.

There are some useful tricks that help.
We train on a subset of the examples, run the resulting classifier on the rest of

the examples, and then insert the false positives and false negatives into the training
set to retrain the classifier. This is because the false positives and false negatives
are the cases that give the most information about errors in the configuration of the
decision boundaries. We may repeat this several times, and in the final stages, we
may use the classifier to seek false positives. For example, we might collect pictures
from the Web, classify them, and then look at the positives for errors. This strategy
is sometimes called bootstrapping (the name is potentially confusing because
there is an unrelated statistical procedure known as bootstrapping; nonetheless,
we’re stuck with it at this point).

There is an extremely important variant of this approach called hard neg-
ative mining. This applies to situations where we have a moderate supply of
positive examples, but an immense number of negative examples. In this case we
can’t use all the negative examples in training, but we need to search for negative
examples that are most likely to improve the classifier’s performance. We can do
so by selecting a set of negative examples, training with these, and then searching
the rest of the negative examples to find ones that generate false positives—these
are hard negatives. We can iterate the procedure of training and searching for hard
negatives; typically, we expand the pool of negative examples at each iteration.

Most basic classifier training algorithms expect that (a) the percentage of
positive and negative examples in the training data set accurately reflects the test
data and (b) that the cost of a false positive is the same as the cost of a false
negative. On occasion, you will encounter data where one or the other assumption
is not true. As an example, if you have one training positive example for every 10,
000 negative training examples, classifying everything as negative is a very good
rule if the test data reflects those frequencies. But doing so may not be particularly
useful, either because the test data doesn’t have those frequencies — maybe you had
a hard time finding training examples, or were lazy — or because the cost of a false
negative is very high. In such cases you can reweight the data. For example, you
might count each positive example 10 times rather than once when you compute
the training loss. Most classifier codes have mechanisms to allow this. Choosing
a weighting can be tricky, but it is usual to try several different weightings, then
evaluate on a validation set to see which produces the most satisfactory results.

Section 5.4 Practical Methods for Building Classifiers 88

5.4.2 Building Multi-Class Classifiers Out of Binary Classifiers

There are two standard methods to build multi-class classifiers out of binary classi-
fiers. In the all-vs-all approach, we train a binary classifier for each pair of classes.
To classify an example, we present it to each of these classifiers. Each classifier
decides which of two classes the example belongs to, then records a vote for that
class. The example gets the class label with the most votes. This approach is
simple, but scales very badly with the number of classes.

In the one-vs-all approach, we build a binary classifier for each class. This
classifier must distinguish its class from all the other classes. We then take the
class with the largest classifier score. One possible concern with this method is
that training algorithms usually do not compel classifiers to be good at ranking
examples. We train classifiers so that they give positive scores for positive examples,
and negative scores for negative examples, but we do nothing explicit to ensure that
a more positive score means the example is more like the positive class. Another
important concern is that the classifier scores must be calibrated to one another,
so that when one classifier gives a larger positive score than another, we can be
sure that the first classifier is more certain than the second. Some classifiers, such
as logistic regression, report posterior probabilities, which require no calibration.
Others, such as the SVM, report numbers with no obvious semantics and need
to be calibrated. The usual method to calibrate these numbers is an algorithm
due to ?, which uses logistic regression to fit a simple probability model to SVM
outputs. One-vs-all methods tend to be reliable and effective even when applied to
uncalibrated classifier outputs, most likely because training algorithms do tend to
encourage classifiers to rank examples correctly.

Neither strategy is particularly attractive when the number of classes is large,
because the number of classifiers we must train scales poorly (linearly in one case,
quadratically in the other) with the number of classes. If we were to allocate each
class a distinct binary vector, we would need only logN bits in the vector for N
classes. We could then train one classifier for each bit, and we should be able to
classify into N classes with only logN classifiers. This strategy tends to founder
on questions of which class should get which bit string, because this choice has
significant effects on the ease of training the classifiers. Nonetheless, it gives an
argument that suggests that we should not need as many as N classifiers to tell N
classes apart.

5.4.3 Class Confusion Matrices

Evaluating a multi-class classifier is more complex than evaluating a binary clas-
sifier. There are only two kinds of mistake that a binary classifier can make. A
multi-class classifier can make many more (mapping any one class to any other
class). It is useful to know the total error rate of the classifier, which is the percent-
age of classification attempts that produce the wrong answer. An alternative is the
accuracy, which is the percentage of classification attempts that produce the right
answer. If the error rate is low enough, or the accuracy is high enough, there’s not
much to worry about. But if it’s not, you can look at the class confusion matrix
to see what’s going on.

Table 5.1 gives an example. This is a class confusion matrix from a classifier

Section 5.4 Practical Methods for Building Classifiers 89

Predict Predict Predict Predict Predict Class
0 1 2 3 4 error

True 0 151 7 2 3 1 7.9%
True 1 32 5 9 9 0 91%
True 2 10 9 7 9 1 81%
True 3 6 13 9 5 2 86%
True 4 2 3 2 6 0 100%

TABLE 5.1: The class confusion matrix for a multiclass classifier. Further details
about the dataset and this example appear in worked example 1.

built on a dataset where one tries to predict the degree of heart disease from a col-
lection of physiological and physical measurements. There are five classes (0 . . . 4).
The i, j’th cell of the table shows the number of data points of true class i that
were classified to have class j. As I find it hard to recall whether rows or columns
represent true or predicted classes, I have marked this on the table. For each row,
there is a class error rate, which is the percentage of data points of that class that
were misclassified. The first thing to look at in a table like this is the diagonal; if
the largest values appear there, then the classifier is working well. This clearly isn’t
what is happening for table 5.1. Instead, you can see that the method is very good
at telling whether a data point is in class 0 (the class error rate is rather small),
but cannot distinguish between the other classes. This is a strong hint that the
data can’t be used to draw the distinctions that we want. It might be a lot better
to work with a different set of classes.

5.4.4 Software for SVM’s

We obtain a support vector machine by solving one of the constrained optimization
problems given above. These problems have quite special structure, and one would
usually use one of the many packages available on the web for SVMs to solve them.

LIBSVM (which can be found using Google, or at http://www.csie.ntu.

edu.tw/~cjlin/libsvm/) is a dual solver that is now widely used; it searches for
nonzero Lagrange multipliers using a clever procedure known as SMO (sequential
minimal optimization). A good primal solver is PEGASOS; source code can be
found using Google, or at http://www.cs.huji.ac.il/~shais/code/index.html.
SVMLight (Google, or http://svmlight.joachims.org/) is a comprehensive

SVM package with numerous features. It can produce sophisticated estimates of
the error rate, learn to rank as well as to classify, and copes with hundreds of thou-
sands of examples. Andrea Vedaldi, Manik Varma, Varun Gulshan, and Andrew
Zisserman publish code for a multiple kernel learning-based image classifier at http:
//www.robots.ox.ac.uk/~vgg/software/MKL/. Manik Varma publishes code for
general multiple-kernel learning at http://research.microsoft.com/en-us/um/
people/manik/code/GMKL/download.html, and for multiple-kernel learning us-
ing SMO at http://research.microsoft.com/en-us/um/people/manik/code/

SMO-MKL/download.html. Peter Gehler and Sebastian Nowozin publish code for
their recent multiple-kernel learning method at http://www.vision.ee.ethz.ch/

~pgehler/projects/iccv09/index.html.

C H A P T E R 6

Classifying with Random Forests

I described a classifier as a rule that takes a feature, and produces a class.
One way to build such a rule is with a sequence of simple tests, where each test is
allowed to use the results of all previous tests. This class of rule can be drawn as
a tree (Figure ??), where each node represents a test, and the edges represent the
possible outcomes of the test. To classify a test item with such a tree, you present
it to the first node; the outcome of the test determines which node it goes to next;
and so on, until the example arrives at a leaf. When it does arrive at a leaf, we
label the test item with the most common label in the leaf. This object is known
as a decision tree.

Figure ?? shows a simple 2D dataset with four classes, next to a decision tree
that will correctly classify at least the training data. Actually classifying data with
a tree like this is straightforward. We take the data item, and pass it down the
tree. Notice it can’t go both left and right, because of the way the tests work. This
means each data item arrives at a single leaf. We take the most common label at
the leaf, and give that to the test item.

The important question is how to get the tree from data. It turns out that
the best approach for building a tree incorporates a great deal of randomness. As
a result, we will get a different tree each time we train a tree on a dataset. None of
the individual trees will be particularly good (they are often referred to as “weak
learners”). The natural thing to do is to produce many such trees (a decision
forest), and allow each to vote; the class that gets the most votes, wins. This
strategy is extremely effective.

6.1 BUILDING A DECISION TREE

There are many algorithms for building decision trees. We will use an approach
chosen for simplicity and effectiveness; be aware there are others. We will always
use a binary tree, because it’s easier to describe and because that’s usual (it doesn’t
change anything important, though). Each node has a decision function, which
takes data items and returns either 1 or -1.

We train the tree by thinking about its effect on the training data. We pass
the whole pool of training data into the root. Any node splits its incoming data
into two pools, left (all the data that the decision function labels 1) and right (ditto,
-1). Finally, each leaf contains a pool of data, which it can’t split because it is a
leaf.

Training the tree uses a straightforward algorithm. First, we choose a class of
decision functions to use at each node. It turns out that a very effective algorithm
is to choose a single feature at random, then test whether its value is larger than, or
smaller than a threshold. For this approach to work, one needs to be quite careful
about the choice of threshold, which is what we describe in the next section. Some
minor adjustments, described below, are required if the feature chosen isn’t ordinal.

90

Section 6.1 Building a Decision Tree 91

cat

dogtoddler

chair leg

boxsofa

moves

bites

furry

big

cardboard

FIGURE 6.1: This — the household robot’s guide to obstacles — is a typical decision
tree. I have labelled only one of the outgoing branches, because the other is the
negation. So if the obstacle moves, bites, but isn’t furry, then it’s a toddler. In
general, an item is passed down the tree until it hits a leaf. It is then labelled with
the leaf ’s label.

Surprisingly, being clever about the choice of feature doesn’t seem add a great deal
of value. We won’t spend more time on other kinds of decision function, though
there are lots.

Now assume we use a decision function as described, and we know how to
choose a threshold. We start with the root node, then recursively either split the
pool of data at that node, passing the left pool left and the right pool right, or stop
splitting and return. Splitting involves choosing a decision function from the class
to give the “best” split for a leaf. The main questions are how to choose the best
split (next section), and when to stop.

Stopping is relatively straightforward. Quite simple strategies for stopping
are very good. It is hard to choose a decision function with very little data, so we
must stop splitting when there is too little data at a node. We can tell this is the
case by testing the amount of data against a threshold, chosen by experiment. If all
the data at a node belongs to a single class, there is no point in splitting. Finally,
constructing a tree that is too deep tends to result in generalization problems, so
we usually allow no more than a fixed depth D of splits. Choosing the best splitting
threshold is more complicated.

6.1.1 Entropy and Information Gain

Figure 6.2 shows two possible splits of a pool of training data. These splits are
obtained by testing the horizontal feature against a threshold. In one case, the left
and the right pools contain about the same fraction of positive (’x’) and negative
(’o’) examples. In the other, the left pool is all positive, and the right pool is mostly
negative. Clearly this is the better choice of threshold. But we need some way to
score what has happened, so we can tell which threshold is best. Notice that, in

Section 6.1 Building a Decision Tree 92

o
o

o
o

o
o

o
o

o
o

o
o

Less informative splitInformative split
x

x
x

x

x
x

x

x
x

x
x

x

o
o

o
o

o
o

o
o

o
o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

x
x

x
x

x
x

x

x
x

x
x

x

o
o

o
o

o
o

o
o

o
o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

o
o

o
o

o
o

o
o

o
o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

x
x

x
x

x
x

x

x
x

x
x

x

FIGURE 6.2: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’x’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’x’s, and two-thirds of the points
on the right are ’o’s. This means that knowing which side of the split a point lies
would give us a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are ’x’s and about half on the right are ’x’s
— knowing which side of the split a point lies is much less useful in deciding what
the label is.

the uninformative case, knowing that a data item is on the left (or the right) does
not tell me much more about the data than I already knew. This is because

p(1|left pool) ≈ p(1|parent pool).

In the second case, knowing a data item is on the left classifies it completely. In
this case, my uncertainty about what class the data item belongs to is significantly
reduced if I know whether it goes left or right. To choose a good threshold, we need
to keep track of how informative the split is.

It turns out to be straightforward to keep track of information, in simple cases.
We will start with an example. Assume I have 4 classes. There are 8 examples in
class 1, 4 in class 2, 2 in class 3, and 2 in class 4. How much information on
average will you need to send me to tell me the class of a given example? Clearly,
this depends on how you communicate the information. You could send me the
complete works of Edward Gibbon to communicate class 1; the Encyclopaedia for
class 2; and so on. But this would be redundant. The question is how little can
you send me. Keeping track of the amount of information is easier if we encode it
with bits (i.e. you can send me sequences of ’0’s and ’1’s).

Imagine the following scheme. If an example is in class 1, you send me a ’1’.
If it is in class 2, you send me ’01’; if it is in class 3, you send me ’001’; and in class
4, you send me ’101’. Then the expected number of bits you will send me is

p(class = 1)1 + p(2)2 + p(3)3 + p(4)3 =
1

2
1 +

1

4
2 +

1

8
3 +

1

8
3

which is 1.75 bits. This number doesn’t have to be an integer, because it’s an
expectation.

Section 6.1 Building a Decision Tree 93

Notice that for the i’th class, you have sent me − log2 p(i) bits. We can write
the expected number of bits you need to send me as

−
∑

i

p(i) log2 p(i).

This expression handles other simple cases correctly, too. You should try what
happens if you have two classes, each with 8 examples in them; 256 classes, each
with one example in them; and 5 classes, with 16 examples in class 1, 8 in class 2,
etc. If you try other examples, you may find it hard to construct a scheme where
you can send as few bits on average as this expression predicts. It turns out that,
in general, the smallest number of bits you will need to send me is given by the
expression

−
∑

i

p(i) log2 p(i)

under all conditions, though it may be hard or impossible to determine what rep-
resentation is required to achieve this number.

Now we return to the splits. Write P for the set of all data at the node.
Write Pl for the left pool, and Pr for the right pool. The entropy of a pool C is a
function H(C) that scores how many bits would be required to represent the class
of an item in that pool, on average. Write n(i; C) for the number of items of class
i in the pool, and N(C) for the number of items in the pool. Then the entropy of
the pool C is

−
∑

i

n(i; C)
N(C) log2

n(i; C)
N(C .

It is straightforward that H(P) bits are required to classify an item in the parent
pool P . For an item in the left pool, we need H(Pl) bits; for an item in the right
pool, we need H(Pr) bits. If we split the parent pool, we expect to encounter items
in the left pool with probability

N(Pl)

N(P)

and items in the right pool with probability

N(Pr)

N(P)
.

This means that, on average, we must supply

N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

bits to classify data items if we split the parent pool. Now a good split is one that
results in left and right pools that are informative. In turn, we should need fewer
bits to classify once we have split than we need before the split. You can see the
difference

I(Pl,Pr;P) = H(P)−
(

N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

)

Section 6.1 Building a Decision Tree 94

−5 0 5
−5

0

5

y>.32

x>1.06x>-0.58

*.o+

FIGURE 6.3: A straightforward decision tree

as the information gain caused by the split. This is the average number of bits
that you don’t have to supply if you know which side of the split an example lies.
Better splits have larger information gain.

6.1.2 Choosing a Split with Information Gain

Recall that our decision function is to choose a feature at random, then test its
value against a threshold. Any data point where the value is larger goes to the left
pool; where the value is smaller goes to the right. This may sound much too simple
to work, but it is actually effective and popular. Assume that we are at a node,
which we will label k. We have the pool of training examples that have reached
that node. The i’th example has a feature vector xi, and each of these feature
vectors is a d dimensional vector.

We choose an integer j in the range 1 . . . d uniformly and at random. We will

split on this feature, and we store j in the node. Recall we write x
(j)
i for the value

of the j’th component of the i’th feature vector. We will choose a threshold tk,

and split by testing the sign of x
(j)
i − tk. Choosing the value of tk is easy. Assume

there are Nk examples in the pool. Then there are Nk − 1 possible values of tk
that lead to different splits. To see this, sort the Nk examples by x(j), then choose
values of tk halfway between example values (Figure ??). For each of these values,
we compute the information gain of the split. We then keep the threshold with the
best information gain.

We can elaborate this procedure in a useful way, by choosing m features at
random, finding the best split for each, then keeping the feature and threshold
value that is best. It is important that m is a lot smaller than the total number of
features — a usual root of thumb is that m is about the square root of the total
number of features. It is usual to choose a single m, and choose that for all the
splits.

Now assume we happen to have chosen to work with a feature that isn’t

Section 6.2 Forests 95

ordinal, and so can’t be tested against a threshold. A natural, and effective, strategy
is as follows. We can split such a feature into two pools by flipping an unbiased
coin for each value — if the coin comes up H , any data point with that value goes
left, and if it comes up T , any data point with that value goes right. We chose this
split at random, so it might not be any good. We can come up with a good split by
repeating this procedure F times, computing the information gain for each split,
then keeping the one that has the best information gain. We choose F in advance,
and it usually depends on the number of values the categorical variable can take.

We now have a relatively straightforward blueprint for an algorithm, which I
have put in a box. It’s a blueprint, because there are a variety of ways in which it
can be revised and changed.

Procedure: 6.1 Building a decision tree

Assume we have a data set

TODO: an algorithm block

6.2 FORESTS

A single decision tree tends to yield poor classifications. One reason is because the
tree is not chosen to give the best classification of its training data. We used a
random selection of splitting variables at each node, so the tree can’t be the “best
possible”. Obtaining the best possible tree presents significant technical difficulties.
It turns out that the tree that gives the best possible results on the training data
can perform rather poorly on test data. The training data is a small subset of
possible examples, and so must differ from the test data. The best possible tree on
the training data might have a large number of small leaves, built using carefully
chosen splits. But the choices that are best for training data might not be best for
test data.

Rather than build the best possible tree, we have built a tree efficiently, but
with number of random choices. If we were to rebuild the tree, we would obtain
a different result. This suggests the following extremely effective strategy: build
many trees, and classify by merging their results.

6.2.1 Building and Evaluating a Decision Forest

There are two important strategies for building and evaluating decision forests. I
am not aware of evidence strongly favoring one over the other, but different software
packages use different strategies, and you should be aware of the options. In one
strategy, we separate labelled data into a training and a test set. We then build
multiple decision trees, training each using the whole training set. Finally, we
evaluate the forest on the test set. In this approach, the forest has not seen some
fraction of the available labelled data, because we used it to test. However, each
tree has seen every training data item.

In the other strategy, sometimes called bagging, each time we train a tree we

Section 6.2 Forests 96

randomly subsample the labelled data with replacement, to yield a training set the
same size as the original set of labelled data. Notice that there will be duplicates
in this training set, which is like a bootstrap replicate. This training set is often
called a bag. We keep a record of the examples that do not appear in the bag (the
“out of bag” examples). Now to evaluate the forest, we evaluate each tree on its
out of bag examples, and average these error terms. In this approach, the entire
forest has seen all labelled data, and we also get an estimate of error, but no tree
has seen all the training data.

6.2.2 Classifying Data Items with a Decision Forest

Once we have a forest, we must classify test data items. There are two major
strategies. The simplest is to classify the item with each tree in the forest, then
take the class with the most votes. This is effective, but discounts some evidence
that might be important. For example, imagine one of the trees in the forest has a
leaf with many data items with the same class label; another tree has a leaf with
exactly one data item in it. One might not want each leaf to have the same vote.

An alternative strategy that takes this observation into account is to pass the
test data item down each tree. When it arrives at a leaf, we record one vote for each
of the training data items in that leaf. The vote goes to the class of the training
data item. Finally, we take the class with the most votes. This approach allows
big, accurate leaves to dominate the voting process. Both strategies are in use, and
I am not aware of compelling evidence that one is always better than the other.
This may be because the randomness in the training process makes big, accurate
leaves uncommon in practice.

Notice one of the major attractions of random forests. Our strategy doesn’t
depend on the number of classes we are dealing with (though the results might).

Section 6.2 Forests 97

Worked example 6.1 Classifying heart disease data

Build a random forest classifier to classify the “heart” dataset from
the UC Irvine machine learning repository. The dataset is at http://
archive.ics.uci.edu/ml/datasets/Heart+Disease. There are sev-
eral versions. You should look at the processed Cleveland data, which
is in the file “processed.cleveland.data.txt”.

Solution: I used the R random forest package. This uses a bagging strat-
egy. There is sample code in listing ??. This package makes it quite simple
to fit a random forest, as you can see. In this dataset, variable 14 (V14)
takes the value 0, 1, 2, 3 or 4 depending on the severity of the narrowing of
the arteries. Other variables are physiological and physical measurements
pertaining to the patient (read the details on the website). I tried to predict
all five levels of variable 14, using the random forest as a multivariate clas-
sifier. This works rather poorly, as the out-of-bag class confusion matrix
below shows. The total out-of-bag error rate was 45%.

Predict Predict Predict Predict Predict Class
0 1 2 3 4 error

True 0 151 7 2 3 1 7.9%
True 1 32 5 9 9 0 91%
True 2 10 9 7 9 1 81%
True 3 6 13 9 5 2 86%
True 4 2 3 2 6 0 100%

This is the example of a class confusion matrix from table 5.1. Fairly clearly,
one can predict narrowing or no narrowing from the features, but not the
degree of narrowing (at least, not with a random forest). So it is natural to
quantize variable 14 to two levels, 0 (meaning no narrowing), and 1 (mean-
ing any narrowing, so the original value could have been 1, 2, or 3). I then
built a random forest to predict this from the other variables. The total
out-of-bag error rate was 19%, and I obtained the following out-of-bag class
confusion matrix

Predict Predict Class
0 1 error

True 0 138 26 16%
True 1 31 108 22%

Notice that the false positive rate (16%, from 26/164) is rather better than
the false negative rate (22%). Looking at these class confusion matrices,
you might wonder whether it is better to predict 0, . . . , 4, then quantize.
But this is not a particularly good idea. While the false positive rate is
7.9%, the false negative rate is much higher (36%, from 50/139). In this
application, a false negative is likely more of a problem than a false positive,
so the tradeoff is unattractive.

Section 6.2 Forests 98

Listing 6.1: R code used for the random forests of worked example 1

setwd (’/use r s/daf/Current/ cour s e s/Probcourse/Trees/RCode ’) ;
i n s ta l l . packages (’ randomForest ’)
l ibrary (randomForest)
hear t<−read . csv (’ p r o ce s s ed . c l eve l and . data . txt ’ , header=FALSE)
hear t$ levels<−as . factor (hear t$V14)
h e a r t f o r e s t . a l l v a l s<−

randomForest (formula=levels˜V1+V2+V3+V4+V5+V6
+V7+V8+V9+V10+V11+V12+V13 ,
data=heart , type=’ c l a s s i f i c a t i o n ’ , mtry=5)

t h i s f i t s to a l l l e v e l s
I got the CCM by typ ing
h e a r t f o r e s t . a l l v a l s
hear t$yesno<−cut (hear t$V14 , c(− In f , 0 . 1 , I n f))
h e a r t f o r e s t<−

randomForest (formula=yesno˜V1+V2+V3+V4+V5+V6
+V7+V8+V9+V10+V11+V12+V13 ,
data=heart , type=’ c l a s s i f i c a t i o n ’ , mtry=5)

t h i s f i t s to the quan t i z ed case
I got the CCM by typ ing
h e a r t f o r e s t

C H A P T E R 7

Exploiting your Neighbors

7.1 CLASSIFYING WITH NEAREST NEIGHBORS

Example points near an unclassified point should indicate the class of that point.
Nearest neighborsmethods build classifiers using this heuristic. We could classify
a point by using the class of the nearest example whose class is known, or use several
example points and make them vote. It is reasonable to require that some minimum
number of points vote for the class we choose.

A (k, l) nearest neighbor classifier finds the k example points closest to the
point being considered, and classifies this point with the class that has the highest
number of votes, as long as this class has more than l votes (otherwise, the point
is classified as unknown). A (k, 0)-nearest neighbor classifier is usually known as a
k-nearest neighbor classifier, and a (1, 0)-nearest neighbor classifier is usually
known as a nearest neighbor classifier.

Nearest neighbor classifiers are known to be good, in the sense that the risk of
using a nearest neighbor classifier with a sufficiently large number of examples lies
within quite good bounds of the Bayes risk. As k grows, the difference between the
Bayes risk and the risk of using a k-nearest neighbor classifier goes down as 1/

√
k.

In practice, one seldom uses more than three nearest neighbors. Furthermore, if
the Bayes risk is zero, the expected risk of using a k-nearest neighbor classifier is
also zero. Finding the k nearest points for a particular query can be difficult, and
Section 7.2.1 reviews this point.

A second difficulty in building such classifiers is the choice of distance. For
features that are obviously of the same type, such as lengths, the usual metric may
be good enough. But what if one feature is a length, one is a color, and one is an
angle? One possibility is to whiten the features (section ??). This may be hard
if the dimension is so large that the covariance matrix is hard to estimate. It is
almost always a good idea to scale each feature independently so that the variance
of each feature is the same, or at least consistent; this prevents features with very
large scales dominating those with very small scales.

Notice that nearest neighbors (fairly obviously) doesn’t like categorical data.
If you can’t give a clear account of how far apart two things are, you shouldn’t be
doing nearest neighbors. It is possible to fudge this point a little, by (say) putting
together a distance between the levels of each factor, but it’s probably unwise.

7.1.1 Using Nearest Neighbors in Practice

As you’d expect, R has nearest neighbor code that seems quite good (I haven’t had
any real problems with it, at least). There isn’t really all that much to say about
the code; I give an example below.

99

Section 7.2 Finding your Nearest Neighbors 100

Worked example 7.1 Classifying using nearest neighbors

Build a nearest neighbor classifier to classify the digit data originally
constructed by Yann Lecun. You can find it at several places. The orig-
inal dataset is at http://yann.lecun.com/exdb/mnist/. The version
I used was used for a Kaggle competition (so I didn’t have to decom-
press Lecun’s original format). I found it at http://www.kaggle.com/
c/digit-recognizer.

Solution: I used the R FNN package. This uses a bagging strategy. There
is sample code in listing ??. I trained on 1000 of the 42000 examples, so
you could see how in the code. I tested on the next 200 examples. For this
(rather small) case, I found the following class confusion matrix

P
0 1 2 3 4 5 6 7 8 9

0 12 0 0 0 0 0 0 0 0 0
1 0 20 4 1 0 1 0 2 2 1
2 0 0 20 1 0 0 0 0 0 0
3 0 0 0 12 0 0 0 0 4 0
4 0 0 0 0 18 0 0 0 1 1
5 0 0 0 0 0 19 0 0 1 0
6 1 0 0 0 0 0 18 0 0 0
7 0 0 1 0 0 0 0 19 0 2
8 0 0 1 0 0 0 0 0 16 0
9 0 0 0 2 3 1 0 1 1 14

There are no class error rates here, because I was in a rush and couldn’t
recall the magic line of R to get them. However, you can see the classifier
works rather well for this case.

7.2 FINDING YOUR NEAREST NEIGHBORS

7.2.1 Finding the Nearest Neighbors and Hashing

To build a nearest neighbors classifier, we need to find the members of a set of high
dimensional vectors that are closest to some query vector. It turns out this is a
general, and quite difficult, problem. A linear search through the dataset is fine for
a small set of data items, but we will operate at scales where we need something
more efficient. Surprisingly, exact solutions turn out to be only very slightly more
efficient than a linear search through the dataset. Approximate solutions are much
more efficient. They are approximate in the sense that, with high probability, they
return a point that is almost as close to the query as the closest point. The main
trick to obtaining a good approximate solution is to carve the space into cells, then
look at items that lie in cells near the query vector; there are two methods that are
worth discussing in detail here.

Locality Sensitive Hashing

Section 7.2 Finding your Nearest Neighbors 101

Listing 7.1: R code used for the Nearest neighbors of worked example 1

setwd (’/use r s/daf/Current/ cour s e s/Probcourse/NearestNeighbors/RCode ’) ;
i n s t a l l . packages (FNN)
l ibrary (FNN)

o r t r a i n <− read . csv (”KNN−Dig i t s/ t r a i n . csv ” , header=TRUE)
now we need to do a t r a in t e s t s p l i t
nrow(o r t r a i n)
#42000 rows
order appears random
wtrain<−o r t r a i n [1 : 1 0 0 0 , 2 : 7 8 4]
wtr l<−o r t r a i n [1 : 1 0 0 0 , 1]
wtest<−o r t r a i n [1001 :1200 , 2 : 7 8 4]
r e s u l t s <− (0 : 9) [knn (wtrain , wtest , wtr l ,

k = 10 , a lgor i thm=” cover t r e e ”)]
wte l<−o r t r a i n [1001 :1200 , 1]
newdata<−data . frame (v1=as . factor (as .matrix (r e s u l t s)) ,

v2=as . factor (as .matrix (wtel)))
rccm<−table (newdata)

t h i s g i v e s me the c l a s s con fus ion matrix

In locality sensitive hashing, we build a set of hash tables containing the
data items, using different hashing functions for each table. For a query item, we
recover whatever is in each hash table at the location corresponding to the hash
code computed for the query item. We search this set, keeping any data items from
this set that are sufficiently close to the query. There are many choices of hash
function; the most widely used in vision is random projection. Write v for a
vector, representing either a query or a data item. We now obtain a single bit of a
hash code by choosing a random vector r and then computing sign(v·r). Computing
a k-bit hash code involves choosing k such random vectors, then computing one bit
for each. There is a set of k such random vectors associated with each hash table.
Geometrically, choosing an r corresponds to choosing a hyperplane in the data
space, and the hashing bit corresponds to which side of the hyperplane v lies on.
A k-bit hash code identifies a cell in an arrangement of k hyperplanes in which v
lies. k will be small compared to the dimension, and so we are cutting the space
into 2k cells. This means that there will be relatively few data items that lie in the
same cell as a query. Some nearby data items may not lie in the same cell, because
they could be on the other side of a hyperplane, but these items should lie in the
same cell in another hash table.

All these assertions can be made precise, resulting in a guarantee that: (a) a
data item that is almost as close as the nearest neighbor will be found with high
probability; and (b) all data items closer to the query than some threshold will be
found with high probability, whereas data items that are significantly more distant

Section 7.2 Finding your Nearest Neighbors 102

+

+

+

+1

2

3

4
+

+

+

+
1

2

3

4

0001

1100

1001

1100

Hash table 1 Hash table 2

Data point

Query

FIGURE 7.1: In locality sensitive hashing using a random projection hash function,
the hash function is equivalent to a hyperplane in the data space. Items that lie
on one side of the hyperplane corresponding to the nth bit have that bit set to one;
otherwise, it is zero. These hyperplanes cut the space of data into a set of cells.
All the data items in a cell get a binary hash code (shown for two points in each
figure; we have marked the order of the bits by labeling the hyperplanes, and the +s
show which side of the hyperplane gets a one). To query, we find all data items
in the same hash table entry as the query (the filled polygons in the figure), and
then find the closest. However, the nearest neighbor might not be in this cell (for
example, the case on the left). To reduce the probability of error from this cause,
we use more than one hash table and search the union of the sets of points lying in
the query cell. In the case illustrated, the nearest neighbor of the query lies in the
query cell for the second hash table, on the right. The hash tables reduce the set of
points we need to search, with high probability of finding a point that is almost as
close as the nearest neighbor.

will be found with low probability. Straightforward geometric intuition suggests
that this approach will work best when the data items have zero mean, which is
easy to arrange. Notice that using n k-bit hash tables is not the same as using one
nk-bit hash table. In the first case, the list of points returned from a particular
query is a union of the lists returned from each of the n hash tables. This means
that points that are near the query but just happen to lie outside the query’s cell
for one hash table, have a good chance of being found in another hash table. In the
second case, the list we must handle is much shorter (because there are more cells),
but there is a better chance of missing nearby points. The choice of n and k will
depend on dimension and on the nature of the probabilistic guarantee one wants.
There are a variety of other possible choices of hash function. Details of other
choices, and precise statements of the relevant guarantees, can be found in (?).

Section 7.2 Finding your Nearest Neighbors 103

1

2

3

Data point

Query

FIGURE 7.2: A k-d tree is built by recursively splitting cells along dimensions. The
order in which cells are split for this tree is shown by the dashes on the lines. The
nearest neighbor for the query point is found by (a) finding the closest item in the
query point’s cell, then (b) backtracking, and looking at cells that could contain
closer items. Notice that in this example one will need to go right up to the root of
the tree and down the other side to find the nearest neighbor. In high dimensions,
this backtracking becomes intractable, but if an approximate nearest neighbor is
sufficient, the amount of backtracking can be controlled successfully.

KD-Trees for Approximate Nearest Neighbors
Random projection methods build a cell structure that is independent of the

distribution of the data. This means trouble if data is heavily concentrated in some
regions, because queries that land in a heavily populated cell of the hash table will
need to search a long list. An alternative method is to use a k-d tree to build the
cell structure. A k-d tree is built by recursively splitting cells. The root will be the
whole space. To generate the children of a cell, select one dimension d, perhaps at
random, and select some threshold value td. Write the dth component of v as vd.
Now all data items in a cell with vd ≤ td are placed in the left child, and all others
in the right. We now apply this splitting procedure recursively to the root, until
the children are sufficiently small. If we choose the threshold value appropriately
(for example, the median of the data in the cell), we can ensure that cells are small
in dense components of the space and large in sparse components.

The nearest neighbor to a query can then be found by walking the tree to
find the cell containing the query point. We then check any data items in that
cell. Write the distance from the query to the closest as dc. We now backtrack,
investigating cells that could contain points closer than dc and updating dc when
we find a better point. We can prune any branch of the tree that represents a
volume that is further from the query than dc. This procedure works well for low

Section 7.2 Finding your Nearest Neighbors 104

dimensions, but becomes unattractive in high dimensions because we will need to
explore too many cells (the number of neighbors of a cell goes up exponentially
with dimension).

This difficulty can be avoided if an approximate nearest neighbor is sufficient.
In the best bin first approach, we look at a fixed number Nc of cells, then report
the best point found so far. Promising cells will tend to have some points that are
close to the query, and we define the distance between a cell and the query to be
the shortest distance from the query to any point on the cell’s boundary. Whenever
we investigate the child of a cell, we insert the other child into a priority queue,
ordered by distance to the query. Once we have checked a cell, we retrieve the next
cell from the priority queue. We do this until we have looked at Nc cells. We will
look mainly at cells that are close to the query, and so the point we report is a good
approximate nearest neighbor.

Good performance of a particular method depends somewhat on the dataset.
For most applications, the choice of method can be made offline using the dataset, or
a subset of it. ? describe a software package that can choose an approximate nearest
neighbors method that is fastest for a particular dataset. Generally, they find that
using multiple randomized k-d trees is usually the best; at the time of writing,
software could be found at http://www.cs.ubc.ca/~mariusm/index.php/FLANN/
FLANN.

C H A P T E R 8

Regression

Classification tries to predict a class from a data item. Regression tries to
predict a value. There are several reasons to do this. First, we might actually need
a value. For example, we know the zip code of a house, the square footage of its lot,
the number of rooms and the square footage of the house, and we wish to predict its
likely sale price. As another example, we know the cost and condition of a trading
card for sale, and we wish to predict a likely profit in buying it and then reselling
it. As yet another example, we have a picture with some missing pixels – perhaps
there was text covering them, and we want to replace it – and we want to fill in
the missing values. As a final example, you can think of classification as a special
case of regression, where we want to predict either +1 or −1. Predicting values is
very useful, and so there are many examples like this.

Second, we might want to compare trends in data. Doing so could make
it clear what is really happening. Here is an example from Efron (“Computer-
Intensive methods in statistical regression”, B. Efron, SIAM Review, 1988). Table 1
shows some data from medical devices, which sit in the body and release a hormone.
The data shows the amount of hormone currently in a device after it has spent some
time in service, and the time the device spent in service. The data describes devices
from three production lots (A, B, and C). Each device, from each lot, is supposed
to have the same behavior. The important question is: Are the lots the same?
The amount of hormone changes over time, so we can’t just compare the amounts
currently in each device. Instead, we need to determine the relationship between
time in service and hormone, and see if this relationship is different between batches.
We can do so by regressing hormone against time.

Figure 8.1 shows how a regression can help. In this case, we have modelled
the amount of hormone in the device as

a× (time in service) + b

for a, b chosen to get the best fit (much more on this point later!). This means
we can plot each data point on a scatter plot, together with the best fitting line.
This plot allows us to ask whether any particular batch behaves differently from
the overall model in any interesting way.

However, it is hard to evaluate the distances between data points and the best
fitting line by eye. A sensible alternative is to subtract the amount of hormone
predicted by the model from the amount that was measured. Doing so yields a
residual — the difference between a measurement and a prediction. We can then
plot those residuals (Figure 8.2). In this case, the plot suggests that lot A is special
— all devices from this lot contain less hormone than our model predicts.

105

Section 8.1 Linear Regression and Least Squares 106

Batch A
Amount of Time in
Hormone Service

25.8 99
20.5 152
14.3 293
23.2 155
20.6 196
31.1 53
20.9 184
20.9 171
30.4 52

Batch B
Amount of Time in
Hormone Service

16.3 376
11.6 385
11.8 402
32.5 29
32.0 76
18.0 296
24.1 151
26.5 177
25.8 209

Batch C
Amount of Time in
Hormone Service

28.8 119
22.0 188
29.7 115
28.9 88
32.8 58
32.5 49
25.4 150
31.7 107
28.5 125

TABLE 8.1: A table showing the amount of hormone remaining and the time in
service for devices from lot A, lot B and lot C. The numbering is arbitrary (i.e.
there’s no relationship between device 3 in lot A and device 3 in lot B). We expect
that the amount of hormone goes down as the device spends more time in service,
so cannot compare batches just by comparing numbers.

50 100 150 200
15

20

25

30

35

40

A

C

A
C

C

A

B

C

A

BC
A

C

A

B
C

A

B

C
A

B
C

Time in service

A
m

ou
nt

 o
f h

or
m

on
e

Hormone against time in service

FIGURE 8.1: A scatter plot of hormone against time for devices from tables 8.1 and
8.1. Notice that there is a pretty clear relationship between time and amount of
hormone (the longer the device has been in service the less hormone there is). The
issue now is to understand that relationship so that we can tell whether lots A, B
and C are the same or different. The best fit line to all the data is shown as well,
fitted using the methods of section 8.1.

8.1 LINEAR REGRESSION AND LEAST SQUARES

Assume we have a dataset consisting of a set of N pairs (xi, yi). We think of
yi as the value of some function evaluated at xi, with some random component
added. This means there might be two data items where the xi are the same, and
the yi are different. We refer to the xi as explanatory variables and the yi is
a dependent variable. We want to build a model of the dependence between
y and x. This model will be used to predict values of y for new values of x, or

Section 8.1 Linear Regression and Least Squares 107

50 100 150 200
−6

−4

−2

0

2

4

6

A

C

A

C

C

A

B C

A

BC

A
C

A
B
C

A

B
C

A

B

C

Time in service

R
es

id
ua

l

Regression residual against time

FIGURE 8.2: This is a scatter plot of residual — the distance between each data point
and the best fit line — against time for the devices from tables 8.1 and 8.1. Now you
should notice a clear difference; some devices from lots B and C have positive and
some negative residuals, but all lot A devices have negative residuals. This means
that, when we account for loss of hormone over time, lot A devices still have less
hormone in them. This is pretty good evidence that there is a problem with this lot.

to understand the relationships between the x. The model needs to have some
probabilistic component; we do not expect that y is a function of x, and there is
likely some error in evaluating y anyhow.

8.1.1 Linear Regression

A good, simple model is to assume that the dependent variable is obtained by
evaluating a linear function of the explanatory variables, then adding a zero-mean
normal random variable. We can write this model as

y = xTβ + ξ

where ξ is a zero mean normal random variable with unknown variance (we will be
able to estimate this later). In this expression, β is a vector of weights, which we
must estimate. When we use this model to predict a value of y for a particular set
of explanatory variables x∗, we cannot predict the value that ξ will take. Our best
available prediction is the mean value (which is zero).

Section 8.1 Linear Regression and Least Squares 108

Example: 8.1 A linear model fitted to a single explanatory variable

Assume we fit a linear model to a single explanatory variable. Then
the model has the form y = xβ + ξ, where ξ is a zero mean random
variable. For any value x∗ of the explanatory variable, our best estimate
of y is βx∗. In particular, if x∗ = 0, the model predicts y = 0, which
is unfortunate. We can draw the model by drawing a line through the
origin with slope β in the x, y plane. The y-intercept of this line must
be zero.

Example: 8.2 A linear model with a non-zero y-intercept

Assume we have a single explanatory variable, which we write u. We
can then create a vector x = [u, 1]

T
from the explanatory variable. We

now fit a linear model to this vector. Then the model has the form
y = xTβ + ξ, where ξ is a zero mean random variable. For any value
x∗ = [u∗, 1]

T
of the explanatory variable, our best estimate of y is

(x∗)Tβ, which can be written as y = β1u
∗ + β2. If x∗ = 0, the model

predicts y = β2. We can draw the model by drawing a line through the
origin with slope β1 and y-intercept β2 in the x, y plane.

The next step is to determine β. Because we have that P (y|x, β) is normal,
with mean xTβ, we can write out the log-likelihood of the data. Write σ2 for the
variance of ξ, which we don’t know, but will not need to worry about right now.
We have that

logL(β) =
∑

i

logP (yi|xi, β)

=
1

2σ2

∑

i

(yi − xT
i β)

2 + term not depending on β

Maximizing the log-likelihood of the data is equivalent to minimizing the
negative log-likelihood of the data. Furthermore, the term 1

2σ2 does not affect the
location of the minimum. We must have that β minimizes

∑

i

(yi − xT
i β)

2.

We can write all this more conveniently using vectors and matrices. Write y for
the vector









y1
y2
. . .
yn









Section 8.1 Linear Regression and Least Squares 109

and X for the matrix




xT
1

xT
2

. . .xT
n



 .

Then we want to minimize

(y −Xβ)T (y −Xβ)

which means that we must have

X TXβ −X Ty = 0.

For reasonable choices of features, we could expect that X TX — which should
strike you as being a lot like a covariance matrix — has full rank. If it does, this
equation is easy to solve. If it does not, there is more to do, which we will do below
once we have done some examples.

Section 8.1 Linear Regression and Least Squares 110

Procedure: 8.1 Linear Regression with a Normal Model

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional explanatory vector, and each yi is a single dependent vari-
able. We assume that each data point conforms to the model

yi = xT
i β + ξi

where ξi is a normal random variable with mean 0 and unknown vari-
ance σ2. Write y for the vector









y1
y2
. . .
yn









and X for the matrix




xT
1

xT
2

. . .xT
n



 .

We estimate β̂ (the value of β) by solving the linear system

X TX ˆbeta−X Ty = 0.

The residuals are
e = y −X β̂.

We have that eT1 = 0. The mean square error is given by

m =
eTe

N
.

We can estimate σ2 by

σ2 =

∑

i(yi − xT
i β̂)

2

N
=

eTe

N
= m.

Section 8.1 Linear Regression and Least Squares 111

Listing 8.1: R code used for the linear regression example of worked example 1

setwd (’/use r s/daf/Current/ cour s e s/Probcourse/Regres s ion/RCode/EfronDevices ’) ;
e fd<−read . table (’ e f r o n t ab l e . txt ’ , header=TRUE)
summary(e fd)
the t a b l e has the form
#N1 Ah Bh Ch N2 At Bt Ct
now we need to cons t ruc t a new da t a s e t
#
hor<−s tack (efd , s e l e c t =2:4)
tim<−s tack (efd , s e l e c t =6:8)
foo<−data . frame (time=tim [, c (” va lue s ”)] , hormone=hor [, c (” va lue s ”)])
foo . lm<−lm(hormone˜time , data=foo)
summary(foo . lm)
#

Worked example 8.1 Simple Linear Regression with R

Regress the hormone data against time for all the devices in the Efron
example.

Solution: This example is mainly used to demonstrate how to regress
in R. There is sample code in listing 8.2. The summary in the listing
produces a great deal of information (try it). You will see information
about the residuals; the smallest is -4.9357, the largest is 3.7323, and the
median, first and third quartiles are there too. You will see the intercept
(34.167528) and the coefficient of time (-0.057446), as well as a body of
statistical information about these coefficients. The R-squared (which we
discuss below) is 0.8688. You can get a figure by doing plot(foo.lm), but
these figures will not mean anything yet. We discuss some of them below.

8.1.2 Checking Goodness of Fit Qualitatively

It is quite important to know whether the regression is helpful. For example, it
seems highly unlikely that regressing the first digit of a telephone number against
some numerological score of your name will work that well (or at all). For a dataset
with one explanatory variable and one dependent variable, it is quite natural to
plot the data on a scatter plot, then plot the model as a line on that scatterplot.
Just looking at the picture can be informative (Figure 8.4). But we need more
powerful tools, so we can deal with models that are harder to plot.

Assume we have fitted a model y = xTβ + ξ to a dataset, and found the best
vector of parameters is β̂. Then the residual vector is e = y − X β̂. Inspecting
this residual vector will reveal a great deal about a model. We look at qualitative
properties first. If the line is horizontal, or close, then the value of the explanatory

Section 8.1 Linear Regression and Least Squares 112

variable makes very little contribution to the prediction. This suggests that there
is no particular relationship between the two. The prediction will be good only if it
should take a constant value. Similarly, if the data points lie far from the regression
line, which means that the residual is persistently large compared to the predicted
value, then the regression will predict poorly. Figure 8.3 shows a linear regression
of age against weight — i.e., this builds a model that tries to predict someone’s age
from a knowledge of their weight. You won’t be surprised that the predictions are
poor, which can be confirmed by looking at the figure.

120 140 160 180 200 220 240

20
30

40
50

60
70

80

Linear regression of Age against Weight, outliers removed

Weight

A
ge

44.4 44.6 44.8 45.0 45.2

−
30

−
20

−
10

0
10

20
30

40

Age against Weight, outliers removed

Fitted values

R
es

id
ua

ls

lm(AGE ~ WEIGHT)

Residuals vs Fitted

79

252
249

FIGURE 8.3: On the left, age regressed against weight for the bodyfat dataset, with
four outliers removed. The data are presented as a scatter plot, and the line is the
regression line. Notice that the line is nearly horizontal, suggesting that knowing
weight does not improve one’s prediction of age. Notice also that many data points
lie rather far from the line. On the right, a scatter plot of the residual against the
value predicted by the regression. Generally, the residual takes rather large values,
suggesting that predictions are unreliable.

We assumed that y − xTβ was a zero-mean normal random variable with
fixed variance. In turn, this means that the value of the residual vector should not
depend on the corresponding y-value. If it does, this is good evidence that there is
a problem. Looking at a scatter plot of e against y will often reveal trouble in a
regression (Figure 8.4).

In the case of Figure 8.4, the trouble is caused by a few outlying data points
severely affecting the regression. We will discuss how to identify and deal with
such points in Section 1. Once they have been removed, the regression improves
markedly (Figure 8.5).

Figure ?? shows another example, based on the idea of word frequencies.
Some words are used very often in text; most are used seldom. The dataset for
this figure consists of counts of the number of time a word occurred for the 100
most common words in Shakespeare’s printed works. It was originally collected
from a concordance, and has been used to attack a variety of interesting questions,

Section 8.1 Linear Regression and Least Squares 113

30 40 50 60 70

15
0

20
0

25
0

30
0

35
0

Linear regression of Weight against Height

Height

W
ei

gh
t

80 100 120 140 160 180 200

−
50

0
50

10
0

15
0

20
0

Weight against Height

Fitted values

R
es

id
ua

ls

lm(WEIGHT ~ HEIGHT)

Residuals vs Fitted

39

42

41

FIGURE 8.4: On the left, weight regressed against height for the bodyfat dataset. The
data are presented as a scatter plot, and the line is the regression line. Notice the
line doesn’t describe the data particularly well, because it has been strongly affected
by a few data points. On the right, a scatter plot of the residual against the value
predicted by the regression. Large values at some points are another sign of trouble
in this regression.

including an attempt to assess how many words Shakespeare knew. This is hard,
because he likely knew many words that he didn’t use in his works, so one can’t just
count. If you look at the plot of Figure 8.11, you can see that a linear regression of
count (the number of times a word is used) against rank (how common a word is,
1-100) is not really useful (Figure 8.11). It doesn’t model the very high frequencies
with which common words are used. You can see this effect in the scatter plot of
residual against dependent variable in Figure 8.11 — the residual depends rather
strongly on the dependent variable.

8.1.3 Evaluating Goodness of Fit

There is an important quantitative measure of how good a regression is. The de-
pendent variable has some variance (unless it’s a constant, which makes prediction
easy). If our model is of any use, it should explain some aspects of the value of the
dependent variable. This means that the variance of the residual should be smaller
than the variance of the dependent variable. If the model made perfect predictions,
then the variance of the residual should be zero.

We can formalize all this in a relatively straightforward way. We will ensure
that X always has a column of ones in it, so that the regression can have a non-zero
y-intercept. We now fit a model

y = Xβ + e

(where e is the vector of residual values) by choosing β such that eTe is minimized.
Then we get some useful technical results.

Section 8.1 Linear Regression and Least Squares 114

64 66 68 70 72 74 76 78

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Linear regression of Weight against Height, outliers removed

Height

W
ei

gh
t

140 160 180 200 220

−
60

−
40

−
20

0
20

40
60

80

Weight against Height, outliers removed

Fitted values

R
es

id
ua

ls

lm(WEIGHT ~ HEIGHT)

Residuals vs Fitted

216

242 178

FIGURE 8.5: On the left, weight regressed against height for the bodyfat dataset. I
have now removed four data points, which were the most likely to have been outliers.
The data are presented as a scatter plot, and the line is the regression line. The
line describes the data rather well in comparison with figure 8.4 (notice the axes are
different). On the right, a scatter plot of the residual against the value predicted
by the regression. Notice that the mean squared residual is about the same for
different values of the prediction; this is consistent with our model, and suggests the
regression will yield good predictions.

Useful Facts: 8.1 Regression

We write y = Xβ+ e, where e is the residual. Assume X has a column
of ones, and β is chosen to minimize eTe. Then we have

1. eTX = 0, i.e. that e is orthogonal to any column of X . This
is because, if e is not orthogonal to some column of e, we can
increase or decrease the β term corresponding to that column to
make the error smaller. Another way to see this is to notice that
beta is chosen to minimize eTe, which is (y−Xβ)T (y−Xβ). Now
because this is a minimum, the gradient with respect to β is zero,
so (y −Xβ)T (−X) = −eTX = 0.

2. eT1 = 0 (recall that X has a column of all ones, and apply the
previous result).

3. 1T (y −Xβ) = 0 (same as previous result).

4. eTXβ = 0 (first result means that this is true).

Now y is a one dimensional dataset arranged into a vector, so we can compute

Section 8.1 Linear Regression and Least Squares 115

0 20 40 60 80 100

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

Frequency of word usage in Shakespeare

Rank

N
um

be
r

of
 a

pp
ea

ra
nc

es

−500 0 500 1000

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

fitted(bard.slm)

re
si

du
al

s(
ba

rd
.s

lm
)

Residuals against fitted value, Shakespeare

FIGURE 8.6: On the left, word count plotted against rank for the 100 most common
words in Shakespeare, using the data of ****. I show a regression line too. This is
a poor fit by eye, confirmed by the plot of the residuals on the right, which shows
the residuals plotted against dependent variable for this regression. Notice that the
residual value depends very strongly on the value of the dependent variable.

mean ({y}) and var[y]. Similarly, Xβ is a one dimensional dataset arranged into a
vector (its elements are xT

i β), as is e, so we know the meaning of mean and variance
for each. We have a particularly important result:

var[y] = var[Xβ] + var[e].

This is quite easy to show, with a little more notation. Write y = (1/N)(1Ty)1 for
the vector whose entries are all mean ({y}); similarly for e and for Xβ. We have

var[y] = (1/N)(y − y)T (y − y)

and so on for var[ei], etc. Notice from the facts that y = Xβ. Now

var[y] = (1/N)
([

Xβ −Xβ
]

+ [e− e]
)T ([Xβ −Xβ

]

+ [e− e]
)

= (1/N)
(

[

Xβ −Xβ
]T [Xβ −Xβ

]

+ 2 [e− e]
T [Xβ −Xβ

]

+ [e− e]
T
[e− e]

)

= (1/N)
(

[

Xβ −Xβ
]T [Xβ −Xβ

]

+ [e− e]T [e− e]
)

because e = 0 and eTXβ = 0 and eT1 = 0

= var[Xβ] + var[e].

This is extremely important, because us allows us to think about a regression as
explaining variance in y. As we are better at explaining y, var[e] goes down. In
turn, a natural measure of the goodness of a regression is what percentage of the
variance of y it explains. This is known as R2 (the r-squared measure). We have

R2 =
var
[

xT
i β
]

var[yi]

Section 8.2 Producing Good Linear Regressions 116

which gives some sense of how well the regression explains the training data.
Good predictions result in high values of R2, and a perfect model will have

R2 = 1 (which doesn’t usually happen). For example, the regression of figure 8.1
has an R2 value of 0.87; the regression of weight against all explanatory variables
(Figure 8.8) has an R2 value of 0.99; and the regression of Boston house prices
against all explanatory variables (Figure 8.8) has an R2 value of 0.72. Similarly,
poor predictions result in low values of R2. For example, the regression of weight on
height of Figure 8.4 has an R2 of 0.095; the regression of age on weight of Figure 8.3
has an R2 of 0.00030 (because knowing weight tells one essentially nothing about
age or height). Removing the outliers from the bodyfat dataset, to get the regression
of weight on height of Figure 8.5, improves the R2 to 0.29.

8.1.4 Linear Regression: Examples

For the data of tables 8.1 and 8.1, y is the hormone remaining in the device and
x = (time, 1). This gives us a model of the hormone in the device as

y = β1time + β2

which should look like the line in figure ??. We get β = (−0.0574, 34.2). Now we
can ask whether some lots of device behave differently than others. One way to
address this is to consider the residual,

yi − xT
i β

which is the difference between the observed value and what the model predicts.
Look at figure 8.2, which shows this residual plotted against the time. Notice that,
for batch A, the model always over predicts, whereas batches B and C seem about
the same; this suggests that there is something different about A — any effects
caused by the hormone being taken up from the device have been accounted for by
our model, and the residual shows the effects that are left.

8.2 PRODUCING GOOD LINEAR REGRESSIONS

Outlying data points can significantly weaken the usefulness of a regression. We
need to identify data points that might be a problem, and then resolve how to deal
with them. One possibility is that they are true outliers — someone recorded a
data item wrong, or they represent an effect that just doesn’t occur all that often.
Another is that they are important data, and our linear model may not be good
enough. If the data points really are outliers, we can ignore them; if they aren’t,
we may be able to improve the regression by transforming features or by finding a
new explanatory variable.

8.2.1 Problem Data Points

We are solving for the β that minimizes
∑

i(yi−xT
i β)

2, equivalently for the β that
produces the smallest value of

∑

i e
2
i . This means that residuals with large value

can have a very strong influence on the outcome — we are squaring that large
value. Generally, many residuals of medium size will have a smaller cost that one
large residual and the rest tiny. In turn, some data points can have an excessive

Section 8.2 Producing Good Linear Regressions 117

influence on the choice of β. This creates a problem, because data points that are
clearly wrong (sometimes called outliers) can also have the highest influence on
the outcome of the regression. Compare Figure 8.4 and Figure 8.5 to see this effect
for a simple case.

When we have only one explanatory variable, there’s an easy method to spot
problem data points. One produces a scatter plot and a regression line, and the
difficulty is usually obvious. In particularly tricky cases, printing the plot and using
a perspex ruler to draw a line by eye can help. When there are more, we need more
powerful visualization tools.

There are two tools that are simple and effective. One method deletes the i’th
point, computes the regression for the reduced data set, then compares the true
value of every other point to the predictions made by the dataset with the i’th point
deleted. The score for the comparison is called Cook’s distance. If a point has a
large value of Cook’s distance, then it has a strong influence on the regression and
might well be an outlier. Typically, one computes Cook’s distance for each point,
and takes a closer look at any point with a large value. This procedure is described
in more detail in procedure 2

Procedure: 8.2 Computing Cook’s distance

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional explanatory vector, and each yi is a single dependent vari-
able. Write β̂ for the coefficients of a linear regression (see procedure 1),

and β̂î for the coefficients of the linear regression computed by omit-
ting the i’th data point, and m for the mean square error. The Cook’s
distance of the i’th data point is

∑

j(x
T
j β̂ − xT

j β̂î)

dm
.

An alternative method identifies data points that have few nearby points by
computing leverage. Write β̂ for the estimated value of β, and yp = X β̂ for the
predicted y values. Then we have

β̂ =
(

X TX
)−1

(X Ty)

so that
yp = (X

(

X TX
)−1 X T)y.

The matrix (X
(

X TX
)−1X T) is sometimes called the hat matrix, and is written

H. It gives the predicted values as a linear function of the observed values. The
leverage of the i’th point is the i’th diagonal element, hii, of the hat matrix H. It
is straightforward to show that the eigenvalues of a hat matrix can be only 1 or 0,
and that it is symmetric (exercises). It is also straightforward to show that, for the

Section 8.2 Producing Good Linear Regressions 118

i’th row of the hat matrix, the sum of squares is less than one, that is

∑

j

h2
ij ≤ 1.

0.0 0.2 0.4 0.6 0.8

−
5

0
5

10
15

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(WEIGHT ~ BODYFAT + DENSITY + AGE + HEIGHT + ADIPOSITY + NECK + CHEST + A ...

Cook’s distance

1
0.5

0.5
1

Residuals vs Leverage

42

39

36

0.0 0.2 0.4 0.6

−
10

−
5

0
5

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(WEIGHT ~ BODYFAT + DENSITY + AGE + HEIGHT + ADIPOSITY + NECK + CHEST + A ...

Cook’s distance

1
0.5

0.5
1

Residuals vs Leverage

163

216

221

FIGURE 8.7: On the left, residuals plotted against leverage for a regression of weight
against all other measurements for the bodyfat dataset. I did not remove the out-
liers. The contours on the plot are contours of Cook distance; I have overlaid arrows
showing points with suspiciously large Cook distance. Notice also that several points
have high leverage, without having a large residual value. These points may or may
not present problems. On the right, the same plot for this dataset with points 36,
39, 41 and 42 removed (these are the points I have been removing for each such
plot). Notice that another point now has high Cook distance, but mostly the residual
is much smaller.

You can interpret each row of the hat matrix as a set of mixing weights that
mix the observations to produce the prediction for a particular data point. But
these weights have limited size, so that if hii is large, then the other terms must
be small. In particular, if hii is large, then other data items make relatively little
contribution to the prediction at that point. This could mean that the point is
an outlier, or that there are few examples nearby. In either case, it is reasonable
to worry about the data point. One might try and get more data, or reduce the
number of explanatory variables.

8.2.2 Explanatory variables

When there is more than one explanatory variable, it is difficult to plot the re-
gression. Instead, one can get an idea of the usefulness of the regression by plot-
ting the residual against the predicted value. Figure 8.9 show these plots for the
bodyfat dataset, and for a regression of boston house prices against a variety of
explanatory variables (the data set is quite well known; you can find it at the

Section 8.2 Producing Good Linear Regressions 119

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−
4

−
2

0
2

4
6

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(V14 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11 + V12 + V13 ...

Cook’s distance
0.5

0.5

1

Residuals vs Leverage

369

373

365

FIGURE 8.8: Residuals plotted against leverage for a regression of weight against
all other measurements for the Boston housing. The contours on the plot are con-
tours of Cook distance; No points have suspiciously large Cook distance, though the
software package has identified points most likely to present problems. Notice also
that several points have high leverage, without having a large residual value. These
points may or may not present problems. The residual plot of Figure 8.9 suggests
that this regression will make poor predictions, but the problem does not seem to be
outlying points.

UCI repository, http://archive.ics.uci.edu/ml/datasets/Housing). In these
plots, you should notice there is some structure — the residuals seem to depend on
the predicted value. This suggests that we could improve the regression either by
supplying another explanatory variable, or by transforming the variables we have.
Both methods are useful.

Sometimes the data isn’t in a form that leads to a good linear regression. In
this case, transforming explanatory variables, the dependent variable, or both can
lead to big improvements. Figure ?? shows one example, based on the idea of word
frequencies. Some words are used very often in text; most are used seldom. The
dataset for this figure consists of counts of the number of time a word occurred
for the 100 most common words in Shakespeare’s printed works. It was originally
collected from a concordance, and has been used to attack a variety of interesting
questions, including an attempt to assess how many words Shakespeare knew. This
is hard, because he likely knew many words that he didn’t use in his works, so one
can’t just count.

Notice that a linear regression of count (the number of times a word is used)
against rank (how common a word is, 1-100) is not really useful. It doesn’t model
the very high frequencies with which common words are used. However, if we
regress log-count against log-rank, we get a very good fit indeed. This suggests that
Shakespeare’s word usage (at least for the 100 most common words) is consistent
with Zipf’s law. This gives the relation between frequency f and rank r for a

Section 8.2 Producing Good Linear Regressions 120

120 140 160 180 200 220 240

−
20

−
15

−
10

−
5

0
5

10
15

fitted(cbfd.lm)

re
si

du
al

s(
cb

fd
.lm

)
Residuals against fitted value, Bodyfat, no outliers

0 10 20 30 40

−
10

0
10

20

fitted(housing.lm)

re
si

du
al

s(
ho

us
in

g.
lm

)

Residuals against fitted value, Boston Housing

FIGURE 8.9: On the left, residuals plotted against predicted value for a regression of
weight against all other measurements for the bodyfat dataset, with four outliers re-
moved. This regression is quite successful (small residuals). Notice that the variance
of the residuals changes somewhat as the predicted value increases, giving a banana
shape to the data. This suggests that we are missing an explanatory variable, or that
a non-linear transformation of the explanatory variables might be helpful. On the
right, a scatter plot of the residual against the value predicted by the regression for
the price of a house in Boston regressed against a variety of explanatory variables.
Generally, the residual takes rather large values. At small values of the prediction,
the residual is somewhat larger. This suggests that we are missing an explanatory
variable, or that a non-linear transformation of the explanatory variables might be
helpful. There is a curious linear structure in the top right corner, which might
have been caused by the dependent variable being thresholded.

word as

f ∝ 1

r

s

where s is a constant characterizing the distribution. Our linear regression suggests
that s is approximately 1.67 for this data.

In some cases, the natural logic of the problem will suggest variable transfor-
mations that improve regression performance. For example, one could argue that
humans have approximately the same density, and so that weight should scale as
the cube of height; in turn, this suggests that one regress weight against the cube
root of height. Generally, shorter people tend not to be scaled versions of taller
people, so the cube root might be too aggressive. For example, the body mass
index divides weight by the square (rather than the cube) of height. An appropri-
ate transformation has attracted a great deal of interest over the last century and
a half, perhaps because there are many confounding variables. For example, the
body mass index tends to regard muscular individuals as obese.

In other cases, one might need to try different transformations or groupings of

Section 8.2 Producing Good Linear Regressions 121

0 20 40 60 80 100

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

Frequency of word usage in Shakespeare

Rank

N
um

be
r

of
 a

pp
ea

ra
nc

es

0 1 2 3 4

2
4

6
8

Frequency of word usage in Shakespeare, log−log

Log rank

Lo
g

nu
m

be
r

of
 a

pp
ea

ra
nc

es
FIGURE 8.10: On the left, word count plotted against rank for the 100 most common
words in Shakespeare, using the data of ****. I show a regression line too. This
is a poor fit by eye, confirmed by Figure ??. On the right, log word count plotted
against log rank for the 100 most common words in Shakespeare, using the data of
****. The regression line is very close to the data, confirmed by Figure ??.

−500 0 500 1000

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

fitted(bard.slm)

re
si

du
al

s(
ba

rd
.s

lm
)

Residuals against fitted value, Shakespeare

2 4 6 8 10

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

fitted(bard.lslm)

re
si

du
al

s(
ba

rd
.ls

lm
)

Residuals against fitted value, Shakespeare log−log

FIGURE 8.11: On the left, residuals of word count regressed against rank for the
100 most common words in Shakespeare, plotted against the predicted value. Notice
that some large predictions have enormous residuals. This plot suggests serious
problems with the regression, which you can confirm by looking at Figure 8.11. On
the right, residuals of log word count regressed against log rank for the 100 most
common words in Shakespeare, plotted against the predicted value. Notice that
residual variance is about the same at each value, a good sign.

Section 8.3 Which Variables are Important? 122

explanatory variables. There is a method for transforming the dependent variable,
the Box-Cox transformation, that can search for a transformation that improves
the regression. This is a one-parameter family of transformations, with parameter
λ. We define the Box-Cox transformation of the dependent variable to be

y
(bc)
i =

{

yλ
i −1
λ if λ 6= 0

log yi if λ = 0
.

It turns out to be straightforward to estimate a good value of λ using maximum
likelihood. One searches for a value of λ that makes residuals look most like a
normal distribution. Statistical software will do it for you; the exercises sketch
out the method. This transformation can produce significant improvements in a
regression. Figure ?? shows a small but acceptable improvement in regression of
weight against height using the Box-Cox transformation (residuals in Figure 8.13).
Figure 8.14 shows an improvement in the regression of weight against all variables
for the bodyfat dataset obtained using the Box-Cox transformation. Figure 8.15
shows an improvement in the regression of Boston house price against all variables
obtained using the Box-Cox transformation.

Worked example 8.2 BoxCox with R

Regress weight against height using the Box-Cox transformation

Solution: This example is mainly used to demonstrate how easy it is to do
Box-Cox in R. There is sample code in listing ??. The line boxcox(...)

will produce a plot on your screen - you look for the location of the peak,
and that’s the parameter value to use. In this case, the peak is close to
zero, so we should work with the log of the dependent variable. Notice how
neat abline is — you pass it a linear regression, and it puts a line on a
plot.

8.3 WHICH VARIABLES ARE IMPORTANT?

8.3.1 Regularizing Linear Regressions

One occasionally important difficulty is that the explanatory variables might be
significantly correlated. If they are, then it will generally be easy to predict one
explanatory variable from another. This means that X TX may have some very
small eigenvalues (because there is a vector u so that Xu is small; this means that
uTX TXu must be small).

These small eigenvalues lead to bad predictions. If X TX has a small eigen-
value, then there is some vector v such that X TXv is small, or, equivalently, that
the matrix can turn large vectors into small ones; but that means that (X TX)−1

will turn some small vectors into big ones. In turn, this means that small errors in
y — which are likely inevitable — will result in big errors in β. This could cause
trouble in two ways. If we are looking at β to tell which explanatory variables are
important, then large errors in β will be a problem. And if we are trying to predict

Section 8.3 Which Variables are Important? 123

Listing 8.2: R code used for the linear regression example of worked example 2

setwd (’/use r s/daf/Current/ cour s e s/Probcourse/Regres s ion/RCode/HeightWeight ’) ;
#i n s t a l l . packages (’ gdata ’)
l ibrary (gdata)
#cement s l a g ash water super coarse f i n e age s t r en g t h
bfd<−read . x l s (’ BodyFat . x l s ’)
summary(bfd)
#IDNO BODYFAT DENSITY AGE WEIGHT HEIGHT ADIPOSITY NECK CHEST ABDOMEN
HIP THIGH KNEE ANKLE BICEPS FOREARM WRIST X
sb fd . lm<−lm(WEIGHT˜HEIGHT, data=bfd)
plot (bfd [, c (”HEIGHT”)] , bfd [, c (”WEIGHT”)] ,

main=”Linear r e g r e s s i o n o f Weight aga in s t Height ” , x lab=”Height ” , y lab=”Wei
abline (sb fd . lm)
#36 , 39 41 and 42 are the bad ones
cbfd<−bfd [−c (36 , 39 , 41 ,42) ,]
s cb fd<−lm(WEIGHT˜HEIGHT, data=cbfd)
plot (cbfd [, c (”HEIGHT”)] , cbfd [, c (”WEIGHT”)] ,

main=”Linear r e g r e s s i o n o f Weight aga in s t Height , o u t l i e r s removed” , x lab=”
abline (scb fd)

l ibrary (MASS)
cbfd . lm<−lm(WEIGHT˜HEIGHT, data=cbfd)
boxcox (cbfd . lm , p l o t i t=TRUE)
sugge s t s lambda=0 i s bes t , s t r on g l y
cbfd . l lm<−lm(log (WEIGHT)˜HEIGHT, data=cbfd)
plot (cbfd [, c (”HEIGHT”)] , log (cbfd [, c (”WEIGHT”)]) ,

main=”Linear r e g r e s s i o n o f l o g Weight aga in s t Height , o u t l i e r s removed” , x la
abline (cbfd . l lm)

new y values, we expect that errors in β turn into errors in prediction.
An important and useful way to suppress these errors is to regularize, using

the same trick we saw in the case of classification. Instead of choosing β to minimize

∑

i

(yi − xT
i β)

2 = (y −Xβ)T (y −Xβ)

we minimize
∑

i

(yi − xT
i β)

2 + λβTβ = (y −Xβ)T (y −Xβ) + λβTβ

where λ > 0 is a constant. We choose λ in the same way we used for classification;
split the training set into a training piece and a validation piece, train for different
values of λ, and test the resulting regressions on the validation piece. We choose
the λ that yields the smallest validation error. Notice we could use multiple splits,
and average over the splits.

Section 8.3 Which Variables are Important? 124

64 66 68 70 72 74 76 78

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Linear regression of Weight against Height, outliers removed

Height

W
ei

gh
t

64 66 68 70 72 74 76 78

4.
8

5.
0

5.
2

5.
4

Linear regression of log Weight against Height, outliers removed

Height

lo
g

W
ei

gh
t

FIGURE 8.12: On the left, a linear regression of weight against height for the bodyfat
dataset. This is just a copy of the regression of Figure 1, for reference. The R2 is
0.29. The Box-Cox method predicts that one should use λ = 0 (equivalently, predict
logweight from height). On the right, a linear regression of log weight against
height. The regression is slightly better (R2 is 0.3). Figure 1 compares the residuals
for these cases.

140 160 180 200 220

−
60

−
40

−
20

0
20

40
60

80

Weight against Height, outliers removed

Fitted values

R
es

id
ua

ls

lm(WEIGHT ~ HEIGHT)

Residuals vs Fitted

216

242 178

5.0 5.1 5.2 5.3 5.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Log Weight against Height, outliers removed

Fitted values

R
es

id
ua

ls

lm(log(WEIGHT) ~ HEIGHT)

Residuals vs Fitted

216

182

242

FIGURE 8.13: On the left, the residuals against predicted value for the linear re-
gression of weight against height for the bodyfat dataset. This is just a copy of the
regression of Figure 1, for reference. The R2 is 0.29. The Box-Cox method pre-
dicts that one should use λ = 0 (equivalently, predict logweight from height). On
the right, a linear regression of the log of weight against height. The regression is
slightly better (R2 is 0.3).

Section 8.3 Which Variables are Important? 125

120 140 160 180 200 220 240

−
20

−
15

−
10

−
5

0
5

10
15

fitted(cbfd.lm)

re
si

du
al

s(
cb

fd
.lm

)
Residuals against fitted value, Bodyfat, no outliers

11 12 13 14 15

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

fitted(cbfd.lm)

re
si

du
al

s(
cb

fd
.lm

)

Residuals against fitted value, Bodyfat, Box−Cox, no outliers

FIGURE 8.14: On the left, residuals plotted against predicted value for a regression of
weight against all other measurements for the bodyfat dataset, with four outliers re-
moved. Notice that the variance of the residuals changes somewhat as the predicted
value increases, giving a banana shape to the data. This suggests that a non-linear
transformation of the explanatory variables might be helpful. The Box-Cox pro-
cedure suggests λ = 0.5, so we regress

√
weight against the explanatory variables.

This yields the plot on the right. Notice how the banana shape has gone, and the
residuals have about the same distribution for each predicted value.

This helps, because to solve for β we must solve the equation

(X TX + λI)β = X Ty

(obtained by differentiating with respect to β and setting to zero) and the smallest
eigenvalue of the matrix (X TX + λI) will be at least λ.

8.3.2 Hypothesis Testing for Regression Coefficients - NEED MATERIAL

8.3.3 Which Variables should Contribute? The LASSO

Section 8.3 Which Variables are Important? 126

0 10 20 30 40

−
10

0
10

20

fitted(housing.lm)

re
si

du
al

s(
ho

us
in

g.
lm

)

Residuals against fitted value, Boston Housing

1.20 1.25 1.30 1.35 1.40 1.45

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

fitted(housing.lmbc)

re
si

du
al

s(
ho

us
in

g.
lm

bc
)

Residuals against fitted value, Boston Housing

FIGURE 8.15: On the left, residuals plotted against predicted value for a regression
of Boston house prices against all other measurements (compare Figure 1). The
Box-Cox procedure suggests λ = 0.1, so we regress weight0.1 against the explanatory
variables. This yields the plot on the right. Notice how the residuals have about
the same distribution for each predicted value, but the linear structure hasn’t gone.

C H A P T E R 9

Exploiting your Neighbors for
Regression

Linear regression predicts y for x with a simple model, which is quite straight-
forward to estimate. This model “fills in” or interpolates values between data
points. The natural alternative is to collect a really large dataset, and predict us-
ing the nearest neighbors. There are cases where this strategy isn’t really practical,
but if a lot of data is available, it is a very good strategy. It is particularly useful
for filling holes in images.

Many different kinds of user want to remove things from images or from
video. Art directors might like to remove unattractive telephone wires; restorers
might want to remove scratches or marks; there’s a long history of government
officials removing people with embarrassing politics from publicity pictures (see the
fascinating pictures in ?); and home users might wish to remove a relative they
dislike from a family picture. All these users must then find something to put in
place of the pixels that were removed. Ideally, a program would create regions
of texture that fit in and look convincing, using either other parts of the original
image, or other images.

9.1 FILLING HOLES IN IMAGES BY MATCHING

9.1.1 Filling a Small Hole by Matching Neighborhoods

Imagine I have an image where exactly one pixel value is missing. This pixel could
have been erased by noise; it could be a tiny scratch on the film of the image; the
disk storage system might have lost it; and so on. I would like to create a value to
insert into that pixel’s location.

Here is an easy strategy. Take a block of pixels centered on the missing pixel.
Find many close matches to this block of pixels in a collection of images, counting
only the known pixel values. Each match offers a possible value for the missing
pixel. There is no reason to prefer any one value, so choose randomly from the
values.

A good measure of similarity between two image neighborhoods can be mea-
sured by forming the sum of squared differences (or SSD) of corresponding
pixel values. We assume that the missing pixel is at the center of the patch to
be synthesized, which we write S. We assume the patch is square, and adjust the
indexes of the patch to run from −n to n in each direction. The sum of squared
differences between this patch and an image patch P of the same size is given by

∑

(i,j)∈patch,(i,j) 6=(0,0)

(Aij − Bij)
2.

The notation implies that because we don’t know the value of the pixel to be

127

Section 9.2 Filling in More than One Missing Pixel 128

synthesized (which is at (0, 0)), we don’t count it in the sum of squared differences.
This similarity value is small when the neighborhoods are similar, and large when
they are different (it is essentially the length of the difference vector). However,
this measure places the same weight on pixels close to the unknown value as it does
on distant pixels. Better results are usually obtained by weighting up nearby pixels
and weighting down distant pixels. The function

exp

(−(i2 + j2)

2σ2

)

takes the value one when (i, j) = (0, 0), and falls off fast as (i2+j2) — distance from
the origin — grows. This yields Gaussian weighted SSD, where the matching
cost is

∑

(i,j)∈patch,(i,j) 6=(0,0)

(Aij − Bij)
2 exp

(−(i2 + j2)

2σ2

)

.

Patches with a smaller value of this match cost are better matches.
If we need to fill in only one pixel, then finding the best-matching patch is

likely enough. However, we can generalize the idea to fill in more than one pixel.
When we do so, it will be important to preserve random structures in the image
textures. This means it is a good idea to collect several alternative values for the
pixel, and choose one at random. To do so, we find the closest patch. Write smin

for the similarity value of the closest patch. We then recover all patches whose
similarity value is less than (1 + ǫ)smin. Notice that doing so may involve a linear
pass through the data (which should be slow, because we should be using a lot of
data) or an approximate nearest neighbors query.

We may not need to search a large collection of images to find good patches.
Most image textures occupy reasonably large regions in the image, meaning we
might find quite good patches matching our patch in the original image itself.

9.2 FILLING IN MORE THAN ONE MISSING PIXEL

Now imagine we have many missing pixels. If each is scattered widely across the
image, the original procedure will work fine. But things get more interesting if
we are missing a block of pixels. In this case, the values of some pixels in the
neighborhood of the pixel to be synthesized are not known; these pixels need to be
synthesized too. One way to obtain a collection of examples for the pixel of interest
is to count only the known values in computing the sum of squared differences, and
scale the similarity to take into account the number of known pixels. Write K for
the set of pixels around a point whose values are known, and ♯K for the size of this
set. We now have, for the similarity function,

1

♯K
∑

(i,j)∈K

(Aij − Bij)
2 exp

(−(i2 + j2)

2σ2

)

.

When there is a hole in the image to be filled, the order in which pixels are filled
in is quite important (Figure 1). There are automated methods to manage this.
These try to fill in pixels that are near strong boundaries (or are otherwise strongly
constrained) first, then fill in other less constrained pixels.

Section 9.2 Filling in More than One Missing Pixel 129

One important application of this procedure is texture synthesis, where
one takes a small block of texture and expands it to a large block. This is useful,
because computer graphics methods and computer games are aggressive consumers
of textures, and want to be supplied with very large texture regions. But large
examples of sample textures are hard to get — we want to build a large texture
from a small one. We could do so by regarding the small texture as part of a larger
image, with many missing pixels, yielding Algorithm 9.1.

The size and shape of the neighborhood we use is significant, because it codes
the range over which pixels can affect one another’s values directly (see Figure 9.3).
The original method, due to Efros et al. used a square neighborhood, centered at
the pixel of interest; current methods do so as well.

Choose a texture sample
Insert this sample into the image to be synthesized
Until each location in the image to be synthesized has a value
For each unsynthesized location on
the boundary of the block of synthesized values
Match the neighborhood of this location to the
example image, ignoring unsynthesized
locations in computing the matching score

Choose a value for this location uniformly and at random
from the set of values of the corresponding locations in the
matching neighborhoods

end
end

Algorithm 9.1: Non-parametric Texture Synthesis.

9.2.1 Filling Large Holes with Whole Images

If one has a large hole in a large image, we may not be able to just extend a
texture to fill the hole. Instead, entire objects might need to appear in the hole
(Figure 9.4). There is a straightforward, and extremely effective, way to achieve
this. We match the image to a large collection of images. As a match cost, we use
the SSD computed for all pixels that we do not want to replace. This yields a set of
example images where all the pixels we didn’t want to replace are close to those of
the query image. From these, we choose one, and fill in the pixels from that image.

There are several ways to choose. If we wish to do so automatically, we could
use the example with the smallest distance to the image. Very often, an artist is
involved, and then we could prepare a series of alternatives — using, perhaps, the
k closest examples — then show them to the artist, who will choose one. This
method, which is very simple to describe, is extremely effective in practice.

Filling in the pixels requires some care. One does not usually get the best
results by just copying the missing pixels from the matched image into the hole.
Instead, it is better to look for a good seam. We search for a curve enclosing the

Section 9.3 Regression using Neighbors 130

FIGURE 9.1: ? synthesize textures by matching neighborhoods of the image being
synthesized to the example image, and then choosing at random amongst the possi-
ble values reported by matching neighborhoods (Algorithm 9.1). This means that the
algorithm can reproduce complex spatial structures, as these examples indicate. The
small block on the left is the example texture; the algorithm synthesizes the block on
the right. Note that the synthesized text looks like text: it appears to be constructed
of words of varying lengths that are spaced like text, and each word looks as though
it is composed of letters (though this illusion fails as one looks closely). This fig-
ure was originally published as Figure 3 of “Texture Synthesis by Non-parametric
Sampling,” A. Efros and T.K. Leung, Proc. IEEE ICCV, 1999 c© IEEE, 1999.

missing pixels which (a) is reasonably close to the boundary of the missing pixels
and (b) gives a good boundary between the two images. A good boundary is one
where the query image (on one side) is “similar to” the matched image (on the
other side). A good sense of similarity requires that pixels match well, and that
image gradients crossing the boundary tend to match too.

9.3 REGRESSION USING NEIGHBORS

In the linear regression model, I did not explain how to regress objects with compli-
cated structure against explanatory variables. This is a problem that arises often
in practice. For example, I might want to predict a parse tree (the object with
complicated structure) from a sentence (the explanatory variables). As another
example, I might want to predict a map of the shadows in an image (the object
with complicated structure) against an image (the explanatory variables). As yet
another example, I might want to predict which direction to move the controls on a
radio-controlled helicopter (the object with complicated structure) against a path
plan and the current state of the helicopter (the explanatory variables). In each
case, it seems unlikely that a pure linear regression is likely to resolve the problem.

Section 9.3 Regression using Neighbors 131

Image Hole

Onionskin order

Boundary edges

FIGURE 9.2: Texture synthesis methods can fill in holes accurately, but the order
in which pixels are synthesized is important. In this figure, we wish to remove the
sign, while preserving the signpost. Generally, we want to fill in pixels where most
of the neighbors are known first. This yields better matching patches. One way to
do so is to fill in from the boundary. However, if we simply work our way inwards
(onionskin filling), long scale image structures tend to disappear. It is better to fill
in patches close to edges first. This figure was originally published as Figure 11 of
“Region Filling and Object Removal by Exemplar-Based Image Inpainting,” by A.
Criminisi, P. Perez, and K. Toyama, IEEE Transactions on Image Processing, 2004
c© IEEE, 2004.

Looking at neighbors is a very good way to solve such problems. The general
strategy is relatively simple. We find a large collection of pairs of training data.
Write xi for the explanatory variables for the i’th example, and yi for the dependent
variable in the i’th example. This dependent variable could be anything — it
doesn’t need to be a single number. It might be a tree, or a shadow map, or a
word, or anything at all. I wrote it as a vector because I needed to choose some
notation.

In the simplest, and most general, approach, we obtain a prediction for a new
set of explanatory variables x by (a) finding the nearest neighbor and then (b)
producing the dependent variable for that neighbor. We might vary the strategy
slightly by using an approximate nearest neighbor. You have already seen this
strategy in action filling holes in images.

If the dependent variables have enough structure that it is possible to sum-
marize a collection of different dependent variables, then we might recover the k
nearest neighbors and summarize their dependent variables. How we summarize
rather depends on the dependent variables. For example, it is a bit difficult to
imagine the average of a set of trees, but quite straightforward to average numbers.

Section 9.3 Regression using Neighbors 132

FIGURE 9.3: The size of the image neighborhood to be matched makes a significant
difference in Algorithm 9.1. In the figure, the textures at the right are synthesized
from the small blocks on the left, using neighborhoods that are increasingly large
as one moves to the right. If very small neighborhoods are matched, then the
algorithm cannot capture large-scale effects easily. For example, in the case of
the spotty texture, if the neighborhood is too small to capture the spot structure
(and so sees only pieces of curve), the algorithm synthesizes a texture consisting
of curve segments. As the neighborhood gets larger, the algorithm can capture the
spot structure, but not the even spacing. With very large neighborhoods, the spacing
is captured as well. This figure was originally published as Figure 2 of “Texture
Synthesis by Non-parametric Sampling,” A. Efros and T.K. Leung, Proc. IEEE
ICCV, 1999 c© IEEE, 1999.

If the dependent variable was a word, we might not be able to average words, but
we can vote and choose the most popular word. If the dependent variable is a
vector, we can compute either distance weighted averages or a distance weighted
linear regression.

9.3.1 Distance Weighted Averages

9.3.2 Distance Weighted Linear Regressions

Section 9.3 Regression using Neighbors 133

Initial image

Patch to be replaced

Matched

Images

Final

composited

image

FIGURE 9.4: We can fill large holes in images by matching the image to a collection,
choosing one element of the collection, then cutting out an appropriate block of
pixels and putting them into the hole in the query image. In this case, the hole has
been made by an artist, who wishes to remove the roofline from the view. Notice
how there are a range of objects (boats, water) that have been inserted into the hole.
These objects are a reasonable choice, because the overall structures of the query
and matched image are largely similar — getting an image that matches most of
the query image supplies enough context to ensure that the rest “makes sense”.

C H A P T E R 10

Models of High Dimensional Data

High-dimensional data comes with problems. Data points tend not to be
where you think; they can scattered quite far apart, and can be quite far from
the mean. Except in special cases, the only really reliable probability model is the
Gaussian (or Gaussian blob, or blob).

There is an important rule of thumb for coping with high dimensional data:
Use simple models. A blob is another good, simple model. Modelling data as a
blob involves computing its mean and its covariance. Sometimes, as we shall see,
the covariance can be hard to compute. Even so, a blob model is really useful. It is
natural to try and extend this model to cover datasets that don’t obviously consist
of a single blob.

One very good, very simple, model for high dimensional data is to assume
that it consists of multiple blobs. To build models like this, we must determine
(a) what the blob parameters are and (b) which datapoints belong to which blob.
Generally, we will collect together data points that are close and form blobs out of
them. This process is known as clustering.

Clustering is a somewhat puzzling activity. It is extremely useful to cluster
data, and it seems to be quite important to do it reasonably well. But it surprisingly
hard to give crisp criteria for a good (resp. bad) clustering of a dataset. Usually,
clustering is part of building a model, and the main way to know that the clustering
algorithm is bad is that the model is bad.

10.1 THE CURSE OF DIMENSION

High dimensional models display uninituitive behavior (or, rather, it can take years
to make your intuition see the true behavior of high-dimensional models as natural).
In these models, most data lies in places you don’t expect. We will do several simple
calculations with an easy high-dimensional distribution to build some intuition.

Assume our data lies within a cube, with edge length two, centered on the
origin. This means that each component of xi lies in the range [−1, 1]. One simple
model for such data is to assume that each dimension has uniform probability
density in this range. In turn, this means that P (x) = 1

2d
. The mean of this model

is at the origin, which we write as 0.
The first surprising fact about high dimensional data is that most of the data

can lie quite far away from the mean. For example, we can divide our dataset into
two pieces. A(ǫ) consists of all data items where every component of the data has
a value in the range [−(1− ǫ), (1 − ǫ)]. B(ǫ) consists of all the rest of the data. If
you think of the data set as forming a cubical orange, then B(ǫ) is the rind (which
has thickness ǫ) and A(ǫ) is the fruit.

Your intuition will tell you that there is more fruit than rind. This is true,
for three dimensional oranges, but not true in high dimensions. The fact that the
orange is cubical just simplifies the calculations, but has nothing to do with the

134

Section 10.1 The Curse of Dimension 135

real problem.
We can compute P ({x ∈ A(ǫ)}) and P ({x ∈ A(ǫ)}). These probabilities tell

us the probability a data item lies in the fruit (resp. rind). P ({x ∈ A(ǫ)}) is easy
to compute as

P ({x ∈ A(ǫ)}) = (2(1− ǫ)))
d

(

1

2d

)

= (1− ǫ)d

and
P ({x ∈ B(ǫ)}) = 1− P ({x ∈ A(ǫ)}) = 1− (1− ǫ)d.

But notice that, as d → ∞,

P ({x ∈ A(ǫ)}) → 0.

This means that, for large d, we expect most of the data to be in B(ǫ). Equivalently,
for large d, we expect that at least one component of each data item is close to
either 1 or −1.

This suggests (correctly) that much data is quite far from the origin. It is
easy to compute the average of the squared distance of data from the origin. We
want

E
[

xTx
]

=

∫

box

(

∑

i

x2
i

)

P (x)dx

but we can rearrange, so that

E
[

xTx
]

=
∑

i

E
[

x2
i

]

=
∑

i

∫

box
x2
iP (x)dx.

Now each component of x is independent, so that P (x) = P (x1)P (x2) . . . P (xd).
Now we substitute, to get

E
[

xTx
]

=
∑

i

E
[

x2
i

]

=
∑

i

∫ 1

−1

x2
iP (xi)dxi =

∑

i

1

2

∫ 1

−1

x2
i dxi =

d

3
,

so as d gets bigger, most data points will be further and further from the origin.
Worse, as d gets bigger, data points tend to get further and further from one
another. We can see this by computing the average of the squared distance of data
points from one another. Write u for one data point and v; we can compute

E
[

d(u,v)2
]

=

∫

box

∫

box

∑

i

(ui − vi)
2dudv = E

[

uTu
]

+ E
[

vTv
]

− E
[

uTv
]

but since u and v are independent, we have E
[

uTv
]

= E[u]
T
E[v] = 0. This yields

E
[

d(u,v)2
]

= 2
d

3

meaning that, for large d, we expect our data points to be quite far apart.

Section 10.2 Agglomerative and Divisive Clustering 136

It is difficult to build histogram representations for high dimensional data.
The strategy of dividing the domain into boxes, then counting data into them, fails
miserably because there are too many boxes. In the case of our cube, imagine we
wish to divide each dimension in half (i.e. between [−1, 0] and between [0, 1]). Then
we must have 2d boxes. This presents two problems. First, we will have difficulty
representing this number of boxes. Second, unless we are exceptionally lucky, most
boxes must be empty because we will not have 2d data items.

However, one representation is extremely effective. We can represent data as a col-
lection of clusters — coherent blobs of similar datapoints that could, under appropriate
circumstances, be regarded as the same. We discuss how to build these clusters, then what
to do with them.

10.2 AGGLOMERATIVE AND DIVISIVE CLUSTERING

There are two natural algorithms for clustering. In divisive clustering, the entire
data set is regarded as a cluster, and then clusters are recursively split to yield a
good clustering (Algorithm 10.2). In agglomerative clustering, each data item is
regarded as a cluster, and clusters are recursively merged to yield a good clustering
(Algorithm 10.1).

Make each point a separate cluster
Until the clustering is satisfactory

Merge the two clusters with the
smallest inter-cluster distance

end

Algorithm 10.1: Agglomerative Clustering or Clustering by Merging.

Construct a single cluster containing all points
Until the clustering is satisfactory

Split the cluster that yields the two
components with the largest inter-cluster distance

end

Algorithm 10.2: Divisive Clustering, or Clustering by Splitting.

There are two major issues in thinking about clustering:

• What is a good inter-cluster distance? Agglomerative clustering uses an inter-
cluster distance to fuse nearby clusters; divisive clustering uses it to split in-
sufficiently coherent clusters. Even if a natural distance between data points
is available (which might not be the case for vision problems), there is no
canonical inter-cluster distance. Generally, one chooses a distance that seems
appropriate for the data set. For example, one might choose the distance
between the closest elements as the inter-cluster distance, which tends to

Section 10.2 Agglomerative and Divisive Clustering 137

yield extended clusters (statisticians call this method single-link cluster-
ing). Another natural choice is the maximum distance between an element of
the first cluster and one of the second, which tends to yield rounded clusters
(statisticians call this method complete-link clustering). Finally, one could
use an average of distances between elements in the cluster, which also tends
to yield “rounded” clusters (statisticians call this method group average
clustering).

• How many clusters are there? This is an intrinsically difficult task if there
is no model for the process that generated the clusters. The algorithms we
have described generate a hierarchy of clusters. Usually, this hierarchy is
displayed to a user in the form of a dendrogram—a representation of the
structure of the hierarchy of clusters that displays inter-cluster distances—
and an appropriate choice of clusters is made from the dendrogram (see the
example in Figure 10.1).

d
is

ta
n
ce

1 2 3 4 5 6

1

2

3

4

5

6

FIGURE 10.1: Left, a data set; right, a dendrogram obtained by agglomerative
clustering using single-link clustering. If one selects a particular value of distance,
then a horizontal line at that distance splits the dendrogram into clusters. This
representation makes it possible to guess how many clusters there are and to get
some insight into how good the clusters are.

The main difficulty in using a divisive model is knowing where to split. This is
sometimes made easier for particular kinds of data. For example, we could segment
an image by clustering pixel values. In this case, you can sometimes find good splits
by constructing a histogram of intensities, or of color values.

Another important thing to notice about clustering from the example of fig-
ure 10.1 is that there is no right answer. There are a variety of different clusterings
of the same data. For example, depending on what scales in that figure mean, it

Section 10.2 Agglomerative and Divisive Clustering 138

might be right to zoom out and regard all of the data as a single cluster, or to zoom
in and regard each data point as a cluster. Each of these representations may be
useful.

10.2.1 Clustering and Distance

In the algorithms above, and in what follows, we assume that the features are scaled
so that distances (measured in the usual way) between data points are a good
representation of their similarity. This is quite an important point. For example,
imagine we are clustering data representing brick walls. The features might contain
several distances: the spacing between the bricks, the length of the wall, the height
of the wall, and so on. If these distances are given in the same set of units, we could
have real trouble. For example, assume that the units are centimeters. Then the
spacing between bricks is of the order of one or two centimeters, but the heights
of the walls will be in the hundreds of centimeters. In turn, this means that the
distance between two datapoints is likely to be completely dominated by the height
and length data. This could be what we want, but it might also not be a good
thing.

There are some ways to manage this issue. One is to know what the features
measure, and know how they should be scaled. Usually, this happens because you
have a deep understanding of your data. If you don’t (which happens!), then it is
often a good idea to try and normalize the scale of the data set. There are two good
strategies. The simplest is to translate the data so that it has zero mean (this is
just for neatness - translation doesn’t change distances), then scale each direction
so that it has unit variance. More sophisticated is to translate the data so that
it has zero mean, then transform it so that each direction is independent and has
unit variance. Doing so is sometimes referred to as decorrelation or whitening
(because you make the data more like white noise).

TODO: no - fix the whitening link here

TODO: show how in R?

TODO: worked example in R?

10.2.2 Example: Agglomerative Clustering

Matlab provides some tools that are useful for agglomerative clustering. These
functions use a scheme where one first builds the whole tree of merges, then analyzes
that tree to decide which clustering to report. linkage will determine which pairs
of clusters should be merged at which step (there are arguments that allow you
to choose what type of inter-cluster distance it should use); dendrogram will plot
you a dendrogram; and cluster will extract the clusters from the linkage, using a
variety of options for choosing the clusters. I used these functions to prepare the
dendrogram of figure 10.2 for the height-weight dataset of section ?? (from http://

www2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls). I deliberately forced
Matlab to plot the whole dendrogram, which accounts for the crowded look of the
figure (you can allow it to merge small leaves, etc.). I used a single-link strategy.

Section 10.3 The K-Means Algorithm and Variants 139

 60 64 57232 62225 7 13 21 46 93130209 51210184 99116124197218 69 89 90 91 92102131215117213115201103132111142110139135170173174160114198195137185105196127141136190122113126112123143 68 70220 73138202 77200118227230229233217 98125223 38 94100101104214133107219228 56108 15179129193186199167 53211 75224 76 67106119 95204 97 49 37189203188 4 11158 9145163 8221 72120206208 48191171128176183177 19 1146154 25151 26144 30 32 24 23161231 27 47 52 55 71109121 78 80236 84 85 81 16 63 6147 14 18 20155166168 29 66162234235134 45172 82 33156 2 83237 31148157164 34165181194 50 44240149153 88 54150 17159 28 87246239 3 22251 86207 58 65245 61238242247249252243244 40 59 43212140 10182 35192178180187222 12175 79 74226241248250205 96 5152169 36216 41 42 39
0

20

40

60

80

100

FIGURE 10.2: A dendrogram obtained from the body fat dataset, using single link
clustering. Recall that the data points are on the horizontal axis, and that the
vertical axis is distance; there is a horizontal line linking two clusters that get
merged, established at the height at which they’re merged. I have plotted the entire
dendrogram, despite the fact it’s a bit crowded at the bottom, because it shows that
most data points are relatively close (i.e. there are lots of horizontal branches at
about the same height).

In particular, notice that many data points are about the same distance from one
another, which suggests a single big cluster with a smaller set of nearby clusters.
The clustering of figure 10.3 supports this view. I plotted the data points on the first
two principal components, using different colors and shapes of marker to indicate
different clusters. There are a total of 30 clusters here, though most are small.

As another example, I obtained the seed dataset from the UC Irvine Machine
Learning Dataset Repository (you can find it at http://archive.ics.uci.edu/

ml/datasets/seeds). Each item consists of seven measurements of a wheat kernel;
there are three types of wheat represented in this dataset. As you can see in
figures 10.4 and 10.5, this data clusters rather well.

10.3 THE K-MEANS ALGORITHM AND VARIANTS

TODO: Figure notes: Iris figure, estimate of k, 2d iris plot, projected onto pca

Section 10.3 The K-Means Algorithm and Variants 140

−30 −20 −10 0 10 20 30 40
−100

−50

0

50

100

150

200

250

FIGURE 10.3: A clustering of the body fat dataset, using agglomerative clustering,
single link distance, and requiring a maximum of 30 clusters. I have plotted each
cluster with a distinct marker (though some markers differ only by color; you might
need to look at the PDF version to see this figure at its best). Notice that one
cluster contains much of the data, and that there are a set of small isolated clusters.
The original data is 16 dimensional, which presents plotting problems; I show a
scatter plot on the first two principal components (though I computed distances for
clustering in the original 16 dimensional space).

plot, another cluster dataset

Assume we have a dataset that, we believe, forms many clusters that look like
blobs. If we knew where the center of each of the clusters was, it would be easy to
tell which cluster each data item belonged to — it would belong to the cluster with
the closest center. Similarly, if we knew which cluster each data item belonged to,
it would be easy to tell where the cluster centers were — they’d be the mean of the
data items in the cluster. This is the point closest to every point in the cluster.

We can turn these observations into an algorithm. Assume that we know how
many clusters there are in the data, and write k for this number. The jth data
item to be clustered is described by a feature vector xj . We write ci for the center
of the ith cluster. We assume that most data items are close to the center of their

Section 10.3 The K-Means Algorithm and Variants 141

173207169155192203188186145159162195205193209206146156174177179160151184187150175191176178194190153158167182163183196181154170157144201210197148164168165171172149199161198141143185152147166180200202189142204208 1 59 35 50 56 25 18 47 5 23 26 3 8 29 22 6 57 39 45 48 49 21 54 14 15 7 33 51 53 4 12 46 34 68 16 41 42 30 55 67 69 27 70 32 20 64 2 58 28 43 66 13 19 9 10 36 37 38 11 44 63 24 60 31 65 52 71 77108137 75 96122101123134140 72 76 73 81 74132118107 92 93105 97104112119106 85 98116100113111124131 86 99 88 87110102128117126127109120103 79 95 82 94 80130133135 84 91129125136114138139 61 62 78115 90 83121 89 17 40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 10.4: A dendrogram obtained from the seed dataset, using single link cluster-
ing. Recall that the data points are on the horizontal axis, and that the vertical axis
is distance; there is a horizontal line linking two clusters that get merged, established
at the height at which they’re merged. I have plotted the entire dendrogram, despite
the fact it’s a bit crowded at the bottom, because you can now see how clearly the
data set clusters into a small set of clusters — there are a small number of vertical
“runs”.

cluster. This suggests that we cluster the data by minimizing the the cost function

Φ(clusters, data) =
∑

i∈clusters







∑

j∈ith cluster

(xj − ci)
T (xj − ci)







.

Notice that if we know the center for each cluster, it is easy to determine which
cluster is the best choice for each point. Similarly, if the allocation of points to
clusters is known, it is easy to compute the best center for each cluster. However,
there are far too many possible allocations of points to clusters to search this space
for a minimum. Instead, we define an algorithm that iterates through two activities:

• Assume the cluster centers are known and, allocate each point to the closest
cluster center.

Section 10.3 The K-Means Algorithm and Variants 142

−4 −3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

FIGURE 10.5: A clustering of the seed dataset, using agglomerative clustering, single
link distance, and requiring a maximum of 30 clusters. I have plotted each cluster
with a distinct marker (though some markers differ only by color; you might need to
look at the PDF version to see this figure at its best). Notice that there are a set of
fairly natural isolated clusters. The original data is 8 dimensional, which presents
plotting problems; I show a scatter plot on the first two principal components (though
I computed distances for clustering in the original 8 dimensional space).

• Assume the allocation is known, and choose a new set of cluster centers. Each
center is the mean of the points allocated to that cluster.

We then choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process eventually converges to a local minimum of
the objective function (the value either goes down or is fixed at each step, and
it is bounded below). It is not guaranteed to converge to the global minimum of
the objective function, however. It is also not guaranteed to produce k clusters,
unless we modify the allocation phase to ensure that each cluster has some nonzero
number of points. This algorithm is usually referred to as k-means (summarized
in Algorithm 10.3).

Usually, we are clustering high dimensional data, so that visualizing clusters
can present a challenge. If the dimension isn’t too high, then we can use panel plots.
An alternative is to project the data onto two principal components, and plot the

Section 10.3 The K-Means Algorithm and Variants 143

Choose k data points to act as cluster centers
Until the cluster centers change very little

Allocate each data point to cluster whose center is nearest.
Now ensure that every cluster has at least
one data point; one way to do this is by
supplying empty clusters with a point chosen at random from
points far from their cluster center.

Replace the cluster centers with the mean of the elements
in their clusters.

end

Algorithm 10.3: Clustering by K-Means.

clusters there. A natural dataset to use to explore k-means is the iris data, where
we know that the data should form three clusters (because there are three species).
Recall this dataset from section ??. I reproduce figure 4.5 from that section, for
comparison. Figures 10.6, ?? and ?? show different k-means clusterings of that
data.

10.3.1 How to choose K

The iris data is just a simple example. We know that the data forms clean clusters,
and we know there should be three of them. Usually, we don’t know how many
clusters there should be, and we need to choose this by experiment. One strategy
is to cluster for a variety of different values of k, then look at the value of the cost
function for each. If there are more centers, each data point can find a center that
is close to it, so we expect the value to go down as k goes up. This means that
looking for the k that gives the smallest value of the cost function is not helpful,
because that k is always the same as the number of data points (and the value is
then zero). However, it can be very helpful to plot the value as a function of k, then
look at the “knee” of the curve. Figure 10.9 shows this plot for the iris data. Notice
that k = 3 — the “true” answer — doesn’t look particularly special, but k = 2,
k = 3, or k = 4 all seem like reasonable choices. It is possible to come up with
a procedure that makes a more precise recommendation by penalizing clusterings
that use a large k, because they may represent inefficient encodings of the data.
However, this is often not worth the bother.

In some special cases (like the iris example), we might know the right answer
to check our clustering against. In such cases, one can evaluate the clustering by
looking at the number of different labels in a cluster (sometimes called the purity),
and the number of clusters. A good solution will have few clusters, all of which
have high purity.

Mostly, we don’t have a right answer to check against. An alternative strategy,
which might seem crude to you, for choosing k is extremely important in practice.
Usually, one clusters data to use the clusters in an application (one of the most
important, vector quantization, is described in section 10.4). There are usually

Section 10.3 The K-Means Algorithm and Variants 144

Scatter Plot Matrix

Sepal
Length0

1

2 0 1 2

−2

−1

0

−2 −1 0

Sepal
Width

1

2

3
1 2 3

−2

−1

0

−2 −1 0

Petal
Length0.0

0.5

1.0

1.5 0.00.51.01.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

Petal
Width0.0

0.5

1.0

1.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2

CLUSPLOT(scalediris)

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

FIGURE 10.6: On the left, a panel plot of the iris data clustered using k-means with
k = 2. By comparison with figure 10.9, notice how the versicolor and verginica
clusters appear to have been merged. On the right, this data set projected onto the
first two principal components, with one blob drawn over each cluster.

natural ways to evaluate this application. For example, vector quantization is often
used as an early step in texture recognition or in image matching; here one can
evaluate the error rate of the recognizer, or the accuracy of the image matcher.
One then chooses the k that gets the best evaluation score on validation data. In
this view, the issue is not how good the clustering is; it’s how well the system that
uses the clustering works.

10.3.2 Soft Assignment

One difficulty with k-means is that each point must belong to exactly one cluster.
But, given we don’t know how many clusters there are, this seems wrong. If a point
is close to more than one cluster, why should it be forced to choose? This reasoning
suggests we assign points to cluster centers with weights.

We allow each point to carry a total weight of 1. In the conventional k-means
algorithm, it must choose a single cluster, and assign its weight to that cluster
alone. In soft-assignment k-means, the point can allocate some weight to each
cluster center, as long as (a) the weights are all non-negative and (b) the weights
sum to one. Write wi,j for the weight connecting point i to cluster center j. We
interpret these weights as the degree to which the point participates in a particular
cluster. We require wi,j ≥ 0 and

∑

j wi,j = 1.
We would like wi,j to be large when xi is close to cj , and small otherwise.

Write di,j for the distance ||xi − cj || between these two. Write

si,j = e
−d2

i,j

2σ2

where σ > 0 is a choice of scaling parameter. This is often called the affinity

Section 10.3 The K-Means Algorithm and Variants 145

Scatter Plot Matrix

Sepal
Length0

1

2 0 1 2

−2

−1

0

−2 −1 0

Sepal
Width

1

2

3
1 2 3

−2

−1

0

−2 −1 0

Petal
Length0.0

0.5

1.0

1.5 0.00.51.01.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

Petal
Width0.0

0.5

1.0

1.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

CLUSPLOT(scalediris)

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

FIGURE 10.7: On the left, a panel plot of the iris data clustered using k-means with
k = 3. By comparison with figure 10.9, notice how the clusters appear to follow
the species labels. On the right, this data set projected onto the first two principal
components, with one blob drawn over each cluster.

between the point i and the center j. Now a natural choice of weights is

wi,j =
si,j

∑k
l=1 si,l

.

All these weights are non-negative, they sum to one, and the weight is large if the
point is much closer to one center than to any other. The scaling parameter σ sets
the meaning of “much closer” — we measure distance in units of σ.

Once we have weights, re-estimating the cluster centers is easy. We use a
weights to compute a weighted average of the points. In particular, we re-estimate
the j’th cluster center by

∑

iwi,jxi
∑

iwi,j
.

Notice that k-means is a special case of this algorithm where σ limits to zero. In
this case, each point has a weight of one for some cluster, and zero for all others,
and the weighted mean becomes an ordinary mean. I have collected the description
into Algorithm 10.4 for convenience.

10.3.3 General Comments on K-Means

If you experiment with k-means, you will notice one irritating habit of the algorithm.
It almost always produces either some rather spread out clusters, or some single
element clusters. Most clusters are usually rather tight and blobby clusters, but
there is usually one or more bad cluster. This is fairly easily explained. Because
every data point must belong to some cluster, data points that are far from all
others (a) belong to some cluster and (b) very likely “drag” the cluster center into

Section 10.3 The K-Means Algorithm and Variants 146

Scatter Plot Matrix

Sepal
Length0

1

2 0 1 2

−2

−1

0

−2 −1 0

Sepal
Width

1

2

3
1 2 3

−2

−1

0

−2 −1 0

Petal
Length0.0

0.5

1.0

1.5 0.00.51.01.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

Petal
Width0.0

0.5

1.0

1.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

CLUSPLOT(scalediris)

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

1
2

34

5

FIGURE 10.8: On the left, a panel plot of the iris data clustered using k-means with
k = 5. By comparison with figure 10.9, notice how setosa seems to have been broken
in two groups, and versicolor and verginica into a total of three . On the right,
this data set projected onto the first two principal components, with one blob drawn
over each cluster.

a poor location. This applies even if you use soft assignment, because every point
must have total weight one. If the point is far from all others, then it will be
assigned to the closest with a weight very close to one, and so may drag it into a
poor location, or it will be in a cluster on its own.

There are ways to deal with this. If k is very big, the problem is often not
significant, because then you simply have many single element clusters that you
can ignore. It isn’t always a good idea to have too large a k, because then some
larger clusters might break up. An alternative is to have a junk cluster. Any point
that is too far from the closest true cluster center is assigned to the junk cluster,
and the center of the junk cluster is not estimated. Notice that points should not
be assigned to the junk cluster permanently; they should be able to move in and
out of the junk cluster as the cluster centers move.

In some cases, we want to cluster objects that can’t be averaged. For example,
you can compute distances between two trees but you can’t meaningfully average
them. In some cases, you might have a table of distances between objects, but not
know vectors representing the objects. For example, one could collect data on the
similarities between countries (as in Section ??, particularly Figure ??), then try
and cluster using this data (similarities can be turned into distances by, for example,
taking the negative logarithm). A variant of k-means, known as k-medoids, applies
to this case.

In k-medoids, the cluster centers are data items rather than averages, but the
rest of the algorithm has a familiar form. We assume the number of medoids is
known, and initialize these randomly. We then iterate two procedures. In the first,
we allocate data points to medoids. In the second, we choose the best medoid for

Section 10.4 Describing Repetition with Vector Quantization 147

Scatter Plot Matrix

Sepal
Length

7

8
7 8

5

6

5 6

Sepal
Width

3.5

4.0

4.5
3.5 4.0 4.5

2.0

2.5

3.0

2.0 2.5 3.0

Petal
Length

4

5

6

7
4 5 6 7

1

2

3

4

1 2 3 4

Petal
Width

1.5

2.0

2.5
1.5 2.0 2.5

0.0

0.5

1.0

0.0 0.5 1.0

setosa versicolor virginica

2 4 6 8 10 12 14

10
0

20
0

30
0

40
0

50
0

60
0

Number of Clusters

W
ith

in
 g

ro
up

s
su

m
 o

f s
qu

ar
es

FIGURE 10.9: On the left, the scatterplot matrix for the Iris data, for reference. On
the right, a plot of the value of the cost function for each of several different values
of k. Notice how there is a sharp drop in cost going from k = 1 to k = 2, and again
at k = 4; after that, the cost falls off slowly. This suggests using k = 2, k = 3, or
k = 4, depending on the precise application.

each cluster by finding the medoid that minimizes the sum of distances of points in
the cluster to that medoid (blank search is fine).

10.4 DESCRIBING REPETITION WITH VECTOR QUANTIZATION

Classifying images is an important problem, with a variety of applications. I list
some below. We have seen powerful classification methods. But what features
should one use to classify images? In this section, I will describe a construction that
extends to a variety of other signals, because it exploits repetition. Repetition is an
important feature of many interesting signals. For example, images contain textures,
which are orderly patterns that look like large numbers of small structures that are
repeated. Examples include the spots of animals such as leopards or cheetahs; the
stripes of animals such as tigers or zebras; the patterns on bark, wood, and skin.
Similarly, speech signals contain phonemes — characteristic, stylised sounds that
people assemble together to produce speech (for example, the “ka” sound followed
by the “tuh” sound leading to “cat”). An important part of representing signals
that repeat is identifying the components that repeat, then describing the signal in
terms of those components.

Repetition occurs in more subtle forms than spot patterns. The essence is
that a small number of local patterns can be used to represent a large number of
examples. You see this effect in pictures of scenes. If you collect many pictures
of, say, a beach scene, you will expect most to contain some waves, some sky,
and some sand. The individual patches of wave, sky or sand can be surprisingly
similar, and different images are made by selecting some patches from a vocabulary
of patches, then placing them down to form an image. Similarly, pictures of living

Section 10.4 Describing Repetition with Vector Quantization 148

Choose k data points to act as cluster centers
Until the cluster centers change very little

First, we estimate the weights

For i indexing data points
For j indexing cluster centers

Compute si,j = e
−||xi−cj||

2σ2

For i indexing data points
For j indexing cluster centers

Compute wi,j = si,j/
∑

l=1 ksi,l

Now, we re-estimate the centers

For j indexing cluster centers

Compute cj =

∑

i
wi,jxi

∑

i
wi,j

end

Algorithm 10.4: Soft Clustering by K-Means.

rooms contain chair patches, TV patches, and carpet patches. Many different living
rooms can be made from small vocabularies of patches; but you won’t often see wave
patches in living rooms, or carpet patches in beach scenes.

This view suggests that we should (a) develop a vocabulary of image patches
and then (b) construct a feature that describes which vocabulary elements appear in
the image. It turns out that where the vocabulary elements appear is less important.
This is because different pictures of a living room may have the same patches in
different locations (for example, you might just move the camera to the left). As
another example, zebras have stripes, but precisely where the stripes lie on a zebra
doesn’t seem to matter much in practice.

The patches in the vocabulary are often referred to as textons. We could
find these textons by looking for image patches that are common, and then reason
about which ones are repeated. There are two important difficulties in finding
image patches that commonly occur together. First, these representations of the
image are continuous. We cannot simply count how many times a particular pattern
occurs, because each vector is slightly different. Second, the representation is high
dimensional in either case. A patch around a pixel might need hundreds of pixels
to represent it well. This means we cannot build a histogram directly, because it
will have an unmanageable number of cells.

10.4.1 Applications of Image Classification

Detecting explicit images: There are numerous reasons to try and detect images

Section 10.4 Describing Repetition with Vector Quantization 149

FIGURE 10.10: Material is not the same as object category (the three cars on the
top are each made of different materials), and is not the same as texture (the three
checkered objects on the bottom are made of different materials). Knowing the
material that makes up an object gives us a useful description, somewhat distinct
from its identity and its texture. This figure was originally published as Figures 2
and 3 of “Exploring Features in a Bayesian Framework for Material Recognition,”
by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz Proc. CVPR 2010, 2010 c©
IEEE, 2010.

that depict nudity or sexual content. In some jurisdictions, possession or distribu-
tion of such pictures might be illegal. Many employers want to ensure that work
computers are not used to collect or view such images; in fact, vendors of image
filtering software have tried to persuade employers that they might face litigation
if they don’t do so. Advertisers want to be careful that their ads appear only next
to images that will not distress their customers. Web search companies would like
to allow users to avoid seeing images they find distressing.

Material classification: Imagine we have an image window. What material
(e.g., “wood,” “glass,” “rubber,” and “leather”) does the window cover? If we could
answer this question, we could decide whether an image patch was cloth—and so
might be part of a person, or of furniture—or grass, or trees, or sky. Generally,
different materials produce different image textures, so natural features to use for
this multiclass classification problem will be texture features. However, materials
tend to have some surface relief (for example, the little pores on the surface of an
orange; the bumps on stucco; the grooves in tree bark), and these generate quite
complex shading behavior. Changes in the illumination direction can cause the
shadows attached to the relief to change quite sharply, and so the overall texture
changes. Furthermore, as Figure 10.10 illustrates, texture features might indicate
the material an object is made of, but objects can have the same texture and be
made of quite different materials.

Scene classification: Pictures of a bedroom, of a kitchen, or of a beach
show different scenes. Scenes provide an important source of context to use in

Section 10.4 Describing Repetition with Vector Quantization 150

FIGURE 10.11: Some scenes are easily identified by humans. These are examples
from the SUN dataset (?) of scene categories that people identify accurately from
images; the label above each image gives its scene type. This figure was originally
published as Figure 2 of “SUN database: Large-scale Scene Recognition from Abbey
to Zoo,” by J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, Proc. IEEE
CVPR 2010, c© IEEE, 2010.

interpreting images. You could reasonably expect to see a pillow, but not a toaster
or a beachball, in a bedroom; a toaster, but not a pillow or a beachball, in a kitchen;
or a beachball and perhaps a pillow, but not a toaster, on a beach. We should like
to be able to tell what scene is depicted in an image. This is difficult, because scenes
vary quite widely in appearance, and this variation has a strong spatial component.
For example, the toaster could be in many different locations in the kitchen. In
scene classification, one must identify the scene depicted in the image. Scene
labels are more arbitrary than object labels, because there is no clear consensus
on what the different labels should be. Some labels seem fairly clear and are easy
to assign accurately (Figure 10.11), for example, “kitchen,” “bedroom,” and other
names of rooms in a house. Other labels are uncertain: should one distinguish
between “woodland paths” and “meadows”, or just label them all “outdoors”?
Humans seem to have a problem here, too (Figure ??). However, there are several
scene datasets, each with its own set of labels, so methods can be compared and
evaluated.

10.4.2 Vector Quantization and Textons

Vector quantization is a strategy to deal with these difficulties. Vector quanti-
zation is a way of representing vectors in a continuous space with numbers from a
set of fixed size. We first build a set of clusters out of a training set of vectors; this
set of clusters is often thought of as a dictionary. We now replace any new vector
with the cluster center closest to that vector. This strategy applies to vectors quite
generally, though we will use it for texture representation. Many different clusterers
can be used for vector quantization, but it is most common to use k-means or one

Section 10.4 Describing Repetition with Vector Quantization 151

Dictionary

Cluster

1

2

3

2

31

3

Replace

with

closest

cluster

center Histogram

L
ea

rn
in

g
 a

 d
ic

ti
o
n
ar

y
R

ep
re

se
n
ti

n
g
 a

 r
eg

io
n

FIGURE 10.12: There are two steps to building a pooled texture representation for a
texture in an image domain. First, one builds a dictionary representing the range
of possible pattern elements, using a large number of texture patches. This is usu-
ally done in advance, using a training data set of some form. Second, one takes
the patches inside the domain, vector quantizes them by identifying the number of
the closest cluster center, then computes a histogram of the different cluster center
numbers that occur within a region. This histogram might appear to contain no
spatial information, but this is a misperception. Some frequent elements in the his-
togram are likely to be textons, but others describe common ways in which textons
lie close to one another; this is a rough spatial cue. This figure shows elements of a
database collected by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz, and pub-
lished at http://people.csail.mit.edu/lavanya/research_sharan.html. Fig-
ure by kind permission of the collectors.

of its variants.
We can now represent a collection of vectors as a histogram of cluster centers.

This general recipe can be applied to image representation by describing each pixel
in the domain with some vector, then vector quantizing and describing the domain
with the histogram of cluster centers. One natural vector to use is obtained by
reshaping the pixels from a fixed-size patch around the image pixel (Figure 10.13).
There is a rich collection of alternative possibilities in the computer vision literature.

10.4.3 Hierarchical K Means

One important difficulty occurs in applications. We might need to have an enormous
dataset (millions of image patches are a real possibility), and so a very large k. In
this case, k means clustering becomes difficult because identifying which cluster
center is closest to a particular data point scales linearly with k (and we have to

Section 10.4 Describing Repetition with Vector Quantization 152

Build a dictionary:
Collect many training example images
Construct the vectors x for relevant pixels; these could be
a reshaping of a patch around the pixel, or a vector of filter outputs
computed at the pixel, or other image representations.

Obtain k cluster centers c for these examples

Represent an image domain:
For each relevant pixel i in the image

Compute the vector representation xi of that pixel
Obtain j, the index of the cluster center cj closest to that pixel
Insert j into a histogram for that domain

Algorithm 10.5: Image Representation Using Vector Quantization.

do this for every data point at every iteration). There are two useful strategies for
dealing with this problem.

The first is to notice that, if we can be reasonably confident that each cluster
contains many data points, some of the data is redundant. We could randomly
subsample the data, cluster that, then keep the cluster centers. This works, but
doesn’t scale particularly well.

A more effective strategy is to build a hierarchy of k-means clusters. We
randomly subsample the data (typically, quite aggressively), then cluster this with
a small value of k. Each data item is then allocated to the closest cluster center, and
the data in each cluster is clustered again with k-means. We now have something
that looks like a two-level tree of clusters. Of course, this process can be repeated to
produce a multi-level tree of clusters. It is easy to use this tree to vector quantize a
query data item. We vector quantize at the first level. Doing so chooses a branch of
the tree, and we pass the data item to this branch. It is either a leaf, in which case
we report the number of the leaf, or it is a set of clusters, in which case we vector
quantize, and pass the data item down. This procedure is efficient both when one
clusters and at run time.

10.4.4 Using Textons

We can now build a large vocabulary of textons. Details vary from application to
application, but the general procedure is clear. We obtain a large number of relevant
images (from thousands to millions, depending on the particular application). We
extract patches from these images. These patches could have centers that are on
a grid, or are randomly chosen, or lie at image corners (which are detected using
methods outside the scope of this discussion). These patches are clustered using
k-means or hierarchical k-means. It is quite usual to have k in the hundreds of
thousands. We can then describe a new image by decomposing it into patches
(typically, on a grid); vector quantizing each patch; and forming a histogram of the
centers. Usually, this histogram is normalized, so that larger images (with more

Section 10.4 Describing Repetition with Vector Quantization 153

patches) do not appear different from smaller images.
When we use this description, we need to keep in mind that it is a histogram.

Histograms can be represented as vectors (one entry per bin), but in important
respects they are not really vectors. All the entries in a normalized histogram sum
to one. This means that measuring the difference between two histograms with a
Euclidean distance measure is not a particularly good idea. The significance of a
large difference at a particular bin depends on how full the bin is. Write g and h
for the two histograms we wish to compare, and gi (resp. hi) for the i’th bin. Now
assume (hi − gi)

2 is large. If hi + gi is large, too, this might not be significant,
because we might have a difference in counts that is due to random effects. But if
hi + gi is small, the difference is much more significant, because one bin has many
entries and another has few. This argues for using a distance

d(h,g) =
∑

i

(hi − gi)
2

(hi + gi)

which is known as the χ2 distance (often written as the chi-squared distance). The
name comes from an analogy with Pearson’s χ2 distance for comparing histograms

(which is
∑

i
(hi−gi)

2

hi
).

We can now use this image description in a variety of ways.

• Image classification with SVM’s: One could use an SVM to classify
images. Better results are available with more complex classifier technologies,
because SVM’s do not account for the histogram distance effect, above.

• Image classification with nearest neighbors: A nearest neighbor clas-
sifier should use the chi-squared distance. It is often sufficient to use an ap-
proximate nearest neighbor method to get a set of possible histograms close
to the query, then find the closest using the chi-squared distance.

• Image retrieval: There are many applications where we would like to recover
images that are similar in appearance to a query image. We can do so by
selecting images that have a small chi-squared distance to the query image.
Some complex technical paraphenalia are required to make doing so efficient,
however.

• Image clustering: We can cluster images using the chi-squared distance.

One issue that arises quite regularly in applications is that vector quantization
loses information. Small changes in image patch can lead to a large change in
the cluster center, and many of these can accumulate to give a big deviation in
the histogram. This is an important source of error in applications. There is
an effective strategy to handle it. One builds multiple systems, then votes. For
example, imagine building a nearest neighbor classifier for images. We build (say)
three, rather than one, vector quantizers. Each clusters the same set of image
patches, but uses a different random start. We then build three (say) rather than
one histogram describing an image, and query three collections, one with each
histogram. Finally, we choose the category that gets the majority of votes.

Section 10.4 Describing Repetition with Vector Quantization 154

An alternate use of a texton vocabulary is in denoising. Assume we have a
large vocabulary of image patches, built as above. A new image comes in, but is
noisy, perhaps because there are errors in the storage and retrieval system, or in a
communication system, or because the camera is very slightly defocussed. We can
build a reconstruction by matching each of the noisy image patches to its cluster
center, then replacing the patch with the cluster center. The details are complex,
because we need to figure out what to do with patches that overlap, and to ensure
that patches that abut one another are consistent.

Section 10.4 Describing Repetition with Vector Quantization 155

FIGURE 10.13: Pattern elements can also be identified by vector quantizing vectors
obtained by reshaping an image window centered on each pixel. Here we show the
top 50 pattern elements (or textons), obtained using this strategy from all 1,000
images of the collection of material images described in Figure ??. Each subimage
here illustrates a cluster center. For some cluster centers, we show the closest 25
image patches. To measure distance, we first subtracted the average image intensity,
and we weighted by a Gaussian to ensure that pixels close to the center of the patch
were weighted higher than those far from the center. This figure shows elements of
a database collected by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz, and pub-
lished at http://people.csail.mit.edu/lavanya/research_sharan.html. Fig-
ure by kind permission of the collectors.

