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C H A P T E R 1

Light and Shading

The brightness of a pixel in the image is a function of the brightness of the
surface patch in the scene that projects to the pixel. In turn, the brightness of the
patch depends on the fraction of the incident light that gets reflected, and on how
much incident light arrives at the patch.

Camera response: Modern cameras respond linearly to middling intensities
of light, but have pronounced non-linearities for darker and brighter illumination.
This allows the camera to reproduce the very wide dynamic range of natural light
without saturating. For most purposes, because very bright and very dark patches
are not significant cues, it is enough to assume that the camera response is linearly
related to the intensity of the surface patch. Write X for a point in space that
projects to x in the image, Ipatch(X) for the intensity of the surface patch at X,
and Icamera(x) for the camera response at x. Then our model is:

Icamera(x) = kIpatch(x)

where k is some constant to be determined by calibration. Generally, we assume
that this model applies and that k is known if needed. Under some circumstances,
a more complex model is appropriate: we discuss how to recover such models in
section 1.10.

Surface reflection: Different points on a surface may reflect more or less
of the light that is arriving. Darker surfaces reflect less light, and lighter surfaces
reflect more. While there are a rich set of possible physical effects, most can be
ignored. Section 1.1.1 describes the relatively simple model that is sufficient for
almost all purposes in computer vision.

Illumination: The amount of light a patch receives depends on the overall
intensity of the light, and on the geometry. The overall intensity may change
because some luminaires (the formal term for light sources) may be shadowed,
or may have strong directional components. Geometry affects the amount of light
arriving at a patch because surface patches facing the light collect more radiation
and so are brighter than surface patches tilted away from the light, an effect known
as shading. Section 1.1.2 describes the most important model used in computer
vision; section ?? describes a much more complex model that is necessary to explain
some important practical difficulties in shading inference.

The brightness of a pixel is profoundly ambiguous. Surprisingly, people can
disentangle these effects quite effectively. Often, but not always, people can tell
whether objects are in bright light or in shadow, and do not perceive objects in
shadow as having dark surfaces. People can usually tell whether changes of bright-
ness are caused by changes in reflection or by shading (cinemas wouldn’t work if we
got it right all the time, however). Typically, people can tell that shading comes
from the geometry of the object, but sometimes get shading and markings mixed
up. For example, a streak of dark makeup under a cheekbone will often look like a
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Section 1.1 Modelling Pixel Brightness 3

shading effect, making the face look thinner. Section ?? describes various methods
to infer properties of the world from the shading signal.

1.1 MODELLING PIXEL BRIGHTNESS

1.1.1 Reflection at Surfaces

Most surfaces reflect light by a process of diffuse reflection. Diffuse reflection
scatters light evenly across the directions leaving a surface, so the brightness of
a diffuse surface doesn’t depend on the viewing direction. Examples are easy to
identify with this test: most cloth has this property, as do most paints, rough
wooden surfaces, most vegetation, and rough stone or concrete. The only parameter
required to describe a surface of this type is its albedo, the fraction of the light
arriving at the surface that is reflected. This does not depend on the direction in
which the light arrives or the direction in which the light leaves. Surfaces with very
high or very low albedo are difficult to make. For practical surfaces, albedo lies
in the range 0.05-0.90 (see Brelstaff and Blake (), who argue the dynamic range is
closer to 10 than the 18 implied by these numbers; also ()BBrefs
).

Mirrors are not diffuse, because what you see depends on the direction in
which you look at the mirror. The behavior of a perfect mirror is known as specular

reflection. For an ideal mirror, light arriving along a particular direction can leave
only along the specular direction, obtained by reflecting the direction of incoming
radiation about the surface normal (figure 1.1). Usually some fraction of incoming
radiation is absorbed; on an ideal specular surface, this fraction does not depend
on the incident direction.

If a surface behaves like an ideal specular reflector, you could use it as a
mirror, and, from this test, relatively few surfaces actually behave like ideal specular
reflectors. Imagine a near perfect mirror made of polished metal; if this surface
is suffers slight damage at a small scale, then around each point there will be a
set of small facets, pointing in a range of directions. In turn, this means that
light arriving in one direction will leave in several different directions, because it
strikes several facets, and so the specular reflections will be blurred. As the surface
becomes less flat, these distortions will become more pronounced; eventually, the
only specular reflection that is bright enough to see will come from the light source.
This mechanism means that, in most shiny paint, plastic, wet or brushed metal
surfaces, one sees a bright blob — often called a specularity — along the specular
direction from light sources, but few other specular effects. Specularities are easy
to identify, because they are small and very bright (Figure 1.2; ()).

1.1.2 Sources and their Effects

The main source of illumination outside is the sun, whose rays all travel parallel to
one another in a known direction because it is so far away. We model this behavior
with a distant point light source. This is the most important model of lighting,
and is quite effective for indoor scenes as well as outdoor scenes. Because the rays
are parallel to one another, a surface that faces the source cuts more rays (and
so collects more light) than one oriented along the direction the rays travel. The
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4 Chapter 1 Light and Shading

N

L
S

θθ

FIGURE 1.1: A specular surface patch, showing the surface normal (N ), and the direction
to the light source (L). The specular direction S is coplanar with the normal and the
source direction, and has the same angle to the normal that the source direction does.

Specularities

Cast shadow

Diffuse reflection, bright

Diffuse reflection, dark

FIGURE 1.2: This photograph, published on flickr by mlinksva, illustrates a variety of
illumination effects. There are specularities on the metal spoon and on the milk. The
bright diffuse surface is bright because it faces the light direction. The dark diffuse surface
is dark because it is tangential to the illumination direction. The shadows appear at surface
points that cannot see the light source.

amount of light collected by a surface patch in this model is proportional to the
cosine of the angle θ between the illumination direction and the normal (Figure 1.3).
The figure yields Lambert’s cosine law, which states the brightness of a diffuse

DRAFT - Do not Circulate



Section 1.1 Modelling Pixel Brightness 5
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FIGURE 1.3: Two surface patches are illuminated by a distant point source, whose
rays are shown as light arrowheads. Patch A is tilted away from the source (θ
is close to 900) and collects less energy, because it cuts fewer light rays per unit
surface area. Patch B, facing the source (θ is close to 00), collects more energy.

patch illuminated by a distant point light source is given by

I = ρI0 cos θ,

where I0 is the intensity of the light source, θ is the angle between the light source
direction and the surface normal, and ρ is the diffuse albedo. This law predicts
bright image pixels come from surface patches that face the light directly and dark
pixels come from patches that see the light only tangentially, so that the shading
on on a surface provides some shape information. We explore this cue in 1.3.6.

If the surface cannot see the source, then it is in shadow. Since we assume
that light arrives at our patch only from the distant point light source, our model
suggests that shadows are deep black; in practice, they very seldom are, because
the shadowed surface usually receives light from other sources. Outdoors, the most
important such source is the sky, which is quite bright. Indoors, light reflected
from other surfaces illuminates shadowed patches. These interreflections can
have a significant effect on the brightness of other surfaces, too. These effects
are sometimes modelled by adding a constant ambient illumination term to the
predicted intensity.

1.1.3 The Lambertian + Specular model

For almost all purposes, it is enough to model all surfaces as being diffuse with
specularities. This is the lambertian+specular model. Specularities are rela-
tively seldom used in inference (section 1.3.2 sketches two methods), and so there is
no need to have a formal model of their structure. Because specularities are small
and bright, they are relatively easy to identify and remove with straightforward
methods (find small bright spots, and replace them by smoothing the local pixel
values). More sophisticated specularity finders use color information (section ??).
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6 Chapter 1 Light and Shading

Thus, to apply the lambertian+specular model, we find and remove specularities,
and then use Lambert’s law (section 1.1.2) to model image intensity. By far the
most usual case involves an infinitely distant source. For this case, write N (x) for
the unit surface normal at x, S for a vector pointing from x toward the source
with length Io (the source intensity), ρ(x) for the albedo at x, and V is(S, x) for
a function that is one when x can see the source and zero otherwise. Then the
intensity at x is

I(x) = ρ(x) (N · S)Vis(S, x) + ρ(x)A + S

Image = Diffuse + Ambient + Specular
intensity term term term

This model can still be used for a more complex source (for example, an area
source), but in that case it is more difficult to determine an appropriate S(x).

1.2 AREA SOURCES AND INTERREFLECTIONS

An area source is an area that radiates light. Area sources occur quite commonly
in natural scenes — an overcast sky is a good example — and in synthetic environ-
ments — for example, the fluorescent light boxes found in many industrial ceilings.
Shadows from area sources are very different from shadows cast by point sources,
and interreflections are explained by an area source model, too.

1.2.1 Area Source Shadows

One seldom sees dark shadows with crisp boundaries indoors. Instead, one could
see no visible shadows, or shadows that are rather fuzzy diffuse blobs, or sometimes
fuzzy blobs with a dark core (figure 1.4). These effects occur because rooms tend to
have light walls and diffuse ceiling fixtures which act as area sources. As a result,
the shadows one sees are area source shadows.

To compute the intensity at a surface patch illuminated by an area source, we
can break the source up into infinitesimal source elements, then sum effects from
each element. If there is an occluder, then some surface patches may see none of
the source elements. Such patches will be dark, and lie in the umbra (a Latin word
meaning “shadow”). Other surface patches may see some, but not all, of the source
elements. Such patches may be quite bright (if they see most of the elements), or
relatively dark (if they see few elements), and lie in the penumbra (a compound of
Latin words meaning “almost shadow”). One way to build intuition is to think of
a tiny observer looking up from the surface patch. At umbral points, this observer
will not see the area source at all whereas at penumbral points, the observer will see
some, but not all, of the area source. An observer moving from outside the shadow,
through the penumbra and into the umbra will see something that looks like an
eclipse of the moon (figure 1.5). The penumbra can be large, and can change quite
slowly from light to dark. There may even be no umbral points at all, and, if the
occluder is sufficiently far away from the surface, the penumbra could be very large
and almost indistinguishable in brightness from the unshadowed patches. This is
why many objects in rooms appear to cast no shadow at all (figure 1.6).
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Section 1.2 Area Sources and Interreflections 7
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Umbra

Penumbra

FIGURE 1.4: This photograph, published on Flickr by Reiner Kraft, shows characteristic
area source shadow effects. Notice that A is much darker than B; there must be some
shadowing effect here, but there is no clear shadow boundary. Instead, there is a fairly
smooth gradient. The pillow casts a complex shadow, with two distinct regions: there is
a core of darkness (the umbra) surrounded by a partial shadow (penumbra).

1.2.2 Modelling Interreflection

In an interreflection model, each surface patch receives power from all the radiating
surfaces it can see. These surfaces might radiate power that they generate internally
because they are luminaires, or they might simply reflect power. The general form
of the model will be:
(

Power leaving
a patch

)

=

(

Power generated
by that patch

)

+

(

Power received
from other patches and reflected

)

This means we need to be able to model the power received from other patches and
reflected. We will develop a model assuming that all surfaces are diffuse.e model, we
will assume that all surfaces are diffuse. This leads to a somewhat simpler model,
and describes all effects that are currently of interest to vision (it is complicated, but
not difficult, to build more elaborate models). We will also need some radiometric
terminology.

1.2.2.1 The Illumination at a Patch due to an Area Source

Consider a surface patch relatively close to the area source. The source will subtend
a large solid angle at the patch, and if the patch moves a little further from the
source, this solid angle will hardly change (if the source was infinite, it would not
change at all). As a result, the amount of light the patch collects from the source
will hardly change. This explains the widespread use of area sources in illumination
engineering — they generally yield fairly uniform illumination. To build a more
detailed model, we need units in which to measure illumination.

The appropriate unit is radiance, defined as
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8 Chapter 1 Light and Shading
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Occluder

1 2 3

1

2

3

FIGURE 1.5: Area sources generate complex shadows with smooth boundaries, because
from the point of view of a surface patch, the source disappears slowly behind the occluder.
Regions where the source cannot be seen at all are known as the umbra; regions where
some portion of the source is visible are known as the penumbra. A good model is to
imagine lying with your back to the surface looking at the world above. At point 1, you
can see all of the source; at point 2, you can see some of it; and at point 3, you can see
none of it.

1

1

FIGURE 1.6: The photograph on the left, published on Flickr by MGShelton, shows an
interior decorated for a holiday. Notice the lighting has some directional component (the
vertical stripe indicated by the arrow is dark, because it does not face the main direction
of lighting), but there are few visible shadows. On the right, a drawing to show why; here
there is a small occluder and a large area source. The occluder is some way away from the
shaded surface. Generally, at points on the shaded surface the incoming hemisphere looks
like that at point 1. The occluder blocks out some small percentage of the area source,
but the amount of light lost is too small to notice (compare figure 1.5).
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Section 1.2 Area Sources and Interreflections 9

the power (amount of energy per unit time) traveling at some point in a
specified direction, per unit area perpendicular to the direction of travel,
per unit solid angle

The units of radiance are watts per square meter per steradian (Wm−2sr−1). The
definition of radiance may look strange, but it is consistent with the most basic
phenomenon in radiometry: A small surface patch viewing a source frontally collects
more energy than the same patch viewing a source radiance along a nearly tangent
direction — the amount of energy a patch collects from a source depends both on
how large the source looks from the patch and on how large the patch looks from
the source.

r

x

dA

x

dA

N

N

θ

θ
s

s

s

s

S

FIGURE 1.7: Terminology for the power transferred from an element to an element, and
from an area source to an element. One can use this power to establish that radiance does
not go down along straight line paths in a vacuum (or, for reasonable distances, in clear
air), using an energy conservation argument sketched in the text.

It is important to remember that the square meters in the units for radiance
are foreshortened (i.e., perpendicular to the direction of travel) to account for this
phenomenon. Assume we have two elements, one at x with area dA and the other
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10 Chapter 1 Light and Shading

at xs with area dAs. Write the angular direction from x to xs as x → xs, and
define the angles θ and θs as in Figure 1.7. Then the the solid angle subtended by
element 2 at element 1 is

dω2(1) =
cos θsdAs

r2
,

so the power leaving x toward xs is

d2P1→2 = (radiance)(foreshortened area)(solid angle)

= L(x, x → xs)(cos θdA)(dω2(1))

= L(x, x → xs)

(

cos θ cos θs

r2

)

dAsdA.

By a similar argument, the same expression yields the power arriving at x from
x2; this means that, in a vacuum, radiance is constant along (unoccluded) straight
lines.

FIGURE 1.8: A patch with area dA views an area source S. We compute the power
received by the patch by summing the contributions of each element on S.

We can now compute the power that an element dA collects from an area
source, by summing the contributions of elements over that source. Using the
notation of figure 1.8, we get

dPS→dA =

(∫

S

L(xs, xs → x)

(

cos θs cos θ

r2

)

dAs

)

dA

To get a more useful area source model, we need further units.

1.2.2.2 Radiosity and Exitance

We are dealing with diffuse surfaces, and our definition of a diffuse surface is that
the intensity (formally, the radiance) leaving the surface is independent of the
direction in which it leaves. There is no point in describing the intensity of such
a surface with radiance (which explicitly depends on direction). The appropriate
unit is radiosity, defined as

the total power leaving a point on a surface per unit area on the surface

Radiosity, which is usually written as B(x), has units watts per square meter
(Wm−2). To obtain the radiosity of a surface at a point, we can sum the radiance
leaving the surface at that point over the whole exit hemisphere. Thus, if x is a
point on a surface emitting radiance L(x, θ, φ), the radiosity at that point is

B(x) =

∫

Ω

L(x, θ, φ) cos θdω,

where Ω is the exit hemisphere, dω is unit solid angle, and the term cos θ turns
foreshortened area into area (look at the definitions again). We could substitute
dω = sin θdθdφ, using the units of figure 1.9.
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Section 1.2 Area Sources and Interreflections 11
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FIGURE 1.9: Angular coordinates on a sphere. An infinitesimal patch of area dA at
distance r from the center subtends solid angle dω = (1/r2) cos θndA, using the notation
of the figure. This solid angle dω is cut out by a step of dφ in φ and a step of dθ in θ, so
we can write dω = sin θdθdφ.

Consider a surface element as in figure 1.8. We have computed how much
power it receives from the source as a function of the source’s radiance. The surface
element is diffuse, and its albedo is ρ(x). The albedo is the fraction of incoming
power that the surface radiates, so the radiosity due to power received from the
area source is

B(x) =
dPS→dA

dA
=

(∫

S

L(xs, xs → x)

(

cos θs cos θ

r2

)

dAs

)

Now if a point u on a surface has radiosity B(u), what is the radiance leaving
the surface in some direction? We write L for the radiance, which is independent
of angle, and we must have

B(u) = L(u)

∫

Ω

L(x, θ, φ) cos θdω = L(u)π

This means that if the area source has radiosity B(xs), then the radiosity at the
element due to the power received from the area source is

B(x) =
ρ

π

(∫

S

L(xs, xs → x)

(

cos θs cos θ

r2

)

dAs

)

Our final step is to model illumination that is generated internally in a sur-
face — light generated by a luminaire, rather than reflected from a surface. We
assume there are no directional effects in the luminaire, and that power is uniformly
distributed across outgoing directions (this is the least plausible component of the
model, but is usually tolerable). We use the unit exitance, which is defined as
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12 Chapter 1 Light and Shading

the total power internally generated power leaving a point on a surface
per unit area on the surface.

1.2.2.3 An Interreflection Model

We can now write a formal model of interreflections for diffuse surfaces by substi-
tuting terms into the original expression. Recall that radiosity is power per unit
area, write E(x) for exitance at the point x, write xs for a coordinate that runs
over all surface patches, S for the set of all surfaces, dA for the element of area at
x, Vis(x, xs) for a function that is one if the two points can see each other and zero
otherwise, and cos θ, cos θs, r as in figure 1.8. We obtain

Power leaving = Power generated + Power received
a patch by that patch from other patches and reflected

B(x)dA = E(x)dA + ρ(x)
π

∫

S

[

cos θ cos θs

r2 Vis(x, xs)
]

B(xs)dAsdA

and so, dividing by area, we have

B(x) = E(x) + ρ(x)
π

∫

S

[

cos θ cos θs

r2 Vis(x, xs)
]

B(xs)dAs

It is usual to write

K(x, xs) =
cos θ cos θs

πr2

and refer to K as the interreflection kernel. Substituting gives

B(x) = E(x) + ρ(x)

∫

S

K(x, xs)Vis(x, xs)B(xs)dAxs

an equation where the solution appears inside the integral. Equations of this
form are known as Fredholm integral equations of the second kind. This particular
equation is a fairly nasty sample of the type because the interreflection kernel is
generally not continuous and may have singularities. Solutions of this equation can
yield quite good models of the appearance of diffuse surfaces, and the topic supports
a substantial industry in the computer graphics community (good places to start
for this topic are ?) or ?)). The model produces good predictions of observed
effects (Figure 1.18).

1.2.2.4 Solving for Radiosity

We sketch one approach to solving the global shading model to illustrate the meth-
ods. Subdivide the world into small, flat patches and approximate the radiosity
as being constant over each patch. This approximation is reasonable because we
could obtain an accurate representation by working with small patches. Now we
construct a vector B, which contains the value of the radiosity for each patch. In
particular, the ith component of B is the radiosity of the ith patch.

We write the incoming radiosity at the ith patch due to radiosity on the jth
patch as

Bj→i(x) = ρ(x)

∫

patch j
visible(x, v)K(x, v)dAvBj ,
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Section 1.3 Inference from Shading 13

where x is a coordinate on the ith patch and v is a coordinate on the jth patch.
Now this expression is not a constant, and so we must average it over the ith patch
to get

Bj→i =
1

Ai

∫

patch i
ρd(x)

∫

patch j
visible(x, v)K(x, v)dAvdAxBj ,

where Ai is the area of the ith patch. If we insist that the exitance on each patch
is constant, too, we obtain the model

Bi = Ei +
∑

all j

Bj→i

= Ei +
∑

all j

KijBj ,

where

Kij =
1

Ai

∫

patch i
ρd(x)

∫

patch j
visible(x, v)K(x, v)dAvdAx.

The elements of this matrix are sometimes known as form factors.
This is a system of linear equations in Bi (although an awfully big one — Kij

could be a million by a million matrix) and, as such, can in principle be solved.
The tricks that are necessary to solve the system efficiently, quickly, and accurately
are well beyond our scope; ?) is an excellent account, as is the book of ?).

1.3 INFERENCE FROM SHADING

1.3.1 Radiometric Calibration and High Dynamic Range Images

Real scenes often display a range of intensities that is much larger than cameras
can cope with. Film and CCD’s respond to energy. A property called reciprocity

means that, if a scene patch casts intensity E onto the film, and if the shutter
is open for time ∆t, the response is a function of E∆t alone. In particular, we
will get the same outcome if we image one patch of intensity E for time ∆t and
another patch of intensity E/k for time k∆t. The actual response that the film
produces is a function of E∆t; this function may depend on the imaging system,
but is typically somewhat linear over some range, and sharply non-linear near the
top and bottom of this range, so that the image can capture very dark and very
light patches without saturation. It is usually monotonically increasing.

There are a variety of applications where it would be useful to know the actual
radiance (equivalently, intensity) arriving at the imaging device. For example, we
might want to compare renderings of a scene with pictures of the scene, and to
do that we need to work in real radiometric units. We might want to use pictures
of a scene to estimate the lighting in that scene so we can postrender new objects
into the scene; these would need to be lit correctly. To infer radiance, we must
determine the film response, a procedure known as radiometric calibration. As
we shall see, to do this will require more than one image of a scene, obtained at
different exposure settings. Imagine we are looking at a scene of a stained glass
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14 Chapter 1 Light and Shading

window lit from behind in a church. At one exposure setting, we would be able
to resolve detail in the dark corners, but not on the stained glass, which would be
saturated. At another setting, we would be able to resolve detail on the glass, but
the interior would be too dark. If we have both settings, we may as well try to
recover radiance with a very large dynamic range — producing a high dynamic

range image.
Now assume we have multiple registered images, each obtained using a dif-

ferent exposure time. At the i, j’th pixel, we know the image intensity value I
(k)
ij

for the k’th exposure time, we know the value of the k’th exposure time ∆tk, and
we know that the intensity of the corresponding surface patch Eij is the same for
each exposure, but we do not know the value of Eij . Write the camera response
function f , so that

I
(k)
ij = f(Eij∆tk).

There are now several possible approaches to solve for f . We could assume a
parametric form — say, polynomial — then solve using least squares. Notice that
we must solve not only for the parameters of f , but also for Eij . For a color
camera, we solve for calibration of each channel separately. Mitsunaga and Nayar
have studied the polynomial case in detail (). Though the solution is not unique,
ambiguous solutions are strongly different from one another, and most cases are
easily ruled out. Furthermore, one does not need to know exposure times with
exact accuracy to estimate a solution, as long as there are sufficient pixel values;
instead, one estimates f from a fixed set of exposure times, then estimates the
exposure times from f , then re-estimates. This procedure is stable.

Alternatively, because the camera response is monotonic, we can work with
its inverse g = f−1, take logs, and write

log g(I
(k)
ij ) = log Eij + log ∆tk

We can now estimate the values that g takes at each point and the Eij by placing
a smoothness penalty on g. In particular, we minimize

∑

i,j,k

(log g(I
(k)
ij ) − log Eij + log ∆tk)2 + smoothness penalty on g

by choice of g. Debevec and Malik penalize the second derivative of g (). Once we
have a radiometrically calibrated camera, estimating a high dynamic range image
is relatively straightforward. We have a set of registered images. At each pixel
location, we seek the estimate of radiance that predicts the registered image values
best. In particular, we assume we know f . We seek an Eij such that

∑

k

w(Iij)(I
(k)
ij − f(Eij∆tk))2

is minimized. Notice the weights, because our estimate of f is more reliable when
Iij is in the middle of the available range of values than at larger or at smaller
values.

Registered images are not essential for radiometric calibration. For example,
it is sufficient to have two images where we believe the histogram of Eij values is
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Section 1.3 Inference from Shading 15
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FIGURE 1.10: It is possible to calibrate the radiometric response of a camera from multiple
images obtained at different exposures. The top row four different exposures of the same
scene, ranging from darker (shorter shutter time) to lighter (longer shutter time). Note
how, in the dark frames, the lighter part of the image shows detail, and in the light frames,
the darker part of the image shows detail; this is the result of non-linearities in the camera
response. On the bottom left, we show the inferred calibration curves for each of the
R, G and B camera channels. On the bottom right, a composite image, illustrating
the results. The dynamic range of this image is far too large to print; instead, the main
image is normalized to the print range. Overlaid on this image are a set of boxes where
the radiances in the box have also been normalized to the print range; these show how
much information is packed into the high dynamic range image. Figure 7 a, b, c from

“Radiometric Self Calibration”, Mitsunaga and Nayar, in the fervent hope that permission

will be granted

the same (). This occurs, for example, when the images are of the same scene,
but are not precisely registered. Another option is to modify the imaging device;
if each 2x2 block of pixels (say) is modified so that three of the pixels have known
neutral density filters in front of them, it is possible to pay camera resolution to
obtain increased dynamic range ().

1.3.2 Curvature and Specularities

Either refer to or use the writeup in geofeats here

1.3.3 Inferring Lightness and Illumination

Lightness constancy is the skill that allows humans to report whether a surface
is white, gray, or black (the lightness of the surface) despite changes in the in-
tensity of illumination (the brightness). There is a lot of evidence that human
lightness constancy involves two processes: One compares the brightness of various
image patches and uses this comparison to determine which patches are lighter and
which darker; the second establishes some form of absolute standard to which these
comparisons can be referred (e.g. ?)).
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16 Chapter 1 Light and Shading

1.3.3.1 A Simple Model of Image Brightness

The radiance arriving at a pixel depends on the illumination of the surface being
viewed, its BRDF, its configuration with respect to the source, and the camera
responses. We assume that the scene is plane and frontal, that surfaces are Lam-
bertian (or that specularities have been removed), and that the camera responds
linearly to radiance.

This yields a model of the camera response C at a point x as the product of
an illumination term, an albedo term, and a constant that comes from the camera
gain:

C(x) = kcI(x)ρ(x).

If we take logarithms, we get

log C(x) = log kc + log I(x) + log ρ(x).

We now make a second set of assumptions:

• First, we assume that albedoes change only quickly over space — this means
that a typical set of albedoes will look like a collage of papers of different grays.
This assumption is quite easily justified: There are relatively few continuous
changes of albedo in the world (the best example occurs in ripening fruit),
and changes of albedo often occur when one object occludes another (so we
would expect the change to be fast). This means that spatial derivatives of
the term log ρ(x) are either zero (where the albedo is constant) or large (at a
change of albedo).

• Second, illumination changes only slowly over space. This assumption is
somewhat realistic. For example, the illumination due to a point source will
change relatively slowly unless the source is very close — so the sun is a source
that is particularly good for this example. As another example, illumination
inside rooms tends to change very slowly because the white walls of the room
act as area sources. This assumption fails dramatically at shadow boundaries,
however. We have to see these as a special case and assume that either there
are no shadow boundaries or that we know where they are.

1.3.3.2 Recovering Lightness from the Model

It is relatively easy to build algorithms that use our model. The earliest algorithm
(the Retinex algorithm of ?)) has fallen into disuse. The key insight of Retinex is
that small gradients are changes in illumination, and large gradients are changes
in lightness. We can use this by differentiating the log transform, throwing away
small gradients, and integrating the results (?). There is a constant of integra-
tion missing, so lightness ratios are available, but absolute lightness measurements
are not. Figure 1.11 illustrates the process for a one-dimensional example, where
differentiation and integration are easy.

This approach can be extended to two dimensions as well. Differentiating and
thresholding is easy: At each point, we estimate the magnitude of the gradient; if
the magnitude is less than some threshold, we set the gradient vector to zero or
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log ρ log I log p

dlog ρ
dx

dlog I

dx
dlog p

dx

dlog p

dx
Thresholded

Integrate
this to get
lightness,
which is
log ρ + constant

FIGURE 1.11: The lightness algorithm is easiest to illustrate for a 1D image. In the top

row, the graph on the left shows log ρ(x), that on the center log I(x), and that on the
right their sum, which is log C. The log of image intensity has large derivatives at changes
in surface reflectance and small derivatives when the only change is due to illumination
gradients. Lightness is recovered by differentiating the log intensity, thresholding to dis-
pose of small derivatives, and integrating at the cost of a missing constant of integration.

else we leave it alone. The difficulty is in integrating these gradients to get the
log albedo map. The thresholded gradients may not be the gradients of an image
because the mixed second partials may not be equal (integrability again; compare
with Section 1.3.4.4).

The problem can be rephrased as a minimization problem: choose the log
albedo map whose gradient is most like the thresholded gradient. This is a relatively
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18 Chapter 1 Light and Shading

Algorithm 1.1: Determining the Lightness of Image Patches

Form the gradient of the log of the image
At each pixel, if the gradient magnitude is below

a threshold, replace that gradient with zero
Reconstruct the log-albedo by solving the minimization

problem described in the text
Obtain a constant of integration
Add the constant to the log-albedo, and exponentiate

simple problem because computing the gradient of an image is a linear operation.
The x-component of the thresholded gradient is scanned into a vector p and the y-
component is scanned into a vector q. We write the vector representing log-albedo
as l. Now the process of forming the x derivative is linear, and so there is some
matrix Mx, such that Mxl is the x derivative; for the y derivative, we write the
corresponding matrix My.

The problem becomes to find the vector l that minimizes

| Mxl − p |2 + | Myl − q |2 .

This is a quadratic minimization problem, and the answer can be found by a linear
process. Some special tricks are required because adding a constant vector to l

cannot change the derivatives, so the problem does not have a unique solution. We
explore the minimization problem in the exercises.

The constant of integration needs to be obtained from some other assumption.
There are two obvious possibilities:

• we can assume that the brightest patch is white;

• we can assume that the average lightness is constant.

We explore the consequences of these models in the exercises.
More sophisticated algorithms are now available, but there were no quantita-

tive studies of performance until recently. Grosse et al. built a dataset for evaluating
lightness algorithms, and show that a version of the procedure we describe performs
extremely well compared to more sophisticated algorithms (). The major difficulty
all these approaches find is with shadow boundaries, which we discuss in section ??.

1.3.4 Photometric Stereo: Shape from multiple shaded images

It is possible to reconstruct a patch of surface from a series of pictures of that surface
taken under different illuminants. First, we need a camera model. For simplicity,
we choose a camera situated so that the point (x, y, z) in space is imaged to the
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Section 1.3 Inference from Shading 19

point (x, y) in the camera (the method we describe works for the other camera
models described in chapter ??).

In this case, to measure the shape of the surface, we need to obtain the
depth to the surface. This suggests representing the surface as (x, y, f(x, y)) — a
representation known as a Monge patch after a French military engineer who first
used it (Figure 1.12). This representation is attractive because we can determine a
unique point on the surface by giving the image coordinates. Notice that to obtain
a measurement of a solid object, we would need to reconstruct more than one patch
because we need to observe the back of the object.

x

y

height

Image
Plane

direction
of projection

FIGURE 1.12: A Monge patch is a representation of a piece of surface as a height function.
For the photometric stereo example, we assume that an orthographic camera — one that
maps (x, y, z) in space to (x, y) in the camera — is viewing a Monge patch. This means
that the shape of the surface can be represented as a function of position in the image.

Photometric stereo is a method for recovering a representation of the
Monge patch from image data. The method involves reasoning about the image
intensity values for several different images of a surface in a fixed view illuminated
by different sources. This method recovers the height of the surface at points cor-
responding to each pixel; in computer vision circles, the resulting representation is
often known as a height map, depth map, or dense depth map.

Fix the camera and the surface in position and illuminate the surface using
a point source that is far away compared with the size of the surface. We adopt a
local shading model and assume that there is no ambient illumination (more about
this later) so that the radiosity at a point x on the surface is

B(x) = ρ(x)N (x) · S1,

where N is the unit surface normal and S1 is the source vector. We can write
B(x, y) for the radiosity of a point on the surface because there is only one point on
the surface corresponding to the point (x, y) in the camera. Now we assume that
the response of the camera is linear in the surface radiosity, and so have that the
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20 Chapter 1 Light and Shading

value of a pixel at (x, y) is

I(x, y) = kB(x)

= kB(x, y)

= kρ(x, y)N(x, y) · S1

= g(x, y) · V 1,

where g(x, y) = ρ(x, y)N (x, y) and V 1 = kS1, where k is the constant connecting
the camera response to the input radiance.

FIGURE 1.13: Five synthetic images of a sphere, all obtained in an orthographic view
from the same viewing position. These images are shaded using a local shading model
and a distant point source. This is a convex object, so the only view where there is no
visible shadow occurs when the source direction is parallel to the viewing direction. The
variations in brightness occuring under different sources code the shape of the surface.

In these equations, g(x, y) describes the surface and V 1 is a property of the
illumination and of the camera. We have a dot product between a vector field g(x, y)
and a vector V 1, which could be measured; with enough of these dot products, we
could reconstruct g and so the surface.

1.3.4.1 Normal and Albedo from Many Views

Now if we have n sources, for each of which V i is known, we stack each of these
V i into a known matrix V , where

V =









V T
1

V T
2

. . .

V T
n









.
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Section 1.3 Inference from Shading 21

For each image point, we stack the measurements into a vector

i(x, y) = {I1(x, y), I2(x, y), . . . , In(x, y)}
T

.

Notice that we have one vector per image point; each vector contains all the image
brightnesses observed at that point for different sources. Now we have

i(x, y) = Vg(x, y),

and g is obtained by solving this linear system — or rather, one linear system per
point in the image. Typically, n > 3 so that a least squares solution is appropriate.
This has the advantage that the residual error in the solution provides a check on
our measurements.

Substantial regions of the surface may be in shadow for one or the other light
(see Figure 1.13). We assume that all shadowed regions are known, and deal only
with points that are not in shadow for any illuminant. More sophisticated strategies
can infer shadowing because shadowed points are darker than the local geometry
predicts.

1.3.4.2 Measuring Albedo

We can extract the albedo from a measurement of g because N is the unit normal.
This means that |g(x, y)|= ρ(x, y). This provides a check on our measurements as
well. Because the albedo is in the range zero to one, any pixels where |g| is greater
than one are suspect — either the pixel is not working or V is incorrect. Figure 1.14
shows albedo recovered using this method for the images of Figure 1.13.

1.3.4.3 Recovering Normals

We can extract the surface normal from g because the normal is a unit vector

N(x, y) =
g(x, y)

|g(x, y)|
.

Figure 1.15 shows normal values recovered for the images of Figure 1.13.
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22 Chapter 1 Light and Shading

FIGURE 1.14: The magnitude of the vector field g(x, y) recovered from the input data of
Figure 1.13 represented as an image — this is the reflectance of the surface.
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FIGURE 1.15: The normal field recovered from the surface of Figure 1.13.
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1.3.4.4 Shape from Normals

The surface is (x, y, f(x, y)), so the normal as a function of (x, y) is

N (x, y) =
1

√

1 + ∂f
∂x

2
+ ∂f

∂y

2

{

∂f

∂x
,
∂f

∂y
, 1

}T

To recover the depth map, we need to determine f(x, y) from measured values of
the unit normal.

Assume that the measured value of the unit normal at some point (x, y) is
(a(x, y), b(x, y), c(x, y)). Then

∂f

∂x
=

a(x, y)

c(x, y)
and

∂f

∂y
=

b(x, y)

c(x, y)
.

We have another check on our data set, because

∂2f

∂x∂y
=

∂2f

∂y∂x
,

so we expect that

∂
(

a(x,y)
c(x,y)

)

∂y
−

∂
(

b(x,y)
c(x,y)

)

∂x

should be small at each point. In principle it should be zero, but we would have
to estimate these partial derivatives numerically and so should be willing to ac-
cept small values. This test is known as a test of integrability, which in vision
applications always boils down to checking that mixed second partials are equal.

Assuming that the partial derivatives pass this sanity test, we can reconstruct
the surface up to some constant depth error. The partial derivative gives the change
in surface height with a small step in either the x or the y direction. This means
we can get the surface by summing these changes in height along some path. In
particular, we have

f(x, y) =

∮

C

(

∂f

∂x
,
∂f

∂y

)

· dl + c,

where C is a curve starting at some fixed point and ending at (x, y) and c is a
constant of integration, which represents the (unknown) height of the surface at
the start point. The recovered surface does not depend on the choice of curve (ex-
ercises). Another approach to recovering shape is to choose the function f(x, y)
whose partial derivatives most look like the measured partial derivatives. We ex-
plore this approach for a similar problem in Section 1.3.3.2. Figure 1.16 shows the
reconstruction obtained for the data of Figure 1.13.

1.3.5 Qualitative Properties of Interreflections

Photometric stereo as described uses the model that light at a surface patch comes
only from a distant light source. One can refine the method to take into account
nearby light sources, but it is much more difficult to deal with interreflections. Once
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24 Chapter 1 Light and Shading

Algorithm 1.2: Photometric Stereo

Obtain many images in a fixed view under different illuminants
Determine the matrix V from source and camera information
Inferring albedo and normal:

For each point in the image array that is not shadowed
Stack image values into a vector i

Solve Vg = i to obtain g for this point
Albedo at this point is |g|

Normal at this point is
g
|g|

p at this point is N1

N3

q at this point is N2

N3

end

Check: is ( ∂p
∂y

− ∂q
∂x

)2 small everywhere?

Integration:

Top left corner of height map is zero
For each pixel in the left column of height map

height value = previous height value + corresponding q value
end
For each row

For each element of the row except for leftmost
height value = previous height value + corresponding p value

end
end

one accounts for interreflections, the brightness of each surface patch could be af-
fected by the configuration of every other surface patch, making a very nasty global
inference problem. While there have been attempts to build methods that can infer
shape in the presence of interreflections (), the problem is extremely difficult. One
source of difficulties is that one may need to account for every radiating surface in
the solution, even distant surfaces one cannot see.

An alternative strategy to straightforward physical inference is to understand
the qualitative properties of interreflected shading. By doing so, we may be able
to identify cases that are easy to handle, the main types of effect, and so on. The
effects can be quite large. For example, Figure 1.17 shows views of the interior of two
rooms. One room has black walls and contains black objects. The other has white
walls and contains white objects. Each is illuminated (approximately!) by a distant
point source. Given that the intensity of the source is adjusted appropriately, the
local shading model predicts that these pictures would be indistinguishable. In fact,
the black room has much darker shadows and crisper boundaries at the creases of the
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FIGURE 1.16: The height field obtained by integrating the normal field of Figure 1.15
using the method described in the text.

A B C D E F GA B C D

FIGURE 1.17: The column on the left shows data from a room with matte black walls
and containing a collection of matte black polyhedral objects; that on the right shows
data from a white room containing white objects. The images are qualitatively different,
with darker shadows and crisper boundaries in the black room and bright reflexes in the
concave corners in the white room. The graphs show sections of the image intensity
along the corresponding lines in the images. Figure from “Mutual Illumination,” by D.A.

Forsyth and A.P. Zisserman, Proc. CVPR, 1989, c© 1989 IEEE

polyhedra than the white room. This is because surfaces in the black room reflect
less light onto other surfaces (they are darker), whereas in the white room other
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26 Chapter 1 Light and Shading

surfaces are significant sources of radiation. The sections of the camera response to
the radiosity (these are proportional to radiosity for diffuse surfaces) shown in the
figure are hugely different qualitatively. In the black room, the radiosity is constant
in patches as a local shading model would predict, whereas in the white room slow
image gradients are quite common — these occur in concave corners, where object
faces reflect light onto one another.

Illumination from
an infinitely distant
point source, in this
direction

predicted observed

FIGURE 1.18: The model described in the text produces quite accurate qualitative predic-
tions for interreflections. The top figure shows a concave right-angled groove illuminated
by a point source at infinity where the source direction is parallel to the one face. On
the left of the bottom row is a series of predictions of the radiosity for this configuration.
These predictions have been scaled to lie on top of one another; the case ρ → 0 corresponds
to the local shading model. On the right, an observed image intensity for an image of
this form for a corner made of white paper, showing the roof-like gradient in radiosity
associated with the edge. A local shading model predicts a step. Figure from “Mutual

Illumination,” by D.A. Forsyth and A.P. Zisserman, Proc. CVPR, 1989, c© 1989 IEEE

First, interreflections have a characteristic smoothing effect. This is most
obviously seen if one tries to interpret a stained glass window by looking at the
pattern it casts on the floor; this pattern is almost always a set of indistinct colored
blobs. The effect is seen most easily with the crude model of Figure 1.19. The
geometry consists of a patch with a frontal view of an infinite plane, which is a unit
distance away and carries a radiosity sinωx. There is no reason to vary the distance
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FIGURE 1.19: A small patch views a plane with sinusoidal radiosity of unit amplitude.
This patch has a (roughly) sinusoidal radiosity due to the effects of the plane. We refer
to the amplitude of this component as the gain of the patch. The graph shows numerical
estimates of the gain for patches at 10 equal steps in slant angle, from 0 to π/2, as a
function of spatial frequency on the plane. The gain falls extremely fast, meaning that
large terms at high spatial frequencies must be regional effects, rather than the result of
distant radiators. This is why it is hard to determine the pattern in a stained glass window
by looking at the floor at foot of the window. Figure from “Shading Primitives: Finding

Folds and Shallow Grooves,” J. Haddon and D.A. Forsyth, Proc. Int. Conf. Computer

Vision, 1998 c© 1998 IEEE

of the patch from the plane because interreflection problems have scale invariant
solutions — this means that the solution for a patch two units away can be obtained
by reading our graph at 2ω. The patch is small enough that its contribution to
the plane’s radiosity can be ignored. If the patch is slanted by σ with respect to
the plane, it carries radiosity that is nearly periodic, with spatial frequency ω cosσ.
We refer to the amplitude of the component at this frequency as the gain of the
patch and plot the gain in Figure 1.19. The important property of this graph is
that high spatial frequencies have a difficult time jumping the gap from the plane
to the patch. This means that shading effects with high spatial frequency and high
amplitude generally cannot come from distant surfaces (unless they are abnormally
bright).

The extremely fast fall-off in amplitude with spatial frequency of terms due to
distant surfaces means that, if one observes a high amplitude term at a high spatial
frequency, it is very unlikely to have resulted from the effects of distant, passive
radiators (because these effects die away quickly). There is a convention, which we
see in Section 1.3.3, that classifies effects in shading as due to reflectance if they are
fast (“edges”) and the dynamic range is relatively low and due to illumination oth-
erwise. We can expand this convention. There is a mid range of spatial frequencies
that are largely unaffected by mutual illumination from distant surfaces because
the gain is small. Spatial frequencies in this range cannot be transmitted by distant
passive radiators unless these radiators have improbably high radiosity. As a result,
spatial frequencies in this range can be thought of as regional properties, which
can result only from interreflection effects within a region.

The most notable regional properties are probably reflexes — small bright
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Illumination from
an infinitely distant
point source, in this
direction

predicted observed

FIGURE 1.20: Reflexes at concave edges are a common qualitative result of interreflections.
The figure on the top shows the situation here; a concave right-angled groove illuminated
by a point light source at infinity, whose source vector is along the angle bisector. The
graph on the left shows the intensity predictions of an interreflection model for this
configuration; the case ρ → 0 is a local shading model. The graphs have been lined
up for easy comparison. As the surface’s albedo goes up, a roof-like structure appears.
The graph on the right shows an observation of this effect in an image of a real scene.
Figure from “Mutual Illumination,” by D.A. Forsyth and A.P. Zisserman, Proc. CVPR,

1989, c© 1989 IEEE

patches that appear mainly in concave regions (illustrated in Figure 1.20 and Fig-
ure 1.21). A second important effect is color bleeding, where a colored surface
reflects light onto another colored surface. This is a common effect that people tend
not to notice unless they are consciously looking for it. It is quite often reproduced
by painters.

1.3.6 Shape from one shaded image

There is quite good evidence that people get some perception of shape from the
shading pattern in a single image, though the details are uncertain and quite com-
plicated (see the notes for a brief summary). You can see this evidence in practice:
whenever you display a reconstruction of a surface obtained from images, it is a
good idea to shade that reconstruction using image pixels, because it always looks
more accurate. In fact, quite bad reconstructions can be made to look good like
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predicted observed

FIGURE 1.21: Reflexes occur quite widely; they are usually caused by a favorable view of
a large reflecting surface. In the geometry shown on the top, the shadowed region of the
cylindrical bump sees the plane background at a fairly favorable angle — if the background
is large enough, near half the hemisphere of the patch at the base of the bump is a view of
the plane. This means there will be a reflex with a large value attached to the edge of the
bump and inside the cast shadow region (which a local model predicts as black). There is
another reflex on the other side, too, as the series of solutions (again normalized for easy
comparison) on the left show. On the right, an observation of this effect in a real scene.
Figure from “Mutual Illumination,” by D.A. Forsyth and A.P. Zisserman, Proc. CVPR,

1989, c© 1989 IEEE

this. White et al. use this trick to replace surface albedos in movies; for example,
they can change the pattern on a t-shirt in a movie (). Their method builds and
tracks very coarse geometric reconstructions, and uses a form of regression to re-
cover the original shading pattern of the object, then shade the coarse geometric
reconstruction using the original shading pattern (figure 1.22).

The cue to shape must come from the fact that a surface patch that faces
the light source is brighter than one that faces away from the source. But going
from this observation to a working algorithm remains an open question. The key
seems to be an appropriate use of the image irradiance equation. Assume we
have a surface in the form (x, y, f(x, y)) viewed orthographically along the z axis.
Assume that the surface albedo is uniform and known. Assume also that the model
of section ?? applies, so that the shading at a point with normal N is given by some
function R(N) (the function of our model is R(N ) = N · S, but others could be
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FIGURE 1.22: On the left, an original frame from a movie sequence of a deforming plastic
bag. On the right, two frames where the original texture has been replaced by another.
The method used is a form of regression; its crucial property is that it has a very weak
geometric model, but is capable of preserving the original shading field of the image. If
you look closely at the albedo (i.e. the black pattern) of the bag, you may notice that it
is inconsistent with the wrinkles on the bag; but because the shading has been preserved,
the figures look quite good. This is indirect evidence that shading is a valuable cue to
humans. Little is known about how this cue is to be exploited, however.

used). Now the normal of our surface is a function of the two first partial derivatives

p =
∂f

∂x
, q =

∂f

∂y

so we can write R(p, q). Assume that the camera is radiometrically calibrated, so
we can proceed from image values to irradiance values. Write the irradiance at x,
y as I(x, y). Then we have

R(p, q) = I(x, y)

This is a first order partial differential equation, because p and q are partial deriva-
tives of f . In principle, we could set up some boundary conditions and solve this
equation. Doing so reliably and accurately for general images remains outside our
competence, forty years since the problem was originally posed by Horn ().

There are a variety of difficulties here. The physical model is a poor model
of what actually happens at surfaces, because any particular patch is illuminated
by other surface patches, as well as the source. We expect to see a rich variety
of geometric constraints on the surface we reconstruct, and it is quite difficult to
formulate shape from shading in a way that accomodates these constraints and still
has a solution. Shading is a worthwhile cue to exploit, because we can observe
shading at extremely high spatial resolutions, but this means we must work with
very high dimensional models to reconstruct. Some schemes for shading recon-
struction can be unstable, but there appears to be no theory to guide us to stable
schemes. We very seldom actually see isolated surfaces of known albedo, and there
are no methods that are competent to infer both shading and albedo, though there
is some reason to hope that such methods can be built. We have no theory that is
capable of predicting the errors in shading based reconstructions from first princi-
ples. All this makes shape inference from shading in a single image one of the most
frustrating open questions in computer vision.
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A

B

FIGURE 1.23: A picture of the moon, published on Flickr by makelessnoise, shows two
important mechanisms by which it might be possible to infer surface shape from single
images. First, patches that face the light (like A, on the left) are brighter than those that
do not (B). The thick black arrow shows the approximate illumination direction. Second,
shadows pick out relief — for example, small dents in a surface (the moon’s craters, in
the detail patch on the right), have a bright face facing the light and a dark face which
is in shadow.

1.4 NOTES

DRAFT - Do not Circulate



Index

albedo, 3
ambient illumination, 5
area source, 6

brightness, 2, see color perception

color bleeding, 28
color constancy

lightness computation, 15
color perception

brightness, 15
lightness, 15

computing lightness, 15
Lightness constancy, 15

dense depth map, 19
depth map, 19
diffuse reflection, 3
distant point light source, 3

exitance, 11

form factors, 13

global shading model
color bleeding, 28
comparing black and white rooms,

24
form factors, 13
governing equation, 12
reflexes, 28
smoothing effect of interreflection,

27
solution in terms of constant patches,

12

height map, 19
high dynamic range image, 14

image irradiance equation, 29

integrability, 23
in lightness computation, 17
in photometric stereo, 23

interreflections, 5

Lambert’s cosine law, 4
lambertian+specular model, 5
lightness, see color perception
lightness computation, 15

algorithm, 17, 18
assumptions and model, 16
constant of integration, 18

Lightness constancy, see color percep-
tion

local shading model
area sources

shadows, 6
local shading models

area sources
shadows, 6

luminaires, 2

Monge patch, 19

penumbra, 6
Photometric stereo, 19
photometric stereo

depth from normals, 23
formulation, 21
integrability, 17, 23
normal and albedo in one vector, 20
recovering albedo, 21
recovering normals, 21

radiance
definition, 9
units, 9

radiometric calibration, 13
radiosity, 10
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of a surface whose radiance is known,
10

definition and units, 10
reciprocity, 13
reflexes, 27
regional properties, 27

shading, 2
shadow, 5
shadows

area sources, 6
penumbra, 6
umbra, 6

specular direction, 3
specular reflection, 3
specularity, 3

umbra, 6
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